1
|
Lemche E, Hortobágyi T, Kiecker C, Turkheimer F. Neuropathological links between T2DM and LOAD: systematic review and meta-analysis. Physiol Rev 2025; 105:1429-1486. [PMID: 40062731 DOI: 10.1152/physrev.00040.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/01/2025] [Accepted: 02/22/2025] [Indexed: 04/16/2025] Open
Abstract
Recent decades have described parallel neuropathological mechanisms increasing the risk for developing late-onset Alzheimer's dementia (LOAD) in type 2 diabetes mellitus (T2DM); however, still little is known of the role of diabetic encephalopathy and brain atrophy in LOAD. The aim of this systematic review is to provide a comprehensive view on diabetic encephalopathy/cerebral atrophy, taking into account neuroimaging data, neuropathology, metabolic and endocrine mechanisms, amyloid formation, brain perfusion impairments, neuroimmunology, and inflammasome activation. Key switches were identified, to further meta-analyze genomic candidate loci and epigenetic modifications. For the qualitative meta-analysis of genomic bases extracted, human linkage studies were examined; for epigenetic mechanisms, data from both human and animal studies are described. For the systematic review of pathophysiological mechanisms, 1,259 publications were evaluated and 93 gene loci extracted for candidate risk linkages. Sixty-six publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight the insulin signaling system, vascular markers, inflammation and inflammasome pathways, amylin interactions, and glycosylation mechanisms. The protocol was registered with PROSPERO (ID: CRD42023440535).
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Tibor Hortobágyi
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Clemens Kiecker
- Department for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
2
|
Salazar-Hernández E, Bahena-Cuevas OE, Mendoza-Bello JM, Barragán-Bonilla MI, Sánchez-Alavez M, Espinoza-Rojo M. Relationship Between Brain Insulin Resistance, Carbohydrate Consumption, and Protein Carbonyls, and the Link Between Peripheral Insulin Resistance, Fat Consumption, and Malondialdehyde. Biomedicines 2025; 13:404. [PMID: 40002817 PMCID: PMC11853321 DOI: 10.3390/biomedicines13020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The consumption of a high-fat (HFD) or high-carbohydrate/low-fat (LFD) diet is related to insulin resistance; however, central and peripheral alterations can occur independently. In this study, the timeline of insulin resistance was determined while taking into consideration the role of diet in oxidative damage. Background/Objectives: The aim of this study was to ascertain whether a HFD or LFD induces peripheral insulin resistance (PIR) before brain insulin resistance (BIR), and whether the timing of these alterations correlates with heightened oxidative damage markers in plasma, adipose tissue, and the cerebral cortex. Methodology and Results: Three-month-old C57BL/6 male mice were fed with a HFD, LFD, or standard diet for 1, 2, or 3 months. Glucose and insulin tolerance tests were performed to determine PIR, and the hypothalamic thermogenic response to insulin was used to determine their BIR status. For oxidative damage, the levels of malondialdehyde (MDA) and the protein carbonyl group (PCO) and the enzymatic activity of glutathione peroxidase (GSH-Px) were evaluated in plasma, white adipose tissue, brown adipose tissue, and the cerebral cortex. PIR occurred at 3 months of the HFD, but MDA levels in the white adipose tissue increased at 2 months. BIR occurred at 1 and 2 months of the LFD, but the enzymatic activity of GSH-Px was lower at 1 month and the amount of the PCO increased at 2 months. Conclusions: The intake of a HFD or LFD of different durations can influence the establishment of PIR or BIR, and oxidative damage in the fat tissue and cerebral cortex can play an important role.
Collapse
Affiliation(s)
- Elena Salazar-Hernández
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo 39090, Guerrero, Mexico; (E.S.-H.); (O.E.B.-C.); (J.M.M.-B.); (M.I.B.-B.)
| | - Oscar Ezequiel Bahena-Cuevas
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo 39090, Guerrero, Mexico; (E.S.-H.); (O.E.B.-C.); (J.M.M.-B.); (M.I.B.-B.)
| | - Juan Miguel Mendoza-Bello
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo 39090, Guerrero, Mexico; (E.S.-H.); (O.E.B.-C.); (J.M.M.-B.); (M.I.B.-B.)
| | - Martha Isela Barragán-Bonilla
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo 39090, Guerrero, Mexico; (E.S.-H.); (O.E.B.-C.); (J.M.M.-B.); (M.I.B.-B.)
| | - Manuel Sánchez-Alavez
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22390, Baja California, Mexico;
| | - Mónica Espinoza-Rojo
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo 39090, Guerrero, Mexico; (E.S.-H.); (O.E.B.-C.); (J.M.M.-B.); (M.I.B.-B.)
| |
Collapse
|
3
|
Biswas R, Capuano AW, Mehta RI, Bennett DA, Arvanitakis Z. Association of late-life variability in hemoglobin A1C with postmortem neuropathologies. Alzheimers Dement 2025; 21:e14471. [PMID: 39968681 PMCID: PMC11863718 DOI: 10.1002/alz.14471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/25/2024] [Accepted: 11/19/2024] [Indexed: 02/20/2025]
Abstract
INTRODUCTION To study the relationship of late-life hemoglobin A1C (A1C) with postmortem neuropathology in older adults with and without diabetes mellitus (DM). METHODS A total of 990 participants from five cohort studies of aging and dementia with at least two annually-collected A1C measures, who had autopsy. Neuropathologic evaluations documented cerebrovascular disease, Alzheimer's disease (AD), and other pathologies. To evaluate the association of A1C mean and variability (standard deviation [SD]) with neuropathology, we used a series of adjusted regression models. RESULTS Participants (mean age at death = 90.8 years; education = 15.8 years; 76% women) had six A1C measurements on average. Mean A1C was associated with greater odds of macroinfarcts (estimate = 0.14; p = 0.04) and subcortical infarcts (estimate = 0.16; p = 0.02). A1C variability was not associated with cerebrovascular pathology. A1C mean and variability were inversely associated with AD pathology. DISCUSSION The A1C average over time was associated with infarcts, and the A1C average and variability were inversely associated with AD pathology. Future studies should explore the underlying mechanisms linking A1C to dementia-related neuropathologies. HIGHLIGHTS Hemoglobin A1C (A1C), a measure of peripheral insulin resistance, is used to assess glycemic control. Higher A1C mean was associated with greater odds of macroscopic subcortical infarcts. A1C variability was not associated with cerebrovascular pathology. Both A1C mean and variability had inverse associations with AD pathology. None of the associations varied by diabetes mellitus status.
Collapse
Affiliation(s)
- Roshni Biswas
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Ana W. Capuano
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Rupal I. Mehta
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
4
|
Cleary JA, Kumar A, Craft S, Deep G. Neuron-derived extracellular vesicles as a liquid biopsy for brain insulin dysregulation in Alzheimer's disease and related disorders. Alzheimers Dement 2025; 21:e14497. [PMID: 39822132 PMCID: PMC11848159 DOI: 10.1002/alz.14497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 01/19/2025]
Abstract
Extracellular vesicles (EVs) have emerged as novel blood-based biomarkers for various pathologies. The development of methods to enrich cell-specific EVs from biofluids has enabled us to monitor difficult-to-access organs, such as the brain, in real time without disrupting their function, thus serving as liquid biopsy. Burgeoning evidence indicates that the contents of neuron-derived EVs (NDEs) in blood reveal dynamic alterations that occur during neurodegenerative pathogenesis, including Alzheimer's disease (AD), reflecting a disease-specific molecular signature. Among these AD-specific molecular changes is brain insulin-signaling dysregulation, which cannot be assessed clinically in a living patient and remains an unexplained co-occurrence during AD pathogenesis. This review is focused on delineating how NDEs in the blood may begin to close the gap between identifying molecular changes associated with brain insulin dysregulation reliably in living patients and its connection to AD. This approach could lead to the identification of novel early and less-invasive diagnostic molecular biomarkers for AD. HIGHLIGHTS: Neuron-derived extracellular vesicles (NDEs) could be isolated from peripheral blood. NDEs in blood reflect the molecular signature of Alzheimer's disease (AD). Brain insulin-signaling dysregulation plays a critical role in AD. NDEs in blood could predict brain insulin-signaling dysregulation. NDEs offer novel early and less-invasive diagnostic biomarkers for AD.
Collapse
Affiliation(s)
- Jacob Alexander Cleary
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Ashish Kumar
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Suzanne Craft
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Sticht Center for Healthy Aging and Alzheimer's PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Gagan Deep
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Sticht Center for Healthy Aging and Alzheimer's PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Atrium Health Wake Forest Baptist Comprehensive Cancer CenterWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
5
|
Biswas R, Capuano AW, Mehta RI, Barnes LL, Bennett DA, Arvanitakis Z. Review of Associations of Diabetes and Insulin Resistance With Brain Health in Three Harmonised Cohort Studies of Ageing and Dementia. Diabetes Metab Res Rev 2025; 41:e70032. [PMID: 39873127 PMCID: PMC11774135 DOI: 10.1002/dmrr.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/18/2024] [Accepted: 11/27/2024] [Indexed: 01/30/2025]
Abstract
Diabetes increases the risk of dementia, and insulin resistance (IR) has emerged as a potential unifying feature. Here, we review published findings over the past 2 decades on the relation of diabetes and IR to brain health, including those related to cognition and neuropathology, in the Religious Orders Study, the Rush Memory and Aging Project, and the Minority Aging Research Study (ROS/MAP/MARS), three harmonised cohort studies of ageing and dementia at the Rush Alzheimer's Disease Center (RADC). A wide range of participant data, including information on medical conditions such as diabetes and neuropsychological tests, as well as other clinical and laboratory-based data collected annually. Neuropathology data are collected in participants who agree to autopsy at death. Recent studies have measured additional peripheral and brain IR data, including multi-omics. This review summarises findings from the RADC cohort studies that investigate the relation of diabetes and IR in older adults to cognition, neuropathology, omics in dementia, and other brain health measures. Examining the risk of clinically diagnosed dementia in older adults, our study found a 65% increased risk of Alzheimer's disease (AD) dementia in individuals with diabetes compared with those without. Regarding cognitive function, we have consistently observed associations of diabetes, as well as both peripheral and brain IR, with worse and declining performance in global cognition and specific cognitive domains, particularly semantic memory and perceptual speed. Studies utilising neuropathological data showed associations of diabetes and peripheral IR with brain infarcts, while brain IR measures, notably alpha serine/threonine-protein kinase1 (AKT1), were associated with both brain infarcts and AD pathology. Multi-omics studies suggested shared causal genes and pathways between diabetes and dementia. Recent epigenetic studies have revealed associations between IR and AD risk, along with distinct 5-hydroxymethylcytosine signatures in diabetes-associated AD. Furthermore, our studies have utilised other available data to investigate the impact of diabetes on neurological outcomes other than cognition and reported worsening of parkinsonian-like signs in diabetes. Recent studies have also explored risk factors for diabetes and have reported associations between lower literacy and decision-making abilities with elevated haemoglobin A1C levels, a peripheral IR measure. Overall, our findings, as summarised in this review, illustrate a range of mechanistic and other insights into the complex relationship of diabetes and IR with brain health. These findings may have important implications for future research on the ageing brain, including the prevention of cognitive decline and dementia in persons at risk for or with diabetes.
Collapse
Affiliation(s)
- Roshni Biswas
- Rush Alzheimer's Disease CentreRush University Medical CenterChicagoIllinoisUSA
| | - Ana W. Capuano
- Rush Alzheimer's Disease CentreRush University Medical CenterChicagoIllinoisUSA
| | - Rupal I. Mehta
- Rush Alzheimer's Disease CentreRush University Medical CenterChicagoIllinoisUSA
| | - Lisa L. Barnes
- Rush Alzheimer's Disease CentreRush University Medical CenterChicagoIllinoisUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CentreRush University Medical CenterChicagoIllinoisUSA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease CentreRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
6
|
Salvi V, Tripodi B, Cerveri G, Migliarese G, Bertoni L, Nibbio G, Barlati S, Vita A, Mencacci C. Insulin-resistance as a modifiable pathway to cognitive dysfunction in schizophrenia: A systematic review. Schizophr Res 2024; 274:78-89. [PMID: 39265262 DOI: 10.1016/j.schres.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/21/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Cognitive deficits are difficult to treat and negatively influence quality of life and functional outcomes of persons with schizophrenia. In the last twenty years, extensive literature demonstrated that persons with diabetes and insulin resistance (IR) also display cognitive deficits. Being type 2 diabetes (T2DM) and IR highly frequent in persons with schizophrenia, it is plausible to hypothesize that these conditions might play a role in determining dyscognition. If that is the case, acting on glucose dysmetabolism may eventually improve cognitive functioning. This review aims at: 1. evaluating the association between IR or T2DM and cognitive dysfunction in schizophrenia; 2. reviewing the evidence that pharmacological treatment of IR or T2DM may improve dyscognition in schizophrenia. METHODS Two systematic searches were conducted in PubMed, PsycInfo, and Scopus. We followed the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. RESULTS From the first search we included 17 studies, 8 on the effects of T2DM and 9 on the effects of IR-other prediabetes measures on cognition in persons with schizophrenia. From the second search we included 12 studies investigating the effect on cognition of glucose (4 studies), insulin (2 studies), metformin (2 studies), PPAR-γ agonists (2 studies), GLP-1 agonist (1 study), bromocriptine (1 study). CONCLUSIONS T2DM was associated with worse cognitive function in persons with schizophrenia, while IR was less strongly associated with cognitive dysfunction. Evidence regarding the efficacy of glucose-lowering medications on cognition in schizophrenia is inconclusive, yet methodological issues likely contribute to explain conflicting results.
Collapse
Affiliation(s)
- Virginio Salvi
- Department of Mental Health and Addiction, ASST Crema, L.go Ugo Dossena 2, 26013 Crema, CR, Italy.
| | - Beniamino Tripodi
- Department of Mental Health and Addiction, ASST Crema, L.go Ugo Dossena 2, 26013 Crema, CR, Italy
| | - Giancarlo Cerveri
- Department of Mental Health and Addiction, ASST Lodi, Via Mosè Bianchi 26, 26900 Lodi, Italy
| | - Giovanni Migliarese
- Department of Mental Health and Addiction, ASST Pavia, C.so Milano 19, 27029 Vigevano, PV, Italy
| | - Lorenzo Bertoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Gabriele Nibbio
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Barlati
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonio Vita
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Claudio Mencacci
- Director Emeritus, Department of Neurosciences-Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy
| |
Collapse
|
7
|
Ulke J, Chopra S, Kadiri OL, Geserick P, Stein V, Cheshmeh S, Kleinridders A, Kappert K. PTPRJ is a negative regulator of insulin signaling in neuronal cells, impacting protein biosynthesis, and neurite outgrowth. J Neuroendocrinol 2024; 36:e13446. [PMID: 39253900 PMCID: PMC11646663 DOI: 10.1111/jne.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/29/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Central insulin resistance has been linked to the development of neurodegenerative diseases and mood disorders. Various proteins belonging to the enzyme family of protein tyrosine phosphatases (PTPs) act as inhibitors of insulin signaling. Protein tyrosine phosphatase receptor type J (PTPRJ) has been identified as a negative regulator in insulin signaling in the periphery. However, the impact of PTPRJ on insulin signaling and its functional role in neuronal cells is largely unknown. Therefore, we generated a Ptprj knockout (KO) cell model in the murine neuroblast cell line Neuro2a by CRISPR-Cas9 gene editing. Ptprj KO cells displayed enhanced insulin signaling, as shown by increased phosphorylation of the insulin receptor (INSR), IRS-1, AKT, and ERK1/2. Further, proximity ligation assays (PLA) revealed both direct interaction of PTPRJ with the INSR and recruitment of this phosphatase to the receptor upon insulin stimulation. By RNA sequencing gene expression analysis, we identified multiple gene clusters responsible for glucose uptake and metabolism, and genes involved in the synthesis of various lipids being mainly upregulated under PTPRJ deficiency. Furthermore, multiple Ca2+ transporters were differentially expressed along with decreased protein biosynthesis. This was accompanied by an increase in endoplasmic reticulum (ER) stress markers. On a functional level, PTPRJ deficiency compromised cell differentiation and neurite outgrowth, suggesting a role in nervous system development. Taken together, PTPRJ emerges as a negative regulator of central insulin signaling, impacting neuronal metabolism and neurite outgrowth.
Collapse
Affiliation(s)
- Jannis Ulke
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and PathobiochemistryBerlinGermany
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal ResearchCharité—Universitätsmedizin BerlinBerlinGermany
| | - Simran Chopra
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional ScienceUniversity of PotsdamNuthetalGermany
| | - Otsuware Linda‐Josephine Kadiri
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional ScienceUniversity of PotsdamNuthetalGermany
| | - Peter Geserick
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and PathobiochemistryBerlinGermany
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal ResearchCharité—Universitätsmedizin BerlinBerlinGermany
| | - Vanessa Stein
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and PathobiochemistryBerlinGermany
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal ResearchCharité—Universitätsmedizin BerlinBerlinGermany
| | - Sahar Cheshmeh
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional ScienceUniversity of PotsdamNuthetalGermany
| | - André Kleinridders
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional ScienceUniversity of PotsdamNuthetalGermany
| | - Kai Kappert
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and PathobiochemistryBerlinGermany
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal ResearchCharité—Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
8
|
Hayden MR. Brain endothelial cell activation and dysfunction associate with and contribute to the development of enlarged perivascular spaces and cerebral small vessel disease. Histol Histopathol 2024; 39:1565-1586. [PMID: 39051093 DOI: 10.14670/hh-18-792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Multiple injurious stimuli to the brain's endothelium results in brain endothelial cell activation and dysfunction (BECact/dys) with upregulation of inflammatory signaling cascades and a decrease in bioavailable nitric oxide respectively. These injurious stimuli initiate a brain injury and a response to injury wound healing genetically programed cascade of events, which result in cellular remodeling of the neurovascular unit and blood-brain barrier with increased inflammation and permeability. These remodeling changes also include the perivascular spaces that become dilated to form enlarged perivascular spaces (EPVS) that may be identified noninvasively by magnetic resonance imaging. These EPVS are associated with and considered to be a biomarker for cerebral small vessel disease (SVD) and a dysfunctional glymphatic system with impaired removal of neurotoxic waste, which ultimately results in neurodegeneration with impaired cognition and dementia. The penultimate section discusses the understudied role of venous cerebral circulation in relation to EPVS, SVD, and the vascular contribution to cognitive impairment (VCID). The focus of this review will be primarily on BECact/dys that associates with and contributes to the development of EPVS, SVD, and impaired glymphatic system efflux. Importantly, BECact/dys may be a key piece of the puzzle to unlock this complicated story of EPVS and SVD. Multiple transmission electron micrographs and illustrations will be utilized to depict anatomical ultrastructure and allow for the discussion of multiple functional molecular cascades.
Collapse
Affiliation(s)
- Melvin Ray Hayden
- University of Missouri, School of Medicine, Columbia, Missouri, USA.
| |
Collapse
|
9
|
Toledano A, Rodríguez-Casado A, Älvarez MI, Toledano-Díaz A. Alzheimer's Disease, Obesity, and Type 2 Diabetes: Focus on Common Neuroglial Dysfunctions (Critical Review and New Data on Human Brain and Models). Brain Sci 2024; 14:1101. [PMID: 39595866 PMCID: PMC11591712 DOI: 10.3390/brainsci14111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity, type 2 diabetes (T2D), and Alzheimer's disease (AD) are pathologies that affect millions of people worldwide. They have no effective therapy and are difficult to prevent and control when they develop. It has been known for many years that these diseases have many pathogenic aspects in common. We highlight in this review that neuroglial cells (astroglia, oligodendroglia, and microglia) play a vital role in the origin, clinical-pathological development, and course of brain neurodegeneration. Moreover, we include the new results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we are investigating. METHODS Critical bibliographic revision and biochemical neuropathological study of neuroglia in a T2D-AD model. RESULTS T2D and AD are not only "connected" by producing complex pathologies in the same individual (obesity, T2D, and AD), but they also have many common pathogenic mechanisms. These include insulin resistance, hyperinsulinemia, hyperglycemia, oxidative stress, mitochondrial dysfunction, and inflammation (both peripheral and central-or neuroinflammation). Cognitive impairment and AD are the maximum exponents of brain neurodegeneration in these pathological processes. both due to the dysfunctions induced by metabolic changes in peripheral tissues and inadequate neurotoxic responses to changes in the brain. In this review, we first analyze the common pathogenic mechanisms of obesity, T2D, and AD (and/or cerebral vascular dementia) that induce transcendental changes and responses in neuroglia. The relationships between T2D and AD discussed mainly focus on neuroglial responses. Next, we present neuroglial changes within their neuropathological context in diverse scenarios: (a) aging involution and neurodegenerative disorders, (b) human obesity and diabetes and obesity/diabetes models, (c) human AD and in AD models, and (d) human AD-T2D and AD-T2D models. An important part of the data presented comes from our own studies on humans and experimental models over the past few years. In the T2D-AD section, we included the results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we investigated, which showed that neuroglial dysfunctions (astrocytosis and microgliosis) manifest before the appearance of amyloid neuropathology, and that the amyloid pathology is greater than that presented by mice fed a normal, non-high-caloric diet A broad review is finally included on pharmacological, cellular, genic, and non-pharmacological (especially diet and lifestyle) neuroglial-related treatments, as well as clinical trials in a comparative way between T2D and AD. These neuroglial treatments need to be included in the multimodal/integral treatments of T2D and AD to achieve greater therapeutic efficacy in many millions of patients. CONCLUSIONS Neuroglial alterations (especially in astroglia and microglia, cornerstones of neuroinflammation) are markedly defining brain neurodegeneration in T2D and A, although there are some not significant differences between each of the studied pathologies. Neuroglial therapies are a very important and p. promising tool that are being developed to prevent and/or treat brain dysfunction in T2D-AD. The need for further research in two very different directions is evident: (a) characterization of the phenotypic changes of astrocytes and microglial cells in each region of the brain and in each phase of development of each isolated and associated pathology (single-cell studies are mandatory) to better understand the pathologies and define new therapeutic targets; (b) studying new therapeutic avenues to normalize the function of neuroglial cells (preventing neurotoxic responses and/or reversing them) in these pathologies, as well as the phenotypic characteristics in each moment of the course and place of the neurodegenerative process.
Collapse
Affiliation(s)
- Adolfo Toledano
- Instituto Cajal, CSIC, 28002 Madrid, Spain; (A.R.-C.); (M.I.Ä.)
| | | | | | | |
Collapse
|
10
|
Rhea EM, Babin A, Thomas P, Omer M, Weaver R, Hansen K, Banks WA, Talbot K. Brain uptake pharmacokinetics of albiglutide, dulaglutide, tirzepatide, and DA5-CH in the search for new treatments of Alzheimer's and Parkinson's diseases. Tissue Barriers 2024; 12:2292461. [PMID: 38095516 PMCID: PMC11583597 DOI: 10.1080/21688370.2023.2292461] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND A number of peptide incretin receptor agonists (IRAs) show promise as therapeutics for Alzheimer's disease (AD) and Parkinson's disease (PD). Transport across the blood-brain barrier (BBB) is one way for IRAs to act directly within the brain. To determine which IRAs are high priority candidates for treating these disorders, we have studied their brain uptake pharmacokinetics. METHODS We quantitatively measure the ability of four IRAs to cross the BBB. We injected adult male CD-1 mice intravenously with 125I- or 14C-labeled albiglutide, dulaglutide, DA5-CH, or tirzepatide and used multiple-time regression analyses to measure brain kinetics up to 1 hour. For those IRAs failing to enter the brain 1 h after intravenous injection, we also investigated their ability to enter over a longer time frame (i.e., 6 h). RESULTS Albiglutide and dulaglutide had the fastest brain uptake rates within 1 hour. DA5-CH appears to enter the brain rapidly, reaching equilibrium quickly. Tirzepatide does not appear to cross the BBB within 1 h after iv injection but like albumin, did so slowly over 6 h, presumably via the extracellular pathways. CONCLUSIONS We find that IRAs can cross the BBB by two separate processes; one that is fast and one that is slow. Three of the four IRAs investigated here have fast rates of transport and should be taken into consideration for testing as AD and PD therapeutics as they would have the ability to act quickly and directly on the brain as a whole.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Alice Babin
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - Peter Thomas
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - Mohamed Omer
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - Riley Weaver
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - Kim Hansen
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Konrad Talbot
- Departments of Neurosurgery, Pathology and Human Anatomy, and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
11
|
Kim DS, Kang S, Moon NR, Shin BK, Park S. Zeaxanthin and Lutein Ameliorate Alzheimer's Disease-like Pathology: Modulation of Insulin Resistance, Neuroinflammation, and Acetylcholinesterase Activity in an Amyloid-β Rat Model. Int J Mol Sci 2024; 25:9828. [PMID: 39337316 PMCID: PMC11432044 DOI: 10.3390/ijms25189828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by impaired insulin/insulin-like growth factor-1 signaling in the hippocampus. Zeaxanthin and lutein, known for their antioxidant and anti-inflammatory properties, have been reported to protect against brain damage and cognitive decline. However, their mechanisms related to insulin signaling in AD remain unclear. This study investigated the efficacy and mechanisms of zeaxanthin, lutein, and resveratrol in modulating an AD-like pathology in an amyloid-β rat model. Rats were administered hippocampal infusions of 3.6 nmol/day amyloid-β (Aβ)(25-35) for 14 days to induce AD-like memory deficits (AD-CON). Normal control rats received Aβ(35-25) (Normal-CON). All rats had a high-fat diet. Daily, AD rats consumed 200 mg/kg body weight of zeaxanthin (AD-ZXT), lutein (AD-LTN), and resveratrol (AD-RVT; positive-control) or resistant dextrin as a placebo (AD-CON) for eight weeks. The AD-CON rats exhibited a higher Aβ deposition, attenuated hippocampal insulin signaling (reduced phosphorylation of protein kinase B [pAkt] and glycogen synthase kinase-3β [pGSK-3β]), increased neuroinflammation, elevated acetylcholinesterase activity, and memory deficits compared to the Normal-CON group. They also showed systemic insulin resistance and high hepatic glucose output. Zeaxanthin and lutein prevented memory impairment more effectively than the positive-control resveratrol by suppressing acetylcholinesterase activity, lipid peroxidation, and pro-inflammatory cytokines (TNF-α, IL-1β). They also potentiated hippocampal insulin signaling and increased brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CTNF) mRNA expression to levels comparable to the Normal-CON rats. Additionally, zeaxanthin and lutein improved glucose disposal, reduced hepatic glucose output, and normalized insulin secretion patterns. In conclusion, zeaxanthin and lutein supplementation at doses equivalent to 1.5-2.0 g daily in humans may have practical implications for preventing or slowing human AD progression by reducing neuroinflammation and maintaining systemic and central glucose homeostasis, showing promise even when compared to the established neuroprotective compound resveratrol. However, further clinical trials are needed to evaluate their efficacy and safety in human populations.
Collapse
Affiliation(s)
- Da-Sol Kim
- Department Food and Nutrition, Hoseo University, Asan 31499, Republic of Korea; (D.-S.K.); (S.K.); (N.-R.M.); (B.-K.S.)
| | - Suna Kang
- Department Food and Nutrition, Hoseo University, Asan 31499, Republic of Korea; (D.-S.K.); (S.K.); (N.-R.M.); (B.-K.S.)
| | - Na-Rang Moon
- Department Food and Nutrition, Hoseo University, Asan 31499, Republic of Korea; (D.-S.K.); (S.K.); (N.-R.M.); (B.-K.S.)
| | - Bae-Keun Shin
- Department Food and Nutrition, Hoseo University, Asan 31499, Republic of Korea; (D.-S.K.); (S.K.); (N.-R.M.); (B.-K.S.)
| | - Sunmin Park
- Department Food and Nutrition, Hoseo University, Asan 31499, Republic of Korea; (D.-S.K.); (S.K.); (N.-R.M.); (B.-K.S.)
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea
| |
Collapse
|
12
|
Weiss F, Brancati GE, Elefante C, Petrucci A, Gemmellaro T, Lattanzi L, Perugi G. Type 2 diabetes mellitus is associated with manic morbidity in elderly patients with mood disorders. Int Clin Psychopharmacol 2024; 39:294-304. [PMID: 37824397 DOI: 10.1097/yic.0000000000000515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The association between mood disorders, especially bipolar disorder (BD), and metabolic disorders, is long known. However, to which extent metabolic disorders affect the course of mood disorders in late life is still open to inquiring. To assess the impact of type 2 diabetes mellitus (T2DM) on late-life mood disorders a retrospective chart review was performed. Elderly depressive patients (≥ 65 years) diagnosed with Major Depressive Disorder (N = 57) or BD (N = 43) and followed up for at least 18 months were included and subdivided according to the presence of T2DM comorbidity. Vascular encephalopathy (39.1% vs. 15.6%, P = 0.021) and neurocognitive disorders (21.7% vs. 5.2%, P = 0.028), were more frequently reported in patients with T2DM than in those without. Patients with T2DM showed a greater percentage of follow-up time in manic episodes (r = -0.23, P = 0.020) and a higher rate of manic episode(s) during follow-up (21.7% vs. 5.2%, P = 0.028) than those without. When restricting longitudinal analyses to patients with bipolar spectrum disorders, results were confirmed. In line with the well-known connection between BD and metabolic disorders, our data support an association between T2DM and unfavorable course of illness in the elderly with BD.
Collapse
Affiliation(s)
- Francesco Weiss
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa
| | | | - Camilla Elefante
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa
| | | | - Teresa Gemmellaro
- Department of Psychiatry, North-Western Tuscany Region, NHS, Local Health Unit, Cecina-LI
| | | | - Giulio Perugi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa
- Institute of Behavioral Science 'G. De Lisio', Pisa, Italy
| |
Collapse
|
13
|
Affuso F, Micillo F, Fazio S. Insulin Resistance, a Risk Factor for Alzheimer's Disease: Pathological Mechanisms and a New Proposal for a Preventive Therapeutic Approach. Biomedicines 2024; 12:1888. [PMID: 39200352 PMCID: PMC11351221 DOI: 10.3390/biomedicines12081888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Peripheral insulin resistance (IR) is a well-documented, independent risk factor for the development of type 2 diabetes, cardiovascular disease, cancer and cellular senescence. Recently, the brain has also been identified as an insulin-responsive region, where insulin acts as regulator of the brain metabolism. Despite the clear link between IR and the brain, the exact mechanisms underlying this relationship remain unclear. Therapeutic intervention in patients showing symptoms of neurodegenerative diseases has produced little or no results. It has been demonstrated that insulin resistance plays a significant role in the pathogenesis of neurodegenerative diseases, particularly cognitive decline. Peripheral and brain IR may represent a modifiable state that could be used to prevent major brain disorders. In this review, we will analyse the scientific literature supporting IR as a risk factor for Alzheimer's disease and suggest some therapeutic strategies to provide a new proposal for the prevention of brain IR and its consequences.
Collapse
Affiliation(s)
- Flora Affuso
- Independent Researcher, Viale Raffaello, 74, 80129 Napoli, Italy
| | - Filomena Micillo
- UOC of Geriatric Medicine AORN S.G. Moscati, 83100 Avellino, Italy
| | - Serafino Fazio
- Department of Internal Medicine, School of Medicine, Federico II University of Naples, 80138 Naples, Italy;
| |
Collapse
|
14
|
Rhea EM, Leclerc M, Yassine HN, Capuano AW, Tong H, Petyuk VA, Macauley SL, Fioramonti X, Carmichael O, Calon F, Arvanitakis Z. State of the Science on Brain Insulin Resistance and Cognitive Decline Due to Alzheimer's Disease. Aging Dis 2024; 15:1688-1725. [PMID: 37611907 PMCID: PMC11272209 DOI: 10.14336/ad.2023.0814] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is common and increasing in prevalence worldwide, with devastating public health consequences. While peripheral insulin resistance is a key feature of most forms of T2DM and has been investigated for over a century, research on brain insulin resistance (BIR) has more recently been developed, including in the context of T2DM and non-diabetes states. Recent data support the presence of BIR in the aging brain, even in non-diabetes states, and found that BIR may be a feature in Alzheimer's disease (AD) and contributes to cognitive impairment. Further, therapies used to treat T2DM are now being investigated in the context of AD treatment and prevention, including insulin. In this review, we offer a definition of BIR, and present evidence for BIR in AD; we discuss the expression, function, and activation of the insulin receptor (INSR) in the brain; how BIR could develop; tools to study BIR; how BIR correlates with current AD hallmarks; and regional/cellular involvement of BIR. We close with a discussion on resilience to both BIR and AD, how current tools can be improved to better understand BIR, and future avenues for research. Overall, this review and position paper highlights BIR as a plausible therapeutic target for the prevention of cognitive decline and dementia due to AD.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Manon Leclerc
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
| | - Hussein N Yassine
- Departments of Neurology and Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Ana W Capuano
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Han Tong
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA.
| | - Xavier Fioramonti
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France.
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | - Frederic Calon
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
| | - Zoe Arvanitakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
15
|
Abdulhameed N, Babin A, Hansen K, Weaver R, Banks WA, Talbot K, Rhea EM. Comparing regional brain uptake of incretin receptor agonists after intranasal delivery in CD-1 mice and the APP/PS1 mouse model of Alzheimer's disease. Alzheimers Res Ther 2024; 16:173. [PMID: 39085976 PMCID: PMC11293113 DOI: 10.1186/s13195-024-01537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Targeting brain insulin resistance (BIR) has become an attractive alternative to traditional therapeutic treatments for Alzheimer's disease (AD). Incretin receptor agonists (IRAs), targeting either or both of the glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptors, have proven to reverse BIR and improve cognition in mouse models of AD. We previously showed that many, but not all, IRAs can cross the blood-brain barrier (BBB) after intravenous (IV) delivery. Here we determined if widespread brain uptake of IRAs could be achieved by circumventing the BBB using intranasal (IN) delivery, which has the added advantage of minimizing adverse gastrointestinal effects of systemically delivered IRAs. Of the 5 radiolabeled IRAs tested (exenatide, dulaglutide, semaglutide, DA4-JC, and DA5-CH) in CD-1 mice, exenatide, dulaglutide, and DA4-JC were successfully distributed throughout the brain following IN delivery. We observed significant sex differences in uptake for DA4-JC. Dulaglutide and DA4-JC exhibited high uptake by the hippocampus and multiple neocortical areas. We further tested and found the presence of AD-associated Aβ pathology minimally affected uptake of dulaglutide and DA4-JC. Of the 5 tested IRAs, dulaglutide and DA4-JC are best capable of accessing brain regions most vulnerable in AD (neocortex and hippocampus) after IN administration. Future studies will need to be performed to determine if IN IRA delivery can reduce BIR in AD or animal models of that disorder.
Collapse
Affiliation(s)
- Noor Abdulhameed
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Alice Babin
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Kim Hansen
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Riley Weaver
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98498, USA
| | - Konrad Talbot
- Departments of Neurosurgery, Pathology and Human Anatomy, and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| | - Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98498, USA.
| |
Collapse
|
16
|
Wei Z, Tian L, Xu H, Li C, Wu K, Zhu H, Guan J, Yu Y, Qian D, Li X. Relationships between apolipoprotein E and insulin resistance in patients with obstructive sleep apnoea: a large-scale cross-sectional study. Nutr Metab (Lond) 2024; 21:40. [PMID: 38956564 PMCID: PMC11221003 DOI: 10.1186/s12986-024-00816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Obstructive sleep apnoea (OSA) is commonly associated with insulin resistance (IR) and dyslipidaemia. Apolipoprotein E (APOE) plays important roles in lipid metabolism. The study aimed to disentangle the multifactorial relationships between IR and APOE based on a large-scale population with OSA. METHODS A total of 5,591 participants who underwent polysomnography for OSA diagnosis were finally enrolled. We collected anthropometric, fasting biochemical and polysomnographic data for each participant. Linear regression analysis was performed to evaluate the relationships between APOE, IR, and sleep breathing-related parameters. Logistic regression, restricted cubic spline (RCS) and mediation analyses were used to explore relationships between APOE and IR in patients with OSA. RESULTS Increasing OSA severity was associated with greater obesity, more obvious dyslipidaemia, and higher levels of APOE and IR. APOE was positively correlated with the apnoea-hypopnoea index (AHI), oxygen desaturation index (ODI) and microarousal index (MAI) even after adjusting for age, sex, body mass index, and smoking and drinking levels (β = 0.107, β = 0.102, β = 0.075, respectively, all P < 0.001). The risks of IR increased from the first to fourth quartiles of APOE (odds ratio (OR) = 1.695, 95% CI: 1.425-2.017; OR = 2.371, 95% confidence interval (CI): 2.009-2.816; OR = 3.392, 95% CI: 2.853-4.032, all P < 0.001) after adjustments. RCS analysis indicated non-linear and dose response relationships between APOE, AHI, ODI, MAI and insulin resistance. Mediation analyses showed that HOMA-IR explained 9.1% and 10% of the association between AHI, ODI and APOE. The same trends were observed in men, but not in women. CONCLUSIONS This study showed that APOE is a risk factor for IR; moreover, IR acts as a mediator between OSA and APOE in men. APOE, IR, and OSA showed non-linear and multistage relationships. Taken together, these observations revealed the complex relationships of metabolic disorders in patients with OSA, which could lead to the development of new treatment modalities and a deeper understanding of the systemic impact of OSA.
Collapse
Affiliation(s)
- ZhiCheng Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Shanghai, 200233, China
| | - Ling Tian
- Donghai County Maternal and Child Health Hospital, No. 80, Shanxi Road, Niushan Street, Donghai County, Lianyungang City, 200233, JiangSu, China
| | - Huajun Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Shanghai, 200233, China
| | - Chenyang Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Shanghai, 200233, China
| | - Kejia Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Shanghai, 200233, China
| | - Huaming Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Shanghai, 200233, China
| | - Jian Guan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Shanghai, 200233, China
| | - Yafeng Yu
- Department of Otorhinolaryngology Head and Neck Surgery, First affiliated hospital of Soochow University, Suzhou City, 25006, Jiangsu, China.
| | - Di Qian
- Department of otolaryngology, People's Hospital of Longhua, 38 Jinglong construction Road, Longhua district, Shenzhen, China.
| | - Xinyi Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Shanghai, 200233, China.
| |
Collapse
|
17
|
Babalola JA, Stracke A, Loeffler T, Schilcher I, Sideromenos S, Flunkert S, Neddens J, Lignell A, Prokesch M, Pazenboeck U, Strobl H, Tadic J, Leitinger G, Lass A, Hutter-Paier B, Hoefler G. Effect of astaxanthin in type-2 diabetes -induced APPxhQC transgenic and NTG mice. Mol Metab 2024; 85:101959. [PMID: 38763496 PMCID: PMC11153249 DOI: 10.1016/j.molmet.2024.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024] Open
Abstract
OBJECTIVES Aggregation and misfolding of amyloid beta (Aβ) and tau proteins, suggested to arise from post-translational modification processes, are thought to be the main cause of Alzheimer's disease (AD). Additionally, a plethora of evidence exists that links metabolic dysfunctions such as obesity, type 2 diabetes (T2D), and dyslipidemia to the pathogenesis of AD. We thus investigated the combinatory effect of T2D and human glutaminyl cyclase activity (pyroglutamylation), on the pathology of AD and whether astaxanthin (ASX) treatment ameliorates accompanying pathophysiological manifestations. METHODS Male transgenic AD mice, APPxhQC, expressing human APP751 with the Swedish and the London mutation and human glutaminyl cyclase (hQC) enzyme and their non-transgenic (NTG) littermates were used. Both APPxhQC and NTG mice were allocated to 3 groups, control, T2D-control, and T2D-ASX. Mice were fed control or high fat diet ± ASX for 13 weeks starting at an age of 11-12 months. High fat diet fed mice were further treated with streptozocin for T2D induction. Effects of genotype, T2D induction, and ASX treatment were evaluated by analysing glycemic readouts, lipid concentration, Aβ deposition, hippocampus-dependent cognitive function and nutrient sensing using immunosorbent assay, ELISA-based assays, western blotting, immunofluorescence staining, and behavioral testing via Morris water maze (MWM), respectively. RESULTS APPxhQC mice presented a higher glucose sensitivity compared to NTG mice. T2D-induced brain dysfunction was more severe in NTG compared to the APPxhQC mice. T2D induction impaired memory functions while increasing hepatic LC3B, ABCA1, and p65 levels in NTG mice. T2D induction resulted in a progressive shift of Aβ from the soluble to insoluble form in APPxhQC mice. ASX treatment reversed T2D-induced memory dysfunction in NTG mice and in parallel increased hepatic pAKT while decreasing p65 and increasing cerebral p-S6rp and p65 levels. ASX treatment reduced soluble Aβ38 and Aβ40 and insoluble Aβ40 levels in T2D-induced APPxhQC mice. CONCLUSIONS We demonstrate that T2D induction in APPxhQC mice poses additional risk for AD pathology as seen by increased Aβ deposition. Although ASX treatment reduced Aβ expression in T2D-induced APPxhQC mice and rescued T2D-induced memory impairment in NTG mice, ASX treatment alone may not be effective in cases of T2D comorbidity and AD.
Collapse
Affiliation(s)
| | - Anika Stracke
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Austria
| | | | | | - Spyridon Sideromenos
- QPS Austria GmbH, Grambach, Austria; Medical University of Vienna, Vienna, Austria
| | | | | | | | | | - Ute Pazenboeck
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Austria
| | - Herbert Strobl
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, University of Graz, Austria
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Austria
| | | | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology Medical University of Graz, Graz, Austria.
| |
Collapse
|
18
|
Del Moro L, Pirovano E, Rota E. Mind the Metabolic Gap: Bridging Migraine and Alzheimer's disease through Brain Insulin Resistance. Aging Dis 2024; 15:2526-2553. [PMID: 38913047 PMCID: PMC11567252 DOI: 10.14336/ad.2024.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024] Open
Abstract
Brain insulin resistance has recently been described as a metabolic abnormality of brain glucose homeostasis that has been proven to downregulate insulin receptors, both in astrocytes and neurons, triggering a reduction in glucose uptake and glycogen synthesis. This condition may generate a mismatch between brain's energy reserve and expenditure, ??mainly during high metabolic demand, which could be involved in the chronification of migraine and, in the long run, at least in certain subsets of patients, in the prodromic phase of Alzheimer's disease, along a putative metabolic physiopathological continuum. Indeed, the persistent disruption of glucose homeostasis and energy supply to neurons may eventually impair protein folding, an energy-requiring process, promoting pathological changes in Alzheimer's disease, such as amyloid-β deposition and tau hyperphosphorylation. Hopefully, the "neuroenergetic hypothesis" presented herein will provide further insight on there being a conceivable metabolic bridge between chronic migraine and Alzheimer's disease, elucidating novel potential targets for the prophylactic treatment of both diseases.
Collapse
Affiliation(s)
- Lorenzo Del Moro
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Elenamaria Pirovano
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy.
| | - Eugenia Rota
- Neurology Unit, San Giacomo Hospital, Novi Ligure, ASL AL, Italy.
| |
Collapse
|
19
|
Thomas P, Leclerc M, Evitts K, Brown C, Miller W, Hanson AJ, Banks WA, Gibbons L, Domoto‐Reilly K, Jayadev S, Li G, Peskind E, Young JE, Calon F, Rhea EM. Cerebrospinal fluid soluble insulin receptor levels in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12603. [PMID: 38800123 PMCID: PMC11127683 DOI: 10.1002/dad2.12603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Brain insulin resistance and deficiency is a consistent feature of Alzheimer's disease (AD). Insulin resistance can be mediated by the surface expression of the insulin receptor (IR). Cleavage of the IR generates the soluble IR (sIR). METHODS We measured the levels of sIR present in cerebrospinal fluid (CSF) from individuals along the AD diagnostic spectrum from two cohorts: Seattle (n = 58) and the Consortium for the Early Identification of Alzheimer's Disease-Quebec (CIMA-Q; n = 61). We further investigated the brain cellular contribution for sIR using human cell lines. RESULTS CSF sIR levels were not statistically different in AD. CSF sIR and amyloid beta (Aβ)42 and Aβ40 levels significantly correlated as well as CSF sIR and cognition in the CIMA-Q cohort. Human neurons expressing the amyloid precursor protein "Swedish" mutation generated significantly greater sIR and human astrocytes were also able to release sIR in response to both an inflammatory and insulin stimulus. DISCUSSION These data support further investigation into the generation and role of sIR in AD. Highlights Cerebrospinal fluid (CSF) soluble insulin receptor (sIR) levels positively correlate with amyloid beta (Aβ)42 and Aβ40.CSF sIR levels negatively correlate with cognitive performance (Montreal Cognitive Assessment score).CSF sIR levels in humans remain similar across Alzheimer's disease diagnostic groups.Neurons derived from humans with the "Swedish" mutation in which Aβ42 is increased generate increased levels of sIR.Human astrocytes can also produce sIR and generation is stimulated by tumor necrosis factor α and insulin.
Collapse
Affiliation(s)
- Peter Thomas
- Geriatric Research Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
| | - Manon Leclerc
- Faculty of PharmacyLaval UniversityQuebecQuebecCanada
- Neuroscience AxisCHU de Québec Research Center − Laval UniversityQuebecQuebecCanada
| | - Kira Evitts
- Department of BioengineeringUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cells and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Caitlin Brown
- Geriatric Research Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
| | - Wyatt Miller
- Geriatric Research Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
| | - Angela J. Hanson
- Department of Medicine, Division of Gerontology and Geriatric MedicineUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - William A. Banks
- Geriatric Research Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Department of Medicine, Division of Gerontology and Geriatric MedicineUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Laura Gibbons
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | | | - Suman Jayadev
- Department of NeurologyUniversity of WashingtonSeattleWashingtonUSA
| | - Ge Li
- Geriatric Research Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Veterans Affairs Northwest Mental Illness Research, Education, and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Department of Psychiatry and Behavioral SciencesUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Elaine Peskind
- Veterans Affairs Northwest Mental Illness Research, Education, and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Department of Psychiatry and Behavioral SciencesUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Jessica E. Young
- Institute for Stem Cells and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | | | - Frederic Calon
- Faculty of PharmacyLaval UniversityQuebecQuebecCanada
- Neuroscience AxisCHU de Québec Research Center − Laval UniversityQuebecQuebecCanada
| | - Elizabeth M. Rhea
- Geriatric Research Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Department of Medicine, Division of Gerontology and Geriatric MedicineUniversity of Washington School of MedicineSeattleWashingtonUSA
| |
Collapse
|
20
|
Pinheiro FI, Araújo-Filho I, do Rego ACM, de Azevedo EP, Cobucci RN, Guzen FP. Hepatopancreatic metabolic disorders and their implications in the development of Alzheimer's disease and vascular dementia. Ageing Res Rev 2024; 96:102250. [PMID: 38417711 DOI: 10.1016/j.arr.2024.102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Dementia has been faced with significant public health challenges and economic burdens that urges the need to develop safe and effective interventions. In recent years, an increasing number of studies have focused on the relationship between dementia and liver and pancreatic metabolic disorders that result in diseases such as diabetes, obesity, hypertension and dyslipidemia. Previous reports have shown that there is a plausible correlation between pathologies caused by hepatopancreatic dysfunctions and dementia. Glucose, insulin and IGF-1 metabolized in the liver and pancreas probably have an important influence on the pathophysiology of the most common dementias: Alzheimer's and vascular dementia. This current review highlights recent studies aimed at identifying convergent mechanisms, such as insulin resistance and other diseases, linked to altered hepatic and pancreatic metabolism, which are capable of causing brain changes that ultimately lead to dementia.
Collapse
Affiliation(s)
- Francisco I Pinheiro
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Department of Surgical, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil; Institute of Education, Research and Innovation of the Liga Norte Rio-Grandense Against Cancer
| | - Irami Araújo-Filho
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Department of Surgical, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil; Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Amália C M do Rego
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Institute of Education, Research and Innovation of the Liga Norte Rio-Grandense Against Cancer
| | - Eduardo P de Azevedo
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil
| | - Ricardo N Cobucci
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Postgraduate Program in Science Applied to Women`s Health, Medical School, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Fausto P Guzen
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Postgraduate Program in Health and Society, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró, Brazil; Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró, Brazil.
| |
Collapse
|
21
|
Rojas-Criollo M, Novau-Ferré N, Gutierrez-Tordera L, Ettcheto M, Folch J, Papandreou C, Panisello L, Cano A, Mostafa H, Mateu-Fabregat J, Carrasco M, Camins A, Bulló M. Effects of a High-Fat Diet on Insulin-Related miRNAs in Plasma and Brain Tissue in APP Swe/PS1dE9 and Wild-Type C57BL/6J Mice. Nutrients 2024; 16:955. [PMID: 38612989 PMCID: PMC11013640 DOI: 10.3390/nu16070955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Insulin resistance (IR)-related miRNAs have been associated with the development and progression of Alzheimer's disease (AD). The dietary modulation of these miRNAs could become a potential strategy to manage AD. The aim of this study was to evaluate the effect of a high-fat diet (HFD), which aggravates AD-related pathogenic processes, on serum, cortex and hippocampus IR-related miRNA expression. C57BL/6J WT and APPSwe/PS1dE9 mice were fed either an HFD or a conventional diet till 6 months of age. The mice fed with the HFD showed a significant increase in body weight and worsening glucose and insulin metabolism. miR-19a-3p was found to be up-regulated in the cortex, hippocampus and serum of APP/PS1 mice and in the serum and hippocampus of WT mice fed with the HFD. miR-34a-5p and miR-146a-5p were up-regulated in the serum of both groups of mice after consuming the HFD. Serum miR-29c-3p was overexpressed after consuming the HFD, along with hippocampal miR-338-3p and miR-125b-5p, only in WT mice. The HFD modulated the expression of peripheral and brain miRNAs related to glucose and insulin metabolism, suggesting the potential role of these miRNAs not only as therapeutic targets of AD but also as peripheral biomarkers for monitoring AD.
Collapse
Affiliation(s)
- Melina Rojas-Criollo
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Nil Novau-Ferré
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Laia Gutierrez-Tordera
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain; (M.E.); (M.C.); (A.C.)
- Institute of Neuroscience, Universitat de Barcelona, 08034 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28029 Madrid, Spain;
| | - Jaume Folch
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28029 Madrid, Spain;
| | - Christopher Papandreou
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Laura Panisello
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28029 Madrid, Spain;
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08028 Barcelona, Spain
| | - Hamza Mostafa
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Javier Mateu-Fabregat
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Marina Carrasco
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain; (M.E.); (M.C.); (A.C.)
- Institute of Neuroscience, Universitat de Barcelona, 08034 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28029 Madrid, Spain;
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain; (M.E.); (M.C.); (A.C.)
- Institute of Neuroscience, Universitat de Barcelona, 08034 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28029 Madrid, Spain;
| | - Mònica Bulló
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
22
|
Tuerxun R, Kamagata K, Saito Y, Andica C, Takabayashi K, Uchida W, Yoshida S, Kikuta J, Tabata H, Naito H, Someya Y, Kaga H, Miyata M, Akashi T, Wada A, Taoka T, Naganawa S, Tamura Y, Watada H, Kawamori R, Aoki S. Assessing interstitial fluid dynamics in type 2 diabetes mellitus and prediabetes cases through diffusion tensor imaging analysis along the perivascular space. Front Aging Neurosci 2024; 16:1362457. [PMID: 38515515 PMCID: PMC10954820 DOI: 10.3389/fnagi.2024.1362457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Background and purpose Glymphatic system in type 2 diabetes mellitus (T2DM) but not in the prodrome, prediabetes (Pre-DM) was investigated using diffusion tensor image analysis along the perivascular space (DTI-ALPS). Association between glymphatic system and insulin resistance of prominent characteristic in T2DM and Pre-DM between is yet elucidated. Therefore, this study delves into the interstitial fluid dynamics using the DTI-ALPS in both Pre-DM and T2DM and association with insulin resistance. Materials and methods In our cross-sectional study, we assessed 70 elderly individuals from the Bunkyo Health Study, which included 22 with Pre-DM, 18 with T2DM, and 33 healthy controls with normal glucose metabolism (NGM). We utilized the general linear model (GLM) to evaluate the ALPS index based on DTI-ALPS across these groups, considering variables like sex, age, intracranial volume, years of education, anamnesis of hypertension and hyperlipidemia, and the total Fazekas scale. Furthermore, we have explored the relationship between the ALPS index and insulin resistance, as measured by the homeostasis model assessment of insulin resistance (HOMA-IR) using GLM and the same set of covariates. Results In the T2DM group, the ALPS index demonstrated a reduction compared with the NGM group [family-wise error (FWE)-corrected p < 0.001; Cohen's d = -1.32]. Similarly, the Pre-DM group had a lower ALPS index than the NGM group (FWE-corrected p < 0.001; Cohen's d = -1.04). However, there was no significant disparity between the T2DM and Pre-DM groups (FWE-corrected p = 1.00; Cohen's d = -0.63). A negative correlation was observed between the ALPS index and HOMA-IR in the combined T2DM and Pre-DM groups (partial correlation coefficient r = -0.35, p < 0.005). Conclusion The ALPS index significantly decreased in both the pre-DM and T2DM groups and showed a correlated with insulin resistance. This indicated that changes in interstitial fluid dynamics are associated with insulin resistance.
Collapse
Affiliation(s)
- Rukeye Tuerxun
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Seina Yoshida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Junko Kikuta
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroki Tabata
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hitoshi Naito
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuki Someya
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hideyoshi Kaga
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mari Miyata
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Toshiaki Akashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Taoka
- Department of Innovative Biomedical Visualization, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshifumi Tamura
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryuzo Kawamori
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Rhea EM, Banks WA. Insulin and the blood-brain barrier. VITAMINS AND HORMONES 2024; 126:169-190. [PMID: 39029972 DOI: 10.1016/bs.vh.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The blood-brain barrier (BBB) predominantly regulates insulin transport into and levels within the brain. The BBB is also an important site of insulin binding and mediator of insulin receptor (INSR) signaling. The insulin transporter is separate from the INSR, highlighting the important, unique role of each protein in this structure. After a brief introduction on the structure of insulin and the INSR, we discuss the importance of insulin interactions at the BBB, the properties of the insulin transporter and the role of the BBB insulin transporter in various physiological conditions. We go on to further describe insulin BBB signaling and the impact not only within brain endothelial cells but also the cascade into other cell types within the brain. We close with future considerations to advance our knowledge about the importance of insulin at the BBB.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States.
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
24
|
López-Ojeda W, Hurley RA. Glucagon-Like Peptide 1: An Introduction and Possible Implications for Neuropsychiatry. J Neuropsychiatry Clin Neurosci 2024; 36:A4-86. [PMID: 38616646 DOI: 10.1176/appi.neuropsych.20230226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Affiliation(s)
- Wilfredo López-Ojeda
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC) and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Department of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Department of Radiology (Hurley), Wake Forest University School of Medicine, Winston-Salem, N.C.; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| | - Robin A Hurley
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC) and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Department of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Department of Radiology (Hurley), Wake Forest University School of Medicine, Winston-Salem, N.C.; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| |
Collapse
|
25
|
Dave BP, Shah YB, Maheshwari KG, Mansuri KA, Prajapati BS, Postwala HI, Chorawala MR. Pathophysiological Aspects and Therapeutic Armamentarium of Alzheimer's Disease: Recent Trends and Future Development. Cell Mol Neurobiol 2023; 43:3847-3884. [PMID: 37725199 PMCID: PMC11407742 DOI: 10.1007/s10571-023-01408-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Alzheimer's disease (AD) is the primary cause of dementia and is characterized by the death of brain cells due to the accumulation of insoluble amyloid plaques, hyperphosphorylation of tau protein, and the formation of neurofibrillary tangles within the cells. AD is also associated with other pathologies such as neuroinflammation, dysfunction of synaptic connections and circuits, disorders in mitochondrial function and energy production, epigenetic changes, and abnormalities in the vascular system. Despite extensive research conducted over the last hundred years, little is established about what causes AD or how to effectively treat it. Given the severity of the disease and the increasing number of affected individuals, there is a critical need to discover effective medications for AD. The US Food and Drug Administration (FDA) has approved several new drug molecules for AD management since 2003, but these drugs only provide temporary relief of symptoms and do not address the underlying causes of the disease. Currently, available medications focus on correcting the neurotransmitter disruption observed in AD, including cholinesterase inhibitors and an antagonist of the N-methyl-D-aspartate (NMDA) receptor, which temporarily alleviates the signs of dementia but does not prevent or reverse the course of AD. Research towards disease-modifying AD treatments is currently underway, including gene therapy, lipid nanoparticles, and dendrimer-based therapy. These innovative approaches aim to target the underlying pathological processes of AD rather than just managing the symptoms. This review discusses the novel aspects of pathogenesis involved in the causation of AD of AD and in recent developments in the therapeutic armamentarium for the treatment of AD such as gene therapy, lipid nanoparticles, and dendrimer-based therapy, and many more.
Collapse
Affiliation(s)
- Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Yesha B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Kunal G Maheshwari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Kaif A Mansuri
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Bhadrawati S Prajapati
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Humzah I Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
26
|
Sarnowski C, Huan T, Ma Y, Joehanes R, Beiser A, DeCarli CS, Heard-Costa NL, Levy D, Lin H, Liu CT, Liu C, Meigs JB, Satizabal CL, Florez JC, Hivert MF, Dupuis J, De Jager PL, Bennett DA, Seshadri S, Morrison AC. Multi-tissue epigenetic analysis identifies distinct associations underlying insulin resistance and Alzheimer's disease at CPT1A locus. Clin Epigenetics 2023; 15:173. [PMID: 37891690 PMCID: PMC10612362 DOI: 10.1186/s13148-023-01589-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Insulin resistance (IR) is a major risk factor for Alzheimer's disease (AD) dementia. The mechanisms by which IR predisposes to AD are not well-understood. Epigenetic studies may help identify molecular signatures of IR associated with AD, thus improving our understanding of the biological and regulatory mechanisms linking IR and AD. METHODS We conducted an epigenome-wide association study of IR, quantified using the homeostatic model assessment of IR (HOMA-IR) and adjusted for body mass index, in 3,167 participants from the Framingham Heart Study (FHS) without type 2 diabetes at the time of blood draw used for methylation measurement. We identified DNA methylation markers associated with IR at the genome-wide level accounting for multiple testing (P < 1.1 × 10-7) and evaluated their association with neurological traits in participants from the FHS (N = 3040) and the Religious Orders Study/Memory and Aging Project (ROSMAP, N = 707). DNA methylation profiles were measured in blood (FHS) or dorsolateral prefrontal cortex (ROSMAP) using the Illumina HumanMethylation450 BeadChip. Linear regressions (ROSMAP) or mixed-effects models accounting for familial relatedness (FHS) adjusted for age, sex, cohort, self-reported race, batch, and cell type proportions were used to assess associations between DNA methylation and neurological traits accounting for multiple testing. RESULTS We confirmed the strong association of blood DNA methylation with IR at three loci (cg17901584-DHCR24, cg17058475-CPT1A, cg00574958-CPT1A, and cg06500161-ABCG1). In FHS, higher levels of blood DNA methylation at cg00574958 and cg17058475 were both associated with lower IR (P = 2.4 × 10-11 and P = 9.0 × 10-8), larger total brain volumes (P = 0.03 and P = 9.7 × 10-4), and smaller log lateral ventricular volumes (P = 0.07 and P = 0.03). In ROSMAP, higher levels of brain DNA methylation at the same two CPT1A markers were associated with greater risk of cognitive impairment (P = 0.005 and P = 0.02) and higher AD-related indices (CERAD score: P = 5 × 10-4 and 0.001; Braak stage: P = 0.004 and P = 0.01). CONCLUSIONS Our results suggest potentially distinct epigenetic regulatory mechanisms between peripheral blood and dorsolateral prefrontal cortex tissues underlying IR and AD at CPT1A locus.
Collapse
Affiliation(s)
- Chloé Sarnowski
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Tianxiao Huan
- Population Sciences Branch, National Heart, Lung and Blood Institutes of Health, Bethesda, MD, USA
| | - Yiyi Ma
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Roby Joehanes
- Population Sciences Branch, National Heart, Lung and Blood Institutes of Health, Bethesda, MD, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Alexa Beiser
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | | | - Nancy L Heard-Costa
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Daniel Levy
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Chunyu Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - James B Meigs
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Claudia L Satizabal
- The Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jose C Florez
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Harvard University, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Josée Dupuis
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montreal, Canada
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Sudha Seshadri
- The Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
27
|
Veselov IM, Vinogradova DV, Maltsev AV, Shevtsov PN, Spirkova EA, Bachurin SO, Shevtsova EF. Mitochondria and Oxidative Stress as a Link between Alzheimer's Disease and Diabetes Mellitus. Int J Mol Sci 2023; 24:14450. [PMID: 37833898 PMCID: PMC10572926 DOI: 10.3390/ijms241914450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
This review is devoted to the problems of the common features linking metabolic disorders and type 2 diabetes with the development of Alzheimer's disease. The pathogenesis of Alzheimer's disease closely intersects with the mechanisms of type 2 diabetes development, and an important risk factor for both pathologies is aging. Common pathological mechanisms include both factors in the development of oxidative stress, neuroinflammation, insulin resistance, and amyloidosis, as well as impaired mitochondrial dysfunctions and increasing cell death. The currently available drugs for the treatment of type 2 diabetes and Alzheimer's disease have limited therapeutic efficacy. It is important to note that drugs used to treat Alzheimer's disease, in particular acetylcholinesterase inhibitors, show a positive therapeutic potential in the treatment of type 2 diabetes, while drugs used in the treatment of type 2 diabetes can also prevent a number of pathologies characteristic for Alzheimer's disease. A promising direction in the search for a strategy for the treatment of type 2 diabetes and Alzheimer's disease may be the creation of complex multi-target drugs that have neuroprotective potential and affect specific common targets for type 2 diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elena F. Shevtsova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS), Chernogolovka 142432, Russia; (I.M.V.); (A.V.M.); (P.N.S.); (E.A.S.); (S.O.B.)
| |
Collapse
|
28
|
Hummel J, Benkendorff C, Fritsche L, Prystupa K, Vosseler A, Gancheva S, Trenkamp S, Birkenfeld AL, Preissl H, Roden M, Häring HU, Fritsche A, Peter A, Wagner R, Kullmann S, Heni M. Brain insulin action on peripheral insulin sensitivity in women depends on menstrual cycle phase. Nat Metab 2023; 5:1475-1482. [PMID: 37735274 PMCID: PMC10513929 DOI: 10.1038/s42255-023-00869-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/19/2023] [Indexed: 09/23/2023]
Abstract
Insulin action in the human brain modulates eating behaviour, whole-body metabolism and body fat distribution1,2. In particular, brain insulin action increases whole-body insulin sensitivity, but these studies were mainly performed in lean men3,4. Here we investigate metabolic and hypothalamic effects of brain insulin action in women with a focus on the impact of menstrual cycle ( ClinicalTrials.gov registration: NCT03929419 ).Eleven women underwent four hyperinsulinemic-euglycemic clamps, two in the follicular phase and two in the luteal phase. Brain insulin action was introduced using nasal insulin spray5-7 and compared to placebo spray in a fourfold crossover design with change in glucose infusion rate as the primary endpoint. Here we show that during the follicular phase, more glucose has to be infused after administration of nasal insulin than after administration of placebo. This remains significant after adjustment for blood glucose and insulin. During the luteal phase, no significant influence of brain insulin action on glucose infusion rate is detected after adjustment for blood glucose and insulin (secondary endpoint). In 15 other women, hypothalamic insulin sensitivity was assessed in a within-subject design by functional magnetic resonance imaging with intranasal insulin administration8. Hypothalamus responsivity is influenced by insulin in the follicular phase but not the luteal phase.Our study therefore highlights that brain insulin action improves peripheral insulin sensitivity also in women but only during the follicular phase. Thus, brain insulin resistance could contribute to whole-body insulin resistance in the luteal phase of the menstrual cycle.
Collapse
Affiliation(s)
- Julia Hummel
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University of Ulm, Ulm, Germany
| | - Charlotte Benkendorff
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Louise Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Katsiaryna Prystupa
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Vosseler
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Sofiya Gancheva
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Trenkamp
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Andreas Peter
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Robert Wagner
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University of Ulm, Ulm, Germany.
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
29
|
Ignjatović Đ, Tovilović-Kovačević G, Mićić B, Tomić M, Djordjevic A, Macut D, Vojnović Milutinović D. Effects of early life overnutrition and hyperandrogenism on spatial learning and memory in a rat model of polycystic ovary syndrome. Horm Behav 2023; 153:105392. [PMID: 37295324 DOI: 10.1016/j.yhbeh.2023.105392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder characterized by endocrine and metabolic abnormalities such as obesity and insulin resistance. PCOS is also associated with psychiatric disorders and cognitive impairment. The animal model of PCOS was induced by treating rats with 5α-dihydrotestosterone (5α-DHT) and additionally modified to induce adiposity by litter size reduction (LSR). Spatial learning and memory were assessed using the Barnes Maze test, and striatal markers of synaptic plasticity were analyzed. Striatal insulin signaling was estimated by the levels of insulin receptor substrate 1 (IRS1), its inhibitory phosphorylation at Ser307, and glycogen synthase kinase-3α/β (GSK3α/β) activity. Both LSR and DHT treatment significantly decreased striatal protein levels of IRS1, followed by increased GSK3α/β activity in small litters. Results of the behavioral study showed that LSR had a negative effect on learning rate and memory retention, whereas DHT treatment did not induce impairment in memory formation. While protein levels of synaptophysin, GAP43, and postsynaptic density protein 95 (PSD-95) were not altered by the treatments, DHT treatment induced an increase in phosphorylation of PSD-95 at Ser295 in both normal and small litters. This study revealed that LSR and DHT treatment suppressed insulin signaling by downregulating IRS1 in the striatum. However, DHT treatment did not have an adverse effect on learning and memory, probably due to compensatory elevation in pPSD-95-Ser295, which had a positive effect on synaptic strength. This implies that hyperandrogenemia in this setting does not represent a threat to spatial learning and memory, opposite to the effect of overnutrition-related adiposity.
Collapse
Affiliation(s)
- Đurđica Ignjatović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| | - Gordana Tovilović-Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| | - Bojana Mićić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| | - Mirko Tomić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| | - Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotića 13, 11000 Belgrade, Serbia.
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| |
Collapse
|
30
|
de Bartolomeis A, De Simone G, De Prisco M, Barone A, Napoli R, Beguinot F, Billeci M, Fornaro M. Insulin effects on core neurotransmitter pathways involved in schizophrenia neurobiology: a meta-analysis of preclinical studies. Implications for the treatment. Mol Psychiatry 2023; 28:2811-2825. [PMID: 37085712 PMCID: PMC10615753 DOI: 10.1038/s41380-023-02065-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/23/2023]
Abstract
Impairment of insulin action and metabolic dysregulation have traditionally been associated with schizophrenia, although the molecular basis of such association remains still elusive. The present meta-analysis aims to assess the impact of insulin action manipulations (i.e., hyperinsulinemia, hypoinsulinemia, systemic or brain insulin resistance) on glutamatergic, dopaminergic, γ-aminobutyric acid (GABA)ergic, and serotonergic pathways in the central nervous system. More than one hundred outcomes, including transcript or protein levels, kinetic parameters, and other components of the neurotransmitter pathways, were collected from cultured cells, animals, or humans, and meta-analyzed by applying a random-effects model and adopting Hedges'g to compare means. Two hundred fifteen studies met the inclusion criteria, of which 180 entered the quantitative synthesis. Significant impairments in key regulators of synaptic plasticity processes were detected as the result of insulin handlings. Specifically, protein levels of N-methyl-D-aspartate receptor (NMDAR) subunits including type 2A (NR2A) (Hedges' g = -0.95, 95%C.I. = -1.50, -0.39; p = 0.001; I2 = 47.46%) and 2B (NR2B) (Hedges'g = -0.69, 95%C.I. = -1.35, -0.02; p = 0.043; I2 = 62.09%), and Postsynaptic density protein 95 (PSD-95) (Hedges'g = -0.91, 95%C.I. = -1.51, -0.32; p = 0.003; I2 = 77.81%) were found reduced in insulin-resistant animal models. Moreover, insulin-resistant animals showed significantly impaired dopamine transporter activity, whereas the dopamine D2 receptor mRNA expression (Hedges'g = 3.259; 95%C.I. = 0.497, 6.020; p = 0.021; I2 = 90.61%) increased under insulin deficiency conditions. Insulin action modulated glutamate and GABA release, as well as several enzymes involved in GABA and serotonin synthesis. These results suggest that brain neurotransmitter systems are susceptible to insulin signaling abnormalities, resembling the discrete psychotic disorders' neurobiology and possibly contributing to the development of neurobiological hallmarks of treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy.
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy
| | - Michele De Prisco
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel st, 12-0, 08036, Barcelona, Catalonia, Spain
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy
| | - Raffaele Napoli
- Department of Translational Medical Sciences, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medical Sciences, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Martina Billeci
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy
| | - Michele Fornaro
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
31
|
Colin IM, Szczepanski LW, Gérard AC, Elosegi JA. Emerging Evidence for the Use of Antidiabetic Drugs, Glucagon-like Peptide 1 Receptor Agonists, for the Treatment of Alzheimer's Disease. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:16-24. [PMID: 37313236 PMCID: PMC10258618 DOI: 10.17925/ee.2023.19.1.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 06/15/2023]
Abstract
From an epidemiological and pathophysiological point of view, Alzheimer's disease (AD) and type 2 diabetes (T2DM) should be considered 'sister' diseases. T2DM significantly increases the risk of developing AD, and the mechanisms of neuronal degeneration themselves worsen peripheral glucose metabolism in multiple ways. The pathophysiological links between the two diseases, particularly cerebral insulin resistance, which causes neuronal degeneration, are so close that AD is sometimes referred to as 'type 3 diabetes'. Although the latest news on the therapeutic front for AD is encouraging, no treatment has been shown to halt disease progression permanently. At best, the treatments slow down the progression; at worst, they are inactive, or cause worrying side effects, preventing their use on a larger scale. Therefore, it appears logical that optimizing the metabolic milieu through preventive or curative measures can also slow down the cerebral degeneration that characterizes AD. Among the different classes of hypoglycaemic drugs, glucagon-like peptide 1 receptor agonists, which are widely used in the treatment of T2DM, were shown to slow down, or even prevent, neuronal degeneration. Data from animal, preclinical, clinical phase II, cohort and large cardiovascular outcomes studies are encouraging. Of course, randomized clinical phase III studies, which are on-going, will be essential to verify this hypothesis. Thus, for once, there is hope for slowing down the neurodegenerative processes associated with diabetes, and that hope is the focus of this review.
Collapse
Affiliation(s)
- Ides M Colin
- Endocrino-Diabetology Research Unit, Department of Internal Medicine, Centre Hospitalier Régional Mons-Hainaut/Groupe Jolimont, Mons Belgium/Groupe Helora, Mons, Belgium
| | - Lidia W Szczepanski
- Endocrino-Diabetology Research Unit, Department of Internal Medicine, Centre Hospitalier Régional Mons-Hainaut/Groupe Jolimont, Mons Belgium/Groupe Helora, Mons, Belgium
| | - Anne-Catherine Gérard
- Endocrino-Diabetology Research Unit, Department of Internal Medicine, Centre Hospitalier Régional Mons-Hainaut/Groupe Jolimont, Mons Belgium/Groupe Helora, Mons, Belgium
- Group of Animal Molecular and Cellular Biology, Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Jose-Antonio Elosegi
- Neurology Unit, Centre Hospitalier Universitaire Ambroise Paré, Mons Belgium/Groupe Helora, Mons, Belgium
| |
Collapse
|
32
|
Banks WA, Noonan C, Rhea EM. Evidence for an alternative insulin transporter at the blood-brain barrier. AGING PATHOBIOLOGY AND THERAPEUTICS 2022; 4:100-108. [PMID: 36644126 PMCID: PMC9837797 DOI: 10.31491/apt.2022.12.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accumulating evidence suggests there is an alternative insulin transporter besides the insulin receptor at the blood-brain barrier (BBB), responsible for shuttling insulin from the circulation into the brain. In this review, we summarize key features of the BBB and what makes it unique compared to other capillary beds; summarize what we know about insulin BBB transport; provide an extensive list of diseases, physiological states, and serum factors tested in modifying insulin BBB transport; and lastly, highlight potential alternative transport systems that may be involved in or have already been tested in mediating insulin BBB transport. Identifying the transport system for insulin at the BBB would aide in controlling central nervous system (CNS) insulin levels in multiple diseases and conditions including Alzheimer's disease (AD) and obesity, where availability of insulin to the CNS is limited.
Collapse
Affiliation(s)
- William A. Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Cassidy Noonan
- Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- University of Washington, Seattle, WA 98195, USA
| | - Elizabeth M. Rhea
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| |
Collapse
|
33
|
Derkach KV, Sorokoumov VN, Bakhtyukov AA, Bondareva VM, Shpakov AO. Insulin and Leptin Levels in Blood and Brain Structures of Rats with Diet-Induced Obesity and the Effect of Various Drugs on Them. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Duarte JMN. Serine racemase modulation for improving brain insulin resistance: An Editorial Highlight for "Deletion of serine racemase reverses neuronal insulin signaling inhibition by amyloid-β oligomers". J Neurochem 2022; 163:6-7. [PMID: 35996309 DOI: 10.1111/jnc.15688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022]
Abstract
This Editorial highlights an interesting study in the current issue of the Journal of Neurochemistry in which Zhou et al. report new data showing that the ablation of serine racemase increases local insulin production in neurons of the hippocampus. The authors explored some of the possible mechanisms mediating the interaction between dampening production of D-serine and the local synthesis of insulin, and they further propose that stimulating insulin production could counteract hippocampal insulin resistance in Alzheimer's disease (AD). Most importantly, they leave open a number of questions that need to be experimentally addressed to ascertain whether D-serine modulation of neuronal insulin expression can effectively improve insulin sensitivity in AD, as well as in metabolic disease with neurological impact.
Collapse
Affiliation(s)
- João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|