1
|
Ghorbani Ranjbary A, Mehrzad J, Dehghani H, Hosseinkhani S. Impact of IL-17a on Apoptosis and Mucinosis-Related Molecules in the Microenvironment of Colorectal Cancer. Arch Med Res 2025; 56:103220. [PMID: 40209321 DOI: 10.1016/j.arcmed.2025.103220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/17/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND/AIMS IL17-producing Th17 represent a distinct subset of T-cells. The link between IL-17a and the colorectal cancer (CRC) microenvironment has been widely accepted. However, the role of IL-17a in epithelial cell apoptosis, autophagy, mucinosis, ultrastructural changes, and their potential correlations with CRC remains unclear. MATERIALS AND METHODS Out of 2890 patients with CRC, 200 were divided into four groups (stage I-IV) and 50 into non-CRC/healthy/control. We investigated the relationship between IL-17a, apoptosis, autophagy, and mucinosis in patients with stage I-IV CRC (in vitro/vivo). In addition to many (para)clinical assessments, IL-17a load in blood and the tumor microenvironment (TME) in patients with CRC were assessed. To examine these associations, the effect of IL-17a on CRC cells was evaluated using qPCR, Western blotting, ELISA, bioluminescence, flow cytometry, and immunohistochemistry (IHC), and ultrastructural changes in the colonic epithelia were assessed by scanning and transmission electron microscopy. RESULTS IL-17a is overexpressed in stage I-IV in the TME and in stage III-IV in the blood of patients with CRC. IL-17a upregulated apoptosis (caspases, cytochrome c (CYC), higher Bax:Bcl2 ratio), autophagy (SIRT1 and LC3), and the cell cycle (TP53, APC-1) and downregulated B3GALNT2 and mucins and led to morphological and nuclear changes in CRC epithelia. CONCLUSIONS IL-17a is abundantly expressed in the CRC microenvironment, and IL-17a-IL-17aR interactions play a critical role in the control of apoptosis and mucinosis. The observed remarkable association of IL-17a and apoptosis in adenocarcinoma provides valuable insight into the clinical implications of Th17/IL-17 in CRC.
Collapse
Affiliation(s)
- Ali Ghorbani Ranjbary
- Immunology Section, Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Immunology Section, Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Hesam Dehghani
- Stem Cells and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Silinskaite U, Valciukiene J, Jakubauskas M, Poskus T. The Immune Environment in Colorectal Adenoma: A Systematic Review. Biomedicines 2025; 13:699. [PMID: 40149674 PMCID: PMC11940254 DOI: 10.3390/biomedicines13030699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Research on colorectal adenoma is significantly less comprehensive compared to studies on colorectal carcinoma. Although colorectal adenoma is a precursor of the majority of sporadic colorectal cancers, not all adenomas develop into carcinomas. The complex interaction of immune responses in the premalignant tumor microenvironment might be a factor for that. Methods: In this systematic review, we aim to provide a thorough analysis of the current research examining the immune infiltration patterns in sporadic colorectal adenoma tissues in the context of immune cell-based, cytokine-based, and other immunological factor-related changes along the conventional adenoma-carcinoma sequence. The articles included in the review extend up to December 2024 in PubMed and Web of Science databases. Results: Most included studies have shown significant differences in immune cell counts, densities, and cytokine expression levels associated with premalignant colorectal lesions (and/or colorectal cancer). No consensus on the immune-related tendencies concerning CD4+T cells and CD8+T cells was reached. Decreasing expression of mDCs and plasma and naïve B cells were detected along the ACS. The increased density of tissue eosinophils in the adenoma tissue dramatically diminishes after the transition to carcinoma. As the adenoma progresses, the increasing expression of IL-1α, IL-4, IL-6, IL-8, IL-10, IL-17A, IL-21, IL-23, IL-33, and TGF-β and decreasing levels of IL-12A, IL-18, IFN-γ, and TNFα cytokines in the invasive carcinoma stage is being detected. The over-expression of COX-2, PD-1/PD-L1, CTLA-4, and ICOS/ICOSLG in the colorectal adenomatous and cancerous tissues was also observed. Conclusions: Further studies are needed for a better understanding of the whole picture of colorectal adenoma-associated immunity and its impact on precancerous lesion's potential to progress.
Collapse
|
3
|
Swain J, Preeti, Mohanty C, Bajoria AA, Patnaik S, Ward Gahlawat A, Nikhil K, Mohapatra SR. Deciphering the metabolic landscape of colorectal cancer through the lens of AhR-mediated intestinal inflammation. Discov Oncol 2025; 16:275. [PMID: 40053174 DOI: 10.1007/s12672-025-01949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/06/2025] [Indexed: 03/10/2025] Open
Abstract
Colorectal cancer (CRC) ranks as the third most common cancer worldwide, with its incidence steadily increasing due to an aging demographic and various lifestyle-related risk factors, including poor nutrition, tobacco use, sedentary behaviour and obesity. These factors promote the risk of colorectal cancer by inducing chronic colonic inflammation, a principal catalyst of carcinogenesis. This review delves into evidence that suggests that metabolic abnormalities mediated through inflammatory responses are fundamental in the progression of CRC. This dysregulation of essential metabolic pathways in colorectal cancer, facilitates tumor proliferation, immune evasion, and metastasis. Additionally, this review explores how inflammatory mediators, and dietary carcinogens induce metabolic alterations, fostering a pro-tumorigenic milieu. Special focus is placed on the aryl hydrocarbon receptor (AhR) as a pivotal metabolic regulator that links inflammation and tumor metabolism, elucidating its function in the reconfiguration of cellular energetics and the inflammatory microenvironment. Furthermore, this review also focuses on clarifying the relationship between inflammation, metabolic dysregulation, and the progression of CRC, so as to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Jasmine Swain
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
- School of Applied Sciences, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Preeti
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Chandana Mohanty
- School of Applied Sciences, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Atul Anand Bajoria
- Kalinga Institute of Dental Sciences, KIIT University, Bhubaneswar, 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Aoife Ward Gahlawat
- German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120, Heidelberg, Germany
| | - Kumar Nikhil
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Soumya R Mohapatra
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
4
|
Ye M, Zhu S, Tan X, Yu C, Huang H, Liu Y. Impact of lifestyle and mental health on colorectal adenomas in China: a prospective cross-sectional survey. Front Med (Lausanne) 2025; 12:1475987. [PMID: 40098929 PMCID: PMC11911329 DOI: 10.3389/fmed.2025.1475987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/20/2025] [Indexed: 03/19/2025] Open
Abstract
Background Colorectal adenomas, which are precancerous lesions that can develop into colorectal cancer, present a significant challenge due to the lack of comprehensive early screening and clear identification of risk factors. Objectives We conduct a double-blind, prospective cross-sectional analysis to examine the relationship between lifestyle, mental health, and colorectal adenomas. Methods Between June 2023 and July 2024, we surveyed 246 participants at Hubei Provincial Hospital of Traditional Chinese Medicine in Wuhan using a self-administered online questionnaire. Results The majority of participants were over the age of 50 (49.6%), married or living with a partner (87.08%), and employed as office workers or technicians (44.3%). Among the total population, 435 individuals (53.5%) were diagnosed with colorectal adenomas. A significant positive association was observed between being a manager (OR = 2.340; 95% CI = 1.043-5.248) and the presence of colorectal adenomas, as well as having a BMI over 28 (OR = 6.000; 95% CI = 1.501-23.991). After adjusting for professional role and BMI, no significant associations were found between scores on the HADS-D (AOR = 1.031; 95% CI = 0.967-1.099) or PSS-10 (AOR = 0.971; 95% CI = 0.923-1.022) scales and colorectal adenomas. However, higher scores on the AUDIT (AOR = 1.001-1.144), CDS-12 (AOR = 1.028; 95% CI = 1.003-1.054), PSQI (AOR = 1.079; 95% CI = 1.003-1.161), and HADS-A (AOR = 1.156; 95% CI = 1.059-1.262) scales were significantly associated with an increased likelihood of colorectal adenomas. Conclusion The study highlights the significance of addressing alcohol consumption, smoking, sleep quality, and anxiety to reduce the risk of colorectal adenomas. Targeted mental health interventions may play a crucial role in alleviating this health burden and enhancing overall population health.
Collapse
Affiliation(s)
- Min Ye
- Department of General Affairs, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| | - Shiben Zhu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyi Tan
- Department of Spleen and Gastroenterology, Dongxihu District Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Chenxi Yu
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Department of Spleen and Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
| | - He Huang
- Department of Spleen and Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
| | - Yang Liu
- Department of Spleen and Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
| |
Collapse
|
5
|
Chiu TJ, Liu TT, Chang CD, Hu WH. Optimal cutpoint of preoperative neutrophil-lymphocyte ratio and associated postoperative prognosis in colorectal cancer patients. Int J Colorectal Dis 2025; 40:55. [PMID: 40009243 DOI: 10.1007/s00384-025-04839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE As the role of systemic inflammation in cancer progression, the neutrophil-to-lymphocyte ratio (NLR) is easily evaluated and predicts prognosis in solid cancers. However, the optimal cutpoint for NLR in colorectal cancer patients remains unclear. METHODS This retrospective cohort study was based on the Chang Gung Research Database. Participants included colorectal cancer patients who received operation and preoperative complete blood counts with differentiation from 2007 to 2017. The cutpoint of NLR was calculated by SAS macro (%FINGCUT). RESULTS A total of 16,990 colorectal patients were included, and 4961 (29.1%) were identified as the high NLR group (≥ 3.59). Poor clinical characteristics were significantly predominant in the patients with high NLR. The patients with high NLR were associated with worse 5-year disease-free survival and overall survival (p < 0.0001). Multivariate Cox regression survival analysis still showed poor 5-year disease-free survival (HR = 1.319, p < 0.0001) and overall survival (HR = 1.611, p < 0.0001) in the high NLR group after adjustment. Patients with high NLR and hypoalbuminemia had the worst disease-free survival and overall survival (p < 0.0001). In subgroup analysis, stage II colon cancer patients with low NLR had better survival than those with high NLR (p < 0.0001). The hazard ratios of without chemotherapy in disease-free survival and overall survival were higher in the patients with high NLR. CONCLUSIONS High NLR was associated with worse clinical characteristics and an independent predictor of poor survival. After adjuvant chemotherapy for stage II colon cancer, more benefits of improving survival were demonstrated in the patients with high NLR.
Collapse
Affiliation(s)
- Tai-Jan Chiu
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan
| | - Ting-Ting Liu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung, 833, Taiwan
| | - Ching-Di Chang
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Wan-Hsiang Hu
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
- Department of Colorectal Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Ta-Pei Rd., Niao-Sung District, Kaohsiung, 833, Taiwan.
| |
Collapse
|
6
|
Pedrosa LDF, de Vos P, Fabi JP. From Structure to Function: How Prebiotic Diversity Shapes Gut Integrity and Immune Balance. Nutrients 2024; 16:4286. [PMID: 39770907 PMCID: PMC11678351 DOI: 10.3390/nu16244286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The microbiota stability, diversity, and composition are pillars for an efficient and beneficial symbiotic relationship between its host and itself. Microbial dysbiosis, a condition where a homeostatic bacterial community is disturbed by acute or chronic events, is a predisposition for many diseases, including local and systemic inflammation that leads to metabolic syndrome, diabetes, and some types of cancers. Classical dysbiosis occurs in the large intestine. During this period, pathogenic strains can multiply, taking advantage of the compromised environment. This overgrowth triggers an exaggerated inflammatory response from the human immune system due to the weakened integrity of the intestinal barrier. Such inflammation can also directly influence higher polyp formation and/or tumorigenesis. Prebiotics can be instrumental in preventing or correcting dysbiosis. Prebiotics are molecules capable of serving as substrates for fermentation processes by gut microorganisms. This can promote returning the intestinal environment to homeostasis. Effective prebiotics are generally specific oligo- and polysaccharides, such as FOS or inulin. However, the direct effects of prebiotics on intestinal epithelial and immune cells must also be taken into consideration. This interaction happens with diverse prebiotic nondigestible carbohydrates, and they can inhibit or decrease the inflammatory response. The present work aims to elucidate and describe the different types of prebiotics, their influence, and their functionalities for health, primarily focusing on their ability to reduce and control inflammation in the intestinal epithelial barrier, gut, and systemic environments.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation, and Dissemination Centers), São Paulo 05508-080, SP, Brazil
- Food Research Center (FoRC), CEPIX-USP, University of São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
7
|
Omran TA, Madsø IL, Sæther PC, Bemanian V, Tunsjø HS. Selection of optimal extraction and RT-PCR protocols for stool RNA detection of colorectal cancer associated immune genes. Sci Rep 2024; 14:27468. [PMID: 39523395 PMCID: PMC11551167 DOI: 10.1038/s41598-024-78680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
There is a growing interest in using fecal mRNA transcripts as biomarkers for non-invasive detection of colorectal cancer (CRC). The following study compares different RNA extraction and reverse transcription PCR (RT-PCR) methods for mRNA detection in stool and identifies a robust and sensitive protocol. A combination of the Stool total RNA purification kit (Norgen) and the Superscript III one-step RT-PCR kit (Invitrogen) provided high RNA purity and sensitive and consistent mRNA detection, making them well-suited candidates for large-scale studies. We tested the protocol by detecting the mRNA of several immune genes (CXCL1, IL8, IL1B, IL6, PTGS2, and SPP1) in 22 CRCs, 24 adenomatous polyps, and 22 control stool samples. All these inflammatory markers, except for CXCL1, showed a strong association with CRC. Cancer stool samples showed increased levels of IL1B, IL8, and PTGS2 transcripts compared to polyp and control groups. Thus, this work supports the potential use of fecal mRNA as biomarkers for CRC detection.
Collapse
Affiliation(s)
- Thura Akrem Omran
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway.
| | - Inger Line Madsø
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Per Christian Sæther
- Department of Immunology and Transfusion Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Vahid Bemanian
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Hege Smith Tunsjø
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
8
|
Batsalova T, Uzunova D, Chavdarova G, Apostolova T, Dzhambazov B. Some Glycoproteins Expressed on the Surface of Immune Cells and Cytokine Plasma Levels Can Be Used as Potential Biomarkers in Patients with Colorectal Cancer. Biomolecules 2024; 14:1314. [PMID: 39456247 PMCID: PMC11505977 DOI: 10.3390/biom14101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of mortality worldwide. Its incidence holds a major position among the most common life-threatening diseases. Hence, the early identification and precise characterization of disease activity based on proper biomarkers are of utmost importance for therapeutic strategy and patient survival. The identification of new biomarkers for colorectal cancer or disease-specific levels/combinations of biomarkers will significantly contribute to precise diagnosis and improved personalized treatment of patients. Therefore, the present study aims to identify colorectal cancer-specific immunological biomarkers. The plasma levels of several cytokines (interleukin-1β /IL-1β/, IL-2, IL-4, IL-10, IL-12, IL-15, TGFβ and IFNγ) of 20 patients with colorectal cancer and 21 healthy individuals were determined by ELISA. The expression of several types of glycoproteins on the surface of peripheral blood leukocytes isolated from CRC patients and healthy volunteers was evaluated by flow cytometry. Correlations between cytokine levels and cell surface glycoprotein expression were analyzed. The obtained results demonstrated significantly elevated levels of CD80, CD86, CD279 and CD274 expressing leukocyte populations in the cancer patient group, while the numbers of NK cells and CD8- and CD25-positive cells were decreased. Based on these data and the correlations with cytokine levels, it can be concluded that CD25, CD80, CD86, CD274 and CD279 glycoproteins combined with specific plasma levels of IL-1β, IL-2, IL-15 and TGFβ could represent potential biomarkers for colorectal cancer.
Collapse
Affiliation(s)
- Tsvetelina Batsalova
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (T.B.); (D.U.)
| | - Denitsa Uzunova
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (T.B.); (D.U.)
| | - Gergana Chavdarova
- Medical Institute of Ministry of Interior, 79, Skobelev Blvd., 1606 Sofia, Bulgaria
| | - Tatyana Apostolova
- University Hospital “Pulmed”, 1A, Perushtitsa Str., 4002 Plovdiv, Bulgaria
| | - Balik Dzhambazov
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (T.B.); (D.U.)
| |
Collapse
|
9
|
Appel K, Rose T, Zimmermann C, Günnewich N. In Vitro Anti-inflammatory Effects of Larch Turpentine, Turpentine Oil, Eucalyptus Oil, and Their Mixture as Contained in a Marketed Ointment. PLANTA MEDICA 2024; 90:1023-1029. [PMID: 39260387 PMCID: PMC11614573 DOI: 10.1055/a-2388-7527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
An ointment containing larch turpentine, turpentine oil, and eucalyptus oil has been used for almost a century for the symptomatic treatment of mild, localized, purulent inflammations of the skin. Its clinical efficacy in the treatment of skin infections has been shown in clinical trials, but the mode of action of the active ingredients on inflammation is not known. We studied the anti-inflammatory properties of the active ingredients of the ointment and their mixture in a human monocyte cell model, in which the cells were stimulated with lipopolysaccharide and incubated with the test substances. The cytotoxic threshold of each test substance and the mixture was identified using the alamarBlue assay, and their anti-inflammatory activity was assessed by measuring the release of interleukins IL-1β, IL-6, IL-8, monocyte chemoattractant protein-1, prostaglandin E2, and TNF-α. Cell toxicity was observed at a mixture concentration of 10 µg/mL. All immunological assays were carried out at nontoxic concentrations. Larch turpentine decreased IL-1β, monocyte chemoattractant protein-1, and prostaglandin E2 release at a concentration of 3.9 µg/mL and TNF-α at concentrations > 1.95 µg/mL, whereas eucalyptus oil and turpentine oil had no relevant inhibitory effects. The mixture dose-dependently inhibited IL-1β, IL-6, monocyte chemoattractant protein-1, prostaglandin E2, and TNF-α release at concentrations > 1 µg/mL. IL-8 release was only marginally affected. The anti-inflammatory activity of the herbal ingredients and their mixture was confirmed in this model. This effect seems to be mediated mainly by larch turpentine, with turpentine oil and eucalyptus oil exerting an additive or possibly synergistic function.
Collapse
Affiliation(s)
- Kurt Appel
- VivaCell Biotechnology GmbH, Denzlingen, Germany
| | | | | | | |
Collapse
|
10
|
Dariya B, Girish BP, Merchant N, Srilatha M, Nagaraju GP. Resveratrol: biology, metabolism, and detrimental role on the tumor microenvironment of colorectal cancer. Nutr Rev 2024; 82:1420-1436. [PMID: 37862428 DOI: 10.1093/nutrit/nuad133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
A substantial increase in colorectal cancer (CRC)-associated fatalities can be attributed to tumor recurrence and multidrug resistance. Traditional treatment options, including radio- and chemotherapy, also exhibit adverse side effects. Ancient treatment strategies that include phytochemicals like resveratrol are now widely encouraged as an alternative therapeutic option. Resveratrol is the natural polyphenolic stilbene in vegetables and fruits like grapes and apples. It inhibits CRC progression via targeting dysregulated cancer-promoting pathways, including PI3K/Akt/Kras, targeting transcription factors like NF-κB and STAT3, and an immunosuppressive tumor microenvironment. In addition, combination therapies for cancer include resveratrol as an adjuvant to decrease multidrug resistance that develops in CRC cells. The current review discusses the biology of resveratrol and explores different mechanisms of action of resveratrol in inhibiting CRC progression. Further, the detrimental role of resveratrol on the immunosuppressive tumor microenvironment of CRC has been discussed. This review illustrates clinical trials on resveratrol in different cancers, including resveratrol analogs, and their efficiency in promoting CRC inhibition.
Collapse
Affiliation(s)
- Begum Dariya
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bala Prabhakar Girish
- Nanotechnology Laboratory, Institute of Frontier Technology, Acharya N.G. Ranga Agricultural University, Tirupati, Andhra Pradesh, India
| | - Neha Merchant
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
11
|
Tocci S, Das S, Sayed IM. An Update on Blastocystis: Possible Mechanisms of Blastocystis-Mediated Colorectal Cancer. Microorganisms 2024; 12:1924. [PMID: 39338600 PMCID: PMC11433781 DOI: 10.3390/microorganisms12091924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Blastocystis is an anaerobic parasite that colonizes the intestinal tract of humans and animals. When it was first discovered, Blastocystis was considered to be a normal flora with beneficial effects on human health, such as maintaining gut hemostasis and improving intestinal barrier integrity. Later, with increasing research on Blastocystis, reports showed that Blastocystis sp. is associated with gastrointestinal disorders, colorectal cancer (CRC), and neurological disorders. The association between Blastocystis sp. and CRC has been confirmed in several countries. Blastocystis sp. can mediate CRC via similar mechanisms to CRC-associated bacteria, including infection-mediated inflammation, increased oxidative stress, induced gut dysbiosis, and damage to intestinal integrity, leading to a leaky gut. IL-8 is the main inflammatory cytokine released from epithelial cells and can promote CRC development. The causal association of Blastocystis sp. with other diseases needs further investigation. In this review, we have provided an update on Blastocystis sp. and summarized the debate about the beneficial and harmful effects of this parasite. We have also highlighted the possible mechanisms of Blastocystis-mediated CRC.
Collapse
Affiliation(s)
- Stefania Tocci
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Soumita Das
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Ibrahim M Sayed
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
12
|
González A, Fullaondo A, Odriozola A. Microbiota-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:123-205. [PMID: 39396836 DOI: 10.1016/bs.adgen.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, ranking third in terms of incidence and second as a cause of cancer-related death. There is growing scientific evidence that the gut microbiota plays a key role in the initiation and development of CRC. Specific bacterial species and complex microbial communities contribute directly to CRC pathogenesis by promoting the neoplastic transformation of intestinal epithelial cells or indirectly through their interaction with the host immune system. As a result, a protumoural and immunosuppressive environment is created conducive to CRC development. On the other hand, certain bacteria in the gut microbiota contribute to protection against CRC. In this chapter, we analysed the relationship of the gut microbiota to CRC and the associations identified with specific bacteria. Microbiota plays a key role in CRC through various mechanisms, such as increased intestinal permeability, inflammation and immune system dysregulation, biofilm formation, genotoxin production, virulence factors and oxidative stress. Exploring the interaction between gut microbiota and tumourigenesis is essential for developing innovative therapeutic approaches in the fight against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
13
|
Arteaga-Blanco LA, Evans AE, Dixon DA. Plasma-Derived Extracellular Vesicles and Non-Extracellular Vesicle Components from APC Min/+ Mice Promote Pro-Tumorigenic Activities and Activate Human Colonic Fibroblasts via the NF-κB Signaling Pathway. Cells 2024; 13:1195. [PMID: 39056778 PMCID: PMC11274984 DOI: 10.3390/cells13141195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer worldwide. Current studies have demonstrated that tumor-derived extracellular vesicles (EVs) from different cancer cell types modulate the fibroblast microenvironment to contribute to cancer development and progression. Here, we isolated and characterized circulating large EVs (LEVs), small EVs (SEVs) and non-EV entities released in the plasma from wild-type (WT) mice and the APCMin/+ CRC mice model. Our results showed that human colon fibroblasts exposed from APC-EVs, but not from WT-EVs, exhibited the phenotypes of cancer-associated fibroblasts (CAFs) through EV-mediated NF-κB pathway activation. Cytokine array analysis on secreted proteins revealed elevated levels of inflammatory cytokine implicated in cancer growth and metastasis. Finally, non-activated cells co-cultured with supernatant from fibroblasts treated with APC-EVs showed increased mRNA expressions of CAFs markers, the ECM, inflammatory cytokines, as well as the expression of genes controlled by NF-κB. Altogether, our work suggests that EVs and non-EV components from APCMin/+ mice are endowed with pro-tumorigenic activities and promoted inflammation and a CAF-like state by triggering NF-κB signaling in fibroblasts to support CRC growth and progression. These findings provide insight into the interaction between plasma-derived EVs and human cells and can be used to design new CRC diagnosis and prognosis tools.
Collapse
Affiliation(s)
| | - Andrew E. Evans
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Dan A. Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
- University of Kansas Comprehensive Cancer Center, Kansas City, KS 66103, USA
| |
Collapse
|
14
|
Łaszczych D, Czernicka A, Gostomczyk K, Szylberg Ł, Borowczak J. The role of IL-17 in the pathogenesis and treatment of glioblastoma-an update on the state of the art and future perspectives. Med Oncol 2024; 41:187. [PMID: 38918274 PMCID: PMC11199243 DOI: 10.1007/s12032-024-02434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor, which, despite significant progress made in the last years in the field of neuro-oncology, remains an incurable disease. GBM has a poor prognosis with a median survival of 12-15 months, and its aggressive clinical course is related to rapid growth, extensive infiltration of adjacent tissues, resistance to chemotherapy, radiotherapy and immunotherapy, and frequent relapse. Currently, several molecular biomarkers are used in clinical practice to predict patient prognosis and response to treatment. However, due to the overall unsatisfactory efficacy of standard multimodal treatment and the remaining poor prognosis, there is an urgent need for new biomarkers and therapeutic strategies for GBM. Recent evidence suggests that GBM tumorigenesis is associated with crosstalk between cancer, immune and stromal cells mediated by various cytokines. One of the key factors involved in this process appears to be interleukin-17 (IL-17), a pro-inflammatory cytokine that is significantly upregulated in the serum and tissue of GBM patients. IL-17 plays a key role in tumorigenesis, angiogenesis, and recurrence of GBM by activating pro-oncogenic signaling pathways and promoting cell survival, proliferation, and invasion. IL-17 facilitates the immunomodulation of the tumor microenvironment by promoting immune cells infiltration and cytokine secretion. In this article we review the latest scientific reports to provide an update on the role of IL-17 role in tumorigenesis, tumor microenvironment, diagnosis, prognosis, and treatment of GBM.
Collapse
Affiliation(s)
- Dariusz Łaszczych
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland.
| | - Aleksandra Czernicka
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
| | - Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, dr Izabeli Romanowskiej 2 street, 85-796, Bydgoszcz, Poland
| | - Jędrzej Borowczak
- Department of Clinical Oncology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, dr Izabeli Romanowskiej 2 street, 85-796, Bydgoszcz, Poland
| |
Collapse
|
15
|
Omran TA, Tunsjø HS, Jahanlu D, Brackmann SA, Bemanian V, Sæther PC. Decoding immune-related gene-signatures in colorectal neoplasia. Front Immunol 2024; 15:1407995. [PMID: 38979413 PMCID: PMC11229009 DOI: 10.3389/fimmu.2024.1407995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Background Colorectal cancer (CRC) is a significant health issue, with notable incidence rates in Norway. The immune response plays a dual role in CRC, offering both protective effects and promoting tumor growth. This research aims to provide a detailed screening of immune-related genes and identify specific genes in CRC and adenomatous polyps within the Norwegian population, potentially serving as detection biomarkers. Methods The study involved 69 patients (228 biopsies) undergoing colonoscopy, divided into CRC, adenomatous polyps, and control groups. We examined the expression of 579 immune genes through nCounter analysis emphasizing differential expression in tumor versus adjacent non-tumorous tissue and performed quantitative reverse transcription polymerase chain reaction (RT-qPCR) across patient categories. Results Key findings include the elevated expression of CXCL1, CXCL2, IL1B, IL6, CXCL8 (IL8), PTGS2, and SPP1 in CRC tissues. Additionally, CXCL1, CXCL2, IL6, CXCL8, and PTGS2 showed significant expression changes in adenomatous polyps, suggesting their early involvement in carcinogenesis. Conclusions This study uncovers a distinctive immunological signature in colorectal neoplasia among Norwegians, highlighting CXCL1, CXCL2, IL1B, IL6, CXCL8, PTGS2, and SPP1 as potential CRC biomarkers. These findings warrant further research to confirm their role and explore their utility in non-invasive screening strategies.
Collapse
Affiliation(s)
- Thura Akrem Omran
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - Hege Smith Tunsjø
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - David Jahanlu
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - Stephan Andreas Brackmann
- Division of Medicine, Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vahid Bemanian
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Per Christian Sæther
- Department of Immunology and Transfusion Medicine, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
16
|
Adrianto AA, Riwanto I, Sadhana U, Setyawan H, Mahati E, Widyarini S, Wandita AAA, Paramita DK. Morphological Changes and Inflammation Preceded the Pathogenesis of 1,2-Dimethylhydrazine-Induced Colorectal Cancer. Asian Pac J Cancer Prev 2024; 25:2059-2067. [PMID: 38918668 PMCID: PMC11382862 DOI: 10.31557/apjcp.2024.25.6.2059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVE This study examined the morphological changes in the colonic mucosa and the presence of inflammation in rats induced with 1,2-dimethylhydrazine (DMH) 30 mg/kg BW over 9, 11, and 13 weeks without a latency period. METHODS Hematoxylin and eosin staining was performed to assess the morphology and characteristic alteration of the epitheliocytes in the colon. Immunohistochemistry was employed to assess the expression of tumor necrosis factor (TNF)-α and cyclooxygenase-2 (COX-2). The difference in the severity of inflammation and COX-2 expression was examined using one-way analysis of variance. The correlation of COX-2 expression with the severity of inflammation was analyzed using Spearman's rank correlation test. RESULT Until week 13, chronic inflammation and non-hyperplastic and hyperplastic aberrant crypt foci occurred. The severity of inflammation gradually shifted from high moderate to low moderate. TNF-α expression was high in all groups; however, COX-2 expression was gradually lower with longer duration of induction, which corresponded with the severity of inflammation. CONCLUSION DMH induction until week 13 without a latency period caused chronic inflammation without the formation of adenoma or adenocarcinoma. A very strong correlation was established between COX-2 expression and inflammation.
Collapse
Affiliation(s)
- Albertus Ari Adrianto
- Doctoral Study Program of Medical and Health Science, Universitas Diponegoro, Semarang, Indonesia
- Digestive Surgery Department of Medical Faculty Universitas Diponegoro, Semarang, Indonesia
| | - Ignatius Riwanto
- Digestive Surgery Department of Medical Faculty Universitas Diponegoro, Semarang, Indonesia
| | - Udadi Sadhana
- Anatomical Pathology Department of Medical Faculty Universitas Diponegoro, Semarang, Indonesia
| | - Henry Setyawan
- Faculty of Public Health Universitas Diponegoro, Semarang, Indonesia
| | - Endang Mahati
- Pharmacology and Therapeutic Department of Medical Faculty Universitas Diponegoro, Semarang, Indonesia
| | | | - Afranetta Aulya Asri Wandita
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dewi Kartikawati Paramita
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Integrated Research Laboratory, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Study Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
17
|
El Menshawe SF, Shalaby K, Elkomy MH, Aboud HM, Ahmed YM, Abdelmeged AA, Elkarmalawy M, Abou Alazayem MA, El Sisi AM. Repurposing celecoxib for colorectal cancer targeting via pH-triggered ultra-elastic nanovesicles: Pronounced efficacy through up-regulation of Wnt/β-catenin pathway in DMH-induced tumorigenesis. Int J Pharm X 2024; 7:100225. [PMID: 38230407 PMCID: PMC10788539 DOI: 10.1016/j.ijpx.2023.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024] Open
Abstract
Celecoxib (CLX), a selective inhibitor for cyclooxygenase 2 (COX-2), has manifested potential activity against diverse types of cancer. However, low bioavailability and cardiovascular side effects remain the major challenges that limit its exploitation. In this work, we developed ultra-elastic nanovesicles (UENVs) with pH-triggered surface charge reversal traits that could efficiently deliver CLX to colorectal segments for snowballed tumor targeting. CLX-UENVs were fabricated via a thin-film hydration approach. The impact of formulation factors (Span 80, Tween 80, and sonication time) on the nanovesicular features was evaluated using Box-Behnken design, and the optimal formulation was computed. The optimum formulation was positively coated with polyethyleneimine (CLX-PEI-UENVs) and then coated with Eudragit S100 (CLX-ES-PEI-UENVs). The activity of the optimized nano-cargo was explored in 1,2-dimethylhydrazine-induced colorectal cancer in Wistar rats. Levels of COX-2, Wnt-2 and β-catenin were assessed in rats' colon. The diameter of the optimized CLX-ES-PEI-UENVs formulation was 253.62 nm, with a zeta potential of -23.24 mV, 85.64% entrapment, and 87.20% cumulative release (24 h). ES coating hindered the rapid release of CLX under acidic milieu (stomach and early small intestine) and showed extended release in the colon section. In colonic environments, the ES coating layer was removed due to high pH, and the charge on the nanovesicular corona was shifted from negative to positive. Besides, a pharmacokinetics study revealed that CLX-ES-PEI-UENVs had superior oral bioavailability by 2.13-fold compared with CLX suspension. Collectively, these findings implied that CLX-ES-PEI-UENVs could be a promising colorectal-targeted nanoplatform for effective tumor management through up-regulation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Shahira F. El Menshawe
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Heba M. Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | | | - Marwa Elkarmalawy
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | | | - Amani M. El Sisi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
18
|
Nsairat H, Jaber AM, Faddah H, Ahmad S. Oleuropein impact on colorectal cancer. Future Sci OA 2024; 10:FSO. [PMID: 38817366 PMCID: PMC11137855 DOI: 10.2144/fsoa-2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/20/2023] [Indexed: 06/01/2024] Open
Abstract
Colorectal cancer (CRC) is considered the third most common cancer in the world. In Mediterranean region, olives and olive oil play a substantial role in diet and medical traditional behaviors. They totally believe that high consumption of olive products can treat a wide range of diseases and decrease risk of illness. Oleuropein is the main active antioxidant molecule found in pre-mature olive fruit and leaves. Recently, it has been demonstrated that oleuropein is used in cancer therapy as an anti-proliferative and apoptotic agent for some cancer cells. In this review, we would like to explore the conclusive effects of oleuropein on CRC with respect to in vitro and in vivo studies.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Areej M Jaber
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Haya Faddah
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Somaya Ahmad
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| |
Collapse
|
19
|
D'Antona S, Porro D, Gallivanone F, Bertoli G. Characterization of cell cycle, inflammation, and oxidative stress signaling role in non-communicable diseases: Insights into genetic variants, microRNAs and pathways. Comput Biol Med 2024; 174:108346. [PMID: 38581999 DOI: 10.1016/j.compbiomed.2024.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/16/2024] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
Non-Communicable Diseases (NCDs) significantly impact global health, contributing to over 70% of premature deaths, as reported by the World Health Organization (WHO). These diseases have complex and multifactorial origins, involving genetic, epigenetic, environmental and lifestyle factors. While Genome-Wide Association Study (GWAS) is widely recognized as a valuable tool for identifying variants associated with complex phenotypes; the multifactorial nature of NCDs necessitates a more comprehensive exploration, encompassing not only the genetic but also the epigenetic aspect. For this purpose, we employed a bioinformatics-multiomics approach to examine the genetic and epigenetic characteristics of NCDs (i.e. colorectal cancer, coronary atherosclerosis, squamous cell lung cancer, psoriasis, type 2 diabetes, and multiple sclerosis), aiming to identify novel biomarkers for diagnosis and prognosis. Leveraging GWAS summary statistics, we pinpointed Single Nucleotide Polymorphisms (SNPs) independently associated with each NCD. Subsequently, we identified genes linked to cell cycle, inflammation and oxidative stress mechanisms, revealing shared genes across multiple diseases, suggesting common functional pathways. From an epigenetic perspective, we identified microRNAs (miRNAs) with regulatory functions targeting these genes of interest. Our findings underscore critical genetic pathways implicated in these diseases. In colorectal cancer, the dysregulation of the "Cytokine Signaling in Immune System" pathway, involving LAMA5 and SMAD7, regulated by Hsa-miR-21-5p, Hsa-miR-103a-3p, and Hsa-miR-195-5p, emerged as pivotal. In coronary atherosclerosis, the pathway associated with "binding of TCF/LEF:CTNNB1 to target gene promoters" displayed noteworthy implications, with the MYC factor controlled by Hsa-miR-16-5p as a potential regulatory factor. Squamous cell lung carcinoma analysis revealed significant pathways such as "PTK6 promotes HIF1A stabilization," regulated by Hsa-let-7b-5p. In psoriasis, the "Endosomal/Vacuolar pathway," involving HLA-C and Hsa-miR-148a-3p and Hsa-miR-148b-3p, was identified as crucial. Type 2 Diabetes implicated the "Regulation of TP53 Expression" pathway, controlled by Hsa-miR-106a-5p and Hsa-miR-106b-5p. In conclusion, our study elucidates the genetic framework and molecular mechanisms underlying NCDs, offering crucial insights into potential genetic/epigenetic biomarkers for diagnosis and prognosis. The specificity of pathways and related miRNAs in different pathologies highlights promising candidates for further clinical validation, with the potential to advance personalized treatments and alleviate the global burden of NCDs.
Collapse
Affiliation(s)
- Salvatore D'Antona
- Institute of Bioimaging and Molecular Physiology, National Research Council, Via F.lli Cervi 93, 20054, Milan, Italy
| | - Danilo Porro
- Institute of Bioimaging and Molecular Physiology, National Research Council, Via F.lli Cervi 93, 20054, Milan, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Francesca Gallivanone
- Institute of Bioimaging and Molecular Physiology, National Research Council, Via F.lli Cervi 93, 20054, Milan, Italy
| | - Gloria Bertoli
- Institute of Bioimaging and Molecular Physiology, National Research Council, Via F.lli Cervi 93, 20054, Milan, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy.
| |
Collapse
|
20
|
Amormino C, Russo E, Tedeschi V, Fiorillo MT, Paiardini A, Spallotta F, Rosanò L, Tuosto L, Kunkl M. Targeting staphylococcal enterotoxin B binding to CD28 as a new strategy for dampening superantigen-mediated intestinal epithelial barrier dysfunctions. Front Immunol 2024; 15:1365074. [PMID: 38510259 PMCID: PMC10951378 DOI: 10.3389/fimmu.2024.1365074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Staphylococcus aureus is a gram-positive bacterium that may cause intestinal inflammation by secreting enterotoxins, which commonly cause food-poisoning and gastrointestinal injuries. Staphylococcal enterotoxin B (SEB) acts as a superantigen (SAg) by binding in a bivalent manner the T-cell receptor (TCR) and the costimulatory receptor CD28, thus stimulating T cells to produce large amounts of inflammatory cytokines, which may affect intestinal epithelial barrier integrity and functions. However, the role of T cell-mediated SEB inflammatory activity remains unknown. Here we show that inflammatory cytokines produced by T cells following SEB stimulation induce dysfunctions in Caco-2 intestinal epithelial cells by promoting actin cytoskeleton remodelling and epithelial cell-cell junction down-regulation. We also found that SEB-activated inflammatory T cells promote the up-regulation of epithelial-mesenchymal transition transcription factors (EMT-TFs) in a nuclear factor-κB (NF-κB)- and STAT3-dependent manner. Finally, by using a structure-based design approach, we identified a SEB mimetic peptide (pSEB116-132) that, by blocking the binding of SEB to CD28, dampens inflammatory-mediated dysregulation of intestinal epithelial barrier.
Collapse
Affiliation(s)
- Carola Amormino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Emanuela Russo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Laboratory affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Laura Rosanò
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Martina Kunkl
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
21
|
Madej M, Gola J, Chrobak E. Synthesis, Pharmacological Properties, and Potential Molecular Mechanisms of Antitumor Activity of Betulin and Its Derivatives in Gastrointestinal Cancers. Pharmaceutics 2023; 15:2768. [PMID: 38140110 PMCID: PMC10748330 DOI: 10.3390/pharmaceutics15122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Gastrointestinal (GI) cancers are an increasingly common type of malignancy, caused by the unhealthy lifestyles of people worldwide. Limited methods of treatment have prompted the search for new compounds with antitumor activity, in which betulin (BE) is leading the way. BE as a compound is classified as a pentacyclic triterpene of the lupane type, having three highly reactive moieties in its structure. Its mechanism of action is based on the inhibition of key components of signaling pathways associated with proliferation, migration, interleukins, and others. BE also has a number of biological properties, i.e., anti-inflammatory, hepatoprotective, neuroprotective, as well as antitumor. Due to its poor bioavailability, betulin is subjected to chemical modifications, obtaining derivatives with proven enhanced pharmacological and pharmacokinetic properties as a result. The method of synthesis and substituents significantly influence the effect on cells and GI cancers. Moreover, the cytotoxic effect is highly dependent on the derivative as well as the individual cell line. The aim of this study is to review the methods of synthesis of BE and its derivatives, as well as its pharmacological properties and molecular mechanisms of action in colorectal cancer, hepatocellular carcinoma, gastric cancer, and esophageal cancer neoplasms.
Collapse
Affiliation(s)
- Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia, 40-752 Katowice, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
22
|
Shao S, Miao H, Ma W. Unraveling the enigma of tumor-associated macrophages: challenges, innovations, and the path to therapeutic breakthroughs. Front Immunol 2023; 14:1295684. [PMID: 38035068 PMCID: PMC10682717 DOI: 10.3389/fimmu.2023.1295684] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are integral to the tumor microenvironment (TME), influencing cancer progression significantly. Attracted by cancer cell signals, TAMs exhibit unparalleled adaptability, aligning with the dynamic tumor milieu. Their roles span from promoting tumor growth and angiogenesis to modulating metastasis. While substantial research has explored the fundamentals of TAMs, comprehending their adaptive behavior, and leveraging it for novel treatments remains challenging. This review delves into TAM polarization, metabolic shifts, and the complex orchestration of cytokines and chemokines determining their functions. We highlight the complexities of TAM-targeted research focusing on their adaptability and potential variability in therapeutic outcomes. Moreover, we discuss the synergy of integrating TAM-focused strategies with established cancer treatments, such as chemotherapy, and immunotherapy. Emphasis is laid on pioneering methods like TAM reprogramming for cancer immunotherapy and the adoption of single-cell technologies for precision intervention. This synthesis seeks to shed light on TAMs' multifaceted roles in cancer, pinpointing prospective pathways for transformative research and enhancing therapeutic modalities in oncology.
Collapse
Affiliation(s)
- Shengwen Shao
- Clinical Research Center, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huilai Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Hepatobiliary Surgery, Liaobu Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, and Sanford Stem Cell Institute, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
23
|
Madka V, Chiliveru S, Panneerselvam J, Pathuri G, Zhang Y, Stratton N, Kumar N, Sanghera DK, Rao CV. Targeting IL-23 for the interception of obesity-associated colorectal cancer. Neoplasia 2023; 45:100939. [PMID: 37813000 PMCID: PMC10568285 DOI: 10.1016/j.neo.2023.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Inflammation and obesity are two major factors that promote Colorectal cancer (CRC). Our recent data suggests that interleukin (IL)-23, is significantly elevated in CRC tumors and correlates with patient obesity, tumor grade and survival. Thus, we hypothesize that obesity and CRC may be linked via inflammation and IL-23 may be a potential target for intervention in high-risk patients. TCGA dataset and patient sera were evaluated for IL-23A levels. IL-23A [IL-23 p19-/-] knockout (KO) mice were crossed to Apcmin/+ mice and progeny were fed low-fat or high-fat diets. At termination intestines were evaluated for tumorigenesis. Tumors, serum, and fecal contents were analyzed for protein biomarkers, cytokines, and microbiome profile respectively. IL-23A levels are elevated in the sera of patients with obesity and colon tumors. Genetic ablation of IL-23A significantly suppressed colonic tumor multiplicity (76-96 %) and incidence (72-95 %) in male and female mice. Similarly, small-intestinal tumor multiplicity and size were also significantly reduced in IL-23A KO mice. IL-23A knockdown in Apcmin/+ mice fed high-fat diet, also resulted in significant suppression of colonic (50-58 %) and SI (41-48 %) tumor multiplicity. Cytokine profiling showed reduction in several circulating pro-inflammatory cytokines including loss of IL-23A. Biomarker analysis suggested reduced tumor cell proliferation and immune modulation with an increase in tumor-infiltrating CD4+ and CD8+ T-lymphocytes in the IL-23A KO mice compared to controls. Fecal microbiome analysis revealed potentially beneficial changes in the bacterial population profile. In summary, our data indicates a tumor promoting role for IL-23 in CRC including diet-induced obesity. With several IL-23 targeted therapies in clinical trials, there is a great potential for targeting this cytokine for CRC prevention and therapy.
Collapse
Affiliation(s)
- Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1203, Oklahoma City, OK 73104, USA
| | - Srikanth Chiliveru
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1203, Oklahoma City, OK 73104, USA
| | - Janani Panneerselvam
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1203, Oklahoma City, OK 73104, USA
| | - Gopal Pathuri
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1203, Oklahoma City, OK 73104, USA
| | - Yuting Zhang
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1203, Oklahoma City, OK 73104, USA
| | - Nicole Stratton
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1203, Oklahoma City, OK 73104, USA
| | - Nandini Kumar
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1203, Oklahoma City, OK 73104, USA
| | - Dharambir K Sanghera
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1203, Oklahoma City, OK 73104, USA; VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
24
|
Khilwani R, Singh S. Systems Biology and Cytokines Potential Role in Lung Cancer Immunotherapy Targeting Autophagic Axis. Biomedicines 2023; 11:2706. [PMID: 37893079 PMCID: PMC10604646 DOI: 10.3390/biomedicines11102706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
Lung cancer accounts for the highest number of deaths among men and women worldwide. Although extensive therapies, either alone or in conjunction with some specific drugs, continue to be the principal regimen for evolving lung cancer, significant improvements are still needed to understand the inherent biology behind progressive inflammation and its detection. Unfortunately, despite every advancement in its treatment, lung cancer patients display different growth mechanisms and continue to die at significant rates. Autophagy, which is a physiological defense mechanism, serves to meet the energy demands of nutrient-deprived cancer cells and sustain the tumor cells under stressed conditions. In contrast, autophagy is believed to play a dual role during different stages of tumorigenesis. During early stages, it acts as a tumor suppressor, degrading oncogenic proteins; however, during later stages, autophagy supports tumor cell survival by minimizing stress in the tumor microenvironment. The pivotal role of the IL6-IL17-IL23 signaling axis has been observed to trigger autophagic events in lung cancer patients. Since the obvious roles of autophagy are a result of different immune signaling cascades, systems biology can be an effective tool to understand these interconnections and enhance cancer treatment and immunotherapy. In this review, we focus on how systems biology can be exploited to target autophagic processes that resolve inflammatory responses and contribute to better treatment in carcinogenesis.
Collapse
Affiliation(s)
| | - Shailza Singh
- Systems Medicine Laboratory, National Centre for Cell Science, SPPU Campus, Ganeshkhind Road, Pune 411007, India;
| |
Collapse
|
25
|
But VM, Bulboacă AE, Rus V, Ilyés T, Gherman ML, Bolboacă SD. Anti-inflammatory and antioxidant efficacy of lavender oil in experimentally induced thrombosis. Thromb J 2023; 21:85. [PMID: 37559057 PMCID: PMC10410829 DOI: 10.1186/s12959-023-00516-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/19/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Lavender oil (LO) possesses anti-inflammatory, antioxidant, antifungal, antibacterial, sedative, cardio-protective, and antinociceptive properties. Thrombosis and inflammation are interplayed processes that interact and influence one another. Our research compared three routes of administration to assess the efficacy of pretreatment with LO on carrageenan-induced thrombosis in rat tail. MATERIALS AND METHODS Wistar-Bratislava white rats were randomly divided into five groups of ten rats each and pretreated 3 consecutive days prior the inducement of thrombosis to with one dose of LO (150 mg/kg body weight (b.w.)): per os by gavage (TLOPO group), intraperitoneal (TIPLO group) and subcutaneous (TSCLO group). We also have a control (C, received saline solution 0.9% and DMSO (vehicle) 1 ml intraperitoneal (i.p.)) group and a group with thrombosis (T group, received saline solution 0.9% plus vehicle 1 ml i.p.). Histopathological examinations were conducted together with measurements of the circulating levels of three oxidative stress markers, antioxidant effect (TAC and THIOL), and three proinflammatory cytokines (TNF- α, RANTES, and MCP-1). RESULTS When administered intraperitoneally, lavender oil has the best efficacy on circulating levels of oxidative stress parameters (MDA, NOx, TOS), one oxidative stress marker (THIOL), and all studied proinflammatory cytokines (p-values < 0.02). Moreover, TIPLO displayed the closest values for bleeding and clotting time to the C group, as well as the lowest length of the thrombus than the T, TPOLO, and TSCLO groups (p-values < 0.001). The TIPLO group has histological appearance comparable to the C group, with the exception of the presence of oedema. CONCLUSIONS Lavender oil pretreatment with intraperitoneal administration as three days, one-dose per day, showed anti-inflammatory and antioxidant efficacy in experimentally induced thrombosis.
Collapse
Affiliation(s)
- Valeriu Mihai But
- Department of Medical Informatics and Biostatistics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur Street, No. 6, Cluj-Napoca, 400349 Romania
| | - Adriana Elena Bulboacă
- Department of Pathophysiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeş Street, No. 2-4, Cluj-Napoca, 400012 Romania
| | - Vasile Rus
- Department of Cell Biology, Histology and Embryology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, 400374 Romania
| | - Tamás Ilyés
- Department of Medical Biochemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur Street, No. 6, Cluj-Napoca, 400349 Romania
| | - Mădălina Luciana Gherman
- Experimental Center, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400012 Romania
| | - Sorana D. Bolboacă
- Department of Medical Informatics and Biostatistics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur Street, No. 6, Cluj-Napoca, 400349 Romania
| |
Collapse
|
26
|
Cioce M, Fumagalli MR, Donzelli S, Goeman F, Canu V, Rutigliano D, Orlandi G, Sacconi A, Pulito C, Palcau AC, Fanciulli M, Morrone A, Diodoro MG, Caricato M, Crescenzi A, Verri M, Fazio VM, Zapperi S, Levrero M, Strano S, Grazi GL, La Porta C, Blandino G. Interrogating colorectal cancer metastasis to liver: a search for clinically viable compounds and mechanistic insights in colorectal cancer Patient Derived Organoids. J Exp Clin Cancer Res 2023; 42:170. [PMID: 37460938 DOI: 10.1186/s13046-023-02754-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Approximately 20-50% of patients presenting with localized colorectal cancer progress to stage IV metastatic disease (mCRC) following initial treatment and this is a major prognostic determinant. Here, we have interrogated a heterogeneous set of primary colorectal cancer (CRC), liver CRC metastases and adjacent liver tissue to identify molecular determinants of the colon to liver spreading. Screening Food and Drug Administration (FDA) approved drugs for their ability to interfere with an identified colon to liver metastasis signature may help filling an unmet therapeutic need. METHODS RNA sequencing of primary colorectal cancer specimens vs adjacent liver tissue vs synchronous and asynchronous liver metastases. Pathways enrichment analyses. The Library of Integrated Network-based Cellular Signatures (LINCS)-based and Connectivity Map (CMAP)-mediated identification of FDA-approved compounds capable to interfere with a 22 gene signature from primary CRC and liver metastases. Testing the identified compounds on CRC-Patient Derived Organoid (PDO) cultures. Microscopy and Fluorescence Activated Cell Sorting (FACS) based analysis of the treated PDOs. RESULTS We have found that liver metastases acquire features of the adjacent liver tissue while partially losing those of the primary tumors they derived from. We have identified a 22-gene signature differentially expressed among primary tumors and metastases and validated in public databases. A pharmacogenomic screening for FDA-approved compounds capable of interfering with this signature has been performed. We have validated some of the identified representative compounds in CRC-Patient Derived Organoid cultures (PDOs) and found that pentoxyfilline and, to a minor extent, dexketoprofen and desloratadine, can variably interfere with number, size and viability of the CRC -PDOs in a patient-specific way. We explored the pentoxifylline mechanism of action and found that pentoxifylline treatment attenuated the 5-FU elicited increase of ALDHhigh cells by attenuating the IL-6 mediated STAT3 (tyr705) phosphorylation. CONCLUSIONS Pentoxifylline synergizes with 5-Fluorouracil (5-FU) in attenuating organoid formation. It does so by interfering with an IL-6-STAT3 axis leading to the emergence of chemoresistant ALDHhigh cell subpopulations in 5-FU treated PDOs. A larger cohort of CRC-PDOs will be required to validate and expand on the findings of this proof-of-concept study.
Collapse
Affiliation(s)
- Mario Cioce
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome, Italy.
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy.
| | - Maria Rita Fumagalli
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133, Milano, Italy
- CNR - Consiglio Nazionale Delle Ricerche, Biophysics Institute, Via De Marini 6, 16149, Genoa, Italy
| | - Sara Donzelli
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Frauke Goeman
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Valeria Canu
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Daniela Rutigliano
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome, Italy
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Giulia Orlandi
- Scientific Direction, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Andrea Sacconi
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Pulito
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Alina Catalina Palcau
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Maurizio Fanciulli
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Aldo Morrone
- Scientific Direction, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Maria Grazia Diodoro
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Caricato
- Colorectal Surgery Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Università Campus Bio-Medico, Rome, Italy
| | - Anna Crescenzi
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome, Italy
- Unit of Endocrine Organs and Neuromuscular Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Martina Verri
- Unit of Endocrine Organs and Neuromuscular Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Vito Michele Fazio
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| | - Stefano Zapperi
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133, Milano, Italy
- Istituto Di Chimica Della Materia Condensata E Di Tecnologie Per L'Energia, CNR - Consiglio Nazionale Delle Ricerche, Via R. Cozzi 53, 20125, Milano, Italy
| | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), UMR Inserm, CNRS 5286 Mixte CLB, Université de Lyon, 1 (UCBL1), 69003, Lyon, France
| | - Sabrina Strano
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Gian Luca Grazi
- Department of Experimental and Clinical Medicine, Hepato-Biliary Pancreatic Surgery, University of Florence, Florence, Italy
| | - Caterina La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133, Milano, Italy
- CNR - Consiglio Nazionale Delle Ricerche, Istituto Di Biofisica, Via Celoria 26, 20133, Milano, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
27
|
Słoka J, Madej M, Strzalka-Mrozik B. Molecular Mechanisms of the Antitumor Effects of Mesalazine and Its Preventive Potential in Colorectal Cancer. Molecules 2023; 28:5081. [PMID: 37446747 DOI: 10.3390/molecules28135081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Chemoprevention is one of the ways to fight colorectal cancer, which is a huge challenge in oncology. Numerous pieces of evidence indicate that chronic inflammation in the course of Crohn's disease or ulcerative colitis (UC) is a significant cancer risk factor. Epidemiologic studies suggest that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs), including mesalazine, has beneficial effects on colitis-associated colorectal cancer. Mesalazine is a first-line therapy for UC and is also widely used for maintaining remission in UC. Data showed that mesalazine has antiproliferative properties associated with cyclooxygenase (COX) inhibition but can also act through COX-independent pathways. This review summarizes knowledge about mesalazine's molecular mechanisms of action and chemopreventive effect by which it could interfere with colorectal cancer cell proliferation and survival.
Collapse
Affiliation(s)
- Joanna Słoka
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
28
|
Novoa Díaz MB, Carriere P, Gentili C. How the interplay among the tumor microenvironment and the gut microbiota influences the stemness of colorectal cancer cells. World J Stem Cells 2023; 15:281-301. [PMID: 37342226 PMCID: PMC10277969 DOI: 10.4252/wjsc.v15.i5.281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 04/17/2023] [Indexed: 05/26/2023] Open
Abstract
Colorectal cancer (CRC) remains the third most prevalent cancer disease and involves a multi-step process in which intestinal cells acquire malignant characteristics. It is well established that the appearance of distal metastasis in CRC patients is the cause of a poor prognosis and treatment failure. Nevertheless, in the last decades, CRC aggressiveness and progression have been attributed to a specific cell population called CRC stem cells (CCSC) with features like tumor initiation capacity, self-renewal capacity, and acquired multidrug resistance. Emerging data highlight the concept of this cell subtype as a plastic entity that has a dynamic status and can be originated from different types of cells through genetic and epigenetic changes. These alterations are modulated by complex and dynamic crosstalk with environmental factors by paracrine signaling. It is known that in the tumor niche, different cell types, structures, and biomolecules coexist and interact with cancer cells favoring cancer growth and development. Together, these components constitute the tumor microenvironment (TME). Most recently, researchers have also deepened the influence of the complex variety of microorganisms that inhabit the intestinal mucosa, collectively known as gut microbiota, on CRC. Both TME and microorganisms participate in inflammatory processes that can drive the initiation and evolution of CRC. Since in the last decade, crucial advances have been made concerning to the synergistic interaction among the TME and gut microorganisms that condition the identity of CCSC, the data exposed in this review could provide valuable insights into the biology of CRC and the development of new targeted therapies.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Pedro Carriere
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
29
|
Zhang Z, Bahaji Azami NL, Liu N, Sun M. Research Progress of Intestinal Microecology in the Pathogenesis of Colorectal Adenoma and Carcinogenesis. Technol Cancer Res Treat 2023; 22:15330338221135938. [PMID: 36740990 PMCID: PMC9903042 DOI: 10.1177/15330338221135938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal adenoma is a precancerous lesion that may progress to colorectal cancer. Patients with colorectal adenoma had a 4-fold higher risk of developing colorectal malignancy than the rest of the population, with approximately 80% of colorectal cancer originating from colorectal adenoma. Therefore, preventing the occurrence and progression of colorectal adenoma is crucial in reducing the risk for colorectal cancer. The human intestinal microecology is a complex system consisting of numerous microbial communities with a sophisticated structure. Interactions among intestinal microorganisms play crucial roles in maintaining normal intestinal structure, digestion, absorption, metabolism, and other functions. The colorectal system is the largest microbial bank or fermentation system in the human body. Studies suggest that intestinal microecological imbalance, one of the most important environmental factors, may play an essential role in the occurrence and development of colorectal adenoma and colorectal cancer. Based on the complexity of studying the gut microbiota ecosystem, its specific role in the occurrence and development of colorectal adenoma is yet to be elucidated. In addition, further studies are expected to provide new insights regarding the prevention and treatment of colorectal adenoma. This article reviews the relationship and mechanism of the diversity of the gut microbiota, the relevant inflammatory response, immune regulation, and metabolic changes in the presence of colorectal adenomas.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nisma Lena Bahaji Azami
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningning Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyu Sun
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
The Cytokine Network in Colorectal Cancer: Implications for New Treatment Strategies. Cells 2022; 12:cells12010138. [PMID: 36611932 PMCID: PMC9818504 DOI: 10.3390/cells12010138] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent tumor entities worldwide with only limited therapeutic options. CRC is not only a genetic disease with several mutations in specific oncogenes and/or tumor suppressor genes such as APC, KRAS, PIC3CA, BRAF, SMAD4 or TP53 but also a multifactorial disease including environmental factors. Cancer cells communicate with their environment mostly via soluble factors such as cytokines, chemokines or growth factors to generate a favorable tumor microenvironment (TME). The TME, a heterogeneous population of differentiated and progenitor cells, plays a critical role in regulating tumor development, growth, invasion, metastasis and therapy resistance. In this context, cytokines from cancer cells and cells of the TME influence each other, eliciting an inflammatory milieu that can either enhance or suppress tumor growth and metastasis. Additionally, several lines of evidence exist that the composition of the microbiota regulates inflammatory processes, controlled by cytokine secretion, that play a role in carcinogenesis and tumor progression. In this review, we discuss the cytokine networks between cancer cells and the TME and microbiome in colorectal cancer and the related treatment strategies, with the goal to discuss cytokine-mediated strategies that could overcome the common therapeutic resistance of CRC tumors.
Collapse
|
31
|
Selective Role of TNFα and IL10 in Regulation of Barrier Properties of the Colon in DMH-Induced Tumor and Healthy Rats. Int J Mol Sci 2022; 23:ijms232415610. [PMID: 36555251 PMCID: PMC9779473 DOI: 10.3390/ijms232415610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Recently it has been reported that the tumor adjacent colon tissues of 1,2-dymethylhydrazine induced (DMH)-rats revealed a high paracellular permeability. We hypothesized that the changes might be induced by cytokines. Colorectal cancer is accompanied by an increase in tumor necrosis factor alpha (TNFα) and interleukin 10 (IL10) that exert opposite regulatory effects on barrier properties of the colon, which is characterized by morphological and functional segmental heterogeneity. The aim of this study was to analyze the level of TNFα and IL10 in the colon segments of DMH-rats and to investigate their effects on barrier properties of the proximal and distal parts of the colon in healthy rats. Enzyme immunoassay analysis showed decreased TNFα in tumors in the distal part of the colon and increased IL10 in proximal tumors and in non-tumor tissues. Four-hour intraluminal exposure of the colon of healthy rats with cytokines showed reduced colon barrier function dependent on the cytokine: TNFα decreased it mainly in the distal part of the colon, whereas IL10 decreased it only in the proximal part. Western blot analysis revealed a more pronounced influence of IL10 on tight junction (TJ) proteins expression by down-regulation of the TJ proteins claudin-1, -2 and -4, and up-regulation of occludin only in the proximal part of the colon. These data may indicate a selective role of the cytokines in regulation of the barrier properties of the colon and a prominent role of IL10 in carcinogenesis in its proximal part.
Collapse
|
32
|
Cui G, Wang Z, Liu H, Pang Z. Cytokine-mediated crosstalk between cancer stem cells and their inflammatory niche from the colorectal precancerous adenoma stage to the cancerous stage: Mechanisms and clinical implications. Front Immunol 2022; 13:1057181. [PMID: 36466926 PMCID: PMC9714270 DOI: 10.3389/fimmu.2022.1057181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/03/2022] [Indexed: 10/15/2023] Open
Abstract
The majority of colorectal cancers (CRCs) are thought to arise from precancerous adenomas. Upon exposure to diverse microenvironmental factors, precancerous stem cells (pCSCs) undergo complex genetic/molecular changes and gradually progress to form cancer stem cells (CSCs). Accumulative evidence suggests that the pCSC/CSC niche is an inflammatory dominated milieu that contains different cytokines that function as the key communicators between pCSCs/CSCs and their niche and have a decisive role in promoting CRC development, progression, and metastasis. In view of the importance and increasing data about cytokines in modulating pCSCs/CSC stemness properties and their significance in CRC, this review summarizes current new insights of cytokines, such as interleukin (IL)-4, IL-6, IL-8, IL-17A, IL-22, IL-23, IL-33 and interferon (IFN)-γ, involving in the modulation of pCSC/CSC properties and features in precancerous and cancerous lesions and discusses the possible mechanisms of adenoma progression to CRCs and their therapeutic potential.
Collapse
Affiliation(s)
- Guanglin Cui
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Faculty of Health Science, Nord University, Levanger, Norway
| | - Ziqi Wang
- College of Medical Imaging, Mudanjiang Medical University, Mudanjiang, China
| | - Hanzhe Liu
- School of Stomatology, Wuhan University, Wuhan, China
| | - Zhigang Pang
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|