1
|
Alloza-Moral I, Aldekoa-Etxabe A, Tulloch-Navarro R, Fiat-Arriola A, Mar C, Urrechaga E, Ponga C, Artiga-Folch I, Garcia-Bediaga N, Aspichueta P, Martin C, Zarandona-Garai A, Pérez-Fernández S, Arana-Arri E, Triviño JC, Uranga A, España PP, Vandenbroeck-van-Caeckenbergh K. Genetic Analysis and Predictive Modeling of COVID-19 Severity in a Hospital-Based Patient Cohort. Biomolecules 2025; 15:393. [PMID: 40149929 PMCID: PMC11940120 DOI: 10.3390/biom15030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
The COVID-19 pandemic has had a devastating impact, with more than 7 million deaths worldwide. Advanced age and comorbidities partially explain severe cases of the disease, but genetic factors also play a significant role. Genome-wide association studies (GWASs) have been instrumental in identifying loci associated with SARS-CoV-2 infection. Here, we report the results from a >820 K variant GWAS in a COVID-19 patient cohort from the hospitals associated with IIS Biobizkaia. We compared intensive care unit (ICU)-hospitalized patients with non-ICU-hospitalized patients. The GWAS was complemented with an integrated phenotype and genetic modeling analysis using HLA genotypes, a previously identified COVID-19 polygenic risk score (PRS) and clinical data. We identified four variants associated with COVID-19 severity with genome-wide significance (rs58027632 in KIF19; rs736962 in HTRA1; rs77927946 in DMBT1; and rs115020813 in LINC01283). In addition, we designed a multivariate predictive model including HLA, PRS and clinical data which displayed an area under the curve (AUC) value of 0.79. Our results combining human genetic information with clinical data may help to improve risk assessment for the development of a severe outcome of COVID-19.
Collapse
Affiliation(s)
- Iraide Alloza-Moral
- Inflammation & Biomarkers Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.A.-M.); (A.A.-E.); (R.T.-N.); (A.F.-A.); (C.M.)
- Physiology Department, Faculty of Medicine and Nursery, Basque Country University (UPV/EHU), 48940 Leioa, Spain;
- Red de Enfermedades Inflamatorias (REI), Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Carlos IIII Health Research Institute, 28029 Madrid, Spain
| | - Ane Aldekoa-Etxabe
- Inflammation & Biomarkers Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.A.-M.); (A.A.-E.); (R.T.-N.); (A.F.-A.); (C.M.)
- Red de Enfermedades Inflamatorias (REI), Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Carlos IIII Health Research Institute, 28029 Madrid, Spain
| | - Raquel Tulloch-Navarro
- Inflammation & Biomarkers Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.A.-M.); (A.A.-E.); (R.T.-N.); (A.F.-A.); (C.M.)
- Red de Enfermedades Inflamatorias (REI), Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Carlos IIII Health Research Institute, 28029 Madrid, Spain
| | - Ainhoa Fiat-Arriola
- Inflammation & Biomarkers Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.A.-M.); (A.A.-E.); (R.T.-N.); (A.F.-A.); (C.M.)
- Red de Enfermedades Inflamatorias (REI), Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Carlos IIII Health Research Institute, 28029 Madrid, Spain
| | - Carmen Mar
- Pneumology Department, Galdakao-Usansolo University Hospital, Biobizkaia Health Research Institute, 48960 Galdakao, Spain; (C.M.); (E.U.); (C.P.); (A.U.); (P.-P.E.)
| | - Eloisa Urrechaga
- Pneumology Department, Galdakao-Usansolo University Hospital, Biobizkaia Health Research Institute, 48960 Galdakao, Spain; (C.M.); (E.U.); (C.P.); (A.U.); (P.-P.E.)
| | - Cristina Ponga
- Pneumology Department, Galdakao-Usansolo University Hospital, Biobizkaia Health Research Institute, 48960 Galdakao, Spain; (C.M.); (E.U.); (C.P.); (A.U.); (P.-P.E.)
| | - Isabel Artiga-Folch
- Inflammation & Biomarkers Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.A.-M.); (A.A.-E.); (R.T.-N.); (A.F.-A.); (C.M.)
| | - Naiara Garcia-Bediaga
- Bioinformatic Unit, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (N.G.-B.); (A.Z.-G.); (S.P.-F.)
| | - Patricia Aspichueta
- Physiology Department, Faculty of Medicine and Nursery, Basque Country University (UPV/EHU), 48940 Leioa, Spain;
- Research Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28029 Madrid, Spain
- Biobizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Cesar Martin
- Inflammation & Biomarkers Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.A.-M.); (A.A.-E.); (R.T.-N.); (A.F.-A.); (C.M.)
- Biochemistry and Molecular Biology Department, Science and Technology School, Basque Country University (UPV/EHU), 48940 Leioa, Spain
- Biofisika Institute (UPV/EHU, CSIC), 48940 Leioa, Spain
| | - Aitor Zarandona-Garai
- Bioinformatic Unit, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (N.G.-B.); (A.Z.-G.); (S.P.-F.)
| | - Silvia Pérez-Fernández
- Bioinformatic Unit, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (N.G.-B.); (A.Z.-G.); (S.P.-F.)
| | - Eunate Arana-Arri
- Clinical Epidemiology Unit, Biobizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces s/n, 48903 Barakaldo, Spain;
| | | | - Ane Uranga
- Pneumology Department, Galdakao-Usansolo University Hospital, Biobizkaia Health Research Institute, 48960 Galdakao, Spain; (C.M.); (E.U.); (C.P.); (A.U.); (P.-P.E.)
| | - Pedro-Pablo España
- Pneumology Department, Galdakao-Usansolo University Hospital, Biobizkaia Health Research Institute, 48960 Galdakao, Spain; (C.M.); (E.U.); (C.P.); (A.U.); (P.-P.E.)
| | - Koen Vandenbroeck-van-Caeckenbergh
- Inflammation & Biomarkers Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.A.-M.); (A.A.-E.); (R.T.-N.); (A.F.-A.); (C.M.)
- Red de Enfermedades Inflamatorias (REI), Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Carlos IIII Health Research Institute, 28029 Madrid, Spain
- Biochemistry and Molecular Biology Department, Science and Technology School, Basque Country University (UPV/EHU), 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
2
|
Brogna C, Piscopo M. Reply to the letter of Thiruchelvam K. et al. J Med Virol 2024; 96:e29885. [PMID: 39185666 DOI: 10.1002/jmv.29885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Carlo Brogna
- Craniomed group Srl. Research facility, Bresso (Mi), Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Khullar V, Lemmon B, Acar O, Abrams P, Vahabi B. Does COVID-19 cause or worsen LUT dysfunction, what are the mechanisms and possible treatments? ICI-RS 2023. Neurourol Urodyn 2024; 43:1458-1463. [PMID: 38506116 DOI: 10.1002/nau.25441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
INTRODUCTION Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and produced a worldwide pandemic in 2020. There have been 770,875,433 confirmed cases and 6,959,316 attributed deaths worldwide until September 19, 2023. The virus can also affect the lower urinary tract (LUT) leading to bladder inflammation and producing lower urinary tract symptoms (LUTS) in both the acute and chronic phases of disease. METHODS At the 2023 meeting of the International Consultation on Incontinence-Research Society (ICI-RS), the literature relating to COVID-19 and bladder dysfunction was reviewed. The LUTS reported, as well as the pathophysiology of these bladder symptoms, were the subject of considerable discussion. A number of different topics were discussed including lower LUTS reported in COVID-19, how SARS-CoV-2 may infect and affect the urinary tract, and proposed mechanisms for how viral infection result in new, worsened, and in some persisting LUTS. CONCLUSIONS The workshop discussed the interaction between the virus and the immune system, covering current evidence supporting theories underlying the causes of acute and chronic LUTS related to COVID-19 infection. Research questions for further investigation were suggested and identified.
Collapse
Affiliation(s)
- Vik Khullar
- Department of Urogynaecology, St Mary's Hospital, Imperial College, London, UK
| | - Berni Lemmon
- Department of Urogynaecology, St Mary's Hospital, Imperial College, London, UK
| | - Omer Acar
- Department of Urology, University of Illinois, Chicago, Illinois, USA
| | - Paul Abrams
- Bristol Urological Institute, Southmead Hospital Bristol, Bristol, UK
| | - Bahareh Vahabi
- School of Applied Sciences, University of the West of England, Bristol, UK
| |
Collapse
|
4
|
de Lima VA, Nunes JPS, Rosa DS, Ferreira R, Oliva MLV, Andreata‐Santos R, Duarte‐Barbosa M, Janini LMR, Maricato JT, Akamatsu MA, Ho PL, Schenkman S. Development and characterization of a multimeric recombinant protein using the spike protein receptor binding domain as an antigen to induce SARS-CoV-2 neutralization. Immun Inflamm Dis 2024; 12:e1353. [PMID: 39056544 PMCID: PMC11273545 DOI: 10.1002/iid3.1353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND SARS-CoV2 virus, responsible for the COVID-19 pandemic, has four structural proteins and 16 nonstructural proteins. S-protein is one of the structural proteins exposed on the virus surface and is the main target for producing neutralizing antibodies and vaccines. The S-protein forms a trimer that can bind the angiotensin-converting enzyme 2 (ACE2) through its receptor binding domain (RBD) for cell entry. AIMS The goal of this study was to express in HEK293 cells a new RBD recombinant protein in a constitutive and stable manner in order to use it as an alternative immunogen and diagnostic tool for COVID-19. MATERIALS & METHODS The protein was designed to contain an immunoglobulin signal sequence, an explanded C-terminal section of the RBD, a region responsible for the bacteriophage T4 trimerization inducer, and six histidines in the pCDNA-3.1 plasmid. Following transformation, the cells were selected with geneticin-G418 and purified from serum-fre culture supernatants using Ni2+-agarand size exclusion chromatography. The protein was structurally identified by cross-linking and circular dichroism experiments, and utilized to immunize mice in conjuction with AS03 or alum adjuvants. The mice sera were examined for antibody recognition, receptor-binding inhibition, and virus neutralization, while spleens were evaluated for γ-interferon production in the presence of RBD. RESULTS The protein released in the culture supernatant of cells, and exhibited a molecular mass of 135 kDa with a secondary structure like the monomeric and trimeric RBD. After purification, it formed a multimeric structure comprising trimers and hexamers, which were able to bind the ACE2 receptor. It generated high antibody titers in mice when combined with AS03 adjuvant (up to 1:50,000). The sera were capable of inhibiting binding of biotin-labeled ACE2 to the virus S1 subunit and could neutralize the entry of the Wuhan virus strain into cells at dilutions up to 1:2000. It produced specific IFN-γ producing cells in immunized mouse splenocytes. DISCUSSION Our data describe a new RBD containing protein, forming trimers and hexamers, which are able to induce a protective humoral and cellular response against SARS-CoV2. CONCLUSION These results add a new arsenal to combat COVID-19, as an alternative immunogen or antigen for diagnosis.
Collapse
Affiliation(s)
- Veronica A. de Lima
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - João P. S. Nunes
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Daniela S. Rosa
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Rodrigo Ferreira
- Department of Biochemistry, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Maria L. V. Oliva
- Department of Biochemistry, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Robert Andreata‐Santos
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Marcia Duarte‐Barbosa
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Luiz M. R. Janini
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Juliana T. Maricato
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| | - Milena A. Akamatsu
- Núcleo de Produção de Vacinas Bacterianas, Centro BioIndustrial, Instituto ButantanSão PauloSão PauloBrazil
| | - Paulo L. Ho
- Núcleo de Produção de Vacinas Bacterianas, Centro BioIndustrial, Instituto ButantanSão PauloSão PauloBrazil
| | - Sergio Schenkman
- Department of Microbiology, Immunology and ParasitologyUniversidade Federal de São PauloSão PauloSão PauloBrazil
| |
Collapse
|
5
|
La Distia Nora R, Zahra SS, Riasanti M, Fatimah A, Ningtias RD, Ibrahim F, Bela B, Handayani RD, Yasmon A, Susiyanti M, Edwar L, Aziza Y, Sitompul R. Dry eye symptoms are prevalent in moderate-severe COVID-19, while SARS-COV-2 presence is higher in mild COVID-19: Possible ocular transmission risk of COVID-19. Heliyon 2024; 10:e28649. [PMID: 38586378 PMCID: PMC10998079 DOI: 10.1016/j.heliyon.2024.e28649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose To evaluate the correlation between dry eye symptoms and coronavirus disease 2019 (COVID-19) infection and to assess the real-time reverse transcription-polymerase chain reaction (RT‒PCR) of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) from the conjunctival swab. Methods A prospective observational case series study was conducted of all suspected and confirmed COVID-19 patients from Dr. Cipto Mangunkusumo Hospital (RSCM) and the Universitas Indonesia Hospital (RSUI). On the first day of the visit (day 0), systemic clinical symptoms and naso-oropharyngeal (NO) RT‒PCR results will classify all subjects as non-, suspected, or confirmed (mild, moderate, and severe) COVID-19. In all patients, we determined the dry eye symptoms based on the Ocular Surface Disease Index (OSDI) and followed up 7(day 7) and 14 days (day 14) after the first visit. When it was technically possible, we also examined the objective dry eye measurements: tear meniscus height (TMH), noninvasive Keratograph® break-up time (NIKBUT), and ocular redness. Additionally, we took conjunctival swab samples for SARS-CoV-2 RT-PCR in all patients. Results The OSDI scores for 157 patients decreased across days 0, 7, and 14 (median (interquartile range): 2.3 (0-8), 0 (0-3), and 0 (0-0), p value < 0.0001 (D0 vs D14). The moderate-severe COVID-19 group had a higher OSDI score than the other groups at median D0 (15.6 vs 0-2.3), p value < 0.0001 and this pattern was consistently seen at follow-up D7 and D14. However, dry eye complaints were not correlated with the three objective dry eye measurements in mild-moderate COVID-19 patients. NO RT‒PCR results were positive in 32 (20.4%) patients, namely, 13 and 19 moderate-severe and mild COVID-19 patients, respectively. Positive RT‒PCR results were observed in 7/157 (4.5%) conjunctival swab samples from 1 in non-COVID-19 group and 6 in mild group. Conclusion In the early phase of infection, COVID-19 patients experience dry eye symptoms, which have no correlation with objective dry eye measurements. SARS-CoV-2 in conjunctival swab samples can be detected in patients with normal-to-mild COVID-19, which shows the risk of ocular transmission.
Collapse
Affiliation(s)
- Rina La Distia Nora
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia – Cipto Mangunkusumo Kirana Eye Hospital, Jakarta, Indonesia
- Universitas Indonesia Hospital (RSUI), Depok, West Java, Indonesia
- Wisma Atlet COVID-19 Emergency Hospital, North Jakarta, Jakarta, Indonesia
| | | | - Mei Riasanti
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia – Cipto Mangunkusumo Kirana Eye Hospital, Jakarta, Indonesia
| | - Aliya Fatimah
- Wisma Atlet COVID-19 Emergency Hospital, North Jakarta, Jakarta, Indonesia
| | - Rani Dwi Ningtias
- Wisma Atlet COVID-19 Emergency Hospital, North Jakarta, Jakarta, Indonesia
| | - Fera Ibrahim
- Universitas Indonesia Hospital (RSUI), Depok, West Java, Indonesia
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia – Cipto Mangunkusumo, Jakarta, Indonesia
| | - Budiman Bela
- Universitas Indonesia Hospital (RSUI), Depok, West Java, Indonesia
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia – Cipto Mangunkusumo, Jakarta, Indonesia
| | - R.R. Diah Handayani
- Universitas Indonesia Hospital (RSUI), Depok, West Java, Indonesia
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia - Persahabatan Hospital, Jakarta, Indonesia
| | - Andi Yasmon
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia – Cipto Mangunkusumo, Jakarta, Indonesia
| | - Made Susiyanti
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia – Cipto Mangunkusumo Kirana Eye Hospital, Jakarta, Indonesia
| | - Lukman Edwar
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia – Cipto Mangunkusumo Kirana Eye Hospital, Jakarta, Indonesia
| | - Yulia Aziza
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia – Cipto Mangunkusumo Kirana Eye Hospital, Jakarta, Indonesia
| | - Ratna Sitompul
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia – Cipto Mangunkusumo Kirana Eye Hospital, Jakarta, Indonesia
| |
Collapse
|
6
|
Brogna C, Bisaccia DR, Costanzo V, Lettieri G, Montano L, Viduto V, Fabrowski M, Cristoni S, Prisco M, Piscopo M. Who Is the Intermediate Host of RNA Viruses? A Study Focusing on SARS-CoV-2 and Poliovirus. Microorganisms 2024; 12:643. [PMID: 38674588 PMCID: PMC11051822 DOI: 10.3390/microorganisms12040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic has sparked a surge in research on microbiology and virology, shedding light on overlooked aspects such as the infection of bacteria by RNA virions in the animal microbiome. Studies reveal a decrease in beneficial gut bacteria during COVID-19, indicating a significant interaction between SARS-CoV-2 and the human microbiome. However, determining the origins of the virus remains complex, with observed phenomena such as species jumps adding layers to the narrative. Prokaryotic cells play a crucial role in the disease's pathogenesis and transmission. Analyzing previous studies highlights intricate interactions from clinical manifestations to the use of the nitrogen isotope test. Drawing parallels with the history of the Poliovirus underscores the need to prioritize investigations into prokaryotic cells hosting RNA viruses.
Collapse
Affiliation(s)
- Carlo Brogna
- Department of Research, Craniomed Group Facility Srl., 20091 Bresso, Italy;
| | | | - Vincenzo Costanzo
- Institute of Molecular Biology and Pathology (IBPM), National Research Council, 00185 Rome, Italy;
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (M.P.)
| | - Luigi Montano
- Andrology Unit and Service of LifeStyle Medicine in Uro-Andrology, Local Health Authority (ASL), 84124 Salerno, Italy;
| | - Valentina Viduto
- Long COVID-19 Foundation, Brookfield Court, Leeds LS25 1NB, UK; (V.V.)
| | - Mark Fabrowski
- Long COVID-19 Foundation, Brookfield Court, Leeds LS25 1NB, UK; (V.V.)
- Department of Emergency Medicine, Royal Sussex County Hospital, University Hospitals Sussex, Eastern Road, Brighton BN2 5BE, UK
- British Polio Fellowship, Watford WD25 8HR, UK
| | | | - Marina Prisco
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (M.P.)
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (M.P.)
| |
Collapse
|
7
|
Brogna C, Montano L, Zanolin ME, Bisaccia DR, Ciammetti G, Viduto V, Fabrowski M, Baig AM, Gerlach J, Gennaro I, Bignardi E, Brogna B, Frongillo A, Cristoni S, Piscopo M. A retrospective cohort study on early antibiotic use in vaccinated and unvaccinated COVID-19 patients. J Med Virol 2024; 96:e29507. [PMID: 38504586 DOI: 10.1002/jmv.29507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
The bacteriophage behavior of SARS-CoV-2 during the acute and post-COVID-19 phases appears to be an important factor in the development of the disease. The early use of antibiotics seems to be crucial to inhibit disease progression-to prevent viral replication in the gut microbiome, and control toxicological production from the human microbiome. To study the impact of specific antibiotics on recovery from COVID-19 and long COVID (LC) taking into account: vaccination status, comorbidities, SARS-CoV-2 wave, time of initiation of antibiotic therapy and concomitant use of corticosteroids and nonsteroidal anti-inflammatory drugs (NSAIDs). A total of 211 COVID-19 patients were included in the study: of which 59 were vaccinated with mRNA vaccines against SARS-CoV-2 while 152 were unvaccinated. Patients were enrolled in three waves: from September 2020 to October 2022, corresponding to the emergence of the pre-Delta, Delta, and Omicron variants of the SARS-CoV-2 virus. The three criteria for enrolling patients were: oropharyngeal swab positivity or fecal findings; moderate symptoms with antibiotic intake; and measurement of blood oxygen saturation during the period of illness. The use of antibiotic combinations, such as amoxicillin with clavulanic acid (875 + 125 mg tablets, every 12 h) plus rifaximin (400 mg tablets every 12 h), as first choice, as suggested from the previous data, or azithromycin (500 mg tablets every 24 h), plus rifaximin as above, allows healthcare professionals to focus on the gut microbiome and its implications in COVID-19 disease during patient care. The primary outcome measured in this study was the estimated average treatment effect, which quantified the difference in mean recovery between patients receiving antibiotics and those not receiving antibiotics at 3 and 9 days after the start of treatment. In the analysis, both vaccinated and unvaccinated groups had a median illness duration of 7 days (interquartile range [IQR] 6-9 days for each; recovery crude hazard ratio [HR] = 0.94, p = 0.700). The median illness duration for the pre-Delta and Delta waves was 8 days (IQR 7-10 days), while it was shorter, 6.5 days, for Omicron (IQR 6-8 days; recovery crude HR = 1.71, p < 0.001). These results were confirmed by multivariate analysis. Patients with comorbidities had a significantly longer disease duration: median 8 days (IQR 7-10 days) compared to 7 days (IQR 6-8 days) for those without comorbidities (crude HR = 0.75, p = 0.038), but this result was not confirmed in multivariate analysis as statistical significance was lost. Early initiation of antibiotic therapy resulted in a significantly shorter recovery time (crude HR = 4.74, p < 0.001). Concomitant use of NSAIDs did not reduce disease duration and in multivariate analysis prolonged the disease (p = 0.041). A subgroup of 42 patients receiving corticosteroids for a median of 3 days (IQR 3-6 days) had a longer recovery time (median 9 days, IQR 8-10 days) compared to others (median 7 days, IQR 6-8 days; crude HR = 0.542, p < 0.001), as confirmed also by the adjusted HR. In this study, a statistically significant reduction in recovery time was observed among patients who received early antibiotic treatment. Early initiation of antibiotics played a crucial role in maintaining higher levels of blood oxygen saturation. In addition, it is worth noting that a significant number of patients who received antibiotics in the first 3 days and for a duration of 7 days, during the acute phase did not develop LC.
Collapse
Affiliation(s)
- Carlo Brogna
- Craniomed Group Srl. Research Facility, Bresso, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in Uro-Andrology, Local Health Authority (ASL), Salerno, Italy
| | | | | | - Gianluca Ciammetti
- Otorhinolaryngology Unit, Hospital Ferdinando Veneziale Isernia, Regional Health Authority of Molise, Italy
| | | | - Mark Fabrowski
- Department of Emergency Medicine, Royal Sussex County Hospital, University Hospitals Sussex, Brighton, UK
| | - Abdul M Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | - Iapicca Gennaro
- Pineta Grande Hospital Group, Department of Urology, Santa Rita Clinic, Atripalda, Italy
| | | | - Barbara Brogna
- Department of Radiology, Moscati Hospital, Avellino, Italy
| | | | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Brogna C, Cristoni S, Marino G, Montano L, Viduto V, Fabrowski M, Lettieri G, Piscopo M. Detection of recombinant Spike protein in the blood of individuals vaccinated against SARS-CoV-2: Possible molecular mechanisms. Proteomics Clin Appl 2023; 17:e2300048. [PMID: 37650258 DOI: 10.1002/prca.202300048] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE The SARS-CoV-2 pandemic prompted the development and use of next-generation vaccines. Among these, mRNA-based vaccines consist of injectable solutions of mRNA encoding for a recombinant Spike, which is distinguishable from the wild-type protein due to specific amino acid variations introduced to maintain the protein in a prefused state. This work presents a proteomic approach to reveal the presence of recombinant Spike protein in vaccinated subjects regardless of antibody titer. EXPERIMENTAL DESIGN Mass spectrometry examination of biological samples was used to detect the presence of specific fragments of recombinant Spike protein in subjects who received mRNA-based vaccines. RESULTS The specific PP-Spike fragment was found in 50% of the biological samples analyzed, and its presence was independent of the SARS-CoV-2 IgG antibody titer. The minimum and maximum time at which PP-Spike was detected after vaccination was 69 and 187 days, respectively. CONCLUSIONS AND CLINICAL RELEVANCE The presented method allows to evaluate the half-life of the Spike protein molecule "PP" and to consider the risks or benefits in continuing to administer additional booster doses of the SARS-CoV-2 mRNA vaccine. This approach is of valuable support to complement antibody level monitoring and represents the first proteomic detection of recombinant Spike in vaccinated subjects.
Collapse
Affiliation(s)
- Carlo Brogna
- Department of Research, Craniomed Group Facility Srl, Bresso, Italy
| | | | | | - Luigi Montano
- Andrology Unit and Service of LifeStyle Medicine in Uro-Andrology, Local Health Authority (ASL) Salerno, Salerno, Italy
| | | | - Mark Fabrowski
- Department of Emergency Medicine, Royal Sussex County Hospital, University Hospitals Sussex, Brighton, UK
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
9
|
Armstrong AJS, Horton DB, Andrews T, Greenberg P, Roy J, Gennaro ML, Carson JL, Panettieri RA, Barrett ES, Blaser MJ. Saliva microbiome in relation to SARS-CoV-2 infection in a prospective cohort of healthy US adults. EBioMedicine 2023; 94:104731. [PMID: 37487417 PMCID: PMC10382861 DOI: 10.1016/j.ebiom.2023.104731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/08/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND The clinical outcomes of SARS-CoV-2 infection vary in severity, potentially influenced by the resident human microbiota. There is limited consensus on conserved microbiome changes in response to SARS-CoV-2 infection, with many studies focusing on severely ill individuals. This study aimed to assess the variation in the upper respiratory tract microbiome using saliva specimens in a cohort of individuals with primarily mild to moderate disease. METHODS In early 2020, a cohort of 831 adults without known SARS-CoV-2 infection was followed over a six-month period to assess the occurrence and natural history of SARS-CoV-2 infection. From this cohort, 81 participants with a SARS-CoV-2 infection, along with 57 unexposed counterparts were selected with a total of 748 serial saliva samples were collected for analysis. Total bacterial abundance, composition, population structure, and gene function of the salivary microbiome were measured using 16S rRNA gene and shotgun metagenomic sequencing. FINDINGS The salivary microbiome remained stable in unexposed individuals over the six-month study period, as evidenced by all measured metrics. Similarly, participants with mild to moderate SARS-CoV-2 infection showed microbiome stability throughout and after their infection. However, there were significant reductions in microbiome diversity among SARS-CoV-2-positive participants with severe symptoms early after infection. Over time, the microbiome diversity in these participants showed signs of recovery. INTERPRETATION These findings demonstrate the resilience of the salivary microbiome in relation to SARS-CoV-2 infection. Mild to moderate infections did not significantly disrupt the stability of the salivary microbiome, suggesting its ability to maintain its composition and function. However, severe SARS-CoV-2 infection was associated with temporary reductions in microbiome diversity, indicating the limits of microbiome resilience in the face of severe infection. FUNDING This project was supported in part by Danone North America and grants from the National Institutes of Health, United States.
Collapse
Affiliation(s)
- Abigail J S Armstrong
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Daniel B Horton
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Center for Pharmacoepidemiology and Treatment Science, Institute for Health, Health Care Policy, and Aging Research, New Brunswick, New Jersey, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Tracy Andrews
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Patricia Greenberg
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Jason Roy
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Maria Laura Gennaro
- Department of Medicine, Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Jeffrey L Carson
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Reynold A Panettieri
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA.
| |
Collapse
|
10
|
Brogna B, Bignardi E, Megliola A, Laporta A, La Rocca A, Volpe M, Musto LA. A Pictorial Essay Describing the CT Imaging Features of COVID-19 Cases throughout the Pandemic with a Special Focus on Lung Manifestations and Extrapulmonary Vascular Abdominal Complications. Biomedicines 2023; 11:2113. [PMID: 37626610 PMCID: PMC10452395 DOI: 10.3390/biomedicines11082113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
With the Omicron wave, SARS-CoV-2 infections improved, with less lung involvement and few cases of severe manifestations. In this pictorial review, there is a summary of the pathogenesis with particular focus on the interaction of the immune system and gut and lung axis in both pulmonary and extrapulmonary manifestations of COVID-19 and the computed tomography (CT) imaging features of COVID-19 pneumonia from the beginning of the pandemic, describing the typical features of COVID-19 pneumonia following the Delta variant and the atypical features appearing during the Omicron wave. There is also an outline of the typical features of COVID-19 pneumonia in cases of breakthrough infection, including secondary lung complications such as acute respiratory distress disease (ARDS), pneumomediastinum, pneumothorax, and lung pulmonary thromboembolism, which were more frequent during the first waves of the pandemic. Finally, there is a description of vascular extrapulmonary complications, including both ischemic and hemorrhagic abdominal complications.
Collapse
Affiliation(s)
- Barbara Brogna
- Department of Interventional and Emergency Radiology, San Giuseppe Moscati Hospital, 83100 Avellino, Italy; (A.L.); (A.L.R.); (L.A.M.)
| | - Elio Bignardi
- Department of Radiology, Francesco Ferrari Hospital, ASL Lecce, 73042 Casarano, Italy;
| | - Antonia Megliola
- Radiology Unit, “Frangipane” Hospital, ASL Avellino, 83031 Ariano Irpino, Italy; (A.M.); (M.V.)
| | - Antonietta Laporta
- Department of Interventional and Emergency Radiology, San Giuseppe Moscati Hospital, 83100 Avellino, Italy; (A.L.); (A.L.R.); (L.A.M.)
| | - Andrea La Rocca
- Department of Interventional and Emergency Radiology, San Giuseppe Moscati Hospital, 83100 Avellino, Italy; (A.L.); (A.L.R.); (L.A.M.)
| | - Mena Volpe
- Radiology Unit, “Frangipane” Hospital, ASL Avellino, 83031 Ariano Irpino, Italy; (A.M.); (M.V.)
| | - Lanfranco Aquilino Musto
- Department of Interventional and Emergency Radiology, San Giuseppe Moscati Hospital, 83100 Avellino, Italy; (A.L.); (A.L.R.); (L.A.M.)
| |
Collapse
|
11
|
Macáková K, Pšenková P, Šupčíková N, Vlková B, Celec P, Záhumenský J. Effect of SARS-CoV-2 Infection and COVID-19 Vaccination on Oxidative Status of Human Placenta: A Preliminary Study. Antioxidants (Basel) 2023; 12:1403. [PMID: 37507942 PMCID: PMC10376152 DOI: 10.3390/antiox12071403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Infection with SARS-CoV-2 during pregnancy increases the risk of pregnancy complications associated with inflammation, which could lead to oxidative stress in the placenta. Whether vaccination against COVID-19 has any effect is unclear. This study aimed to analyze the effects of SARS-CoV-2 infection and vaccination against COVID-19 during pregnancy on oxidative stress in the placenta and on extracellular DNA (ecDNA) in umbilical cord plasma. Placenta samples from healthy uninfected and unvaccinated control patients who recovered from COVID-19 and women vaccinated against COVID-19 during pregnancy were collected. Biomarkers of oxidative damage and antioxidant capacity were assessed in the placenta homogenates. EcDNA and deoxyribonuclease activity were quantified in umbilical cord plasma using real-time PCR and the single radial enzyme diffusion method, respectively. Markers of oxidative damage to lipids and proteins as well as antioxidant capacity in the placenta did not differ between the study groups. No differences were observed in total, nuclear or mitochondrial ecDNA, or deoxyribonuclease activity in the umbilical cord plasma. Taking into account the limits of a small observational study, our results suggest that the infection with SARS-CoV-2 and vaccination against COVID-19 do not induce any major disturbances in the balance between the production of free radicals and antioxidant activity in the placenta. This is in line with the minor effects on fetal outcomes and ecDNA as a suggested marker of fetal well-being.
Collapse
Affiliation(s)
- Kristína Macáková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Petra Pšenková
- 2nd Department of Gynaecology and Obstetrics, University Hospital Bratislava and Comenius University, 82606 Bratislava, Slovakia
| | - Nadja Šupčíková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Barbora Vlková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Jozef Záhumenský
- 2nd Department of Gynaecology and Obstetrics, University Hospital Bratislava and Comenius University, 82606 Bratislava, Slovakia
| |
Collapse
|
12
|
Graf C, Wagener I, Grikscheit K, Hoehl S, Berger A, Wetzstein N, Dietz J, Dultz G, Michael F, Filmann N, Herrmann E, Tinnemann P, Goetsch U, Ciesek S. Is Olfactory Testing a Useful Diagnostic Tool to Identify SARS-CoV-2 Infections Early? A Cross-Sectional and Longitudinal Analysis. J Clin Med 2023; 12:jcm12093162. [PMID: 37176604 PMCID: PMC10179328 DOI: 10.3390/jcm12093162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Genesis and the prognostic value of olfactory dysfunction (OD) in COVID-19 remain partially described. The objective of our study was to characterize OD during SARS-CoV-2 infection and to examine whether testing of OD may be a useful tool in clinical practice in order to early identify patients with SARS-CoV-2 infection. METHODS Olfactory function assessment was objectively carried out using the u-Smell-it® test. In a cross-sectional study part, we evaluated this test in a control cohort of SARS-CoV-2 negative tested patients, who attended the University Hospital Frankfurt between May 2021 and March 2022. In a second longitudinal study part, sensitivity and specificity of OD was evaluated as a diagnostic marker of a SARS-CoV-2 infection in Frankfurt am Main, Germany in SARS-CoV-2 infected patients and their close contacts. RESULTS Among 494 SARS-CoV-2 negative tested patients, OD was detected in 45.7% and was found to be significantly associated with the male gender (p < 0.001), higher age (p < 0.001), cardiovascular and pulmonary comorbidities (p < 0.001; p = 0.03). Among 90 COVID-19 positive patients, OD was found in 65.6% and was significantly associated with male gender and positive smoking status (p = 0.04 each). Prevalence and severity of OD were significantly increased in infections with the Delta variant (B.1.617.2) compared to those with the Omicron variant (BA.1.1.529). Diagnostic sensitivity and specificity of OD for diagnosis of SARS-CoV-2 infection were 69% and 64%, respectively. CONCLUSION OD is common in COVID-19 negative and positive tested patients with significantly different prevalence rates observed between different variants. Diagnostic accuracy of OD is not high enough to implement olfactory testing as a tool in diagnostic routine to early identify patients with a SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Christiana Graf
- Institute of Medical Virology, University Hospital Frankfurt, 60306 Frankfurt am Main, Germany
- Department of Internal Medicine I, University Hospital Frankfurt, 60306 Frankfurt am Main, Germany
| | - Inken Wagener
- Institute of Medical Virology, University Hospital Frankfurt, 60306 Frankfurt am Main, Germany
| | - Katharina Grikscheit
- Institute of Medical Virology, University Hospital Frankfurt, 60306 Frankfurt am Main, Germany
| | - Sebastian Hoehl
- Institute of Medical Virology, University Hospital Frankfurt, 60306 Frankfurt am Main, Germany
| | - Annemarie Berger
- Institute of Medical Virology, University Hospital Frankfurt, 60306 Frankfurt am Main, Germany
| | - Nils Wetzstein
- Department of Internal Medicine II, Infectious Diseases, University Hospital Frankfurt, 60306 Frankfurt am Main, Germany
| | - Julia Dietz
- Department of Internal Medicine I, University Hospital Frankfurt, 60306 Frankfurt am Main, Germany
| | - Georg Dultz
- Department of Internal Medicine I, University Hospital Frankfurt, 60306 Frankfurt am Main, Germany
| | - Florian Michael
- Department of Internal Medicine I, University Hospital Frankfurt, 60306 Frankfurt am Main, Germany
| | - Natalie Filmann
- Institute of Biostatistics and Mathematical Modeling, Goethe University, 60323 Frankfurt am Main, Germany
| | - Eva Herrmann
- Institute of Biostatistics and Mathematical Modeling, Goethe University, 60323 Frankfurt am Main, Germany
| | - Peter Tinnemann
- Public Health Department of the City of Frankfurt am Main, 60306 Frankfurt am Main, Germany
| | - Udo Goetsch
- Public Health Department of the City of Frankfurt am Main, 60306 Frankfurt am Main, Germany
| | - Sandra Ciesek
- Institute of Medical Virology, University Hospital Frankfurt, 60306 Frankfurt am Main, Germany
- German Centre for Infection Research, Deutsches Zentrum für Infektionsforschung, External Partner Site Frankfurt, 60306 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Rifaximin Improves Liver Functional Reserve by Regulating Systemic Inflammation. J Clin Med 2023; 12:jcm12062210. [PMID: 36983211 PMCID: PMC10054398 DOI: 10.3390/jcm12062210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Rifaximin, a non-absorbable antibiotic, has been demonstrated to be effective against hepatic encephalopathy (HE); however, its efficacy on liver functional reserve remains unknown. Here, we evaluated the efficacy of rifaximin on the liver functional reserve and serological inflammation-based markers in patients with cirrhosis. A retrospective study was conducted on patients who received rifaximin for more than three months at our hospital between November 2016 and October 2021. The recurrence and grade of HE, serological ammonia levels, Child–Pugh score (CPS), and serological inflammation-based markers such as the neutrophil–lymphocyte ratio (NLR), lymphocyte–monocyte ratio (LMR), platelet–lymphocyte ratio (PLR), C-reactive protein (CRP), and CRP to albumin ratio (CAR) were evaluated. The correlations between serological inflammation-based markers and liver functional reserve were evaluated. HE grades, serum ammonia levels, and inflammation-based markers significantly improved at three months compared with those at baseline. Patients with improved albumin levels showed significantly higher CRP improvement rates at both 3 and 12 months. Patients with an improvement in CAR at 3 months demonstrated a significant improvement in CPS at 12 months. Rifaximin improved the liver functional reserve in patients with cirrhosis. Improvements in inflammation-based markers, particularly CRP and albumin, may be involved in this process.
Collapse
|
14
|
Ghanem HB, Elderdery AY, Alnassar HN, Aldandan HA, Alkhaldi WH, Alfuhygy KS, Alruwyli MM, Alayyaf RA, Alkhalef SK, Alruwaili SNL, Mills J. Study of Coagulation Disorders and the Prevalence of Their Related Symptoms among COVID-19 Patients in Al-Jouf Region, Saudi Arabia during the COVID-19 Pandemic. Diagnostics (Basel) 2023; 13:diagnostics13061085. [PMID: 36980393 PMCID: PMC10047254 DOI: 10.3390/diagnostics13061085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction: The coronavirus (COVID-19) has affected millions of people around the world. COVID-19 patients, particularly those with the critical illness, have coagulation abnormalities, thrombocytopenia, and a high prevalence of intravascular thrombosis. Objectives: This work aims to assess the prevalence of coagulation disorders and their related symptoms among COVID-19 patients in the Al-Jouf region of Saudi Arabia. Subjects and methods: We conducted a retrospective study on 160 COVID-19 patients. Data were collected from the medical records department of King Abdulaziz Specialist Hospital, Sakaka, Al-Jouf, Saudi Arabia. The socio-demographic data, risk factors, coagulation profile investigation results, symptom and sign data related to coagulation disorders, and disease morbidity and mortality for COVID-19 patients were extracted from medical records, and the data were stored confidentially. Results: Males represented the highest prevalence of COVID-19 infection at 65%; 29% were aged 60 or over; 28% were smokers; and 36% were suffering from chronic diseases, with diabetes mellitus representing the highest prevalence. Positive D-dimer results occurred in 29% of cases, with abnormal platelet counts in 26%. Conclusion: Our findings confirm that the dysregulation of the coagulation cascade and the subsequent occurrence of coagulation disorders are common in coronavirus infections. The results show absolute values, not increases over normal values; thus, it is hard to justify increased risk and presence based on the presented data.
Collapse
Affiliation(s)
- Heba Bassiony Ghanem
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Abozer Y. Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
- Correspondence:
| | - Hana Nassar Alnassar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Hadeel Ali Aldandan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Wajd Hamed Alkhaldi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Kholod Saad Alfuhygy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Mjd Muharib Alruwyli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Razan Ayed Alayyaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Shoug Khaled Alkhalef
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | | | - Jeremy Mills
- School of Pharmacy and Biomedical Sciences, Portsmouth PO1 2DT, UK
| |
Collapse
|
15
|
Brogna C, Costanzo V, Brogna B, Bisaccia DR, Brogna G, Giuliano M, Montano L, Viduto V, Cristoni S, Fabrowski M, Piscopo M. Analysis of Bacteriophage Behavior of a Human RNA Virus, SARS-CoV-2, through the Integrated Approach of Immunofluorescence Microscopy, Proteomics and D-Amino Acid Quantification. Int J Mol Sci 2023; 24:3929. [PMID: 36835341 PMCID: PMC9965620 DOI: 10.3390/ijms24043929] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
SARS-CoV-2, one of the human RNA viruses, is widely studied around the world. Significant efforts have been made to understand its molecular mechanisms of action and how it interacts with epithelial cells and the human microbiome since it has also been observed in gut microbiome bacteria. Many studies emphasize the importance of surface immunity and also that the mucosal system is critical in the interaction of the pathogen with the cells of the oral, nasal, pharyngeal, and intestinal epithelium. Recent studies have shown how bacteria in the human gut microbiome produce toxins capable of altering the classical mechanisms of interaction of viruses with surface cells. This paper presents a simple approach to highlight the initial behavior of a novel pathogen, SARS-CoV-2, on the human microbiome. The immunofluorescence microscopy technique can be combined with spectral counting performed at mass spectrometry of viral peptides in bacterial cultures, along with identification of the presence of D-amino acids within viral peptides in bacterial cultures and in patients' blood. This approach makes it possible to establish the possible expression or increase of viral RNA viruses in general and SARS-CoV-2, as discussed in this study, and to determine whether or not the microbiome is involved in the pathogenetic mechanisms of the viruses. This novel combined approach can provide information more rapidly, avoiding the biases of virological diagnosis and identifying whether a virus can interact with, bind to, and infect bacteria and epithelial cells. Understanding whether some viruses have bacteriophagic behavior allows vaccine therapies to be focused either toward certain toxins produced by bacteria in the microbiome or toward finding inert or symbiotic viral mutations with the human microbiome. This new knowledge opens a scenario on a possible future vaccine: the probiotics vaccine, engineered with the right resistance to viruses that attach to both the epithelium human surface and gut microbiome bacteria.
Collapse
Affiliation(s)
- Carlo Brogna
- Department of Research, Craniomed Group Facility Srl., 20091 Bresso, Italy
| | - Vincenzo Costanzo
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | - Barbara Brogna
- Department of Radiology, Moscati Hospital, Contrada Amoretta, 83100 Avellino, Italy
| | | | - Giancarlo Brogna
- Department of Research, Craniomed Group Facility Srl., 20091 Bresso, Italy
| | - Marino Giuliano
- Marsanconsulting Srl. Public Health Company, Via dei Fiorentini, 80133 Napoli, Italy
| | - Luigi Montano
- Andrology Unit and Service of LifeStyle Medicine in Uro-Andrology, Local Health Authority (ASL), 84124 Salerno, Italy
| | - Valentina Viduto
- Long COVID-19 Foundation, Brookfield Court, Garforth, Leeds LS25 1NB, UK
| | | | - Mark Fabrowski
- Department of Emergency Medicine, Royal Sussex County Hospital, University Hospitals Sussex, Eastern Road, Brighton BN2 5BE, UK
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| |
Collapse
|
16
|
Ricci A, Roviello GN. Exploring the Protective Effect of Food Drugs against Viral Diseases: Interaction of Functional Food Ingredients and SARS-CoV-2, Influenza Virus, and HSV. Life (Basel) 2023; 13:402. [PMID: 36836758 PMCID: PMC9966545 DOI: 10.3390/life13020402] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
A complex network of processes inside the human immune system provides resistance against a wide range of pathologies. These defenses form an innate and adaptive immunity, in which certain immune components work together to counteract infections. In addition to inherited variables, the susceptibility to diseases may be influenced by factors such as lifestyle choices and aging, as well as environmental determinants. It has been shown that certain dietary chemical components regulate signal transduction and cell morphologies which, in turn, have consequences on pathophysiology. The consumption of some functional foods may increase immune cell activity, defending us against a number of diseases, including those caused by viruses. Here, we investigate a range of functional foods, often marketed as immune system boosters, in an attempt to find indications of their potential protective role against diseases caused by viruses, such as the influenza viruses (A and B), herpes simplex virus (HSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in some cases mediated by gut microbiota. We also discuss the molecular mechanisms that govern the protective effects of some functional foods and their molecular constituents. The main message of this review is that discovering foods that are able to strengthen the immune system can be a winning weapon against viral diseases. In addition, understanding how the dietary components function can aid in the development of novel strategies for maintaining human bodily health and keeping our immune systems strong.
Collapse
Affiliation(s)
- Andrea Ricci
- Studio Nutrizione e Benessere, Via Giuseppe Verdi 1, 84043 Agropoli, Italy
| | - Giovanni N. Roviello
- Italian National Council for Research (IBB-CNR), Area Di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
17
|
Brogna C, Viduto V, Fabrowski M, Cristoni S, Marino G, Montano L, Piscopo M. The importance of the gut microbiome in the pathogenesis and transmission of SARS-CoV-2. Gut Microbes 2023; 15:2244718. [PMID: 37559387 PMCID: PMC10416738 DOI: 10.1080/19490976.2023.2244718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Zhou et al. study nicely traces a significant topic in COVID-19 infection: the persistence of the virus within the intestinal tract. Many pathological mechanisms have been noted in the current literature about the mode of infection and propagation of SARS-CoV-2 in the human body. Nevertheless, there are still many concerns about this: only some things seem well understood. We present a different point of view by illustrating the importance of the gut microbiome in the pathogenesis of COVID-19 disorders.
Collapse
Affiliation(s)
- Carlo Brogna
- Department of Research, Craniomed Group Facility Srl, Bresso, Italy
| | | | - Mark Fabrowski
- Emergency Department, University Hospitals Sussex, Brighton, UK
| | - Simone Cristoni
- Department of Chemistry, ISB – Ion Source & Biotechnologies Srl, Bresso, Italy
| | - Giuliano Marino
- Marsan Consulting Srl., Public Health Company; via Dei Fiorentini, Napoli, Italy
| | - Luigi Montano
- Andrology Unit and Service of LifeStyle Medicine in Uro-Andrology, Local Health Authority (ASL) Salerno, Salerno, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|