1
|
Deslignière E, Barnes LF, Powers TW, Friese OV, Heck AJ. Characterization of intact mRNA-based therapeutics by charge detection mass spectrometry and mass photometry. Mol Ther Methods Clin Dev 2025; 33:101454. [PMID: 40236497 PMCID: PMC11999443 DOI: 10.1016/j.omtm.2025.101454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/16/2025] [Indexed: 04/17/2025]
Abstract
The impressive success of mRNA-based vaccines to combat COVID-19 has encouraged biopharmaceutical companies to invest in broader applications of alike vaccines for various diseases. Analytical approaches must keep pace to support this surge in the development of mRNA-based therapies. Intact mass analysis of mid- to large mRNA molecules (>1,000 nt) poses significant analytical challenges due to mRNA size, heterogeneity, and instability. Here, we demonstrate how single-particle Orbitrap-based charge detection mass spectrometry (CDMS) and mass photometry (MP) approaches can rapidly measure the mass of various intact high-mass capped mRNAs, up to 9,400 nt (∼3 MDa) in size. While ensemble MS yielded approximate masses for mRNAs <2,000 nt, it failed to provide information on samples of longer sequences. The drawbacks of ensemble MS could be avoided by recording individual ions. Low-charge mRNA components showed unstable ion behavior, hampering initial CDMS measurements, whereas high-charge populations offered better signal-to-noise and reduced charge uncertainty, with drastically improved mass accuracy. Lastly, in-solution MP enabled the measurement of mRNAs with high accuracy, while revealing low amounts of mRNA fragments and dimers that are sometimes overlooked in CDMS. Overall, CDMS and MP provide complementary methods that enable the study of large heterogeneous mRNA without requiring prior digestion or online separation.
Collapse
Affiliation(s)
- Evolène Deslignière
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, the Netherlands
- Netherlands Proteomics Center, 3584 CH Utrecht, the Netherlands
| | - Lauren F. Barnes
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO 63017, USA
| | - Thomas W. Powers
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO 63017, USA
| | - Olga V. Friese
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO 63017, USA
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, the Netherlands
- Netherlands Proteomics Center, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
2
|
Sumanto Marpaung DS, Yap Sinaga AO, Damayanti D, Taharuddin T, Gumaran S. Current biosensing strategies based on in vitro T7 RNA polymerase reaction. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2025; 6:59-66. [PMID: 39902056 PMCID: PMC11788683 DOI: 10.1016/j.biotno.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025]
Abstract
Recently, a unique behavior of T7 RNA polymerase has expanded its functionality as a biosensing platform. Various biosensors utilizing T7 RNA polymerase, combined with fluorescent aptamers, electrochemical probes, or CRISPR/Cas systems, have been developed to detect analytes, including nucleic acids and non-nucleic acid target, with high specificity and low detection limits. Each approach demonstrates unique strengths, such as real-time monitoring and minimal interference, but also presents challenges in stability, cost, and reaction optimization. This review provides an overview of T7 RNA polymerase's role in biosensing technology, highlighting its potential to advance diagnostics and molecular detection in diverse fields.
Collapse
Affiliation(s)
- David Septian Sumanto Marpaung
- Department of Biosystems Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| | - Ayu Oshin Yap Sinaga
- Department of Biology, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| | - Damayanti Damayanti
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| | - Taharuddin Taharuddin
- Department of Chemical Engineering, University of Lampung, Jl. Prof. Dr. Ir. Sumantri Brojonegoro No.1, Gedong Meneng, Kec. Rajabasa, Kota Bandar Lampung, Lampung, 35141, Indonesia
| | - Setyadi Gumaran
- Department of Biosystems Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| |
Collapse
|
3
|
Mikaeeli Kangarshahi B, Naghib SM, Rabiee N. 3D printing and computer-aided design techniques for drug delivery scaffolds in tissue engineering. Expert Opin Drug Deliv 2024; 21:1615-1636. [PMID: 39323396 DOI: 10.1080/17425247.2024.2409913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION The challenge in tissue engineering lies in replicating the intricate structure of the native extracellular matrix. Recent advancements in AM, notably 3D printing, offer unprecedented capabilities to tailor scaffolds precisely, controlling properties like structure and bioactivity. CAD tools complement this by facilitating design using patient-specific data. AREA’S COVERED This review introduces additive manufacturing (AM) and computer-aided design (CAD) as pivotal tools in advancing tissue engineering, particularly cartilage regeneration. This article explores various materials utilized in AM, focusing on polymers and hydrogels for their advantageous properties in tissue engineering applications. Integrating bioactive molecules, including growth factors, into scaffolds to promote tissue regeneration is discussed alongside strategies involving different cell sources, such as stem cells, to enhance tissue development within scaffold matrices. EXPERT OPINION Applications of AM and CAD in addressing specific challenges like osteochondral defects and osteoarthritis in cartilage tissue engineering are highlighted. This review consolidates current research findings, offering expert insights into the evolving landscape of AM and CAD technologies in advancing tissue engineering, particularly in cartilage regeneration.
Collapse
Affiliation(s)
- Babak Mikaeeli Kangarshahi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, India
| |
Collapse
|
4
|
Parvin N, Mandal TK, Joo SW. The Impact of COVID-19 on RNA Therapeutics: A Surge in Lipid Nanoparticles and Alternative Delivery Systems. Pharmaceutics 2024; 16:1366. [PMID: 39598489 PMCID: PMC11597542 DOI: 10.3390/pharmaceutics16111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
The COVID-19 pandemic has significantly accelerated progress in RNA-based therapeutics, particularly through the successful development and global rollout of mRNA vaccines. This review delves into the transformative impact of the pandemic on RNA therapeutics, with a strong focus on lipid nanoparticles (LNPs) as a pivotal delivery platform. LNPs have proven to be critical in enhancing the stability, bioavailability, and targeted delivery of mRNA, facilitating the unprecedented success of vaccines like those developed by Pfizer-BioNTech and Moderna. Beyond vaccines, LNP technology is being explored for broader therapeutic applications, including treatments for cancer, rare genetic disorders, and infectious diseases. This review also discusses emerging RNA delivery systems, such as polymeric nanoparticles and viral vectors, which offer alternative strategies to overcome existing challenges related to stability, immune responses, and tissue-specific targeting. Additionally, we examine the pandemic's influence on regulatory processes, including the fast-tracked approvals for RNA therapies, and the surge in research funding that has spurred further innovation in the field. Public acceptance of RNA-based treatments has also grown, laying the groundwork for future developments in personalized medicine. By providing an in-depth analysis of these advancements, this review highlights the long-term impact of COVID-19 on the evolution of RNA therapeutics and the future of precision drug delivery technologies.
Collapse
Affiliation(s)
| | - Tapas K. Mandal
- School of Mechanical Engineering, School of Basic Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sang-Woo Joo
- School of Mechanical Engineering, School of Basic Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
5
|
Yang R, Cui J. Advances and applications of RNA vaccines in tumor treatment. Mol Cancer 2024; 23:226. [PMID: 39385255 PMCID: PMC11463124 DOI: 10.1186/s12943-024-02141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Compared to other types of tumor vaccines, RNA vaccines have emerged as promising alternatives to conventional vaccine therapy due to their high efficiency, rapid development capability, and potential for low-cost manufacturing and safe drug delivery. RNA vaccines mainly include mRNA, circular RNA (circRNA), and Self-amplifying mRNA(SAM). Different RNA vaccine platforms for different tumors have shown encouraging results in animal and human models. This review comprehensively describes the advances and applications of RNA vaccines in antitumor therapy. Future directions for extending this promising vaccine platform to a wide range of therapeutic uses are also discussed.
Collapse
Affiliation(s)
- Ruohan Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Monfrini E, Baso G, Ronchi D, Meneri M, Gagliardi D, Quetti L, Verde F, Ticozzi N, Ratti A, Di Fonzo A, Comi GP, Ottoboni L, Corti S. Unleashing the potential of mRNA therapeutics for inherited neurological diseases. Brain 2024; 147:2934-2945. [PMID: 38662782 PMCID: PMC11969220 DOI: 10.1093/brain/awae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 09/04/2024] Open
Abstract
Neurological monogenic loss-of-function diseases are hereditary disorders resulting from gene mutations that decrease or abolish the normal function of the encoded protein. These conditions pose significant therapeutic challenges, which may be resolved through the development of innovative therapeutic strategies. RNA-based technologies, such as mRNA replacement therapy, have emerged as promising and increasingly viable treatments. Notably, mRNA therapy exhibits significant potential as a mutation-agnostic approach that can address virtually any monogenic loss-of-function disease. Therapeutic mRNA carries the information for a healthy copy of the defective protein, bypassing the problem of targeting specific genetic variants. Moreover, unlike conventional gene therapy, mRNA-based drugs are delivered through a simplified process that requires only transfer to the cytoplasm, thereby reducing the mutagenic risks related to DNA integration. Additionally, mRNA therapy exerts a transient effect on target cells, minimizing the risk of long-term unintended consequences. The remarkable success of mRNA technology for developing coronavirus disease 2019 vaccines has rekindled interest in mRNA as a cost-effective method for delivering therapeutic proteins. However, further optimization is required to enhance mRNA delivery, particularly to the CNS, while minimizing adverse drug reactions and toxicity. In this comprehensive review, we delve into past, present and ongoing applications of mRNA therapy for neurological monogenic loss-of-function diseases. We also discuss the promises and potential challenges presented by mRNA therapeutics in this rapidly advancing field. Ultimately, we underscore the full potential of mRNA therapy as a game-changing therapeutic approach for neurological disorders.
Collapse
Affiliation(s)
- Edoardo Monfrini
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
| | - Giacomo Baso
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
| | - Dario Ronchi
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
| | - Megi Meneri
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
- Stroke Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Delia Gagliardi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
| | - Lorenzo Quetti
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Federico Verde
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
- Department of Neurology, Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Nicola Ticozzi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
- Department of Neurology, Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Antonia Ratti
- Department of Neurology, Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
- Department Medical Biotechnology and Translational Medicine, University of Milan, Milan 20100, Italy
| | - Alessio Di Fonzo
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Giacomo P Comi
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
| | - Linda Ottoboni
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
- Department of Neuroscience, Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| |
Collapse
|
7
|
Horvath A, Janapala Y, Woodward K, Mahmud S, Cleynen A, Gardiner E, Hannan R, Eyras E, Preiss T, Shirokikh N. Comprehensive translational profiling and STE AI uncover rapid control of protein biosynthesis during cell stress. Nucleic Acids Res 2024; 52:7925-7946. [PMID: 38721779 PMCID: PMC11260467 DOI: 10.1093/nar/gkae365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 07/23/2024] Open
Abstract
Translational control is important in all life, but it remains a challenge to accurately quantify. When ribosomes translate messenger (m)RNA into proteins, they attach to the mRNA in series, forming poly(ribo)somes, and can co-localize. Here, we computationally model new types of co-localized ribosomal complexes on mRNA and identify them using enhanced translation complex profile sequencing (eTCP-seq) based on rapid in vivo crosslinking. We detect long disome footprints outside regions of non-random elongation stalls and show these are linked to translation initiation and protein biosynthesis rates. We subject footprints of disomes and other translation complexes to artificial intelligence (AI) analysis and construct a new, accurate and self-normalized measure of translation, termed stochastic translation efficiency (STE). We then apply STE to investigate rapid changes to mRNA translation in yeast undergoing glucose depletion. Importantly, we show that, well beyond tagging elongation stalls, footprints of co-localized ribosomes provide rich insight into translational mechanisms, polysome dynamics and topology. STE AI ranks cellular mRNAs by absolute translation rates under given conditions, can assist in identifying its control elements and will facilitate the development of next-generation synthetic biology designs and mRNA-based therapeutics.
Collapse
Affiliation(s)
- Attila Horvath
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Yoshika Janapala
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Katrina Woodward
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Shafi Mahmud
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Alice Cleynen
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
- Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, CNRS, Montpellier, France
| | - Elizabeth E Gardiner
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The National Platelet Research and Referral Centre, The Australian National University, Canberra, ACT 2601, Australia
| | - Ross D Hannan
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3010, Australia
- Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
- School of Biomedical Sciences, University of Queensland, St Lucia 4067, Australia
| | - Eduardo Eyras
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Centre for Computational Biomedical Sciences, The Australian National University, Canberra, ACT 2601, Australia
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Preiss
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Nikolay E Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
8
|
Parveen A, Elkordy AA. Brief Insights into mRNA Vaccines: Their Successful Production and Nanoformulation for Effective Response against COVID-19 and Their Potential Success for Influenza A and B. Pathogens 2024; 13:500. [PMID: 38921798 PMCID: PMC11206352 DOI: 10.3390/pathogens13060500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
A mRNA vaccine is a type of vaccine that induces an immune response. Antigen-encoding mRNA is delivered via vaccine carriers into the immune cells, which are produced because of antigen-encoding mRNA translation, a protein. For example, COVID-19 mRNA vaccines produce the spike protein of the COVID-19 virus, whereas for influenza virus, mRNA vaccines target the haemagglutinin protein to treat the flu, and it requires modifications depending on the pandemic or seasonal viruses as it is capable of adapting the immune response, which makes the development of vaccines arduous. The protein molecule promotes an adaptive immune response that eliminates and terminates the corresponding virus or pathogen. There are many challenges to delivering an mRNA vaccine into the body; hence, the encapsulation of the mRNA (usually within lipid nanoparticles) is necessary to protect the mRNA from the body's surrounding environment. In this review article, we focus mainly on the production, formulation, and stabilization of mRNA vaccines in general, elaborating more on and focusing more on SARS-CoV-2, or COVID-19, and influenza viruses, which have become a major concern as these viruses have turned into life-threatening diseases.
Collapse
Affiliation(s)
| | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK;
| |
Collapse
|
9
|
Curry E, Muir G, Qu J, Kis Z, Hulley M, Brown A. Engineering an Escherichia coli based in vivo mRNA manufacturing platform. Biotechnol Bioeng 2024; 121:1912-1926. [PMID: 38419526 DOI: 10.1002/bit.28684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Synthetic mRNA is currently produced in standardized in vitro transcription systems. However, this one-size-fits-all approach has associated drawbacks in supply chain shortages, high reagent costs, complex product-related impurity profiles, and limited design options for molecule-specific optimization of product yield and quality. Herein, we describe for the first time development of an in vivo mRNA manufacturing platform, utilizing an Escherichia coli cell chassis. Coordinated mRNA, DNA, cell and media engineering, primarily focussed on disrupting interactions between synthetic mRNA molecules and host cell RNA degradation machinery, increased product yields >40-fold compared to standard "unengineered" E. coli expression systems. Mechanistic dissection of cell factory performance showed that product mRNA accumulation levels approached theoretical limits, accounting for ~30% of intracellular total RNA mass, and that this was achieved via host-cell's reallocating biosynthetic capacity away from endogenous RNA and cell biomass generation activities. We demonstrate that varying sized functional mRNA molecules can be produced in this system and subsequently purified. Accordingly, this study introduces a new mRNA production technology, expanding the solution space available for mRNA manufacturing.
Collapse
Affiliation(s)
- Edward Curry
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - George Muir
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Jixin Qu
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Zoltán Kis
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | - Adam Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
Javidanbardan A, Messerian KO, Zydney AL. Membrane technology for the purification of RNA and DNA therapeutics. Trends Biotechnol 2024; 42:714-727. [PMID: 38212210 DOI: 10.1016/j.tibtech.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/13/2024]
Abstract
Nucleic acid therapeutics have the potential to revolutionize the biopharmaceutical industry, providing highly effective vaccines and novel treatments for cancers and genetic disorders. The successful commercialization of these therapeutics will require development of manufacturing strategies specifically tailored to the purification of nucleic acids. Membrane technologies already play a critical role in the downstream processing of nucleic acid therapeutics, ranging from clarification to concentration to selective purification. This review provides an overview of how membrane systems are currently used for nucleic acid purification, while highlighting areas of future need and opportunity, including adoption of membranes in continuous bioprocessing.
Collapse
Affiliation(s)
- Amin Javidanbardan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kevork Oliver Messerian
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew L Zydney
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
11
|
Bisen M, Kharga K, Mehta S, Jabi N, Kumar L. Bacteriophages in nature: recent advances in research tools and diverse environmental and biotechnological applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22199-22242. [PMID: 38411907 DOI: 10.1007/s11356-024-32535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Bacteriophages infect and replicate within bacteria and play a key role in the environment, particularly in microbial ecosystems and bacterial population dynamics. The increasing recognition of their significance stems from their wide array of environmental and biotechnological uses, which encompass the mounting issue of antimicrobial resistance (AMR). Beyond their therapeutic potential in combating antibiotic-resistant infections, bacteriophages also find vast applications such as water quality monitoring, bioremediation, and nutrient cycling within environmental sciences. Researchers are actively involved in isolating and characterizing bacteriophages from different natural sources to explore their applications. Gaining insights into key aspects such as the life cycle of bacteriophages, their host range, immune interactions, and physical stability is vital to enhance their application potential. The establishment of diverse phage libraries has become indispensable to facilitate their wide-ranging uses. Consequently, numerous protocols, ranging from traditional to cutting-edge techniques, have been developed for the isolation, detection, purification, and characterization of bacteriophages from diverse environmental sources. This review offers an exploration of tools, delves into the methods of isolation, characterization, and the extensive environmental applications of bacteriophages, particularly in areas like water quality assessment, the food sector, therapeutic interventions, and the phage therapy in various infections and diseases.
Collapse
Affiliation(s)
- Monish Bisen
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sakshi Mehta
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Nashra Jabi
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
- Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Himachal Pradesh, Solan, 173229, India.
| |
Collapse
|
12
|
Kenoosh HA, Pallathadka H, Hjazi A, Al-Dhalimy AMB, Zearah SA, Ghildiyal P, Al-Mashhadani ZI, Mustafa YF, Hizam MM, Elawady A. Recent advances in mRNA-based vaccine for cancer therapy; bench to bedside. Cell Biochem Funct 2024; 42:e3954. [PMID: 38403905 DOI: 10.1002/cbf.3954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
The messenger RNA (mRNA) vaccines have progressed from a theoretical concept to a clinical reality over the last few decades. Compared to conventional vaccination methods, these vaccines have a number of benefits, such as substantial potency, rapid growth, inexpensive production, and safe administration. Nevertheless, their usefulness was restricted up to now due to worries about the erratic and ineffective circulation of mRNA in vivo. Thankfully, these worries have largely been allayed by recent technological developments, which have led to the creation of multiple mRNA vaccination platforms for cancer and viral infections. The mRNA vaccines have been demonstrated as a powerful alternative to traditional conventional vaccines because of their high potency, safety and efficacy, capacity for rapid clinical development, and potential for rapid, low-cost manufacturing. The paper will examine the present status of mRNA vaccine technology and suggest future paths for the advancement and application of this exciting vaccine platform as a common therapeutic choice.
Collapse
Affiliation(s)
- Hadeel Ahmed Kenoosh
- Department of Medical Laboratory Techniques, Al-Maarif University College, AL-Anbar, Iraq
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Manar Mohammed Hizam
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
13
|
Kamath D, Iwakuma T, Bossmann SH. Therapeutic potential of combating cancer by restoring wild-type p53 through mRNA nanodelivery. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 56:102732. [PMID: 38199451 PMCID: PMC11108594 DOI: 10.1016/j.nano.2024.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Among the tumor suppressor genes, TP53 is the most frequently mutated in human cancers, and most mutations are missense mutations causing production of mutant p53 (mutp53) proteins. TP53 mutations not only results in loss of function (LOH) as a transcription factor and a tumor suppressor, but also gain wild-type p53 (WTp53)-independent oncogenic functions that enhance cancer metastasis and progression (Yamamoto and Iwakuma, 2018; Zhang et al., 2022). TP53 has extensively been studied as a therapeutic target as well as for drug development and therapies, however with limited success. Achieving targeted therapies for restoration of WTp53 function and depletion or repair of mutant p53 (mutp53) will have far reaching implication in cancer treatment and therapies. This review briefly discusses the role of p53 mutation in cancer and the therapeutic potential of restoring WTp53 through the advances in mRNA nanomedicine.
Collapse
Affiliation(s)
- Divya Kamath
- The University of Kansas Medical Center, Department of Cancer Biology, 3901 Rainbow Blvd, mailstop 1071, 66160 Kansas City, KS, USA.
| | - Tomoo Iwakuma
- Children's Mercy Hospital, Adele Hall Campus, 2401 Gillham Rd, Kansas City, MO 64108, USA.
| | - Stefan H Bossmann
- The University of Kansas Medical Center, Department of Cancer Biology, 3901 Rainbow Blvd, mailstop 1071, 66160 Kansas City, KS, USA.
| |
Collapse
|
14
|
Vuong HL, Lan CT, Le HTT. The development and technologies of RNA therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:13-39. [PMID: 38359995 DOI: 10.1016/bs.pmbts.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Since it was discovered for over 20 years ago, the potentiality of siRNAs in gene silencing in vitro and in vivo models has been recognized. Several studies in the new generation, molecular mechanisms, target attachment, and purification of RNA have supported the development of RNA therapeutics for a variety of applications. RNA therapeutics are growing rapidly with various platforms contributing to the standard of personalized medicine and rare disease treatment. Therefore, understanding the development and technologies of RNA therapeutics becomes a crucial point for new drug generation. Here, the primary purpose of this review is to provide a general view of six therapeutic categories that make up RNA-based therapeutic approaches, including RNA-target therapeutics, protein-targeted therapeutics, cellular reprogramming and tissues engineering, RNA-based protein replacement therapeutics, RNA-based genome editing, and RNA-based immunotherapies based on non-coding RNAs and coding RNA. Furthermore, we present an overview of the RNA strategies regarding viral approaches and nonviral approaches in designing a new generation of RNA technologies. The advantages and challenges of using RNA therapeutics are also discussed along with various approaches for RNA delivery. Therefore, this review is designed to provide updated reference evidence of RNA therapeutics in the battle against rare or difficult-to-treat diseases for researchers in this field.
Collapse
Affiliation(s)
- Huong Lan Vuong
- Pharmacy Department, National Hospital for Tropical Diseases, Hanoi, Vietnam
| | - Chu Thanh Lan
- Department of Regenerative Medicine, Institute of Tissue Regeneration, College of Medicine, Soonchunghyang University, South Korea
| | - Hien Thi Thu Le
- Intestinal Signaling and Epigenetics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
15
|
Granata S, Stallone G, Zaza G. mRNA as a medicine in nephrology: the future is now. Clin Kidney J 2023; 16:2349-2356. [PMID: 38046026 PMCID: PMC10689145 DOI: 10.1093/ckj/sfad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 12/05/2023] Open
Abstract
The successful employment of messenger RNA (mRNA) as vaccine therapy for the prevention of COVID-19 infection has spotlighted the attention of scientific community onto the potential clinical application of these molecules as innovative and alternative therapeutic approaches in different fields of medicine. As therapy, mRNAs may be advantageous due to their unique biological properties of targeting almost any genetic component within the cell, many of which may be unreachable using other pharmacological/therapeutic approaches, and encoding any proteins and peptides without the need for their transport into the nuclei of the target cells. Additionally, these molecules may be rapidly designed/produced and clinically tested. Once the chemistry of the RNA and its delivery system are optimized, the cost of developing novel variants of these medications for new selected clinical disorders is significantly reduced. However, although potentially useful as new therapeutic weapons against several kidney diseases, the complex architecture of kidney and the inability of nanoparticles that accommodate oligonucleotides to cross the integral glomerular filtration barrier have largely decreased their potential employment in nephrology. However, in the next few years, the technical improvements in mRNA that increase translational efficiency, modulate innate and adaptive immunogenicity, and increase their delivery at the site of action will overcome these limitations. Therefore, this review has the scope of summarizing the key strengths of these RNA-based therapies and illustrating potential future directions and challenges of this promising technology for widespread therapeutic use in nephrology.
Collapse
Affiliation(s)
- Simona Granata
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
16
|
Youssef M, Hitti C, Puppin Chaves Fulber J, Kamen AA. Enabling mRNA Therapeutics: Current Landscape and Challenges in Manufacturing. Biomolecules 2023; 13:1497. [PMID: 37892179 PMCID: PMC10604719 DOI: 10.3390/biom13101497] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Recent advances and discoveries in the structure and role of mRNA as well as novel lipid-based delivery modalities have enabled the advancement of mRNA therapeutics into the clinical trial space. The manufacturing of these products is relatively simple and eliminates many of the challenges associated with cell culture production of viral delivery systems for gene and cell therapy applications, allowing rapid production of mRNA for personalized treatments, cancer therapies, protein replacement and gene editing. The success of mRNA vaccines during the COVID-19 pandemic highlighted the immense potential of this technology as a vaccination platform, but there are still particular challenges to establish mRNA as a widespread therapeutic tool. Immunostimulatory byproducts can pose a barrier for chronic treatments and different production scales may need to be considered for these applications. Moreover, long-term storage of mRNA products is notoriously difficult. This review provides a detailed overview of the manufacturing steps for mRNA therapeutics, including sequence design, DNA template preparation, mRNA production and formulation, while identifying the challenges remaining in the dose requirements, long-term storage and immunotolerance of the product.
Collapse
Affiliation(s)
| | | | | | - Amine A. Kamen
- Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada; (M.Y.); (C.H.); (J.P.C.F.)
| |
Collapse
|
17
|
Prakash S. mRNA-Based Nanomedicine: A New Strategy for Treating Infectious Diseases and Beyond. Eur J Drug Metab Pharmacokinet 2023; 48:515-529. [PMID: 37656402 DOI: 10.1007/s13318-023-00849-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Messenger RNA (mRNA) has emerged as a new therapeutic agent for the prevention and treatment of a wide range of diseases. The recent achievement of the two lipid nanoparticle-mRNA vaccines developed by Moderna and Pfizer-BioNTech against coronavirus 2019 (COVID-19) disease in record time highlights the huge potential of mRNA technology and reshaping the landscape of vaccine development and the future of gene therapies. Challenges related to translational efficacy, mRNA stability, immunogenicity, and ensuring the quality of final products have been significantly improved by recent advancements in mRNA engineering and delivery. Thus, the present review aims to provide the latest innovations that incrementally overcome these issues and future directions in the context of ongoing clinical trials against infectious diseases and beyond.
Collapse
Affiliation(s)
- Satyendra Prakash
- Centre of Biotechnology, Faculty of Science, University of Allahabad, Allahabad, India.
| |
Collapse
|
18
|
Kafetzis KN, Papalamprou N, McNulty E, Thong KX, Sato Y, Mironov A, Purohit A, Welsby PJ, Harashima H, Yu‐Wai‐Man C, Tagalakis AD. The Effect of Cryoprotectants and Storage Conditions on the Transfection Efficiency, Stability, and Safety of Lipid-Based Nanoparticles for mRNA and DNA Delivery. Adv Healthc Mater 2023; 12:e2203022. [PMID: 36906918 PMCID: PMC11468535 DOI: 10.1002/adhm.202203022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/16/2023] [Indexed: 03/13/2023]
Abstract
Lipid-based nanoparticles have recently shown great promise, establishing themselves as the gold standard in delivering novel RNA therapeutics. However, research on the effects of storage on their efficacy, safety, and stability is still lacking. Herein, the impact of storage temperature on two types of lipid-based nanocarriers, lipid nanoparticles (LNPs) and receptor-targeted nanoparticles (RTNs), loaded with either DNA or messenger RNA (mRNA), is explored and the effects of different cryoprotectants on the stability and efficacy of the formulations are investigated. The medium-term stability of the nanoparticles was evaluated by monitoring their physicochemical characteristics, entrapment and transfection efficiency, every two weeks over one month. It is demonstrated, that the use of cryoprotectants protects nanoparticles against loss of function and degradation in all storage conditions. Moreover, it is shown that the addition of sucrose enables all nanoparticles to remain stable and maintain their efficacy for up to a month when stored at -80 °C, regardless of cargo or type of nanoparticle. DNA-loaded nanoparticles also remain stable in a wider variety of storage conditions than mRNA-loaded ones. Importantly, these novel LNPs show increased GFP expression that can signify their future use in gene therapies, beyond the established role of LNPs in RNA therapeutics.
Collapse
Affiliation(s)
| | | | - Elisha McNulty
- Department of BiologyEdge Hill UniversityOrmskirkL39 4QPUK
| | - Kai X. Thong
- Faculty of Life Sciences & MedicineKing's College LondonLondonSE1 7EHUK
| | - Yusuke Sato
- Faculty of Pharmaceutical SciencesHokkaido UniversityKita‐12, Nishi‐6, Kita‐kuSapporo060–0812Japan
| | - Aleksandr Mironov
- Electron Microscopy Core Facility (RRID: SCR_021147)Faculty of BiologyMedicine and HealthUniversity of ManchesterManchesterM13 9PTUK
| | - Atul Purohit
- Oncology Drug Discovery & Women's Health GroupDepartment of MetabolismDigestion & ReproductionImperial College LondonLondonW12 0HSUK
| | | | - Hideyoshi Harashima
- Faculty of Pharmaceutical SciencesHokkaido UniversityKita‐12, Nishi‐6, Kita‐kuSapporo060–0812Japan
| | | | | |
Collapse
|
19
|
Vavilis T, Stamoula E, Sachinidis A, Lamprinou M, Dardalas I, Papazisis G. Biopharmaceuticals against substance use disorders - Present and future. Eur J Pharmacol 2023; 944:175587. [PMID: 36775113 DOI: 10.1016/j.ejphar.2023.175587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Pharmacological treatments available for substance use disorder (SUD) focus on pharmacodynamics, agonizing or antagonizing the drug of abuse (DOA) on receptor level. Drawbacks of this approach include the reliance on long-term patient compliance, on-target off-site effects, perpetuation of addiction and unavailability for many DOAs. Newer, pharmacokinetic approaches are needed that restrict DOA's access to the brain or disrupt DOA-instated brain changes maintaining addiction. Biotechnology might be able to provide the right biopharmaceutical tools to deliver a fine-tuned solution with less side effects compared to currently available treatments. METHODS This review examines the available literature on biopharmaceuticals developed to treat SUD. RESULTS Active and passive immunization, metabolic enhancers that augment DOA metabolism and clearance, as well as genetic/epigenetic modulation are promising next generation SUD treatments. Active immunization relies on production of antidrug antibodies by means of vaccination, while passive immunization constitutes of exogenous administration of such antibodies. Metabolic enhancers include drug-specific metabolizing enzymes that can be administered or secreted by modified skin grafts, as well as catalytic antibodies that hasten DOA metabolism. Nanotechnological advances can also allow for brain delivery of siRNAs, mRNAs or DNA in order to modulate central, common in all addictions, genetic or epigenetic targets attenuating drug seeking behavior and reversing drug-induced brain changes. CONCLUSIONS and Scientific Significance: Biopharmaceuticals can in the future complement or even replace traditional pharmacodynamics approaches in SUD treatment. While passive and active immunization biopharmaceuticals have entered human clinical trials, metabolic enhancers and genetic approaches are at the preclinical level.
Collapse
Affiliation(s)
- Theofanis Vavilis
- Laboratory of Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Department of Dentistry, European University Cyprus, Nicosia, 2404, Cyprus.
| | - Eleni Stamoula
- Department of Biotechnology, Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece; Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Sachinidis
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Malamatenia Lamprinou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Dardalas
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Papazisis
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; Clinical Research Unit, Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
20
|
Recoding of Nonsense Mutation as a Pharmacological Strategy. Biomedicines 2023; 11:biomedicines11030659. [PMID: 36979640 PMCID: PMC10044939 DOI: 10.3390/biomedicines11030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Approximately 11% of genetic human diseases are caused by nonsense mutations that introduce a premature termination codon (PTC) into the coding sequence. The PTC results in the production of a potentially harmful shortened polypeptide and activation of a nonsense-mediated decay (NMD) pathway. The NMD pathway reduces the burden of unproductive protein synthesis by lowering the level of PTC mRNA. There is an endogenous rescue mechanism that produces a full-length protein from a PTC mRNA. Nonsense suppression therapies aim to increase readthrough, suppress NMD, or are a combination of both strategies. Therefore, treatment with translational readthrough-inducing drugs (TRIDs) and NMD inhibitors may increase the effectiveness of PTC suppression. Here we discuss the mechanism of PTC readthrough and the development of novel approaches to PTC suppression. We also discuss the toxicity and bioavailability of therapeutics used to stimulate PTC readthrough.
Collapse
|
21
|
Fekete S, Doneanu C, Addepalli B, Gaye M, Nguyen J, Alden B, Birdsall R, Han D, Isaac G, Lauber M. Challenges and emerging trends in liquid chromatography-based analyses of mRNA pharmaceuticals. J Pharm Biomed Anal 2023; 224:115174. [PMID: 36446261 PMCID: PMC9678211 DOI: 10.1016/j.jpba.2022.115174] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Lipid encapsulated messenger RNA (LNP mRNA) has garnered a significant amount of interest from the pharmaceutical industry and general public alike. This attention has been catalyzed by the clinical success of LNP mRNA for SARS-CoV-2 vaccination as well as future promises that might be fulfilled by the biotechnology pipeline, such as the in vivo delivery of a CRISPR/Cas9 complex that can edit patient cells to reduce levels of low-density lipoprotein. LNP mRNAs are comprised of various chemically diverse molecules brought together in a sophisticated intermolecular complex. This can make it challenging to achieve thorough analytical characterization. Nevertheless, liquid chromatography is becoming an increasingly relied upon technique for LNP mRNA analyses. Although there have been significant advances in all types of LNP mRNA analyses, this review focuses on recent developments and the possibilities of applying anion exchange (AEX) and ion pairing reversed phase (IP-RP) liquid chromatography for intact mRNAs as well as techniques for oligo mapping analysis, 5' endcap testing and lipid compositional assays.
Collapse
|
22
|
Vanhinsbergh C. The Role of Separation Techniques in the Analysis of mRNA Therapeutic Drug Substances and Drug Products. LCGC EUROPE 2023. [DOI: 10.56530/lcgc.eu.hk6689y3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Messenger ribonucleic acids (mRNA) therapeutics are becoming more widespread pharmaceutical tools to treat a wide range of diseases or infections, as highlighted by regulatory approval of two vaccines for SARS‑CoV-2. Alongside their use as vaccines, they also play a role in protein replacement therapy to ensure therapeutic protein is synthesized within the patient. Structural elements, such as the 5’ cap, UTR regions, reading frame, and poly A tail are considered as critical quality attributes (CQAs) that are subject to a range of analytical techniques. However, chromatography and other separation methods are commonly used for characterization and quantification of the drug substance and drug product. This article reviews a range of techniques available for separative analysis of mRNA therapeutics, their associated impurities, and delivery vehicles.
Collapse
|
23
|
Nwokeoji AO, Chou T, Nwokeoji EA. Low Resource Integrated Platform for Production and Analysis of Capped mRNA. ACS Synth Biol 2023; 12:329-339. [PMID: 36495278 PMCID: PMC9872168 DOI: 10.1021/acssynbio.2c00609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Indexed: 12/14/2022]
Abstract
The existing platform for large-scale mRNA production is fast, but consumable costs, process technicality, and complexity represent key bottlenecks limiting global mRNA biologics manufacturing. Another challenge is the lack of a consolidated platform for mRNA product characterization and assays that meet regulatory requirements. Bridging these innovation gaps to simplify processes and reduce cost would improve mRNA biologics manufacturability, especially in low-resource settings. This study develops a "cotranscriptional" capping strategy that utilizes T7 RNA polymerase, and the Vaccinia Capping System to synthesize and cap mRNA. We created an "integrated reaction buffer" that supports both capping enzymes for catalytic and in vitro transcription processes, enabling one-pot, two-step capped mRNA synthesis. Additionally, we report a novel, one-step analytic platform for rapid, quantitative, capped mRNA analysis. The assay involves target mRNA segment protection with cheap DNA primers and RNase digest of non-hybridized or non-target sequences before analysis by single nucleotide-resolving urea-polyacrylamide gel electrophoresis (PAGE). The integrated approach simplifies production processes and saves costs. Moreover, this assay has potential applications for mRNA analyses and post-transcriptional modification detection in biological samples. Finally, we propose a strategy that may enable unparalleled sequence coverage in RNase mass mapping by adapting the developed assay and replacing urea-PAGE with mass spectrometry.
Collapse
Affiliation(s)
- Alison Obinna Nwokeoji
- Chemical
and Biological Engineering, University of
Sheffield, Sheffield S1 3JD, South Yorkshire, U.K.
| | - Tachung Chou
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, South Yorkshire, U.K.
- All
First Technologies, No.
208, Longnan Rd, Pingzhen District, Taoyuan
City 324, Taiwan
| | - Eleojo Ahuva Nwokeoji
- All
First Technologies, No.
208, Longnan Rd, Pingzhen District, Taoyuan
City 324, Taiwan
| |
Collapse
|
24
|
Lamprinou M, Sachinidis A, Stamoula E, Vavilis T, Papazisis G. COVID-19 vaccines adverse events: potential molecular mechanisms. Immunol Res 2023; 71:356-372. [PMID: 36607502 PMCID: PMC9821369 DOI: 10.1007/s12026-023-09357-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
COVID-19 is an infectious disease caused by a single-stranded RNA (ssRNA) virus, known as SARS-CoV-2. The disease, since its first outbreak in Wuhan, China, in December 2019, has led to a global pandemic. The pharmaceutical industry has developed several vaccines, of different vector technologies, against the virus. Of note, among these vaccines, seven have been fully approved by WHO. However, despite the benefits of COVID-19 vaccination, some rare adverse effects have been reported and have been associated with the use of the vaccines developed against SARS-CoV-2, especially those based on mRNA and non-replicating viral vector technology. Rare adverse events reported include allergic and anaphylactic reactions, thrombosis and thrombocytopenia, myocarditis, Bell's palsy, transient myelitis, Guillen-Barre syndrome, recurrences of herpes-zoster, autoimmunity flares, epilepsy, and tachycardia. In this review, we discuss the potential molecular mechanisms leading to these rare adverse events of interest and we also attempt an association with the various vaccine components and platforms. A better understanding of the underlying mechanisms, according to which the vaccines cause side effects, in conjunction with the identification of the vaccine components and/or platforms that are responsible for these reactions, in terms of pharmacovigilance, could probably enable the improvement of future vaccines against COVID-19 and/or even other pathological conditions.
Collapse
Affiliation(s)
- Malamatenia Lamprinou
- Laboratory of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54124 Greece
| | - Athanasios Sachinidis
- 4th Department of Internal Medicine, School of Medicine, Hippokration General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Stamoula
- Laboratory of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54124 Greece
| | - Theofanis Vavilis
- Laboratory of Medical Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece ,Department of Dentistry, School of Medicine, European University of Cyprus, Nicosia, Cyprus
| | - Georgios Papazisis
- Laboratory of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54124 Greece ,Clinical Research Unit, Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
25
|
Vavilis T, Stamoula E, Ainatzoglou A, Sachinidis A, Lamprinou M, Dardalas I, Vizirianakis IS. mRNA in the Context of Protein Replacement Therapy. Pharmaceutics 2023; 15:pharmaceutics15010166. [PMID: 36678793 PMCID: PMC9866414 DOI: 10.3390/pharmaceutics15010166] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Protein replacement therapy is an umbrella term used for medical treatments that aim to substitute or replenish specific protein deficiencies that result either from the protein being absent or non-functional due to mutations in affected patients. Traditionally, such an approach requires a well characterized but arduous and expensive protein production procedure that employs in vitro expression and translation of the pharmaceutical protein in host cells, followed by extensive purification steps. In the wake of the SARS-CoV-2 pandemic, mRNA-based pharmaceuticals were recruited to achieve rapid in vivo production of antigens, proving that the in vivo translation of exogenously administered mRNA is nowadays a viable therapeutic option. In addition, the urgency of the situation and worldwide demand for mRNA-based medicine has led to an evolution in relevant technologies, such as in vitro transcription and nanolipid carriers. In this review, we present preclinical and clinical applications of mRNA as a tool for protein replacement therapy, alongside with information pertaining to the manufacture of modified mRNA through in vitro transcription, carriers employed for its intracellular delivery and critical quality attributes pertaining to the finished product.
Collapse
Affiliation(s)
- Theofanis Vavilis
- Laboratory of Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Dentistry, European University Cyprus, Nicosia 2404, Cyprus
- Correspondence:
| | - Eleni Stamoula
- Centre of Systems Biology, Department of Biotechnology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Alexandra Ainatzoglou
- Centre of Systems Biology, Department of Biotechnology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios Sachinidis
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Malamatenia Lamprinou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Dardalas
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Life & Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia 1700, Cyprus
| |
Collapse
|
26
|
Matarazzo L, Bettencourt PJG. mRNA vaccines: a new opportunity for malaria, tuberculosis and HIV. Front Immunol 2023; 14:1172691. [PMID: 37168860 PMCID: PMC10166207 DOI: 10.3389/fimmu.2023.1172691] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
The success of the first licensed mRNA-based vaccines against COVID-19 has created a widespread interest on mRNA technology for vaccinology. As expected, the number of mRNA vaccines in preclinical and clinical development increased exponentially since 2020, including numerous improvements in mRNA formulation design, delivery methods and manufacturing processes. However, the technology faces challenges such as the cost of raw materials, the lack of standardization, and delivery optimization. MRNA technology may provide a solution to some of the emerging infectious diseases as well as the deadliest hard-to-treat infectious diseases malaria, tuberculosis, and human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS), for which an effective vaccine, easily deployable to endemic areas is urgently needed. In this review, we discuss the functional structure, design, manufacturing processes and delivery methods of mRNA vaccines. We provide an up-to-date overview of the preclinical and clinical development of mRNA vaccines against infectious diseases, and discuss the immunogenicity, efficacy and correlates of protection of mRNA vaccines, with particular focus on research and development of mRNA vaccines against malaria, tuberculosis and HIV.
Collapse
Affiliation(s)
- Laura Matarazzo
- Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisboa, Portugal
- Faculty of Medicine, Universidade Católica Portuguesa, Rio de Mouro, Portugal
| | - Paulo J. G. Bettencourt
- Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisboa, Portugal
- Faculty of Medicine, Universidade Católica Portuguesa, Rio de Mouro, Portugal
- *Correspondence: Paulo J. G. Bettencourt,
| |
Collapse
|
27
|
Chavda VP, Soni S, Vora LK, Soni S, Khadela A, Ajabiya J. mRNA-Based Vaccines and Therapeutics for COVID-19 and Future Pandemics. Vaccines (Basel) 2022; 10:2150. [PMID: 36560560 PMCID: PMC9785933 DOI: 10.3390/vaccines10122150] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
An unheard mobilization of resources to find SARS-CoV-2 vaccines and therapies has been sparked by the COVID-19 pandemic. Two years ago, COVID-19's launch propelled mRNA-based technologies into the public eye. Knowledge gained from mRNA technology used to combat COVID-19 is assisting in the creation of treatments and vaccines to treat existing illnesses and may avert pandemics in the future. Exploiting the capacity of mRNA to create therapeutic proteins to impede or treat a variety of illnesses, including cancer, is the main goal of the quickly developing, highly multidisciplinary field of biomedicine. In this review, we explore the potential of mRNA as a vaccine and therapeutic using current research findings.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Shailvi Soni
- Massachussets College of Pharmacy and Health Science, 19 Foster Street, Worcester, MA 01608, USA
| | - Lalitkumar K. Vora
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Shruti Soni
- PharmD Section, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Avinash Khadela
- Department of Pharmacology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Jinal Ajabiya
- Department of Pharmaceutics Analysis and Quality Assurance, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
28
|
Technical Considerations for the Conformation of Specific Competences in Mechatronic Engineers in the Context of Industry 4.0 and 5.0. Processes (Basel) 2022. [DOI: 10.3390/pr10081445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The incursion of disruptive technologies, such as the Internet of Things, information technologies, cloud computing, digitalization and artificial intelligence, into current production processes has led to a new global industrial revolution called Industry 4.0 or Manufacturing 4.0. This new revolution proposes digitization from one end of the value chain to the other by integrating physical assets into systems and networks linked to a series of technologies to create value. Industry 4.0 has far-reaching implications for production systems and engineering education, especially in the training of mechatronic engineers. In order to face the new challenges of the transition from manufacturing 3.0 to Industry 4.0 and 5.0, it is necessary to implement innovative educational models that allow the systematic training of engineers. The competency-based education model has ideal characteristics to help mechatronic engineers, especially in the development of specific competencies. This article proposes 15 technical considerations related to generic industrial needs and disruptive technologies that serve to determine those specific competencies required by mechatronic engineers to meet the challenges of Industry 4.0 and 5.0.
Collapse
|
29
|
Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022; 7:166. [PMID: 35597779 PMCID: PMC9123296 DOI: 10.1038/s41392-022-01007-w] [Citation(s) in RCA: 307] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
The therapeutic use of messenger RNA (mRNA) has fueled great hope to combat a wide range of incurable diseases. Recent rapid advances in biotechnology and molecular medicine have enabled the production of almost any functional protein/peptide in the human body by introducing mRNA as a vaccine or therapeutic agent. This represents a rising precision medicine field with great promise for preventing and treating many intractable or genetic diseases. In addition, in vitro transcribed mRNA has achieved programmed production, which is more effective, faster in design and production, as well as more flexible and cost-effective than conventional approaches that may offer. Based on these extraordinary advantages, mRNA vaccines have the characteristics of the swiftest response to large-scale outbreaks of infectious diseases, such as the currently devastating pandemic COVID-19. It has always been the scientists’ desire to improve the stability, immunogenicity, translation efficiency, and delivery system to achieve efficient and safe delivery of mRNA. Excitingly, these scientific dreams have gradually been realized with the rapid, amazing achievements of molecular biology, RNA technology, vaccinology, and nanotechnology. In this review, we comprehensively describe mRNA-based therapeutics, including their principles, manufacture, application, effects, and shortcomings. We also highlight the importance of mRNA optimization and delivery systems in successful mRNA therapeutics and discuss the key challenges and opportunities in developing these tools into powerful and versatile tools to combat many genetic, infectious, cancer, and other refractory diseases.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshan Tang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kepan Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Na Fan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Teng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
30
|
Nucleic Acids as Biotools at the Interface between Chemistry and Nanomedicine in the COVID-19 Era. Int J Mol Sci 2022; 23:ijms23084359. [PMID: 35457177 PMCID: PMC9031702 DOI: 10.3390/ijms23084359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
The recent development of mRNA vaccines against the SARS-CoV-2 infection has turned the spotlight on the potential of nucleic acids as innovative prophylactic agents and as diagnostic and therapeutic tools. Until now, their use has been severely limited by their reduced half-life in the biological environment and the difficulties related to their transport to target cells. These limiting aspects can now be overcome by resorting to chemical modifications in the drug and using appropriate nanocarriers, respectively. Oligonucleotides can interact with complementary sequences of nucleic acid targets, forming stable complexes and determining their loss of function. An alternative strategy uses nucleic acid aptamers that, like the antibodies, bind to specific proteins to modulate their activity. In this review, the authors will examine the recent literature on nucleic acids-based strategies in the COVID-19 era, focusing the attention on their applications for the prophylaxis of COVID-19, but also on antisense- and aptamer-based strategies directed to the diagnosis and therapy of the coronavirus pandemic.
Collapse
|
31
|
Rajendran AK, Amirthalingam S, Hwang NS. A brief review of mRNA therapeutics and delivery for bone tissue engineering. RSC Adv 2022; 12:8889-8900. [PMID: 35424872 PMCID: PMC8985089 DOI: 10.1039/d2ra00713d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
The therapeutics for bone tissue regeneration requires constant advancements owing to the steady increase in the number of patients suffering from bone-related disorders, and also to find efficient and cost-effective treatment modalities. One of the major advancements in the field of therapeutics is the development of mRNAs. mRNAs, which have been extensively tested for the vaccines, could be very well utilized as a potential inducer for bone regeneration. The ability of mRNAs to enter the cells and instruct the cellular machinery to produce the required native proteins such as BMP or VEGF is a great way to avoid the issues faced with growth factor deliveries such as the production cost, loss of biological function etc. However, there have been a few hurdles for using mRNAs as an effective therapeutic agent, such as proper dosing, tolerating the degradation by RNases, improving the half-life, controlling the spatio-temporal release and reducing the off-target effects. This brief review discusses the various developments in the field of mRNA therapeutics especially for bone tissue engineering, how nano-formulations are being developed to effectively deliver the mRNAs into the cells by evading the immune responses, how researchers have developed certain strategies to increase the half-life, to successfully deliver the mRNAs to specific bone defect area and bring about effective bone regeneration.
Collapse
Affiliation(s)
- Arun Kumar Rajendran
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University Seoul 08826 Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University Seoul 08826 Republic of Korea
- Institute for Engineering Research, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
32
|
Lee SS, Park J, Oh S, Kwack K. Downregulation of LOC441461 Promotes Cell Growth and Motility in Human Gastric Cancer. Cancers (Basel) 2022; 14:cancers14051149. [PMID: 35267457 PMCID: PMC8909665 DOI: 10.3390/cancers14051149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer is a common tumor, with a high mortality rate. The severity of gastric cancer is assessed by TNM staging. Long noncoding RNAs (lncRNAs) play a role in cancer treatment; investigating the clinical significance of novel biomarkers associated with TNM staging, such as lncRNAs, is important. In this study, we investigated the association between the expression of the lncRNA LOC441461 and gastric cancer stage. LOC441461 expression was lower in stage IV than in stages I, II, and III. The depletion of LOC441461 promoted cell proliferation, cell cycle progression, apoptosis, cell motility, and invasiveness. LOC441461 downregulation increased the epithelial-to-mesenchymal transition, as indicated by increased TRAIL signaling and decreased RUNX1 interactions. The interaction of the transcription factors RELA, IRF1, ESR1, AR, POU5F1, TRIM28, and GATA1 with LOC441461 affected the degree of the malignancy of gastric cancer by modulating gene transcription. The present study identified LOC441461 and seven transcription factors as potential biomarkers and therapeutic targets for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Sang-soo Lee
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (S.-s.L.); (J.P.)
| | - JeongMan Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (S.-s.L.); (J.P.)
| | - Sooyeon Oh
- Chaum Life Center, CHA University School of Medicine, Seoul 06062, Korea;
| | - KyuBum Kwack
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (S.-s.L.); (J.P.)
- Correspondence: ; Tel.: +82-31-881-7141
| |
Collapse
|
33
|
coupled Hydrodynamic Flow Focusing (cHFF) to Engineer Lipid–Polymer Nanoparticles (LiPoNs) for Multimodal Imaging and Theranostic Applications. Biomedicines 2022; 10:biomedicines10020438. [PMID: 35203647 PMCID: PMC8962394 DOI: 10.3390/biomedicines10020438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/03/2023] Open
Abstract
An optimal design of nanocarriers is required to overcome the gap between synthetic and biological identity, improving the clinical translation of nanomedicine. A new generation of hybrid vehicles based on lipid–polymer coupling, obtained by Microfluidics, is proposed and validated for theranostics and multimodal imaging applications. A coupled Hydrodynamic Flow Focusing (cHFF) is exploited to control the time scales of solvent exchange and the coupling of the polymer nanoprecipitation with the lipid self-assembly simultaneously, guiding the formation of Lipid–Polymer NPs (LiPoNs). This hybrid lipid–polymeric tool is made up of core–shell structure, where a polymeric chitosan core is enveloped in a lipid bilayer, capable of co-encapsulating simultaneously Gd-DTPA and Irinotecan/Atto 633 compounds. As a result, a monodisperse population of hybrid NPs with an average size of 77 nm, with preserved structural integrity in different environmental conditions and high biocompatibility, can be used for MRI and Optical applications. Furthermore, preliminary results show the enhanced delivery and therapeutic efficacy of Irinotecan-loaded hybrid formulation against U87 MG cancers cells.
Collapse
|