1
|
Porwal S, Malviya R, Sridhar SB, Shareef J, Wadhwa T. Global impact of hMPV virus: Transmission, pathogenesis, diagnostic and treatment. Diagn Microbiol Infect Dis 2025; 112:116809. [PMID: 40121775 DOI: 10.1016/j.diagmicrobio.2025.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
The Human Metapneumovirus (hMPV), a member of the Pneumovirinae subfamily, is a substantial cause of acute lower respiratory infections, notably in young children, the elderly, and immunocompromised patients. It was first identified in 2001, hMPV has displayed a seasonal pattern of infection, with symptoms ranging from moderate to severe respiratory disease. This study investigates the worldwide effect of hMPV, concentrating on its transmission, etiology, diagnostics, and treatment techniques, underlining the need for better public health measures. hMPV is spread by respiratory droplets, with a normal incubation period of 3-5 days. The virus induces an immune response characterized by pro-inflammatory cytokines, leading to respiratory symptoms and probable tissue damage. Diagnostic breakthroughs, including RT-qPCR and mNGS, have enhanced detection sensitivity. However, therapy is generally supportive, with potential breakthroughs in mRNA vaccines targeting hMPV fusion proteins. Current clinical studies evaluate the effectiveness and safety of these new vaccinations, which might pave the road for effective prevention. Despite tremendous gains in understanding hMPV, there remains a crucial need for targeted antiviral treatments and vaccines to minimize its worldwide health impact.
Collapse
Affiliation(s)
- Sejal Porwal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida-201308, UP, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida-201308, UP, India; Galgotias Multi-Disciplinary Research & Development Cell (G-MRDC)), Galgotias University, Greater Noida-201308, UP, India.
| | | | - Javedh Shareef
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, UAE
| | - Tarun Wadhwa
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, UAE
| |
Collapse
|
2
|
Gauthier M, Kale SL, Ray A. T1-T2 Interplay in the Complex Immune Landscape of Severe Asthma. Immunol Rev 2025; 330:e70011. [PMID: 39991821 PMCID: PMC11849004 DOI: 10.1111/imr.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Asthma is orchestrated by an aberrant immune response involving a complex interplay between multiple inflammatory cell types. An increase in Th2 cells in the asthmatic airway is a hallmark of asthma, and biologics blocking their effector functions have been life-changing for many severe asthma patients who poorly respond to immunosuppression by corticosteroids. However, studies in the past decade have highlighted not only other cell types that also produce Th2 cytokines boosting the Type 2/T2 phenotype but also a heightened IFN-γ response, primarily from T cells, referred to as a Type 1/T1 immune response. Data derived from studies of immune cells in the airways and mouse models of severe asthma suggest a role of IFN-γ in corticosteroid resistance, airway hyperreactivity, and also airway remodeling via effects on other cell types including mast cells, eosinophils, airway epithelial cells, and airway smooth muscle cells. The simultaneous presence of T1 and T2 immune responses is detectable in the sickest of asthma patients in whom corticosteroids suppress the T2 but not the T1 response. This article has reviewed our current understanding of the complex T1-T2 interplay in severe asthma highlighting mediators that impact both arms which may be targeted alone or in combination for disease alleviation.
Collapse
Affiliation(s)
- Marc Gauthier
- Pulmonary Allergy Critical Care and Sleep Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Sagar L. Kale
- Pulmonary Allergy Critical Care and Sleep Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Anuradha Ray
- Pulmonary Allergy Critical Care and Sleep Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of ImmunologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
3
|
He PY, Wu MY, Zheng LY, Duan Y, Fan Q, Zhu XM, Yao YM. Interleukin-33/serum stimulation-2 pathway: Regulatory mechanisms and emerging implications in immune and inflammatory diseases. Cytokine Growth Factor Rev 2024; 76:112-126. [PMID: 38155038 DOI: 10.1016/j.cytogfr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Interleukin (IL)- 33, a nuclear factor and pleiotropic cytokine of the IL-1 family, is gaining attention owing to its important role in chronic inflammatory and autoimmune diseases. This review extends our knowledge of the effects exerted by IL-33 on target cells by binding to its specific receptor serum stimulation-2 (ST2). Depending on the tissue context, IL-33 performs multiple functions encompassing host defence, immune response, initiation and amplification of inflammation, tissue repair, and homeostasis. The levels and activity of IL-33 in the body are controlled by complex IL-33-targeting regulatory pathways. The unique temporal and spatial expression patterns of IL-33 are associated with host homeostasis and the development of immune and inflammatory disorders. Therefore, understanding the origin, function, and processes of IL-33 under various conditions is crucial. This review summarises the regulatory mechanisms underlying the IL-33/ST2 signalling axis and its potential role and clinical significance in immune and inflammatory diseases, and discusses the current complex and conflicting findings related to IL-33 in host responses.
Collapse
Affiliation(s)
- Peng-Yi He
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China
| | - Meng-Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Duan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi Fan
- Emergency Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Xiao-Mei Zhu
- Tissue Repair and Regeneration Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
4
|
Duan S, Wang J, Lou X, Chen D, Shi P, Jiang H, Wang Z, Li W, Qian F. A novel anti-IL-33 antibody recognizes an epitope FVLHN of IL-33 and has a therapeutic effect on inflammatory diseases. Int Immunopharmacol 2023; 122:110578. [PMID: 37423158 DOI: 10.1016/j.intimp.2023.110578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023]
Abstract
As a crucial member of the Interleukin-1 (IL-1) family, IL-33 plays an indispensable role in modulating inflammatory responses. Here, we developed an effective anti-human IL-33 monoclonal antibody (mAb) named 5H8. Importantly, we have identified an epitope (FVLHN) of IL-33 protein as a recognition sequence for 5H8, which plays an important role in mediating the biological activity of IL-33. We observed that 5H8 significantly suppressed IL-33-induced IL-6 expression in bone marrow cells and mast cells in a dose-dependent manner in vitro. Furthermore, 5H8 effectively relievedHDM-induced asthma and PR8-induced acute lung injury in vivo. These findings indicate that targeting the FVLHN epitope is critical for inhibiting IL-33 function. In addition, wedetected that the Tm value of 5H8 was 66.47℃ and the KD value was 173.0 pM, which reflected that 5H8 had good thermal stability and high affinity. Taken together, our data suggest that our newly developed 5H8 antibody has potential as a therapeutic antibody for treating inflammatory diseases.
Collapse
Affiliation(s)
- Shixin Duan
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jun Wang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; Xiamen Innovax Biotech Co, Xiamen, Fujian 361005, PR China
| | - Xinyi Lou
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Dongxin Chen
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Peiyunfeng Shi
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hongchao Jiang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zhiming Wang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wen Li
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Feng Qian
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
5
|
Wilkinson T, De Soyza A, Carroll M, Chalmers JD, Crooks MG, Griffiths G, Shankar-Hari M, Ho LP, Horsley A, Kell C, Lara B, Mishra B, Moate R, Page C, Pandya H, Raw J, Reid F, Saralaya D, Scott IC, Siddiqui S, Ustianowski A, van Zuydam N, Woodcock A, Singh D. A randomised phase 2a study to investigate the effects of blocking interleukin-33 with tozorakimab in patients hospitalised with COVID-19: ACCORD-2. ERJ Open Res 2023; 9:00249-2023. [PMID: 37868151 PMCID: PMC10588785 DOI: 10.1183/23120541.00249-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/25/2023] [Indexed: 10/24/2023] Open
Abstract
Background Increased serum interleukin (IL)-33 predicts poor outcomes in patients hospitalised with coronavirus disease 2019 (COVID-19). We examined the efficacy and safety of tozorakimab, a monoclonal antibody that neutralises IL-33, in improving outcomes in ACCORD-2 (EudraCT: 2020-001736-95). Methods ACCORD-2 was an open-label, phase 2a study in adults hospitalised with COVID-19. Patients were randomised 1:1 to tozorakimab 300 mg plus standard of care (SoC) or SoC alone. The primary end-point was time to clinical response (sustained clinical improvement of ≥2 points on the World Health Organization ordinal scale, discharge from hospital or fit for discharge) by day 29. Other end-points included death or respiratory failure, mortality and intensive care unit admission by day 29, and safety. Serum IL-33/soluble stimulated-2 (sST2) complex levels were measured by high-sensitivity immunoassay. Results Efficacy analyses included 97 patients (tozorakimab+SoC, n=53; SoC, n=44). Median time to clinical response did not differ between the tozorakimab and SoC arms (8.0 and 9.5 days, respectively; HR 0.96, 80% CI 0.70-1.31; one-sided p=0.33). Tozorakimab was well tolerated and the OR for risk of death or respiratory failure with treatment versus SoC was 0.55 (80% CI 0.27-1.12; p=0.26), while the OR was 0.31 (80% CI 0.09-1.06) in patents with high baseline serum IL-33/sST2 complex levels. Conclusions Overall, ACCORD-2 results suggest that tozorakimab could be a novel therapy for patients hospitalised with COVID-19, warranting further investigation in confirmatory phase 3 studies.
Collapse
Affiliation(s)
- Tom Wilkinson
- NIHR Southampton Biomedical Research Centre and University of Southampton, Southampton, UK
| | - Anthony De Soyza
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Miles Carroll
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | | | - Gareth Griffiths
- Southampton Clinical Trials Unit, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Manu Shankar-Hari
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Ling-Pei Ho
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford, UK
| | - Alex Horsley
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Chris Kell
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Beatriz Lara
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | | | | | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, King's College London, London, UK
| | - Hitesh Pandya
- Clinical Development, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Fred Reid
- Clinical Development, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dinesh Saralaya
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Ian C. Scott
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Salman Siddiqui
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Andy Ustianowski
- Regional Infection Unit, North Manchester General Hospital, Manchester, UK
| | | | - Ashley Woodcock
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester, UK
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
6
|
Guo TJF, Singhera GK, Leung JM, Dorscheid DR. Airway Epithelial-Derived Immune Mediators in COVID-19. Viruses 2023; 15:1655. [PMID: 37631998 PMCID: PMC10458661 DOI: 10.3390/v15081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The airway epithelium, which lines the conducting airways, is central to the defense of the lungs against inhaled particulate matter and pathogens such as SARS-CoV-2, the virus that causes COVID-19. Recognition of pathogens results in the activation of an innate and intermediate immune response which involves the release of cytokines and chemokines by the airway epithelium. This response can inhibit further viral invasion and influence adaptive immunity. However, severe COVID-19 is characterized by a hyper-inflammatory response which can give rise to clinical presentations including lung injury and lead to acute respiratory distress syndrome, viral pneumonia, coagulopathy, and multi-system organ failure. In response to SARS-CoV-2 infection, the airway epithelium can mount a maladaptive immune response which can delay viral clearance, perpetuate excessive inflammation, and contribute to the pathogenesis of severe COVID-19. In this article, we will review the barrier and immune functions of the airway epithelium, how SARS-CoV-2 can interact with the epithelium, and epithelial-derived cytokines and chemokines and their roles in COVID-19 and as biomarkers. Finally, we will discuss these immune mediators and their potential as therapeutic targets in COVID-19.
Collapse
Affiliation(s)
- Tony J. F. Guo
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
| | - Gurpreet K. Singhera
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| | - Janice M. Leung
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| | - Delbert R. Dorscheid
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
7
|
Solimando AG, Bittrich M, Shahini E, Albanese F, Fritz G, Krebs M. Determinants of COVID-19 Disease Severity-Lessons from Primary and Secondary Immune Disorders including Cancer. Int J Mol Sci 2023; 24:8746. [PMID: 37240091 PMCID: PMC10218128 DOI: 10.3390/ijms24108746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
At the beginning of the COVID-19 pandemic, patients with primary and secondary immune disorders-including patients suffering from cancer-were generally regarded as a high-risk population in terms of COVID-19 disease severity and mortality. By now, scientific evidence indicates that there is substantial heterogeneity regarding the vulnerability towards COVID-19 in patients with immune disorders. In this review, we aimed to summarize the current knowledge about the effect of coexistent immune disorders on COVID-19 disease severity and vaccination response. In this context, we also regarded cancer as a secondary immune disorder. While patients with hematological malignancies displayed lower seroconversion rates after vaccination in some studies, a majority of cancer patients' risk factors for severe COVID-19 disease were either inherent (such as metastatic or progressive disease) or comparable to the general population (age, male gender and comorbidities such as kidney or liver disease). A deeper understanding is needed to better define patient subgroups at a higher risk for severe COVID-19 disease courses. At the same time, immune disorders as functional disease models offer further insights into the role of specific immune cells and cytokines when orchestrating the immune response towards SARS-CoV-2 infection. Longitudinal serological studies are urgently needed to determine the extent and the duration of SARS-CoV-2 immunity in the general population, as well as immune-compromised and oncological patients.
Collapse
Affiliation(s)
- Antonio G. Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area—(DiMePRe-J), Aldo Moro Bari University, 70100 Bari, Italy
| | - Max Bittrich
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy
| | - Federica Albanese
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area—(DiMePRe-J), Aldo Moro Bari University, 70100 Bari, Italy
| | - Georg Fritz
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy at the Immanuel Klinikum Bernau, Heart Center Brandenburg, 16321 Bernau, Germany
| | - Markus Krebs
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Urology and Paediatric Urology, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
8
|
Murdaca G, Paladin F, Mangini G, Tiso D, Gangemi S. TBC and COVID: an interplay between two infections. Expert Opin Drug Saf 2023; 22:303-311. [PMID: 37079022 DOI: 10.1080/14740338.2023.2205638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/18/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION In a historical era dominated by the SARS-CoV-2 pandemic, a fact of growing interest emerges regarding co-infection with Mycobacterium tuberculosis (M. tuberculosis). This represents today an important clinical and diagnostic challenge, as the two pathogens are capable, through specific immunopathological mechanisms, of interacting with each other, determining a severe respiratory condition with a severe prognosis. AREAS COVERED With this review, we wanted to collect and analyze the latest scientific evidence concerning the main immunopathogenetic mechanisms shared by these two respiratory pathogens, with particular interest in the possible iatrogenic factors favoring coinfection and the need to define multidisciplinary and standardized screening tools aimed to identify coinfection early, ensuring the best clinical and therapeutic management. EXPERT OPINION The existence of a direct immunopathogenetic link between COVID-19 and TB indirectly contributes to mutual morbidity and mortality. The identification and application of early and standardized screening tools aimed at the identification of this condition is essential, in addition to vaccine prevention.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Department of Internal Medicine (DIMI), Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Francesca Paladin
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Department of Internal Medicine (DIMI), Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Gloria Mangini
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Department of Internal Medicine (DIMI), Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Debora Tiso
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Department of Internal Medicine (DIMI), Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Chen H, Tao X, Cao H, Li B, Sun Q, Wang W, Zou Y, Mu M, Tao H, Zhao Y, Ge D. Nicotine exposure exacerbates silica-induced pulmonary fibrosis via STAT3-BDNF-TrkB-mediated epithelial-mesenchymal transition in alveolar type II cells. Food Chem Toxicol 2023; 175:113694. [PMID: 36868510 DOI: 10.1016/j.fct.2023.113694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
The addictive substance nicotine, found in cigarettes and some e-cigarettes, plays a vital role in pro-inflammatory and fibrotic processes. However, the part played by nicotine in the progression of silica-induced pulmonary fibrosis is poorly understood. We used mice exposed to both silica and nicotine to investigate whether nicotine synergizes with silica particles to worsen lung fibrosis. The results revealed that nicotine accelerated the development of pulmonary fibrosis in silica-injured mice by activating STAT3-BDNF-TrkB signalling. Mice with a history of exposure to nicotine showed an increase in Fgf7 expression and alveolar type II cell proliferation if they were also exposed to silica. However, newborn AT2 cells could not regenerate the alveolar structure and release pro-fibrotic factor IL-33. Moreover, activated TrkB induced the expression of p-AKT, which promotes the expression of epithelial-mesenchymal transcription factor Twist, but no Snail. In vitro assessment confirmed activation of the STAT3-BDNF-TrkB pathway in AT2 cells, exposed to nicotine plus silica. In addition, TrkB inhibitor K252a downregulated p-TrkB and the downstream p-AKT and restricted the epithelial-mesenchymal transition caused by nicotine plus silica. In conclusion, nicotine activates the STAT3-BDNF-TrkB pathway, which promotes epithelial-mesenchymal transition and exacerbates pulmonary fibrosis in mice with combined exposure to silica particles and nicotine.
Collapse
Affiliation(s)
- Haoming Chen
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, Huainan, China
| | - Xinrong Tao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, Huainan, China.
| | - Hangbing Cao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, Huainan, China
| | - Bing Li
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, Huainan, China
| | - Qixian Sun
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, Huainan, China
| | - Wenyang Wang
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, Huainan, China
| | - Yuanjie Zou
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, Huainan, China
| | - Min Mu
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, Huainan, China
| | - Huihui Tao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, Huainan, China
| | - Yehong Zhao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, Huainan, China
| | - Deyong Ge
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
10
|
Furci F, Murdaca G, Allegra A, Gammeri L, Senna G, Gangemi S. IL-33 and the Cytokine Storm in COVID-19: From a Potential Immunological Relationship towards Precision Medicine. Int J Mol Sci 2022; 23:14532. [PMID: 36498859 PMCID: PMC9740753 DOI: 10.3390/ijms232314532] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus SARS-CoV-2 has represented, and still represents, a real challenge from a clinical, diagnostic and therapeutic point of view. During acute infection, the increased levels of pro-inflammatory cytokines, which are involved in the pathology of disease and the development of SARS-CoV-2-induced acute respiratory disease syndrome, the life-threatening form of this infection, are correlated with patient survival and disease severity. IL-33, a key cytokine involved in both innate and adaptive immune responses in mucosal organs, can increase airway inflammation, mucus secretion and Th2 cytokine synthesis in the lungs, following respiratory infections. Similar to cases of exposure to known respiratory virus infections, exposure to SARS-CoV-2 induces the expression of IL-33, correlating with T-cell activation and lung disease severity. In this work, we analyse current evidence regarding the immunological role of IL-33 in patients affected by COVID-19, to evaluate not only the clinical impact correlated to its production but also to identify possible future immunological therapies that can block the most expressed inflammatory molecules, preventing worsening of the disease and saving patient lives.
Collapse
Affiliation(s)
- Fabiana Furci
- Asthma Centre and Allergy Unit, University of Verona and Verona University Hospital, 37124 Verona, Italy
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, Policlinico G. Martino, University of Messina, 98100 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, 16126 Genoa, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98122 Messina, Italy
| | - Luca Gammeri
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, Policlinico G. Martino, University of Messina, 98100 Messina, Italy
| | - Gianenrico Senna
- Asthma Centre and Allergy Unit, University of Verona and Verona University Hospital, 37124 Verona, Italy
- Department of Medicine, University of Verona and Verona University Hospital, 37124 Verona, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, Policlinico G. Martino, University of Messina, 98100 Messina, Italy
| |
Collapse
|
11
|
Jia Y, Agbayani G, Chandan V, Iqbal U, Dudani R, Qian H, Jakubek Z, Chan K, Harrison B, Deschatelets L, Akache B, McCluskie MJ. Evaluation of Adjuvant Activity and Bio-Distribution of Archaeosomes Prepared Using Microfluidic Technology. Pharmaceutics 2022; 14:2291. [PMID: 36365110 PMCID: PMC9697222 DOI: 10.3390/pharmaceutics14112291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/24/2023] Open
Abstract
Archaeosomes, composed of sulfated lactosyl archaeol (SLA) glycolipids, have been proven to be an effective vaccine adjuvant in multiple preclinical models of infectious disease or cancer. They have classically been prepared using a thin-film hydration method with an average particle size of 100-200 nm. In this study, we developed methods to generate SLA archaeosomes at different sizes, i.e., 30 nm and 100 nm, via microfluidic mixing technology and evaluated their physicochemical characteristics, as well as adjuvant activity and in vivo biodistribution in mice. Archaeosomes, prepared using thin-film and microfluidic mixing techniques, had similar nanostructures and physicochemical characteristics, with both appearing stable during the course of this study when stored at 4 °C or 37 °C. They also demonstrated similar adjuvant activity when admixed with ovalbumin antigen and used to immunize mice, generating equivalent antigen-specific immune responses. Archaeosomes, labeled with CellVueTM NIR815, had an equivalent biodistribution with both sizes, namely the highest signal at the injection site at 24 h post injection, followed by liver, spleen and inguinal lymph node. The presence of SLA archaeosomes of either size helped to retain OVA antigen (OVA-Cy5.5) longer at the injection site than unadjuvanted OVA. Overall, archaeosomes of two sizes (30 nm and 100 nm) prepared using microfluidic mixing maintained similar physicochemical properties, adjuvant activity and biodistribution of antigen, in comparison to those compared by the conventional thin film hydration method. This suggests that microfluidics based approaches could be applied to generate consistently sized archaeosomes for use as a vaccine adjuvant.
Collapse
Affiliation(s)
- Yimei Jia
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Vandana Chandan
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Umar Iqbal
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Renu Dudani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Hui Qian
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G2M9, Canada
| | - Zygmunt Jakubek
- Metrology Research Centre, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Kenneth Chan
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Blair Harrison
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Lise Deschatelets
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Bassel Akache
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Michael J. McCluskie
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| |
Collapse
|
12
|
Almatroudi A. Non-Coding RNAs in Tuberculosis Epidemiology: Platforms and Approaches for Investigating the Genome's Dark Matter. Int J Mol Sci 2022; 23:4430. [PMID: 35457250 PMCID: PMC9024992 DOI: 10.3390/ijms23084430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023] Open
Abstract
A growing amount of information about the different types, functions, and roles played by non-coding RNAs (ncRNAs) is becoming available, as more and more research is done. ncRNAs have been identified as potential therapeutic targets in the treatment of tuberculosis (TB), because they may be essential regulators of the gene network. ncRNA profiling and sequencing has recently revealed significant dysregulation in tuberculosis, primarily due to aberrant processes of ncRNA synthesis, including amplification, deletion, improper epigenetic regulation, or abnormal transcription. Despite the fact that ncRNAs may have a role in TB characteristics, the detailed mechanisms behind these occurrences are still unknown. The dark matter of the genome can only be explored through the development of cutting-edge bioinformatics and molecular technologies. In this review, ncRNAs' synthesis and functions are discussed in detail, with an emphasis on the potential role of ncRNAs in tuberculosis. We also focus on current platforms, experimental strategies, and computational analyses to explore ncRNAs in TB. Finally, a viewpoint is presented on the key challenges and novel techniques for the future and for a wide-ranging therapeutic application of ncRNAs.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|