1
|
Polati D, Neerati P. Synergistic effects of curcumin and piperine in cocrystal form: a breakthrough in bladder cancer therapy. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-28. [PMID: 40270345 DOI: 10.1080/09205063.2025.2491606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025]
Abstract
Curcumin (CUR) is a promising anticancer agent for urinary bladder cancer (UBC) but is hindered by poor oral bioavailability. This study investigates the role of cocrystal technology in overcoming these limitations through the formation of curcumin-piperine (CUR-PIP) cocrystals (CoCry). The CUR-PIP CoCry was evaluated for its ability to suppress IGF2 over expression in UBC. Molecular interactions were predicted via Auto Dock simulations, and the co crystals were characterized using FTIR, DSC, PXRD, SEM, and ssNMR. Saturation solubility, dissolution, permeability, and in vivo pharmacokinetic studies were conducted. The therapeutic efficacy of CUR-PIP CoCry was tested in a bladder cancer rat model induced by N-Methyl Nitrosourea; with IGF2 expression quantified using qRT-PCR and flow cytometry. The CUR-PIP CoCry demonstrated enhanced drug release and permeability compared to CUR alone. Pharmacokinetic analysis revealed a 5.7-fold increase in Cmax and a 7.9-fold increase in AUC0-12 hr compared to CUR alone. In vivo studies using an MNU-induced bladder cancer rat model demonstrated that CUR-PIP CoCry significantly suppressed IGF2 expression (p < 0.001) and enhanced anticancer efficacy. This study underscores the potential of cocrystallization as a novel approach to enhance bioavailability and therapeutic effectiveness in cancer treatment.
Collapse
Affiliation(s)
- Durga Polati
- DMPK Division, Department of Pharmacology, University College of Pharmaceutical Sciences, Center for Drug Research, Kakatiya University, Warangal, India
| | - Prasad Neerati
- DMPK Division, Department of Pharmacology, University College of Pharmaceutical Sciences, Center for Drug Research, Kakatiya University, Warangal, India
| |
Collapse
|
2
|
Liu M, Hernandez MO, Castven D, Lee HP, Wu W, Wang L, Forgues M, Hernandez JM, Marquardt JU, Ma L. Tumor cell villages define the co-dependency of tumor and microenvironment in liver cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.642107. [PMID: 40161587 PMCID: PMC11952337 DOI: 10.1101/2025.03.07.642107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Spatial cellular context is crucial in shaping intratumor heterogeneity. However, understanding how each tumor establishes its unique spatial landscape and what factors drive the landscape for tumor fitness remains significantly challenging. Here, we analyzed over 2 million cells from 50 tumor biospecimens using spatial single-cell imaging and single-cell RNA sequencing. We developed a deep learning-based strategy to spatially map tumor cell states and the architecture surrounding them, which we referred to as Spatial Dynamics Network (SDN). We found that different tumor cell states may be organized into distinct clusters, or 'villages', each supported by unique SDNs. Notably, tumor cell villages exhibited village-specific molecular co-dependencies between tumor cells and their microenvironment and were associated with patient outcomes. Perturbation of molecular co-dependencies via random spatial shuffling of the microenvironment resulted in destabilization of the corresponding villages. This study provides new insights into understanding tumor spatial landscape and its impact on tumor aggressiveness.
Collapse
Affiliation(s)
- Meng Liu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Maria O. Hernandez
- Spatial Imaging Technology Resource, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Darko Castven
- Department of Medicine I, University Medical Center, Lübeck, Germany
| | - Hsin-Pei Lee
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Wenqi Wu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Limin Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jonathan M. Hernandez
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Jens U. Marquardt
- Department of Medicine I, University Medical Center, Lübeck, Germany
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
3
|
Basu R, Boguszewski CL, Kopchick JJ. Growth Hormone Action as a Target in Cancer: Significance, Mechanisms, and Possible Therapies. Endocr Rev 2025; 46:224-280. [PMID: 39657053 DOI: 10.1210/endrev/bnae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/29/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Growth hormone (GH) is a pituitary-derived endocrine hormone required for normal postnatal growth and development. Hypo- or hypersecretion of endocrine GH results in 2 pathologic conditions, namely GH deficiency (GHD) and acromegaly. Additionally, GH is also produced in nonpituitary and tumoral tissues, where it acts rather as a cellular growth factor with an autocrine/paracrine mode of action. An increasingly persuasive and large body of evidence over the last 70 years concurs that GH action is implicit in escalating several cancer-associated events, locally and systemically. This pleiotropy of GH's effects is puzzling, but the association with cancer risk automatically raises a concern for patients with acromegaly and for individuals treated with GH. By careful assessment of the available knowledge on the fundamental concepts of cancer, suggestions from epidemiological and clinical studies, and the evidence from specific reports, in this review we aimed to help clarify the distinction of endocrine vs autocrine/paracrine GH in promoting cancer and to reconcile the discrepancies between experimental and clinical data. Along this discourse, we critically weigh the targetability of GH action in cancer-first by detailing the molecular mechanisms which posit GH as a critical node in tumor circuitry; and second, by enumerating the currently available therapeutic options targeting GH action. On the basis of our discussion, we infer that a targeted intervention on GH action in the appropriate patient population can benefit a sizable subset of current cancer prognoses.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
| | - Cesar L Boguszewski
- SEMPR, Endocrine Division, Department of Internal Medicine, Federal University of Parana, Curitiba 80060-900, Brazil
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
4
|
Miao J, Zhang Y, Su C, Zheng Q, Guo J. Insulin-Like Growth Factor Signaling in Alzheimer's Disease: Pathophysiology and Therapeutic Strategies. Mol Neurobiol 2025; 62:3195-3225. [PMID: 39240280 PMCID: PMC11790777 DOI: 10.1007/s12035-024-04457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia among the elderly population, posing a significant public health challenge due to limited therapeutic options that merely delay cognitive decline. AD is associated with impaired energy metabolism and reduced neurotrophic signaling. The insulin-like growth factor (IGF) signaling pathway, crucial for central nervous system (CNS) development, metabolism, repair, cognition, and emotion regulation, includes IGF-1, IGF-2, IGF-1R, IGF-2R, insulin receptor (IR), and six insulin-like growth factor binding proteins (IGFBPs). Research has identified abnormalities in IGF signaling in individuals with AD and AD models. Dysregulated expression of IGFs, receptors, IGFBPs, and disruptions in downstream phosphoinositide 3-kinase-protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) pathways collectively increase AD susceptibility. Studies suggest modulating the IGF pathway may ameliorate AD pathology and cognitive decline. This review explores the CNS pathophysiology of IGF signaling in AD progression and assesses the potential of targeting the IGF system as a novel therapeutic strategy. Further research is essential to elucidate how aberrant IGF signaling contributes to AD development, understand underlying molecular mechanisms, and evaluate the safety and efficacy of IGF-based treatments.
Collapse
Affiliation(s)
- Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanli Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Neurology, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, 030001, Shanxi, China
| | - Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qiandan Zheng
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
5
|
Ding C, Hashimoto N, Kano F, Tenshin H, Arai T, Xia L, Xu Y, Lao H, Wang Y, Iwasaki T, Hibi H, Yamamoto A. Factors secreted from the stem cells of human exfoliated deciduous teeth inhibit osteoclastogenesis through the activation of the endogenous antioxidant system. J Oral Biosci 2025; 67:100618. [PMID: 39855425 DOI: 10.1016/j.job.2025.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
OBJECTIVES Systemic administration of conditioned medium (CM) from stem cells derived from human exfoliated deciduous teeth (SHED-CM) in mouse models of rheumatoid arthritis, osteoporosis, and osteoarthritis suppresses excessive osteoclast activity and restores bone integrity. However, the mechanism through which SHED-CM regulates osteoclastogenesis remains largely unknown. In the present study, we examined the anti-osteoclastogenic mechanism of SHED-CM in vitro. METHODS Bone marrow macrophages and RAW264.7 cells were treated with receptor activator of nuclear factor kappa-Β ligand (RANKL) in the presence of SHED-CM or CM from bone marrow mesenchymal stem cells (BMSC-CM). Osteoclast differentiation was assessed using tartrate-resistant acid phosphatase staining, actin ring formation, and expression of osteoclast-specific markers. RANKL-induced reactive oxygen species (ROS) production was analyzed as a critical mediator of osteoclastogenesis. The activation of endogenous antioxidant gene expression was examined using reverse transcription quantitative PCR. Liquid chromatography with tandem mass spectrometry (LC-MS) was used to identify proteins enriched in SHED-CM, and neutralizing antibodies were used to evaluate their functional roles. RESULTS Compared to BMSC-CM, SHED-CM effectively inhibited RANKL-induced early osteoclast differentiation and late maturation. Notably, SHED-CM but not BMSC-CM suppressed RANKL-induced ROS production. SHED-CM increased the expression of genes encoding antioxidant enzymes. The LC-MS analysis identified seven proteins uniquely enriched in SHED-CM that activated the endogenous antioxidant system. Neutralizing antibodies against some of these proteins restore RANKL-induced ROS production and osteoclast differentiation. CONCLUSIONS SHED-CM inhibited osteoclastogenesis, partially through the activation of multiple antioxidant enzymes in osteoclast precursors, highlighting its potential for treating bone-destructive diseases.
Collapse
Affiliation(s)
- Cheng Ding
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Noboru Hashimoto
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Fumiya Kano
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Hirofumi Tenshin
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Takahiro Arai
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Linze Xia
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Yang Xu
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Houjun Lao
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Yifei Wang
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Tomonori Iwasaki
- Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Akihito Yamamoto
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
6
|
Zhu E, Liu Y, Xie S, Hou J, Yang X, Xu M, Yang F, Li Z, Zhu B, Zha H. IGF2-IGF1R signaling inhibition delays the growth of IGF2-high colorectal cancer by modulating MDSCs. Biochem Biophys Res Commun 2025; 746:151230. [PMID: 39756209 DOI: 10.1016/j.bbrc.2024.151230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Approximately 22 % of human colorectal cancers (CRC) are characterized by IGF2 overexpression, and the tumor-promoting role of IGF2 has been widely reported. Despite promising preclinical results, IGF2 signaling inhibition therapy has exhibited limited efficacy in treating unselected patients with CRC. Recent evidence suggests that IGF2-high CRC are more sensitive to IGF2 signaling blockade therapy in immune-deficient mice, suggesting that IGF2-high CRC can benefit from IGF2 signaling blockade therapy. However, T cells are absent in immunodeficient mice, and the effect of blocking IGF2 signaling on T cell-mediated antitumor immunity remains unknown. Herein, using an implanted mouse tumor model in immunocompetent hosts, we report that PQ401, an IGF2-IGF1R inhibitor, significantly inhibited the growth of IGF2-high CRC cells. PQ401 treatment increased the infiltration and function of tumor-infiltrating CD4+ and CD8+ T cells in a T cell-extrinsic manner. Our findings suggest that myeloid-derived suppressor cells (MDSCs) highly express the IGF2 receptor IGF1R. Moreover, PQ401 treatment inhibits the suppressive function and recruitment of MDSCs, thereby promoting the anti-tumor activity of T cells. These results provide a potential therapeutic regimen for patients with IGF2-high CRC.
Collapse
Affiliation(s)
- Enjian Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Ying Liu
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Zun Yi, Gui Zhou, China
| | - Shuanglong Xie
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China; School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Junlei Hou
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xuezhi Yang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China; Department of Radiology, 964th Hospital of Chinese People's Liberation Army, Changchun, 130000, China
| | - Minhao Xu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Fei Yang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Zhaoxia Li
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China.
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China; Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Zun Yi, Gui Zhou, China.
| | - Haoran Zha
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China; Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China.
| |
Collapse
|
7
|
Hong JY, Jeon WJ, Kim H, Yeo C, Kim H, Lee YJ, Ha IH. Differential Gene Expression Analysis in a Lumbar Spinal Stenosis Rat Model via RNA Sequencing: Identification of Key Molecular Pathways and Therapeutic Insights. Biomedicines 2025; 13:192. [PMID: 39857775 PMCID: PMC11762803 DOI: 10.3390/biomedicines13010192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Lumbar spinal stenosis (LSS) is a degenerative condition characterized by the narrowing of the spinal canal, resulting in chronic pain and impaired mobility. However, the molecular mechanisms underlying LSS remain unclear. In this study, we performed RNA sequencing (RNA-seq) to investigate differential gene expression in a rat LSS model and identify the key genes and pathways involved in its pathogenesis. METHODS We used bioinformatics analysis to identify significant alterations in gene expression between the LSS-induced and sham groups. RESULTS Pearson's correlation analysis demonstrated strongly consistent intragroup expression (r > 0.9), with distinct gene expression between the LSS and sham groups. A total of 113 differentially expressed genes (DEGs) were identified, including upregulated genes such as Slc47a1 and Prg4 and downregulated genes such as Higd1c and Mln. Functional enrichment analysis revealed that these DEGs included those involved in key biological processes, including synaptic plasticity, extracellular matrix organization, and hormonal regulation. Gene ontology analysis highlighted critical molecular functions such as mRNA binding and integrin binding, as well as cellular components such as contractile fibers and the extracellular matrix, which were significantly affected by LSS. CONCLUSIONS Our findings provide novel insights into the molecular mechanisms underlying LSS and offer potential avenues for the development of targeted therapies aimed at mitigating disease progression and improving patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea; (J.Y.H.); (W.-J.J.); (H.K.); (C.Y.); (H.K.); (Y.J.L.)
| |
Collapse
|
8
|
Qianqian J, He W, Kaiguang Y, Baofeng Z, Zhen L, Yukui Z, Bo J, Lihua Z. 2D Nano-Photosensitizer Facilitates Proximity Labeling for Living Cells Surfaceome Deciphering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407240. [PMID: 39529546 DOI: 10.1002/smll.202407240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Photocatalytic proximity labeling has shown great promise for mapping the spatiotemporal dynamics of surfaceome. Although cell-surface targeting photosensitizers relying on antibodies, lipid molecules, and metabolic labeling have gained effects, the development of simpler and stable methods that avoid complex chemical synthesis and biosynthesis steps is still a huge challenge. Here, the study has introduced 2D nanomaterials with the ability of cell surface engineering to perform the in situ anchoring of photosensitizer on living cell surface. Photosensitizer can be stabilized on nanomaterials by coordination after one-step mixing, resulting in the nano-photosensitizer combining cell surface targeting ability and photosensitivity that allowing surface-specific proximity labeling. Nano-photosensitizer can be dispersed stably in aqueous solution, avoiding the defects of poor water solubility and aggregation of traditional organic photosensitizers. Singlet oxygen is generated locally under light irradiation, enabling spatiotemporally-resolved activating and labeling of cell surface proteome. Further application in the brain metastatic lung cancer has been found effective with numerous quantified differential cell surfaces proteins highly correlated with cancer metastasis and three potential players have been validated via immunoblotting and immunofluorescence, providing important insights for metastasis supported molecular mechanism.
Collapse
Affiliation(s)
- Jiang Qianqian
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wang He
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Kaiguang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhao Baofeng
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Liang Zhen
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhang Yukui
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiang Bo
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhang Lihua
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
9
|
Cao L, Li B, Zheng S, Zhang Q, Qian Y, Ren Y, Wang H, Wang M, Wu X, Zhang J, Xu K. Reprogramming of fibroblasts into cancer-associated fibroblasts via IGF2-mediated autophagy promotes metastasis of lung cancer cells. iScience 2024; 27:111269. [PMID: 39759028 PMCID: PMC11700637 DOI: 10.1016/j.isci.2024.111269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/29/2024] [Accepted: 10/24/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are major component of stromal cells. Growing evidence suggests that CAFs promote tumor growth and metastasis; however, the reprogramming of normal fibroblasts (NFs) into CAFs by tumor cells still remains largely unknown. In this study, we found that non-small cell lung cancer (NSCLC) cells activated NFs into CAFs via autophagy induction. Insulin-like growth factor 2 (IGF2) secreted by NSCLC cells mediated NSCLC cells' effect on autophagy induction and CAFs activation. Importantly, the activated CAFs promoted NSCLC cells growth, migration, and invasion. Further study showed that the activated CAFs facilitated NSCLC cells invasion via promoting epithelial-mesenchymal transition (EMT) process, upregulating metastasis-related genes, releasing CXCL12, and activating its downstream AKT serine/threonine kinase 1 (AKT)/ nuclear factor κB (NF-κB) signaling pathway. These findings revealed that IGF2-mediated autophagy plays a critical role in CAFs activation and suggested the IGF2-autophagy cascade in fibroblasts could be a potential target for lung cancer therapy.
Collapse
Affiliation(s)
- Limin Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bingbing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Sijia Zheng
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qicheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yongmei Qian
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yinghui Ren
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Huimin Wang
- Department of Clinical Laboratory, Tianjin First Central Hospital, Tianjin 300192, China
| | - Min Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiang Wu
- Core Facility Center, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiayi Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
10
|
Hill CM, Indeglia A, Picone F, Murphy ME, Cipriano C, Maki RG, Gardini A. NAB2-STAT6 drives an EGR1-dependent neuroendocrine program in Solitary Fibrous Tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589533. [PMID: 38659891 PMCID: PMC11042251 DOI: 10.1101/2024.04.15.589533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The pathogenesis of many rare tumor types is poorly understood, preventing the design of effective treatments. Solitary fibrous tumors (SFTs) are neoplasms of mesenchymal origin that affect 1/1,000,000 individuals every year and are clinically assimilated to soft tissue sarcomas. SFTs can arise throughout the body and are usually managed surgically. However, 30-40% of SFTs will relapse local-regionally or metastasize. There are no systemic therapies with durable activity for malignant SFTs to date. The molecular hallmark of SFTs is a gene fusion between the NAB2 and STAT6 loci on chromosome 12, resulting in a chimeric protein of poorly characterized function called NAB2-STAT6. We use primary samples and an inducible cell model to discover that NAB2-STAT6 operates as a transcriptional coactivator for a specific set of enhancers and promoters that are normally targeted by the EGR1 transcription factor. In physiological conditions, NAB2 is primarily localized to the cytoplasm and only a small nuclear fraction is available to operate as a co-activator of EGR1 targets. NAB2-STAT6 redirects NAB1, NAB2, and additional EGR1 to the nucleus and bolster the expression of neuronal EGR1 targets. The STAT6 moiety of the fusion protein is a major driver of its nuclear localization and further contributes to NAB2's co-activating abilities. In primary tumors, NAB2-STAT6 activates a neuroendocrine gene signature that sets it apart from most sarcomas. These discoveries provide new insight into the pathogenesis of SFTs and reveal new targets with therapeutic potential.
Collapse
Affiliation(s)
- Connor M Hill
- The Wistar Institute, Philadelphia, PA, US
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S
| | - Alexandra Indeglia
- The Wistar Institute, Philadelphia, PA, US
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S
| | | | | | - Cara Cipriano
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, U.S
| | - Robert G Maki
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, U.S
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S. Present address: Department of Medicine, Memorial Sloan-Kettering Cancer Center, and Weill Cornell Medical College, Cornell University, New York, NY, U.S
| | | |
Collapse
|
11
|
Shkurnikov M, Averinskaya D, Stekolshchikova E, Serkina A, Razumovskaya A, Silkina M, Antipenko I, Makarova J, Evtushenko E, Nikulin S, Tonevitsky A. IGFBP6 regulates extracellular vesicles formation via cholesterol abundance in MDA-MB-231 cells. Biochimie 2024; 227:77-85. [PMID: 38942135 DOI: 10.1016/j.biochi.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Breast cancer recurrence is associated with the growth of disseminated cancer cells that separate from the primary tumor before surgical treatment and hormonal therapy and form a metastatic niche in distant organs. We previously demonstrated that IGFBP6 expression is associated with the risk of early relapse of luminal breast cancer. Knockdown of IGFBP6 in MDA-MB-231 breast cancer cells increased their invasiveness, proliferation, and metastatic potential. In addition, the knockdown of IGFBP6 leads to impaired lipid metabolism. In this study, we demonstrated that the knockdown of the IGFBP6 gene, a highly selective inhibitor of IGF-II, led to a significant decline in the number of secreted extracellular vesicles (EVs) and altered cholesterol metabolism in MDA-MB-231 cells. Knockdown of IGFBP6 led to a decrease in the essential proteins responsible for the biogenesis of cholesterol LDLR and LSS, which reduced the amount by more than 13 times. In addition, the knockdown of IGFBP6 led to a possible change in the profile of adhesion molecules on the surface of EVs. The expression of L1CAM, IGSF3, EpCAM, CD24, and CD44 decreased, and the expression of EGFR increased. We can conclude that the negative prognostic value of low expression of this gene could be associated with increased activity of IGF2 in tumor-associated fibroblasts due to low secretion of IGFBP6 by tumor cells. In addition, changing the profile of adhesion molecules on the surface of tumor EVs may contribute to the more efficient formation of metastatic niches.
Collapse
Affiliation(s)
- Maxim Shkurnikov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia.
| | - Darya Averinskaya
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Elena Stekolshchikova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Anna Serkina
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alexandra Razumovskaya
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; P. Hertsen Moscow Oncology Research Institute-Branch of the National Medical Research Radiological Centre of the Ministry of Health of Russian Federation, Moscow, Russia
| | - Maria Silkina
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; P. Hertsen Moscow Oncology Research Institute-Branch of the National Medical Research Radiological Centre of the Ministry of Health of Russian Federation, Moscow, Russia
| | - Ivan Antipenko
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Julia Makarova
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | | | - Sergey Nikulin
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; P. Hertsen Moscow Oncology Research Institute-Branch of the National Medical Research Radiological Centre of the Ministry of Health of Russian Federation, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Jo Y, Lim E, Park J, Kang K, Shin MY, Choi JW, Kim S, Lee J. Epigenetic dysregulation of H19/IGF2 in hepatic cells exposed to toxic metal mixtures in vitro. Sci Rep 2024; 14:29413. [PMID: 39592715 PMCID: PMC11599747 DOI: 10.1038/s41598-024-80142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Exposure to mixtures of toxic metals is known to cause adverse health effects through epigenetic alterations. Here we aimed to examine the unexplored area of aberrant DNA methylation in the H19/IGF2 domain following combined toxic metal exposure. An in vitro epigenotoxicity assay using the human normal liver epithelial cell line THLE-3 was conducted. When THLE-3 cells were exposed to specific concentrations of either organic arsenic or MeHgCl, an increase in the H19 lncRNA levels and a marked reduction in the IGF2 mRNA levels were observed. In contrast, combined exposures coupled with CdCl2 resulted in the transcriptional repression of H19 and transcriptional activation of IGF2. It should be noted that the correlation between the dysregulated expression of H19/IGF2 and the hypermethylated CpG sites within the H19 differentially methylated region (DMR) was statistically significant. Furthermore, we performed transcriptomic analysis of the hepatocytes exposed to toxic metal combinations indicating enrichment of pro-inflammatory and anti-proliferative pathways compared to the unexposed cells. Our results suggest that hazardous metal mixtures may trigger epigenetic aberrations at the H19/IGF2 locus. We propose that altered CpG methylation in the H19 DMR could be a candidate biomarker for hepatic epigenotoxicity, in part, due to environmental exposure.
Collapse
Affiliation(s)
- Yehoon Jo
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Eugene Lim
- Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jihye Park
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Republic of Korea
| | - Mi-Yeon Shin
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Office of Dental Education, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jeong Weon Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Sungkyoon Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
- Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
| | - Jaehyouk Lee
- Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Dai X, He Y, Han X, Sun W, Yu J, Lin Y, Wang Y. The Regulatory Effect of Insulin-Like Growth Factor-2 on Hypothalamic Gonadotropin-Releasing Hormone Neurons during the Pubertal Period. J Integr Neurosci 2024; 23:208. [PMID: 39613465 DOI: 10.31083/j.jin2311208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND The insulin-like growth factor (IGF) system plays a vital role in regulating gonadotropin-releasing hormone (GnRH), whether the IGF2 can act on the GnRH neurons during the pubertal period is unclear. METHODS Central precocious puberty (CPP) rats were induced by danazol, and when the rats met the first diestrus, they were euthanized and tissues were collected. GT1-7 cells were cultured and treated with 0, 1, 10 ng/mL IGF2 for 4 hours and the changes in GnRH were measured. Mice were injected intracerebroventricularly with IGF2 (15 ng/g, 5 μL) or with the same dose of phosphate buffered saline (PBS), after eight hours, they were euthanized and tissues collected. RESULTS CPP rats had increased expression of IGF2 and GnRH mRNA and their respective proteins in the preoptic area (POA) of the hypothalamus. Treatment of GT1-7 cells with 10 ng/mL of IGF2 increased GnRH mRNA and protein expression, and GnRH concentration in the culture medium. Injection of IGF2 protein into the lateral ventricle of mice increased the expression of GnRH mRNA and protein in the POA. CONCLUSIONS IGF2 may upregulate the synthesis of GnRH during the pubertal period, and may also take part in the pathology of CPP.
Collapse
Affiliation(s)
- Xiaoli Dai
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Yuanyuan He
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Xinghui Han
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Wen Sun
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Jian Yu
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Yating Lin
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Yonghong Wang
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, 201102 Shanghai, China
| |
Collapse
|
14
|
Song D, Wu Y, Li J, Liu J, Yi Z, Wang X, Sun J, Li L, Wu Q, Chen Y, Fang H, Luan T, Du H, Huang J, Peng W, Wei Y, Li F, Li Q, Zhang L, Zhu Y, Wan J, Ren G, Li H. Insulin-like growth factor 2 drives fibroblast-mediated tumor immunoevasion and confers resistance to immunotherapy. J Clin Invest 2024; 134:e183366. [PMID: 39545420 PMCID: PMC11563680 DOI: 10.1172/jci183366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/20/2024] [Indexed: 11/17/2024] Open
Abstract
T cell exclusion is crucial in enabling tumor immune evasion and immunotherapy resistance. However, the key genes driving this process remain unclear. We uncovered a notable increase of insulin-like growth factor 2 (IGF2) in immune-excluded tumors, predominantly secreted by cancer-associated fibroblasts (CAFs). Using mice with systemic or fibroblast-specific deletion of IGF2, we demonstrated that IGF2 deficiency enhanced the infiltration and cytotoxic activity of CD8+ T cells, leading to a reduction in tumor burden. Integration of spatial and single-cell transcriptomics revealed that IGF2 promoted interaction between CAFs and T cells via CXCL12 and programmed death ligand 1 (PD-L1). Mechanistically, autocrine IGF2 activated PI3K/AKT signaling by binding to the IGF1 receptor (IGF1R) on CAFs, which was required for the immunosuppressive functions of CAFs. Furthermore, genetic ablation of IGF2 or targeted inhibition of the IGF2/IGF1R axis with the inhibitor linsitinib markedly boosted the response to immune checkpoint blockade. Clinically, elevated levels of IGF2 in tumors or plasma correlated with an adverse prognosis and reduced efficacy of anti-programmed death 1 treatment. Together, these results highlight the pivotal role of IGF2 in promoting CAF-mediated immunoevasion, indicating its potential as a biomarker and therapeutic target in immunotherapy.
Collapse
Affiliation(s)
- Daqiang Song
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Yushen Wu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Oncology
| | - Jie Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazhou Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, and
| | - Ziying Yi
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazheng Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liuying Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianxue Wu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuru Chen
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huiying Fang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tiankuo Luan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | - Jing Huang
- Department of Respiratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxian Wei
- Department of Breast and Thyroid Surgery, and
| | - Fan Li
- Department of Breast and Thyroid Surgery, and
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Li Zhang
- Department of Pathophysiology and
| | - Yong Zhu
- Research Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, and
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Kumar S, Chaudhri S. Recent update on IGF-1/IGF-1R signaling axis as a promising therapeutic target for triple-negative breast cancer. Pathol Res Pract 2024; 263:155620. [PMID: 39357179 DOI: 10.1016/j.prp.2024.155620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Insulin-like growth factor 1/Insulin-like growth factor 1-receptor (IGF-1/IGF-1R) pathway is highly breast cancer subtype context-dependent. Triple-negative breast cancer (TNBC) is an aggressive, highly metastatic cancer showing early recurrence and poor prognosis. High expression of IGF-1 and its receptor IGF-1R, their interaction, autophosphorylation, and activation of intracellular signaling cascades have been significantly associated with TNBC pathophysiology. In the last five to seven years, marvelous work has been done to explore the role of IGF-1/IGF-1R axis in TNBC. In the present review, starting from the general introduction to IGF-1/IGF-1R pathway an up-to-date discussion was focused on its role in TNBC pathophysiology. Further we discussed the up/down stream molecular events of IGF-1/IGF-1R axis, clinical relevance of IGF-1 and IGF-1R levels in TNBC patients, anti-TNBC therapy and possible way-out for IGF-1/IGF-1R axis mediate therapy resistance in TNBC. Combination therapy strategy has been researched to overcome direct IGF-1/IGF-1R pathway inhibition mediated therapy resistance and produced promising results in the management of TNBC. The understanding of up/downstream of the IGF-1/IGF-1R axis provide immense focus on the pathway as a therapeutic target. It is expected within the next decade to determine its potentiality, or lack thereof, for TNBC treatment.
Collapse
Affiliation(s)
- Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda, Punjab 151401, India.
| | - Smriti Chaudhri
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda, Punjab 151401, India
| |
Collapse
|
16
|
Chen Q, Shao B, Xu YN, Li X, Ren SH, Wang HD, Zhang JY, Sun CL, Liu T, Xiao YY, Zhao PY, Yang GM, Liu X, Wang H. IGF2 contributes to the immunomodulatory effects of exosomes from endometrial regenerative cells on experimental colitis. Int Immunopharmacol 2024; 140:112825. [PMID: 39079347 DOI: 10.1016/j.intimp.2024.112825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Exosomes derived from endometrial regenerative cells (ERC-Exos) can inherit the immunomodulatory function from ERCs, however, whether ERC-Exos exhibit such effect on inflammatory bowel diseases with mucosal immune dysregulation has not been explored. Insulin-like growth factor-Ⅱ (IGF2) is considered to possess the potential to induce an anti-inflammatory phenotype in immune cells. In this study, the contribution of IGF2 in mediating the protective efficacy of ERC-Exos on colitis was investigated. METHODS Lentiviral transfection was employed to obtain IGF2-specific knockout ERC-Exos (IGF2-/--ERC-Exos). Experimental colitis mice induced by dextran sulfate sodium (DSS) were divided into the phosphate-buffered saline (untreated), ERC-Exos-treated and IGF2-/--ERC-Exos-treated groups. Colonic histopathological analysis and intestinal barrier function were explored. The infiltration of CD4+ T cells and dendritic cells (DCs) were analyzed by immunofluorescence staining and flow cytometry. The maturation and function of bone marrow-derived dendritic cells (BMDCs) in different exosome administrations were evaluated by flow cytometry, ELISA and the coculture system, respectively. RESULTS Compared with the untreated group, ERC-Exos treatment significantly attenuated DSS-induced weight loss, bloody stools, shortened colon length, pathological damage, as well as repaired the weakened intestinal mucosal barrier, including promoting the goblet cells retention, restoring the intestinal barrier integrity and enhancing the expression of tight junction proteins, while the protective effect of exosomes was impaired with the knockout of IGF2 in ERC-Exos. Additionally, IGF2-expressing ERC-Exos decreased the proportions of Th1 and Th17, increased the proportions of Treg, as well as attenuated DC infiltration and maturation in mesenteric lymph nodes and lamina propria of the colitis mice. ERC-Exos were also observed to be phagocytosed by BMDCs and IGF2 is responsible for the modulating effect of ERC-Exos on BMDCs in vitro. CONCLUSIONS Exosomes derived from ERCs can exert a therapeutic effect on experimental colitis with remarkable alleviation of the intestinal barrier damage and the abnormal mucosal immune responses. We emphasized that IGF2 plays a critical role for ERC-Exos mediated immunomodulatory function and protection against colitis.
Collapse
Affiliation(s)
- Qiang Chen
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Yi-Ni Xu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Shao-Hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China; Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Jing-Yi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Cheng-Lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Yi-Yi Xiao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Peng-Yu Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Guang-Mei Yang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Xu Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China.
| |
Collapse
|
17
|
CHEN X, CHEN P. [Progress in the Study of Mechanisms Clinically Relevant to Insulin Resistance
and Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:755-762. [PMID: 39631832 PMCID: PMC11629090 DOI: 10.3779/j.issn.1009-3419.2024.106.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Indexed: 12/07/2024]
Abstract
At present, the incidence and mortality rates of lung cancer rank top among malignant tumors. The early diagnosis, treatment and drug resistance of lung cancer still remain as problems in the management of lung cancer. Researchers are dedicated to identifying reliable biomarkers as predictive indicators or effective therapeutic targets for lung cancer. Insulin resistance (IR), a disorder characterized by reduced biological activity of insulin, leads to increased insulin secretion. In recent years, more and more studies have revealed the association between IR and the occurrence and development of cancer, with the insulin/insulin-like growth factor signaling pathway possibly playing a crucial role. In this article, we will focus on the relationship between IR and lung cancer, explore the impact and mechanism of IR on the development, progression and drug resistance of lung cancer. It may guide the development of new predictive tools and therapeutic strategies, and provide new ideas for research dedicated to reducing the incidence and mortality of lung cancer.
.
Collapse
|
18
|
Maqbool M, Hussain MS, Bisht AS, Kumari A, Kamran A, Sultana A, Kumar R, Khan Y, Gupta G. Connecting the dots: LncRNAs in the KRAS pathway and cancer. Pathol Res Pract 2024; 262:155570. [PMID: 39226802 DOI: 10.1016/j.prp.2024.155570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as important participants in several biological functions, particularly their complex interactions with the KRAS pathway, which provide insights into the significant roles lncRNAs play in cancer development. The KRAS pathway, a central signaling cascade crucial for cell proliferation, survival, and differentiation, stands out as a key therapeutic target due to its aberrant activation in many human cancers. Recent investigations have unveiled a myriad of lncRNAs, such as H19, ANRIL, and MEG3, intricately modulating the KRAS pathway, influencing both its activation and repression through various mechanisms, including epigenetic modifications, transcriptional regulation, and post-transcriptional control. These lncRNAs function as fine-tuners, delicately orchestrating the balance required for normal cellular function. Their dysregulation has been linked to the development and progression of multiple malignancies, including lung, pancreatic, and colorectal carcinomas, which frequently harbor KRAS mutations. This scrutiny delves into the functional diversity of specific lncRNAs within the KRAS pathway, elucidating their molecular mechanisms and downstream effects on cancer phenotypes. Additionally, it underscores the diagnostic and prognostic potential of these lncRNAs as indicators for cancer detection and assessment. The complex regulatory network that lncRNAs construct within the context of the KRAS pathway offers important insights for the creation of focused therapeutic approaches, opening new possibilities for precision medicine in oncology. However, challenges such as the dual roles of lncRNAs in different cancer types and the difficulty in therapeutically targeting these molecules highlight the ongoing debates and need for further research. As ongoing studies unveil the complexities of lncRNA-mediated KRAS pathway modulation, the potential for innovative cancer interventions becomes increasingly promising.
Collapse
Affiliation(s)
- Mudasir Maqbool
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand 248007, India.
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001, India
| | - Alka Kumari
- University institute of pharmacy, Chandigarh University, Gharaun, Punjab 140413, India
| | - Almaz Kamran
- HIMT College of Pharmacy, Plot No. 08, Knowledge Park - 1, Greater Noida, Uttar Pradesh 201310, India
| | - Ayesha Sultana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya University, Deralakatte, Mangalore, Karnataka, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Yumna Khan
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
19
|
Noh MH, Kang JM, Miller AA, Nguyen G, Huang M, Shim JS, Bueso-Perez AJ, Murphy SA, Rivera-Caraballo KA, Otani Y, Kim E, Yoo SH, Yan Y, Banasavadi-Siddegowda Y, Nakashima H, Chiocca EA, Kaur B, Zhao Z, Lee TJ, Yoo JY. Targeting IGF2 to reprogram the tumor microenvironment for enhanced viro-immunotherapy. Neuro Oncol 2024; 26:1602-1616. [PMID: 38853689 PMCID: PMC11376453 DOI: 10.1093/neuonc/noae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND The FDA approval of oncolytic herpes simplex-1 virus (oHSV) therapy underscores its therapeutic promise and safety as a cancer immunotherapy. Despite this promise, the current efficacy of oHSV is significantly limited to a small subset of patients largely due to the resistance in tumor and tumor microenvironment (TME). METHODS RNA sequencing (RNA-Seq) was used to identify molecular targets of oHSV resistance. Intracranial human and murine glioma or breast cancer brain metastasis (BCBM) tumor-bearing mouse models were employed to elucidate the mechanism underlying oHSV therapy-induced resistance. RESULTS Transcriptome analysis identified IGF2 as one of the top-secreted proteins following oHSV treatment. Moreover, IGF2 expression was significantly upregulated in 10 out of 14 recurrent GBM patients after treatment with oHSV, rQNestin34.5v.2 (71.4%; P = .0020) (ClinicalTrials.gov, NCT03152318). Depletion of IGF2 substantially enhanced oHSV-mediated tumor cell killing in vitro and improved survival of mice bearing BCBM tumors in vivo. To mitigate the oHSV-induced IGF2 in the TME, we constructed a novel oHSV, oHSV-D11mt, secreting a modified IGF2R domain 11 (IGF2RD11mt) that acts as IGF2 decoy receptor. Selective blocking of IGF2 by IGF2RD11mt significantly increased cytotoxicity, reduced oHSV-induced neutrophils/PMN-MDSCs infiltration, and reduced secretion of immune suppressive/proangiogenic cytokines, while increased CD8 + cytotoxic T lymphocytes (CTLs) infiltration, leading to enhanced survival in GBM or BCBM tumor-bearing mice. CONCLUSIONS This is the first study reporting that oHSV-induced secreted IGF2 exerts a critical role in resistance to oHSV therapy, which can be overcome by oHSV-D11mt as a promising therapeutic advance for enhanced viro-immunotherapy.
Collapse
Affiliation(s)
- Min Hye Noh
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jin Muk Kang
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Pediatric Hematology & Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Alexandra A Miller
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Science, Houston, Texas, USA
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Grace Nguyen
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Minxin Huang
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ji Seon Shim
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Alberto J Bueso-Perez
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sara A Murphy
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Science, Houston, Texas, USA
- Georgia Cancer Center and Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Kimberly A Rivera-Caraballo
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Science, Houston, Texas, USA
- Georgia Cancer Center and Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Eunju Kim
- Department of Food and Nutriton, Kongju National University, Yesan, Chungnam, South Korea
- Department of Biochemistry, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Seung-Hee Yoo
- Department of Biochemistry, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yuanqing Yan
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yeshavanth Banasavadi-Siddegowda
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Hiroshi Nakashima
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Maryland, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Maryland, USA
| | - Balveen Kaur
- Georgia Cancer Center and Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Tae Jin Lee
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Science, Houston, Texas, USA
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ji Young Yoo
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Science, Houston, Texas, USA
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
20
|
Khan I, Kamal A, Akhtar S. Diabetes Driven Oncogenesis and Anticancer Potential of Repurposed Antidiabetic Drug: A Systemic Review. Cell Biochem Biophys 2024; 82:1907-1929. [PMID: 38954353 DOI: 10.1007/s12013-024-01387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Diabetes and cancer are two prevalent disorders, pose significant public health challenges and contribute substantially to global mortality rates, with solely 10 million reported cancer-related deaths in 2020. This review explores the pathological association between diabetes and diverse cancer progressions, examining molecular mechanisms and potential therapeutic intersections. From altered metabolic landscapes to dysregulated signaling pathways, the intricate links are delineated, offering a comprehensive understanding of diabetes as a modulator of tumorigenesis. Cancer cells develop drug resistance through mechanisms like enhanced drug efflux, genetic mutations, and altered drug metabolism, allowing them to survive despite chemotherapeutic agent. Glucose emerges as a pivotal player in diabetes progression, and serving as a crucial energy source for cancer cells, supporting their biosynthetic needs and adaptation to diverse microenvironments. Glycation, a non-enzymatic process that produces advanced glycation end products (AGEs), has been linked to the etiology of cancer and has been shown in a number of tumor forms, such as leiomyosarcomas, adenocarcinomas, and squamous cell carcinomas. Furthermore, in aggressive and metastatic breast cancer, the receptor for AGEs (RAGE) is increased, which may increase the malignancy of the tumor. Reprogramming glucose metabolism manifests as hallmark cancer features, including accelerated cell proliferation, angiogenesis, metastasis, and evasion of apoptosis. This manuscript encapsulates the dual narrative of diabetes as a driver of cancer progression and the potential of repurposed antidiabetic drugs as formidable countermeasures. The amalgamation of mechanistic understanding and clinical trial outcomes establishes a robust foundation for further translational research and therapeutic advancements in the dynamic intersection of diabetes and cancer.
Collapse
Affiliation(s)
- Iqra Khan
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Aisha Kamal
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India.
| | - Salman Akhtar
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| |
Collapse
|
21
|
Ji J, Bi F, Zhang X, Zhang Z, Xie Y, Yang Q. Single-cell transcriptome analysis revealed heterogeneity in glycolysis and identified IGF2 as a therapeutic target for ovarian cancer subtypes. BMC Cancer 2024; 24:926. [PMID: 39085784 PMCID: PMC11292870 DOI: 10.1186/s12885-024-12688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND As the most malignant tumor of the female reproductive system, ovarian cancer (OC) has garnered increasing attention. The Warburg effect, driven by glycolysis, accounts for tumor cell proliferation under aerobic conditions. However, the metabolic heterogeneity linked to glycolysis in OC remains elusive. METHODS We integrated single-cell data with OC to score glycolysis level in tumor cell subclusters. This led to the identification of a subcluster predominantly characterized by glycolysis, with a strong correlation to patient prognosis. Core transcription factors were pinpointed using hdWGCNA and metaVIPER. A specific transcription factor regulatory network was then constructed. A glycolysis-related prognostic model was developed and tested for estimating OC prognosis with a total of 85 machine-learning combinations, focusing on specific upregulated genes of two subtypes. We identified IGF2 as a key within the prognostic model and investigated its impact on OC progression and drug resistance through in vitro experiments, including the transwell assay, lactate production detection, and the CCK-8 assay. RESULTS Analysis showed that the Malignant 7 subcluster was primarily related to glycolysis. Two OC molecular subtypes, CS1 and CS2, were identified with distinct clinical, biological, and microenvironmental traits. A prognostic model was built, and IGF2 emerged as a key gene linked to prognosis. Experiments have proven that IGF2 can promote the glycolysis pathway and the malignant biological progression of OC cells. CONCLUSIONS We developed two novel OC subtypes based on glycolysis score, established a stable prognostic model, and identified IGF2 as the marker gene. These insights provided a new avenue for exploring OC's molecular mechanisms and personalized treatment approaches.
Collapse
Affiliation(s)
- Jinting Ji
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Fangfang Bi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Xiaocui Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Zhiming Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Yichi Xie
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
22
|
Zhao Y, Yu J, Zheng C, Zhou B. Establishment of a prognostic model for hypoxia-associated genes in OPSCC and revelation of intercellular crosstalk. Front Immunol 2024; 15:1371365. [PMID: 38887298 PMCID: PMC11181350 DOI: 10.3389/fimmu.2024.1371365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
Hypoxia exerts a profound influence on the tumor microenvironment and immune response, shaping treatment outcomes and prognosis. Utilizing consistency clustering, we discerned two hypoxia subtypes in OPSCC bulk sequencing data from GEO. Key modules within OPSCC were identified through weighted gene correlation network analysis (WGCNA). Core modules underwent CIBERSORT immune infiltration analysis and GSEA functional enrichment. Univariate Cox and LASSO analyses were employed to construct prognostic models for seven hypoxia-related genes. Further investigation into clinical characteristics, the immune microenvironment, and TIDE algorithm prediction for immunotherapy response was conducted in high- and low-risk groups. scRNA-seq data were visually represented through TSNE clustering, employing the scissors algorithm to map hypoxia phenotypes. Interactions among cellular subpopulations were explored using the Cellchat package, with additional assessments of metabolic and transcriptional activities. Integration with clinical data unveiled a prevalence of HPV-positive patients in the low hypoxia and low-risk groups. Immunohistochemical validation demonstrated low TDO2 expression in HPV-positive (P16-positive) patients. Our prediction suggested that HPV16 E7 promotes HIF-1α inhibition, leading to reduced glycolytic activity, ultimately contributing to better prognosis and treatment sensitivity. The scissors algorithm effectively segregated epithelial cells and fibroblasts into distinct clusters based on hypoxia characteristics. Cellular communication analysis illuminated significant crosstalk among hypoxia-associated epithelial, fibroblast, and endothelial cells, potentially fostering tumor proliferation and metastasis.
Collapse
Affiliation(s)
| | | | | | - Baosen Zhou
- Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Kou Z, Liu C, Zhang W, Sun C, Liu L, Zhang Q. Heterogeneity of primary and metastatic CAFs: From differential treatment outcomes to treatment opportunities (Review). Int J Oncol 2024; 64:54. [PMID: 38577950 PMCID: PMC11015919 DOI: 10.3892/ijo.2024.5642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Compared with primary tumor sites, metastatic sites appear more resistant to treatments and respond differently to the treatment regimen. It may be due to the heterogeneity in the microenvironment between metastatic sites and primary tumors. Cancer‑associated fibroblasts (CAFs) are widely present in the tumor stroma as key components of the tumor microenvironment. Primary tumor CAFs (pCAFs) and metastatic CAFs (mCAFs) are heterogeneous in terms of source, activation mode, markers and functional phenotypes. They can shape the tumor microenvironment according to organ, showing heterogeneity between primary tumors and metastases, which may affect the sensitivity of these sites to treatment. It was hypothesized that understanding the heterogeneity between pCAFs and mCAFs can provide a glimpse into the difference in treatment outcomes, providing new ideas for improving the rate of metastasis control in various cancers.
Collapse
Affiliation(s)
- Zixing Kou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Wenfeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa Island 999078, Macau SAR, P.R. China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 621000, P.R. China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 621000, P.R. China
| | - Qiming Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Department of Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100007, P.R. China
| |
Collapse
|
24
|
Abstract
Thyroid cancer has shown a parallel increase with diabetes in the last few years. This narrative review aims to explain the association between these two entities, focusing on insulin resistance as the mediator and exploring the effects of antidiabetic agents on thyroid cancer incidence and progression.We searched Pubmed for English-written articles on insulin resistance, diabetes, antidiabetic treatments, and thyroid cancer reported from January 2019 to April 2023. Exclusion criteria were preclinical and clinical studies involving a population with thyroid dysfunction, benign nodular goiter, or those that only analyzed thyroid cancer's association with obesity.The results of the narrative literature review revealed 96 articles. Additionally, four studies from a manual search were retrieved. After the exclusion criteria were applied, we included 20 studies. Out of 8 studies on insulin-resistant or Metabolic Syndrome patients, all suggest a positive association with thyroid cancer. At the same time, for diabetes, four out of five publications support a link with thyroid cancer. The seven remaining studies on antidiabetics suggest that metformin might benefit thyroid cancer. In contrast, the evidence for an association between Glucagon-like peptide-1 receptor agonists (GLP-1 RA) and increased thyroid cancer findings is limited.In conclusion, the association between thyroid cancer and diabetes may be explained by insulin resistance, as shown in observational studies. However, the causal role is yet to be defined. Although the wide use of different antidiabetic agents has been related to thyroid cancer prevalence and progression, future research with drugs such as metformin or GLP-1 RA is still needed.
Collapse
Affiliation(s)
- Gabriela Brenta
- Department of Endocrinology and Metabolism, Unidad Asistencial Dr. César Milstein, Buenos Aires, Argentina.
| | - Fernando Di Fermo
- Endocrinology Department, Hospital Virgen del Carmen, Zárate, Buenos Aires, Argentina
| |
Collapse
|
25
|
Scalia P, Marino IR, Asero S, Pandini G, Grimberg A, El-Deiry WS, Williams SJ. Autocrine IGF-II-Associated Cancers: From a Rare Paraneoplastic Event to a Hallmark in Malignancy. Biomedicines 2023; 12:40. [PMID: 38255147 PMCID: PMC10813354 DOI: 10.3390/biomedicines12010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The paraneoplastic syndrome referred in the literature as non-islet-cell tumor hypoglycemia (NICTH) and extra-pancreatic tumor hypoglycemia (EPTH) was first reported almost a century ago, and the role of cancer-secreted IGF-II in causing this blood glucose-lowering condition has been widely established. The landscape emerging in the last few decades, based on molecular and cellular findings, supports a broader role for IGF-II in cancer biology beyond its involvement in the paraneoplastic syndrome. In particular, a few key findings are constantly observed during tumorigenesis, (a) a relative and absolute increase in fetal insulin receptor isoform (IRA) content, with (b) an increase in IGF-II high-molecular weight cancer-variants (big-IGF-II), and (c) a stage-progressive increase in the IGF-II autocrine signal in the cancer cell, mostly during the transition from benign to malignant growth. An increasing and still under-exploited combinatorial pattern of the IGF-II signal in cancer is shaping up in the literature with respect to its transducing receptorial system and effector intracellular network. Interestingly, while surgical and clinical reports have traditionally restricted IGF-II secretion to a small number of solid malignancies displaying paraneoplastic hypoglycemia, a retrospective literature analysis, along with publicly available expression data from patient-derived cancer cell lines conveyed in the present perspective, clearly suggests that IGF-II expression in cancer is a much more common event, especially in overt malignancy. These findings strengthen the view that (1) IGF-II expression/secretion in solid tumor-derived cancer cell lines and tissues is a broader and more common event compared to the reported IGF-II association to paraneoplastic hypoglycemia, and (2) IGF-II associates to the commonly observed autocrine loops in cancer cells while IGF-I cancer-promoting effects may be linked to its paracrine effects in the tumor microenvironment. Based on these evidence-centered considerations, making the autocrine IGF-II loop a hallmark for malignant cancer growth, we here propose the functional name of IGF-II secreting tumors (IGF-IIsT) to overcome the view that IGF-II secretion and pro-tumorigenic actions affect only a clinical sub-group of rare tumors with associated hypoglycemic symptoms. The proposed scenario provides an updated logical frame towards biologically sound therapeutic strategies and personalized therapeutic interventions for currently unaccounted IGF-II-producing cancers.
Collapse
Affiliation(s)
- Pierluigi Scalia
- The ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA; 93100 Caltanissetta, Italy
| | - Ignazio R. Marino
- Department of Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Salvatore Asero
- The ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA; 93100 Caltanissetta, Italy
- ARNAS Garibaldi, UOC Chirurgia Oncologica, Nesima, 95122 Catania, Italy
| | - Giuseppe Pandini
- The ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA; 93100 Caltanissetta, Italy
| | - Adda Grimberg
- Perelman School of Medicine, University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Wafik S. El-Deiry
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
| | - Stephen J. Williams
- The ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA; 93100 Caltanissetta, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
26
|
Chen L, Zhong XL, Cao WY, Mao ML, Liu DD, Liu WJ, Zu XY, Liu JH. IGF2/IGF2R/Sting signaling as a therapeutic target in DSS-induced ulcerative colitis. Eur J Pharmacol 2023; 960:176122. [PMID: 37863414 DOI: 10.1016/j.ejphar.2023.176122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Ulcerative colitis is an inflammatory bowel disease with increasing prevalence and incidence. Current treatments for ulcerative colitis are not generally applicative and are often accompanied by side effects. IGF2 is an endogenous protein that plays roles in anti-inflammation and stemness maintenance, but little is known about its mechanism and function in the progression of ulcerative colitis. In this study, mouse recombinant IGF2 was used in a mouse model of ulcerative colitis established by DSS. IGF2 expression was reduced in colon tissues but not plasma of DSS-induced colitis mice. IGF2R expression was also decreased in colitis colons, which was then elevated by recombinant IGF2. Recombinant IGF2 alleviated colon injury in colitis, which was evaluated by colon shortening, body weight loss and DAI score. IGF2 treatment also relieved the inflammatory response in colitis, which was assessed by the spleen weight index, MPO activity and proinflammatory cytokine expression and was also detected in LPS-stimulated RAW264.7 cells in vitro. Moreover, IGF2R was predicted and further verified to interact with the Sting protein, and the cGAS-Sting pathway as a key pathway for stemness regulation, was upregulated in colonic colons, which was blocked by IGF2 treatment. Additionally, IGF2 treatment can maintain colonic stemness and further repair colonic tight junction function in DSS-induced colitis. In conclusion, IGF2/IGF2R downregulated the cGAS-Sting pathway to sustain colonic stemness and barrier integrity to protect against ulcerative colitis induced by DSS.
Collapse
Affiliation(s)
- Ling Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xiao-Lin Zhong
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wen-Yu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ming-Li Mao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Dan-Dan Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wen-Jia Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xu-Yu Zu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China; Department of Tumor Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
27
|
Soni UK, Jenny L, Hegde RS. IGF-1R targeting in cancer - does sub-cellular localization matter? J Exp Clin Cancer Res 2023; 42:273. [PMID: 37858153 PMCID: PMC10588251 DOI: 10.1186/s13046-023-02850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
The insulin-like growth factor receptor (IGF-1R) was among the most intensively pursued kinase targets in oncology. However, even after a slew of small-molecule and antibody therapeutics reached clinical trials for a range of solid tumors, the initial promise remains unfulfilled. Mechanisms of resistance to, and toxicities resulting from, IGF-1R-targeted drugs are well-catalogued, and there is general appreciation of the fact that a lack of biomarker-based patient stratification was a limitation of previous clinical trials. But no next-generation therapeutic strategies have yet successfully exploited this understanding in the clinic.Currently there is emerging interest in re-visiting IGF-1R targeted therapeutics in combination-treatment protocols with predictive biomarker-driven patient-stratification. One such biomarker that emerged from early clinical trials is the sub-cellular localization of IGF-1R. After providing some background on IGF-1R, its drugging history, and the trials that led to the termination of drug development for this target, we look more deeply into the correlation between sub-cellular localization of IGF-1R and susceptibility to various classes of IGF-1R - targeted agents.
Collapse
Affiliation(s)
- Upendra K Soni
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Liam Jenny
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rashmi S Hegde
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
28
|
Ju Y, Jin C, Chen S, Wang J, Li C, Wang X, Wang P, Yue L, Jiang X, Tuohetaerbaike B, Li Y, Sheng Y, Qimanguli W, Wang J, Chen F. Proteomic analyses of smear-positive/negative tuberculosis patients uncover differential antigen-presenting cell activation and lipid metabolism. Front Cell Infect Microbiol 2023; 13:1240516. [PMID: 37908762 PMCID: PMC10613889 DOI: 10.3389/fcimb.2023.1240516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
Background Tuberculosis (TB) remains a major global health concern, ranking as the second most lethal infectious disease following COVID-19. Smear-Negative Pulmonary Tuberculosis (SNPT) and Smear-Positive Pulmonary Tuberculosis (SPPT) are two common types of pulmonary tuberculosis characterized by distinct bacterial loads. To date, the precise molecular mechanisms underlying the differences between SNPT and SPPT patients remain unclear. In this study, we aimed to utilize proteomics analysis for identifying specific protein signatures in the plasma of SPPT and SNPT patients and further elucidate the molecular mechanisms contributing to different disease pathogenesis. Methods Plasma samples from 27 SPPT, 37 SNPT patients and 36 controls were collected and subjected to TMT-labeled quantitative proteomic analyses and targeted GC-MS-based lipidomic analysis. Ingenuity Pathway Analysis (IPA) was then performed to uncover enriched pathways and functionals of differentially expressed proteins. Results Proteomic analysis uncovered differential protein expression profiles among the SPPT, SNPT, and Ctrl groups, demonstrating dysfunctional immune response and metabolism in both SPPT and SNPT patients. Both groups exhibited activated innate immune responses and inhibited fatty acid metabolism, but SPPT patients displayed stronger innate immune activation and lipid metabolic inhibition compared to SNPT patients. Notably, our analysis uncovered activated antigen-presenting cells (APCs) in SNPT patients but inhibited APCs in SPPT patients, suggesting their critical role in determining different bacterial loads/phenotypes in SNPT and SPPT. Furthermore, some specific proteins were detected to be involved in the APC activation/acquired immune response, providing some promising therapeutic targets for TB. Conclusion Our study provides valuable insights into the differential molecular mechanisms underlying SNPT and SPPT, reveals the critical role of antigen-presenting cell activation in SNPT for effectively clearing the majority of Mtb in bodies, and shows the possibility of APC activation as a novel TB treatment strategy.
Collapse
Affiliation(s)
- Yingjiao Ju
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengji Jin
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Shan Chen
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jie Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cuidan Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Xiaotong Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Peihan Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liya Yue
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Xiaoyuan Jiang
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Bahetibieke Tuohetaerbaike
- Respiratory Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Ying Li
- Respiratory Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Yongjie Sheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Wushou’er Qimanguli
- Department of Respiratory Medicine, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jing Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Respiratory Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Fei Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Respiratory Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| |
Collapse
|
29
|
Henikoff S, Henikoff JG, Ahmad K, Paranal RM, Janssens DH, Russell ZR, Szulzewsky F, Kugel S, Holland EC. Epigenomic analysis of formalin-fixed paraffin-embedded samples by CUT&Tag. Nat Commun 2023; 14:5930. [PMID: 37739938 PMCID: PMC10516967 DOI: 10.1038/s41467-023-41666-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023] Open
Abstract
For more than a century, formalin-fixed paraffin-embedded (FFPE) sample preparation has been the preferred method for long-term preservation of biological material. However, the use of FFPE samples for epigenomic studies has been difficult because of chromatin damage from long exposure to high concentrations of formaldehyde. Previously, we introduced Cleavage Under Targeted Accessible Chromatin (CUTAC), an antibody-targeted chromatin accessibility mapping protocol based on CUT&Tag. Here we show that simple modifications of our CUTAC protocol either in single tubes or directly on slides produce high-resolution maps of paused RNA Polymerase II at enhancers and promoters using FFPE samples. We find that transcriptional regulatory element differences produced by FFPE-CUTAC distinguish between mouse brain tumors and identify and map regulatory element markers with high confidence and precision, including microRNAs not detectable by RNA-seq. Our simple workflows make possible affordable epigenomic profiling of archived biological samples for biomarker identification, clinical applications and retrospective studies.
Collapse
Affiliation(s)
- Steven Henikoff
- Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Jorja G Henikoff
- Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kami Ahmad
- Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ronald M Paranal
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Derek H Janssens
- Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Zachary R Russell
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sita Kugel
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
30
|
Ries A, Slany A, Pirker C, Mader JC, Mejri D, Mohr T, Schelch K, Flehberger D, Maach N, Hashim M, Hoda MA, Dome B, Krupitza G, Berger W, Gerner C, Holzmann K, Grusch M. Primary and hTERT-Transduced Mesothelioma-Associated Fibroblasts but Not Primary or hTERT-Transduced Mesothelial Cells Stimulate Growth of Human Mesothelioma Cells. Cells 2023; 12:2006. [PMID: 37566084 PMCID: PMC10417280 DOI: 10.3390/cells12152006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
Pleural mesothelioma (PM) is an aggressive malignancy that develops in a unique tumor microenvironment (TME). However, cell models for studying the TME in PM are still limited. Here, we have generated and characterized novel human telomerase reverse transcriptase (hTERT)-transduced mesothelial cell and mesothelioma-associated fibroblast (Meso-CAF) models and investigated their impact on PM cell growth. Pleural mesothelial cells and Meso-CAFs were isolated from tissue of pneumothorax and PM patients, respectively. Stable expression of hTERT was induced by retroviral transduction. Primary and hTERT-transduced cells were compared with respect to doubling times, hTERT expression and activity levels, telomere lengths, proteomes, and the impact of conditioned media (CM) on PM cell growth. All transduced derivatives exhibited elevated hTERT expression and activity, and increased mean telomere lengths. Cell morphology remained unchanged, and the proteomes were similar to the corresponding primary cells. Of note, the CM of primary and hTERT-transduced Meso-CAFs stimulated PM cell growth to the same extent, while CM derived from mesothelial cells had no stimulating effect, irrespective of hTERT expression. In conclusion, all new hTERT-transduced cell models closely resemble their primary counterparts and, hence, represent valuable tools to investigate cellular interactions within the TME of PM.
Collapse
Affiliation(s)
- Alexander Ries
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Astrid Slany
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (A.S.); (J.C.M.); (C.G.)
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Johanna C. Mader
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (A.S.); (J.C.M.); (C.G.)
| | - Doris Mejri
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Thomas Mohr
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (A.S.); (J.C.M.); (C.G.)
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Waehringer Guertel 38, 1090 Vienna, Austria
- ScienceConsult—DI Thomas Mohr KG, Enzianweg 10a, 2353 Guntramsdorf, Austria
| | - Karin Schelch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.A.H.); (B.D.)
| | - Daniela Flehberger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Nadine Maach
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Muhammad Hashim
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.A.H.); (B.D.)
| | - Balazs Dome
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.A.H.); (B.D.)
- National Korányi Institute of Pulmonology, Korányi Frigyes u. 1, 1122 Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Rath Gyorgy u. 7-9, 1122 Budapest, Hungary
- Department of Translational Medicine, Lund University, Sölvegatan 19, 22184 Lund, Sweden
| | - Georg Krupitza
- Department of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Christopher Gerner
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (A.S.); (J.C.M.); (C.G.)
| | - Klaus Holzmann
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Michael Grusch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| |
Collapse
|
31
|
García-Moreno JF, Lacerda R, da Costa PJ, Pereira M, Gama-Carvalho M, Matos P, Romão L. DIS3L2 knockdown impairs key oncogenic properties of colorectal cancer cells via the mTOR signaling pathway. Cell Mol Life Sci 2023; 80:185. [PMID: 37340282 DOI: 10.1007/s00018-023-04833-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/12/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
DIS3L2 degrades different types of RNAs in an exosome-independent manner including mRNAs and several types of non-coding RNAs. DIS3L2-mediated degradation is preceded by the addition of nontemplated uridines at the 3'end of its targets by the terminal uridylyl transferases 4 and 7. Most of the literature that concerns DIS3L2 characterizes its involvement in several RNA degradation pathways, however, there is some evidence that its dysregulated activity may contribute to cancer development. In the present study, we characterize the role of DIS3L2 in human colorectal cancer (CRC). Using the public RNA datasets from The Cancer Genome Atlas (TCGA), we found higher DIS3L2 mRNA levels in CRC tissues versus normal colonic samples as well as worse prognosis in patients with high DIS3L2 expression. In addition, our RNA deep-sequencing data revealed that knockdown (KD) of DIS3L2 induces a strong transcriptomic disturbance in SW480 CRC cells. Moreover, gene ontology (GO) analysis of significant upregulated transcripts displays enrichment in mRNAs encoding proteins involved in cell cycle regulation and cancer-related pathways, which guided us to evaluate which specific hallmarks of cancer are differentially regulated by DIS3L2. To do so, we employed four CRC cell lines (HCT116, SW480, Caco-2 and HT-29) differing in their mutational background and oncogenicity. We demonstrate that depletion of DIS3L2 results in reduced cell viability of highly oncogenic SW480 and HCT116 CRC cells, but had little or no impact in the more differentiated Caco-2 and HT-29 cells. Remarkably, the mTOR signaling pathway, crucial for cell survival and growth, is downregulated after DIS3L2 KD, whereas AZGP1, an mTOR pathway inhibitor, is upregulated. Furthermore, our results indicate that depletion of DIS3L2 disturbs metastasis-associated properties, such as cell migration and invasion, only in highly oncogenic CRC cells. Our work reveals for the first time a role for DIS3L2 in sustaining CRC cell proliferation and provides evidence that this ribonuclease is required to support the viability and invasive behavior of dedifferentiated CRC cells.
Collapse
Affiliation(s)
- Juan F García-Moreno
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisbon, Portugal
- Faculdade de Ciências, BioISI - Instituto de Biossistemas e Ciências Integrativas, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Rafaela Lacerda
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisbon, Portugal
- Faculdade de Ciências, BioISI - Instituto de Biossistemas e Ciências Integrativas, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Paulo J da Costa
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisbon, Portugal
- Faculdade de Ciências, BioISI - Instituto de Biossistemas e Ciências Integrativas, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Marcelo Pereira
- Faculdade de Ciências, BioISI - Instituto de Biossistemas e Ciências Integrativas, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Margarida Gama-Carvalho
- Faculdade de Ciências, BioISI - Instituto de Biossistemas e Ciências Integrativas, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Paulo Matos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisbon, Portugal
- Faculdade de Ciências, BioISI - Instituto de Biossistemas e Ciências Integrativas, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Luísa Romão
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisbon, Portugal.
- Faculdade de Ciências, BioISI - Instituto de Biossistemas e Ciências Integrativas, Universidade de Lisboa, 1749-016, Lisbon, Portugal.
| |
Collapse
|
32
|
Cheng SH, Chiou HYC, Wang JW, Lin MH. Reciprocal Regulation of Cancer-Associated Fibroblasts and Tumor Microenvironment in Gastrointestinal Cancer: Implications for Cancer Dormancy. Cancers (Basel) 2023; 15:2513. [PMID: 37173977 PMCID: PMC10177044 DOI: 10.3390/cancers15092513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Gastrointestinal (GI) cancers remain a major cause of cancer-related deaths worldwide. Despite the progress made in current treatments, patients with GI cancers still have high recurrence rates after initial treatment. Cancer dormancy, which involves the entry and escape of cancer cells from dormancy, is linked to treatment resistance, metastasis, and disease relapse. Recently, the role of the tumor microenvironment (TME) in disease progression and treatment has received increasing attention. The crosstalk between cancer-associated fibroblasts (CAF)-secreted cytokines/chemokines and other TME components, for example, extracellular matrix remodeling and immunomodulatory functions, play crucial roles in tumorigenesis. While there is limited direct evidence of a relationship between CAFs and cancer cell dormancy, this review explores the potential of CAF-secreted cytokines/chemokines to either promote cancer cell dormancy or awaken dormant cancer cells under different conditions, and the therapeutic strategies that may be applicable. By understanding the interactions between cytokines/chemokines released by CAFs and the TME, and their impact on the entry/escape of cancer dormancy, researchers may develop new strategies to reduce the risk of therapeutic relapse in patients with GI cancers.
Collapse
Affiliation(s)
- Shih-Hsuan Cheng
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsin-Ying Clair Chiou
- Teaching and Research Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jiunn-Wei Wang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Hong Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|