1
|
Asqardokht-Aliabadi A, Sarabi-Aghdam V, Homayouni-Rad A, Hosseinzadeh N. Postbiotics in the Bakery Products: Applications and Nutritional Values. Probiotics Antimicrob Proteins 2025; 17:292-314. [PMID: 39066881 DOI: 10.1007/s12602-024-10327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
In recent years, the consumption of postbiotics has gained significant attention due to their potential health benefits. However, their application in the bakery industry remains underutilized. This review focuses on recent advances in the use of postbiotics, specifically the metabolites of lactic acid bacteria, in bakery products. We provide a concise overview of the multifaceted benefits of postbiotics, including their role as natural antioxidants, antimicrobials, and preservatives, and their potential to enhance product quality, extend shelf-life, and contribute to consumer welfare. This review combines information from various sources to provide a comprehensive update on recent advances in the role of postbiotics in bakery products, subsequently discussing the concept of sourdough as a leavening agent and its role in improving the nutritional profile of bakery products. We highlighted the positive effects of postbiotics on bakery items, such as improved texture, flavor, and shelf life, as well as their potential to contribute to overall health through their antioxidant properties and their impact on gut health. Overall, this review emphasizes the promising potential of postbiotics to revolutionize the bakery industry and promote healthier and more sustainable food options. The integration of postbiotics into bakery products represents a promising frontier and offers innovative possibilities to increase product quality, reduce food waste, and improve consumer health. Further research into refining techniques to incorporate postbiotics into bakery products is essential for advancing the health benefits and eco-friendly nature of these vital food items.
Collapse
Affiliation(s)
- Abolfazl Asqardokht-Aliabadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Vahideh Sarabi-Aghdam
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Ataollahi F, Amirheidari B, Amirheidari Z, Ataollahi M. Clinical and mechanistic insights into biomedical application of Se-enriched probiotics and biogenic selenium nanoparticles. Biotechnol Lett 2025; 47:18. [PMID: 39826010 DOI: 10.1007/s10529-024-03559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
Selenium is an essential element with various industrial and medical applications, hence the current considerable attention towards the genesis and utilization of SeNPs. SeNPs and other nanoparticles could be achieved via physical and chemical methods, but these methods would not only require expensive equipment and specific reagents but are also not always environment friendly. Biogenesis of SeNPs could therefore be considered as a less troublesome alternative, which opens an excellent window to the selenium and nanoparticles' world. bSeNPs have proved to exert higher bioavailability, lower toxicity, and broader utility as compared to their non-bio counterparts. Many researchers have reported promising features of bSeNP such as anti-oxidant and anti-inflammatory, in vitro and in vivo. Considering this, bSeNPs have been tried as effective agents for health disorders, especially as constituents of probiotics. This article briefly reviews selenium, selenium nanoparticles, Se-enriched probiotics, and bSeNPs' usage in an array of health disorders. Obviously, there are very many articles on bSeNPs, but we wanted to summarize studies on prominent bSeNPs features published in the twenty-first century. This review is hoped to give an outlook to researchers for their future investigations, ultimately serving better care of health disorders.
Collapse
Affiliation(s)
- Farshid Ataollahi
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Medical University Campus, Haft-Bagh Highway, Kerman, 76169-13555, Iran.
| | - Zohreh Amirheidari
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahshid Ataollahi
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Harat SG, Pourjafar H. Health Benefits and Safety of Postbiotics Derived from Different Probiotic Species. Curr Pharm Des 2025; 31:116-127. [PMID: 39297457 DOI: 10.2174/0113816128335414240828105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 02/18/2025]
Abstract
Nowadays, the usage of probiotics in the food industry has become common. It has been proven that probiotics have many health benefits, such as adjusting the intestinal microbiome, boosting the immune system, and enhancing anti-inflammatory and anti-cancer activities. However, in recent years, some concerns have arisen about the consumption of probiotics, especially in vulnerable populations such as elderly, infants, and people with underlying diseases. As a result, finding a new alternative to probiotics that has the same function as probiotics and is safer has been prioritized. In recent years, postbiotics have been introduced as a great replacement for probiotics. However, the safety of these compounds is not exactly confirmed due to the limited in vivo research. In this review, the definition, classification, activities, limitations, and some advantages of postbiotics over probiotics are discussed. Finally, the limited published data about the safety of postbiotics is summarized.
Collapse
Affiliation(s)
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
4
|
Monika M, Tyagi JS, Sonale N, Biswas A, Murali D, Sky, Tiwari AK, Rokade JJ. Evaluating the efficacy of Lactobacillus acidophilus derived postbiotics on growth metrics, Health, and Gut Integrity in broiler chickens. Sci Rep 2024; 14:24768. [PMID: 39433775 PMCID: PMC11494069 DOI: 10.1038/s41598-024-74078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Continuous use of antibiotics in poultry feed as growth promoters poses a grave threat to humanity through the emergence of antibiotic resistance, necessitating the exploration of novel and sustainable alternatives. The present study was carried out to evaluate the performance of postbiotics derived from Lactobacillus acidophilus in broiler birds. The postbiotics were harvested by culturing probiotic bacteria from the stock cultures at the required temperature and duration under laboratory conditions and supplemented to broilers via feed. For experimentation, 480-day-old CARI-Bro Dhanraja (slow-growing broiler) straight-run chicks were randomly split up into six groups. Treatment groups diets are as follows: T1- Basal diet (BD)+0.2%(v/w) MRS Broth/ uninoculated media; T2 - BD + Antibiotic (CTC); T3- BD + Probiotic; T4, T5 & T6 - BD + postbiotics supplementation of 0.2%, 0.4% and 0.6% (v/w) respectively. The chicks were raised under an intensive, deep litter system with standard protocol for 6 weeks. Results showed that 0.2% of postbiotics (T4) had significantly (P < 0.001) higher body weight (1677.52 g) with better FCR (1.75) and immune response. Postbiotic supplementation altered various serum attributes positively, in this study. Significant (P < 0.001) reductions in total plate counts (TPC), coliform counts, and maximum Lactobacillus counts were recorded in all postbiotic-supplemented groups. The villus height (1379.25 μm), width (216.06 μm) and crept depth (179.25 μm) showed significant (P < 0.001) improvement among the treatment groups on the 21st and 42nd day of the experimental trial, with the highest value in the T4 group (0.2% postbiotic supplementation). Jejunal antioxidant values also noted significantly (P < 0.001) higher values in T4 group. The study concludes that 0.2% postbiotic supplementation can act as a substitute to antibiotic growth promoters and also combat the disfavour activity of probiotics in broilers.
Collapse
Affiliation(s)
- M Monika
- ICAR-Indian Agricultural Research Institute, Hazaribagh, Jharkhand, 825405, India
| | - Jagbir Singh Tyagi
- ICAR- Central Avian Research Institute, Izatnagar, Bareilly, 243122, India.
| | - Nagesh Sonale
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Avishek Biswas
- ICAR- Central Institute for Research on Cattle, Meerut, Uttar Pradesh, 250001, India
| | - Dinesh Murali
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Sky
- ICAR- Central Avian Research Institute, Izatnagar, Bareilly, 243122, India
| | - A K Tiwari
- ICAR- Central Avian Research Institute, Izatnagar, Bareilly, 243122, India
| | | |
Collapse
|
5
|
Ferenc K, Sokal-Dembowska A, Helma K, Motyka E, Jarmakiewicz-Czaja S, Filip R. Modulation of the Gut Microbiota by Nutrition and Its Relationship to Epigenetics. Int J Mol Sci 2024; 25:1228. [PMID: 38279228 PMCID: PMC10816208 DOI: 10.3390/ijms25021228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The intestinal microbiota is a community of microorganisms inhabiting the human intestines, potentially influencing both physiological and pathophysiological processes in the human body. Existing evidence suggests that nutrients can influence the modulation of the gut microbiota. However, there is still limited evidence regarding the effects of vitamin and mineral supplementation on the human gut microbiota through epigenetic modification. It is plausible that maintaining an adequate dietary intake of vitamin D, iron, fibre, zinc and magnesium may have a beneficial effect on alleviating inflammation in the body, reducing oxidative stress, and improving the condition of the intestinal microbiota through various epigenetic mechanisms. Moreover, epigenetics involves alterations in the phenotype of a cell without changing its fundamental DNA sequence. It appears that the modulation of the microbiota by various nutrients may lead to epigenetic regulation. The correlations between microbiota and epigenetics are potentially interdependent. Therefore, the primary objective of this review is to identify the complex relationships between diet, gut microbiota, and epigenetic regulation. These interactions could play a crucial role in systemic health.
Collapse
Affiliation(s)
- Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Kacper Helma
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Elżbieta Motyka
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | | | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
6
|
Dinu LD, Gatea F, Matei F, Banciu C, Vamanu E. Gut Microbiota Modulation by Selenium and Zinc Enrichment Postbiotic on Dysbiosis Associated with Hypertension. Curr Vasc Pharmacol 2024; 22:365-374. [PMID: 38779729 DOI: 10.2174/0115701611290537240509061549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Targeting gut dysbiosis to treat chronic diseases or to alleviate the symptoms is a new direction for medical adjuvant therapies. Recently, postbiotics have received considerable attention as they are non-viable probiotic preparations that confer various health benefits to the host without the safety problems associated with using live microbial cells. OBJECTIVE The aim of the study is to obtain selenium (Se) and zinc (Zn) enriched Saccharomyces boulardii postbiotic biomass and to analyze its modulation effect because these minerals play an important role in reducing gut dysbiosis linked to cardiovascular (CV) diseases. METHOD The effect of the S. boulardii and Se/Zn enriched yeast postbiotics on CV microbial fingerprint was studied in vitro using the gastrointestinal system (GIS 1) and analyzed by microbiological, chemical, and qPCR methods. RESULT There was a 2.2 log CFU/mL increase in the total bacterial load after SeZn postbiotic treatment and in the qPCR counts of Firmicutes phyla for both treatments. Beneficial taxa, Bifidobacterium spp. and Lactobacillus spp., as well as Bacteroidesspp. were up to 1.5 log higher after mineral- enriched postbiotic application, while the acetic acid level increased. CONCLUSION These preliminary studies highlight the therapeutic potential of using Se/Zn enriched yeast postbiotics as adjuvants for clinical treatments of CV diseases.
Collapse
Affiliation(s)
- Laura-Dorina Dinu
- Department of Industrial Biotechnology, Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
| | - Florentina Gatea
- Department of Biotechnology, Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Florentina Matei
- Faculty of Food Industry and Tourism, Transylvania University of Brasov, Brasov, Romania
| | - Cristian Banciu
- Department of Ecology, Institute of Biology of Romanian Academy, Bucharest, Romania
| | - Emanuel Vamanu
- Department of Industrial Biotechnology, Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
| |
Collapse
|
7
|
Dinu LD, Gatea F, Roaming Israel F, Lakicevic M, Dedović N, Vamanu E. The Modulation Effect of a Fermented Bee Pollen Postbiotic on Cardiovascular Microbiota and Therapeutic Perspectives. Biomedicines 2023; 11:2712. [PMID: 37893086 PMCID: PMC10604238 DOI: 10.3390/biomedicines11102712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Hypertension is a frequent comorbidity in patients with heart failure; therefore, blood pressure management for these patients is widely recommended in medical guidelines. Bee pollen and postbiotics that contain inactivated probiotic cells and their metabolites have emerged as promising bioactive compounds sources, and their potential role in mitigating cardiovascular (CV) risks is currently being unveiled. Therefore, this preliminary study aimed to investigate the impact of a lactic-fermented bee pollen postbiotic (FBPP) on the CV microbiota via in vitro tests. A new isolated Lactobacillus spp. strain from the digestive tract of bees was used to ferment pollen, obtaining liquid and dried atomized caps postbiotics. The modulating effects on a CV microbiota that corresponds to the pathophysiology of hypertension were investigated using microbiological methods and qPCR and correlated with the metabolic profile. Both liquid and dried FBPPs increased the number of the beneficial Lactobacillus spp. and Bifidobacterium spp. bacteria by up to 2 log/mL, while the opportunistic pathogen E. coli, which contributes to CV pathogenesis, decreased by 3 log/mL. The short-chain fatty acid (SCFA) profile revealed a significant increase in lactic (6.386 ± 0.106 g/L) and acetic (4.284 ± 0.017 g/L) acids, both with known antihypertensive effects, and the presence of isovaleric acid, which promotes a healthy gut microbiota. Understanding the impact of the FBPP on gut microbiota could lead to innovative strategies for promoting heart health and preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Laura-Dorina Dinu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania;
| | - Florentina Gatea
- Centre of Bioanalysis, National Institute for Biological Sciences, 060031 Bucharest, Romania;
| | - Florentina Roaming Israel
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania;
| | - Milena Lakicevic
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (M.L.); (N.D.)
| | - Nebojša Dedović
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (M.L.); (N.D.)
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania;
| |
Collapse
|