1
|
Kerr NA, Choi J, Mohite SY, Singh PK, Bramlett HM, Lee JK, Dietrich WD. Single cell RNA sequencing after moderate traumatic brain injury: effects of therapeutic hypothermia. J Neuroinflammation 2025; 22:110. [PMID: 40251570 PMCID: PMC12007139 DOI: 10.1186/s12974-025-03430-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/25/2025] [Indexed: 04/20/2025] Open
Abstract
Traumatic brain injury (TBI) initiates a cascade of cellular and molecular events that promote acute and long-term patterns of neuronal, glial, vascular, and synaptic vulnerability leading to lasting neurological deficits. These complex responses lead to patterns of programmed cell death, diffuse axonal injury, increased blood-brain barrier disruption, neuroinflammation, and reactive gliosis, each a potential target for therapeutic interventions. Posttraumatic therapeutic hypothermia (TH) has been reported to be highly protective after brain and spinal cord injury and studies have investigated molecular mechanisms underlying mild hypothermic protection while commonly assessing heterogenous cell populations. In this study we conducted single-cell RNA sequencing (scRNA-seq) on cerebral cortical tissues after experimental TBI followed by a period of normothermia or hypothermia to comprehensively assess multiple cell type-specific transcriptional responses. C57BL/6 mice underwent moderate controlled cortical impact (CCI) injury or sham surgery and then placed under sustained normothermia (37⁰C) or hypothermia (33⁰C) for 2 h. After 24 h, cortical tissues including peri-contused regions were processed for scRNA-seq. Unbiased clustering revealed cellular heterogeneity among glial and immune cells at this subacute posttraumatic time point. The analysis also revealed vascular and immune subtypes associated with neovascularization and debris clearance, respectively. Compared to normothermic conditions, TH treatment altered the abundance of specific cell subtypes and induced reactive astrocyte-specific modulation of neurotropic factor gene expression. In addition, an increase in the proportion of endothelial tip cells in the hypothermic TBI group was documented compared to normothermia. These data emphasize the importance of early temperature-sensitive glial and vascular cell processes in producing potentially neuroprotective downstream signaling cascades in a cell-type-dependent manner. The use of scRNA-seq to address cell type-specific mechanisms underlying therapeutic treatments provides a valuable resource for identifying targetable biological pathways for the development of neuroprotective and reparative interventions.
Collapse
Affiliation(s)
- Nadine A Kerr
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - James Choi
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Simone Y Mohite
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Praveen Kumar Singh
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Helen M Bramlett
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Bruce W. Carter Department of Veterans Affairs Center, Miami, FL, USA
| | - Jae K Lee
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Neurological Surgery, University of Miami School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| |
Collapse
|
2
|
Dallera CA, Placeres-Uray F, Mastromatteo-Alberga P, Dominguez-Torres M, Balleste AF, Gorthy AS, Rahimzadeh TS, Aliancin I, Dietrich WD, Pablo de Rivero Vaccari J, Jacobs IC, Chlipala EA, Benton H, Zeligs MA, Atkins CM. 3,3'-Diindolylmethane improves pathology and neurological outcome following traumatic brain injury. Neurotherapeutics 2025; 22:e00531. [PMID: 39909809 DOI: 10.1016/j.neurot.2025.e00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
3,3'-Diindolylmethane (DIM), a naturally occurring bis-indole found in cruciferous vegetables and produced in small amounts in the normal flora of the human gut, has demonstrated neuroprotective benefits in models of CNS hypoxia and stroke. In the CNS, DIM modulates the activation of the aryl hydrocarbon receptor (AhR) and inhibits its pro-inflammatory effects. Although capable of crossing the blood brain barrier, DIM's bioavailability is limited by its low solubility. Dispersed BR4044 provides a nanoscale high-solubility DIM suspension with the potential for treating traumatic brain injury (TBI). The present study aimed to determine whether BR4044 treatment could reduce pathology and improve behavioral recovery following moderate TBI. Male Sprague Dawley rats received moderate fluid percussion injury or sham surgery followed by vehicle or BR4044 treatment in the acute recovery period. TBI BR4044 animals showed significantly reduced cortical and hippocampal edema and lower levels of serum-derived extracellular vesicles compared to TBI Vehicle animals. BR4044 treatment of TBI animals preserved sensorimotor function and associative fear memory. Cortical contusion size and neuronal loss in the parietal cortex and CA3 region of the hippocampus were also significantly reduced with BR4044 treatment. BR4044 also decreased microbleeding and nuclear AhR at the contusion site. This translational study demonstrates that BR4044 ameliorates pathology and improves neurological outcomes following TBI by reducing brain edema, lowering acute extracellular vesicle release, modulating AhR, preserving cortical and hippocampal neurons, reducing red blood cell (RBC) extravasation into the injured brain, and promoting behavioral recovery.
Collapse
Affiliation(s)
- Carlos A Dallera
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Fabiola Placeres-Uray
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Patrizzia Mastromatteo-Alberga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Maria Dominguez-Torres
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Alyssa F Balleste
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Aditi S Gorthy
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Tyler S Rahimzadeh
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Isabelle Aliancin
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Juan Pablo de Rivero Vaccari
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | | | | | | | | | - Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA.
| |
Collapse
|
3
|
Bano N, Khan S, Ahamad S, Dar NJ, Alanazi HH, Nazir A, Bhat SA. Microglial Autophagic Dysregulation in Traumatic Brain Injury: Molecular Insights and Therapeutic Avenues. ACS Chem Neurosci 2025; 16:543-562. [PMID: 39920904 DOI: 10.1021/acschemneuro.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025] Open
Abstract
Traumatic brain injury (TBI) is a complex and multifaceted condition that can result in cognitive and behavioral impairments. One aspect of TBI that has received increasing attention in recent years is the role of microglia, the brain-resident immune cells, in the pathophysiology of the injury. Specifically, increasing evidence suggests that dysfunction in microglial autophagy, the process by which cells degrade and recycle their own damaged components, may contribute to the development and progression of TBI-related impairments. Here, we unravel the pathways by which microglia autophagic dysregulation predisposes the brain to secondary damage and neurological deficits following TBI. An overview of the role of autophagic dysregulation in perpetuation and worsening of the inflammatory response, neuroinflammation, and neuronal cell death in TBI follows. Further, we have evaluated several signaling pathways and processes that contribute to autophagy dysfunction-mediated inflammation, neurodegeneration, and poor outcome in TBI. Additionally, a discussion on the small molecule therapeutics employed to modulate these pathways and mechanisms to treat TBI have been presented. However, additional research is required to fully understand the processes behind these underlying pathways and uncover potential therapeutic targets for restoring microglial autophagic failure in TBI.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, California 92037, United States
| | - Hamad H Alanazi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al Jouf University, Sakaka 77455, Saudi Arabia
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research, New Delhi 201002, India
| | | |
Collapse
|
4
|
Edwards S, Corrigan F, Collins-Praino L. Lasting Impact: Exploring the Brain Mechanisms that Link Traumatic Brain Injury to Parkinson's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04706-x. [PMID: 39891816 DOI: 10.1007/s12035-025-04706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/14/2025] [Indexed: 02/03/2025]
Abstract
Development of Parkinson's Disease (PD) is linked with a history of traumatic brain injury (TBI), although the mechanisms driving this remain unclear. Of note, many key parallels have been identified between the pathologies of PD and TBI; in particular, PD is characterised by loss of dopaminergic neurons from the substantia nigra (SN), accompanied by broader changes to dopaminergic signalling, disruption of the Locus Coeruleus (LC) and noradrenergic system, and accumulation of aggregated α-synuclein in Lewy Bodies, which spreads in a stereotypical pattern throughout the brain. Widespread disruptions to the dopaminergic and noradrenergic systems, including progressive neuronal loss from the SN and LC, have been observed acutely following injury, some of which have also been identified chronically in TBI patients and preclinical models. Furthermore, changes to α-synuclein expression are also seen both acutely and chronically following injury throughout the brain, although detailed characterisation of these changes and spread of pathology is limited. In this review, we detail the current literature regarding dopaminergic and noradrenergic disruption and α-synuclein pathology following injury, with particular focus on how these changes may predispose individuals to prolonged pathology and progressive neurodegeneration, particularly the development of PD. While it is increasingly clear that TBI is a key risk factor for the development of PD, significant gaps remain in current understanding of neurodegenerative pathology following TBI, particularly chronic manifestations of injury.
Collapse
Affiliation(s)
- Samantha Edwards
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- Head Injury Lab, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Frances Corrigan
- Head Injury Lab, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Lyndsey Collins-Praino
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
5
|
Raymond J, Howard IM, Berry J, Larson T, Horton DK, Mehta P. Head Injury and Amyotrophic Lateral Sclerosis: Population-Based Study from the National ALS Registry. Brain Sci 2025; 15:143. [PMID: 40002476 PMCID: PMC11852576 DOI: 10.3390/brainsci15020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: To examine if head injury (HI) is associated with age at ALS diagnosis in the United States. Methods: In this cross-sectional populationf-based analysis, we identified patients with ALS who were registered from 2015 to 2023 who completed the Registry's head trauma survey module. The association between HI and age at ALS diagnosis was assessed using multivariate analysis. Results: Of the 3424 respondents, 56.6% had experienced a HI. The adjusted odds ratio (aOR) for an ALS diagnosis before age 60 years for patients with a HI was 1.24 (95% CI, 1.07-1.45). One or two HIs had an aOR of 1.15 (95% CI, 0.97-1.36), and five or more HIs had an aOR of 1.58 (95% CI, 1.19-2.09). HI before age 18 years yielded an aOR of 2.03 (95% CI, 1.53-2.70) as well as HI between the ages of 18 and 30 years (aOR = 1.48, 95% CI: 1.06-2.06)). When narrowing the analysis to patients with HI before age 18 compared with patients with no HI, we found an association with HI that led to an emergency department or hospital visit (aOR = 1.50 (95% CI: 1.21-1.86)). Conclusions: In this cross-sectional analysis of ALS patients, HIs occurring in childhood and early adulthood and the number of HIs increased the odds of being diagnosed before age 60 years. These results suggest that HI continues to be a risk factor for ALS and could be associated with a younger age of diagnosis.
Collapse
Affiliation(s)
- Jaime Raymond
- Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, Atlanta, GA 30341, USA; (J.B.); (T.L.); (D.K.H.); (P.M.)
| | - Ileana M. Howard
- Rehabilitation Care Services, VA Puget Sound Healthcare System, Seattle, WA 98108, USA;
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jasmine Berry
- Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, Atlanta, GA 30341, USA; (J.B.); (T.L.); (D.K.H.); (P.M.)
| | - Theodore Larson
- Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, Atlanta, GA 30341, USA; (J.B.); (T.L.); (D.K.H.); (P.M.)
| | - D. Kevin Horton
- Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, Atlanta, GA 30341, USA; (J.B.); (T.L.); (D.K.H.); (P.M.)
| | - Paul Mehta
- Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, Atlanta, GA 30341, USA; (J.B.); (T.L.); (D.K.H.); (P.M.)
| |
Collapse
|
6
|
Asken BM, Brett BL, Barr WB, Banks S, Wethe JV, Dams-O'Connor K, Stern RA, Alosco ML. Chronic traumatic encephalopathy: State-of-the-science update and narrative review. Clin Neuropsychol 2025:1-25. [PMID: 39834035 DOI: 10.1080/13854046.2025.2454047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVE The long-recognized association of brain injury with increased risk of dementia has undergone significant refinement and more detailed study in recent decades. Chronic traumatic encephalopathy (CTE) is a specific neurodegenerative tauopathy related to prior exposure to repetitive head impacts (RHI). We aim to contextualize CTE within a historical perspective and among emerging data which highlights the scientific and conceptual evolution of CTE-related research in parallel with the broader field of neurodegenerative disease and dementia. METHODS We provide a narrative state-of-the-science update on CTE neuropathology, clinical manifestations, biomarkers, different types and patterns of head impact exposure relevant for CTE, and the complicated influence of neurodegenerative co-pathology on symptoms. CONCLUSIONS Now almost 20 years since the initial case report of CTE in a former American football player, the field of CTE continues evolving with increasing clarity but also several ongoing controversies. Our understanding of CTE neuropathology outpaces that of disease-specific clinical correlates or the development of in-vivo biomarkers. Diagnostic criteria for symptoms attributable to CTE are still being validated, but leveraging increasingly available biomarkers for other conditions like Alzheimer's disease may be helpful for informing the CTE differential diagnosis. As diagnostic refinement efforts advance, clinicians should provide care and/or referrals to providers best suited to treat an individual patient's clinical symptoms, many of which have evidence-based behavioral treatment options that are etiologically agnostic. Several ongoing research initiatives and the gradual accrual of gold standard clinico-pathological data will pay dividends for advancing the many existing gaps in the field of CTE.
Collapse
Affiliation(s)
- Breton M Asken
- Department of Clinical and Health Psychology, University of Florida, 1Florida Alzheimer's Disease Research Center, Gainesville, FL, USA
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WS, USA
| | - William B Barr
- Department of Neurology, New York University Langone Health Medical Center, New York, NY, USA
| | - Sarah Banks
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Jennifer V Wethe
- Departments of Psychiatry and Psychology, Mayo Clinic, Phoenix, AZ, USA
| | - Kristen Dams-O'Connor
- Departments of Rehabilitation Medicine and Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert A Stern
- Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University CTE and Alzheimer's Disease Research Centers, Boston, MA, USA
| | - Michael L Alosco
- Departments of Neurology and Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University CTE and Alzheimer's Disease Research Centers, Boston, MA, USA
| |
Collapse
|
7
|
Janković T, Rajič Bumber J, Gržeta Krpan N, Dolenec P, Jaeger M, Kriz J, Župan G, Pilipović K. Repetitive Mild but Not Single Moderate Brain Trauma Is Associated with TAR DNA-Binding Protein 43 Mislocalization and Glial Activation in the Mouse Spinal Cord. Biomedicines 2025; 13:218. [PMID: 39857801 PMCID: PMC11760438 DOI: 10.3390/biomedicines13010218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Traumatic brain injury (TBI) occurs after a sudden mechanical force to the skull and represents a significant public health problem. Initial brain trauma triggers secondary pathophysiological processes that induce structural and functional impairment of the central nervous system, even in the regions distant to the lesion site. Later in life, these changes can be manifested as neurodegenerative sequalae that commonly involve proteinopathies, such as transactive DNA-binding protein 43 (TDP-43). The progression of pathophysiological changes to the spinal cord motor neurons has been detected after repetitive TBI, while such changes have been less investigated after single TBI. Methods: Single TBI was applied over the left parietal cortex of mice by using the lateral fluid percussion injury apparatus and a separate cohort of animals received repetitive mild TBI by weight drop apparatus, with two mild injuries daily, for five days in a row. Mice were sacrificed after single moderate or last mild TBI and their spinal cords were prepared for the analyses. For both types of injury, sham-injured mice were used as a control group. Results: Here, we found an early formation of toxic phosphorylated TDP-43 species on the 3rdday post-injury which, together with TDP-43 cytoplasmic translocation, remained present in the subacute period of 14 days after repetitive mild but not single moderate TBI. During the subacute period following a repetitive brain trauma, we found an increased choline acetyltransferase protein expression and significant microgliosis in the cervical part of the spinal cord, which was not detected after single TBI. Astrogliosis presented similarly after both experimental procedures. Conclusions: This study demonstrates the differences in the spinal cord TDP-43 pathology and inflammation, depending on the brain trauma type, and may contribute to the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.J.); (J.R.B.); (N.G.K.); (P.D.)
| | - Jelena Rajič Bumber
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.J.); (J.R.B.); (N.G.K.); (P.D.)
| | - Nika Gržeta Krpan
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.J.); (J.R.B.); (N.G.K.); (P.D.)
| | - Petra Dolenec
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.J.); (J.R.B.); (N.G.K.); (P.D.)
| | - Marc Jaeger
- Department Chirurgie, Spital Oberengadin, CH-7503 Samedan, Switzerland;
| | - Jasna Kriz
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | | | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.J.); (J.R.B.); (N.G.K.); (P.D.)
| |
Collapse
|
8
|
Thakur R, Saini AK, Taliyan R, Chaturvedi N. Neurodegenerative diseases early detection and monitoring system for point-of-care applications. Microchem J 2025; 208:112280. [DOI: 10.1016/j.microc.2024.112280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Hajikarimloo B, Jabbaripour S, Tohidinia AM, Valinejad Qanati A, Fahim F, Javadpour P, Ghasemi R. Insulin potential in preventing brain damage after traumatic brain injury: What we know. J Neuroendocrinol 2025; 37:e13458. [PMID: 39527975 DOI: 10.1111/jne.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Traumatic brain injury (TBI) is a major global cause of disability and mortality. TBI results in a spectrum of primary and secondary injuries that impact neural function and overall survival. Insulin, beyond its well-known role in regulating blood glucose levels, plays critical roles in the central nervous system (CNS). These roles include the modulation of synaptic plasticity, neurotransmitter levels, neurogenesis, and neuroprotection. Central insulin resistance, a reduced sensitivity to insulin in the brain, has been observed in TBI patients. This insulin resistance impairs insulin function in the brain and increases the risk of neurodegenerative processes. This review will delve into the central role of insulin resistance in the pathological changes observed after TBI and explore the potential benefits of insulin therapy as a treatment approach for TBI.
Collapse
Affiliation(s)
- Bardia Hajikarimloo
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sama Jabbaripour
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Tohidinia
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysan Valinejad Qanati
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzan Fahim
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Javadpour
- Neuroscience Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Christensen J, Vlassopoulos E, Barlow CK, Schittenhelm RB, Li CN, Sgro M, Warren S, Semple BD, Yamakawa GR, Shultz SR, Mychasiuk R. The beneficial effects of modafinil administration on repeat mild traumatic brain injury (RmTBI) pathology in adolescent male rats are not dependent upon the orexinergic system. Exp Neurol 2024; 382:114969. [PMID: 39332798 DOI: 10.1016/j.expneurol.2024.114969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
The sleep-wake cycle plays an influential role in the development and progression of repeat mild traumatic brain injury (RmTBI)-related pathology. Therefore, we first aimed to manipulate the sleep-wake cycle post-RmTBI using modafinil, a wake-promoting substance used for the treatment of narcolepsy. We hypothesized that modafinil would exacerbate RmTBI-induced deficits. Chronic behavioural analyses were completed along with a 27-plex serum cytokine array, metabolomic and proteomic analyses of cerebrospinal fluid (CSF), as well as immunohistochemical staining in structures important for sleep/wake cycles, to examine orexin, melanin-concentrating hormone, tyrosine hydroxylase, and choline acetyltransferase, in the lateral hypothalamus, locus coeruleus, and basal forebrain, respectively. Contrary to expectation, modafinil administration attenuated behavioural deficits, metabolomic changes, and neuropathological modifications. Therefore, the second aim was to determine if the beneficial effects of modafinil treatment were driven by the orexinergic system. The same experimental protocol was used; however, RmTBI rats received chronic orexin-A administration instead of modafinil. Orexin-A administration produced drastically different outcomes, exacerbating anxiety-related and motor deficits, while also significantly disrupting their metabolomic and neuropathological profiles. These results suggest that the beneficial effects of modafinil administration post-RmTBI, work independently of its wake-promoting properties, as activation of the orexinergic wake-promoting system with orexin-A was detrimental. Overall, these findings highlight the complexity of sleep-wake changes in the injured brain and showcase the potential of the arousal and sleep systems in its treatment.
Collapse
Affiliation(s)
- Jennaya Christensen
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Elaina Vlassopoulos
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Christopher K Barlow
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Crystal N Li
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Marissa Sgro
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Samantha Warren
- Monash Micro Imaging, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Bridgette D Semple
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Centre for Trauma and Mental Health Research, Vancouver Island University, Nanaimo, B.C., Canada
| | - Richelle Mychasiuk
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Mavroudis I, Kazis D, Petridis FE, Balmus IM, Papaliagkas V, Ciobica A. The Association Between Traumatic Brain Injury and the Risk of Cognitive Decline: An Umbrella Systematic Review and Meta-Analysis. Brain Sci 2024; 14:1188. [PMID: 39766387 PMCID: PMC11674444 DOI: 10.3390/brainsci14121188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND There is currently increasing interest in the implication of traumatic brain injury (TBI) as a potential risk factor for long-term neurodegenerative conditions, such as dementia and Alzheimer's disease (AD). In this context, we performed a systematic review and meta-analysis to evaluate the association between TBI and the risk of dementia. METHODS A systematic search was performed across multiple electronic databases, including PubMed, Embase, and Cochrane Library, to identify relevant meta-analyses and cohort studies. Studies were included if they reported effect sizes (odds ratios [ORs] or relative risks [RRs]) for the association between TBI, its severity, and the risk of dementia or AD. Meta-analyses were performed using random-effects models to account for heterogeneity, and sensitivity analyses were conducted. RESULTS A total of six studies were included in the analysis. The pooled results showed that TBI significantly increases the risk of dementia, with an overall odds ratio of 1.81 (95% CI: 1.53-2.14). Mild TBI was associated with a modest increase in dementia risk (OR = 1.96, 95% CI: 1.70-2.26), while moderate-to-severe TBI showed a stronger association (OR = 1.95, 95% CI: 1.55-2.45). In contrast, the association between TBI and AD was less consistent, with the pooled OR for AD being 1.18 (at 95% CI: 1.11-1.25) for mild TBI; however, in several studies, no significant association was observed (OR = 1.02, 95% CI: 0.91-1.15). The results also indicated substantial heterogeneity across studies, particularly in relation to AD outcomes. CONCLUSIONS The findings from this umbrella meta-analysis confirm that TBI is a significant risk factor for dementia, with more severe TBIs conferring a higher risk. While mild TBIs also increase the risk of dementia, the effect is more pronounced in moderate-to-severe injuries. The evidence linking TBI to AD is less robust, with inconsistent findings across studies. Clinicians should consider long-term cognitive screening and management for individuals with a history of TBI, particularly those with moderate-to-severe injuries.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neurosciences, Leeds Teaching Hospitals, NHS Trust, Leeds LS97TF, UK;
- Faculty of Medicine, Leeds University, Leeds LS2 9JT, UK
- Academy of Romanian Scientists, 050094 Bucharest, Romania;
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 700057 Iasi, Romania
- CENEMED Platform for Interdisciplinary Research, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, International University of Thessaloniki, 570 01 Thessaloniki, Greece
| | - Alin Ciobica
- Academy of Romanian Scientists, 050094 Bucharest, Romania;
- CENEMED Platform for Interdisciplinary Research, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
- “Ioan Haulica” Institute, Apollonia University, 700511 Iasi, Romania
| |
Collapse
|
12
|
Zima L, Moore AN, Smolen P, Kobori N, Noble B, Robinson D, Hood KN, Homma R, Al Mamun A, Redell JB, Dash PK. The evolving pathophysiology of TBI and the advantages of temporally-guided combination therapies. Neurochem Int 2024; 180:105874. [PMID: 39366429 PMCID: PMC12011104 DOI: 10.1016/j.neuint.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Several clinical and experimental studies have demonstrated that traumatic brain injury (TBI) activates cascades of biochemical, molecular, structural, and pathological changes in the brain. These changes combine to contribute to the various outcomes observed after TBI. Given the breadth and complexity of changes, combination treatments may be an effective approach for targeting multiple detrimental pathways to yield meaningful improvements. In order to identify targets for therapy development, the temporally evolving pathophysiology of TBI needs to be elucidated in detail at both the cellular and molecular levels, as it has been shown that the mechanisms contributing to cognitive dysfunction change over time. Thus, a combination of individual mechanism-based therapies is likely to be effective when maintained based on the time courses of the cellular and molecular changes being targeted. In this review, we will discuss the temporal changes of some of the key clinical pathologies of human TBI, the underlying cellular and molecular mechanisms, and the results from preclinical and clinical studies aimed at mitigating their consequences. As most of the pathological events that occur after TBI are likely to have subsided in the chronic stage of the disease, combination treatments aimed at attenuating chronic conditions such as cognitive dysfunction may not require the initiation of individual treatments at a specific time. We propose that a combination of acute, subacute, and chronic interventions may be necessary to maximally improve health-related quality of life (HRQoL) for persons who have sustained a TBI.
Collapse
Affiliation(s)
- Laura Zima
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Anthony N Moore
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Paul Smolen
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Nobuhide Kobori
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Brian Noble
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Dustin Robinson
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Kimberly N Hood
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Ryota Homma
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Amar Al Mamun
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - John B Redell
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Pramod K Dash
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA; Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
13
|
Paul BD, Pieper AA. Neuroprotective signaling by hydrogen sulfide and its dysregulation in Alzheimer's disease. Curr Opin Chem Biol 2024; 82:102511. [PMID: 39142018 PMCID: PMC11390309 DOI: 10.1016/j.cbpa.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/04/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
The ancient messenger molecule hydrogen sulfide (H2S) modulates myriad signaling cascades and has been conserved across evolutionary boundaries. Although traditionally known as an environmental toxin, H2S is also synthesized endogenously to exert modulatory and homeostatic effects in a broad array of physiologic functions. Notably, H2S levels are tightly physiologically regulated, as both its excess and paucity can be toxic. Accumulating evidence has revealed pivotal roles for H2S in neuroprotection and normal cognitive function, and H2S homeostasis is dysregulated in neurodegenerative conditions. Here, we review the normal neuroprotective roles of H2S that go awry in Alzheimer's disease, the most common form of neurodegenerative disease.
Collapse
Affiliation(s)
- Bindu D Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Lieber Institute for Brain Development, Baltimore, MD, USA.
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
14
|
Sridharan PS, Koh Y, Miller E, Hu D, Chakraborty S, Tripathi SJ, Kee TR, Chaubey K, Vázquez-Rosa E, Barker S, Liu H, León-Alvarado RA, Franke K, Cintrón-Pérez CJ, Dhar M, Shin MK, Flanagan ME, Castellani RJ, Gefen T, Bykova M, Dou L, Cheng F, Wilson BM, Fujioka H, Kang DE, Woo JAA, Paul BD, Qi X, Pieper AA. Acutely blocking excessive mitochondrial fission prevents chronic neurodegeneration after traumatic brain injury. Cell Rep Med 2024; 5:101715. [PMID: 39241772 PMCID: PMC11525032 DOI: 10.1016/j.xcrm.2024.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/03/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
Progression of acute traumatic brain injury (TBI) into chronic neurodegeneration is a major health problem with no protective treatments. Here, we report that acutely elevated mitochondrial fission after TBI in mice triggers chronic neurodegeneration persisting 17 months later, equivalent to many human decades. We show that increased mitochondrial fission after mouse TBI is related to increased brain levels of mitochondrial fission 1 protein (Fis1) and that brain Fis1 is also elevated in human TBI. Pharmacologically preventing Fis1 from binding its mitochondrial partner, dynamin-related protein 1 (Drp1), for 2 weeks after TBI normalizes the balance of mitochondrial fission/fusion and prevents chronically impaired mitochondrial bioenergetics, oxidative damage, microglial activation and lipid droplet formation, blood-brain barrier deterioration, neurodegeneration, and cognitive impairment. Delaying treatment until 8 months after TBI offers no protection. Thus, time-sensitive inhibition of acutely elevated mitochondrial fission may represent a strategy to protect human TBI patients from chronic neurodegeneration.
Collapse
Affiliation(s)
- Preethy S Sridharan
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yeojung Koh
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Emiko Miller
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Di Hu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Suwarna Chakraborty
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sunil Jamuna Tripathi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Teresa R Kee
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA
| | - Kalyani Chaubey
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Edwin Vázquez-Rosa
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sarah Barker
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Hui Liu
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rose A León-Alvarado
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Earlham College Neuroscience Program, Richmond, IN, USA
| | - Kathryn Franke
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Coral J Cintrón-Pérez
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matasha Dhar
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Min-Kyoo Shin
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08226, Republic of Korea
| | - Margaret E Flanagan
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Glenn Bigg's Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Rudolph J Castellani
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marina Bykova
- Department of Regulatory Biology, Cleveland State University, Cleveland, OH, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lijun Dou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Brigid M Wilson
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Louis Stokes VA Medical Center, Cleveland, OH, USA
| | - Hisashi Fujioka
- Cryo-Electron Microscopy Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - David E Kang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA; Louis Stokes VA Medical Center, Cleveland, OH, USA
| | - Jung-A A Woo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA
| | - Bindu D Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
15
|
Parra Bravo C, Krukowski K, Barker S, Wang C, Li Y, Fan L, Vázquez-Rosa E, Shin MK, Wong MY, McCullough LD, Kitagawa RS, Choi HA, Cacace A, Sinha SC, Pieper AA, Rosi S, Chen X, Gan L. Anti-acetylated-tau immunotherapy is neuroprotective in tauopathy and brain injury. Mol Neurodegener 2024; 19:51. [PMID: 38915105 PMCID: PMC11197196 DOI: 10.1186/s13024-024-00733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Tau is aberrantly acetylated in various neurodegenerative conditions, including Alzheimer's disease, frontotemporal lobar degeneration (FTLD), and traumatic brain injury (TBI). Previously, we reported that reducing acetylated tau by pharmacologically inhibiting p300-mediated tau acetylation at lysine 174 reduces tau pathology and improves cognitive function in animal models. METHODS We investigated the therapeutic efficacy of two different antibodies that specifically target acetylated lysine 174 on tau (ac-tauK174). We treated PS19 mice, which harbor the P301S tauopathy mutation that causes FTLD, with anti-ac-tauK174 and measured effects on tau pathology, neurodegeneration, and neurobehavioral outcomes. Furthermore, PS19 mice received treatment post-TBI to evaluate the ability of the immunotherapy to prevent TBI-induced exacerbation of tauopathy phenotypes. Ac-tauK174 measurements in human plasma following TBI were also collected to establish a link between trauma and acetylated tau levels, and single nuclei RNA-sequencing of post-TBI brain tissues from treated mice provided insights into the molecular mechanisms underlying the observed treatment effects. RESULTS Anti-ac-tauK174 treatment mitigates neurobehavioral impairment and reduces tau pathology in PS19 mice. Ac-tauK174 increases significantly in human plasma 24 h after TBI, and anti-ac-tauK174 treatment of PS19 mice blocked TBI-induced neurodegeneration and preserved memory functions. Anti-ac-tauK174 treatment rescues alterations of microglial and oligodendrocyte transcriptomic states following TBI in PS19 mice. CONCLUSIONS The ability of anti-ac-tauK174 treatment to rescue neurobehavioral impairment, reduce tau pathology, and rescue glial responses demonstrates that targeting tau acetylation at K174 is a promising neuroprotective therapeutic approach to human tauopathies resulting from TBI or genetic disease.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Brain and Mind Research Institute, Helen and Appel Alzheimer Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Karen Krukowski
- Department of Physical Therapy & Rehabilitation Science, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah Barker
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Chao Wang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Yaqiao Li
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Li Fan
- Brain and Mind Research Institute, Helen and Appel Alzheimer Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Edwin Vázquez-Rosa
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA
| | - Min-Kyoo Shin
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Man Ying Wong
- Brain and Mind Research Institute, Helen and Appel Alzheimer Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ryan S Kitagawa
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - H Alex Choi
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Subhash C Sinha
- Brain and Mind Research Institute, Helen and Appel Alzheimer Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Susanna Rosi
- Department of Physical Therapy & Rehabilitation Science, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Xu Chen
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
- Department of Neurosciences, School of Medicine, University of California, San Diego, USA.
| | - Li Gan
- Brain and Mind Research Institute, Helen and Appel Alzheimer Disease Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Bailey C, Soden D, Maroon J, Selman W, Tangen C, Gunstad J, Briskin S, Miskovsky S, Miller E, Pieper AA. Elevated Autoantibodies to the GluA1 Subunit of the AMPA Receptor in Blood Indicate Risk of Cognitive Impairment in Contact Sports Athletes, Irrespective of Concussion. Neurotrauma Rep 2024; 5:552-562. [PMID: 39071979 PMCID: PMC11271151 DOI: 10.1089/neur.2023.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
To address the need for objective tests of concussion in athletes, we conducted a prospective clinical study in National Collegiate Athletic Association athletes of the relationship between neurocognitive performance and blood levels of the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor peptides and autoantibodies to GluA1. Specifically, we compared 44 contact sport athletes to 16 noncontact sport athletes, with Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT), as well as blood sample collection, before the start of the season and at the end of the season. Contact sport athletes exhibited significantly elevated serum GluA1 autoantibodies at the end of season, compared with preseason levels, irrespective of whether they sustained a concussion. Noncontact sport athletes showed no change in serum GluA1 autoantibodies, and neither group showed differences in GluA1 peptides. Amongst contact-sport athletes, the 'high GluA1 autoantibody group' (≥4 ng/mL) displayed impaired reaction time, a measure of cognitive impairment, while the 'low GluA1 autoantibody group' (<4 ng/mL) displayed normal reaction time. Our results reveal that contact sport athletes are at risk for developing cognitive impairment even without sustaining a diagnosed concussion and that serum GluA1 autoantibodies provide a blood-based biomarker of this risk. This could guide future studies on the differing susceptibility to cognitive impairment in contact sport athletes and facilitate efficient allocation of resources to contact sport athletes identified as having increased risk of developing cognitive impairment.
Collapse
Affiliation(s)
- Christopher Bailey
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Sports Medicine Concussion Center, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Daniel Soden
- University Hospitals Sports Medicine Concussion Center, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Joseph Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Warren Selman
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Sports Medicine Concussion Center, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Christopher Tangen
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - John Gunstad
- Department of Psychological Sciences, Kent State University, Kent, Ohio, USA
| | - Susannah Briskin
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Sports Medicine Concussion Center, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Shana Miskovsky
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Sports Medicine Concussion Center, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Emiko Miller
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, Ohio, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Andrew A. Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, Ohio, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
17
|
Qiu Y, Hou Y, Gohel D, Zhou Y, Xu J, Bykova M, Yang Y, Leverenz JB, Pieper AA, Nussinov R, Caldwell JZK, Brown JM, Cheng F. Systematic characterization of multi-omics landscape between gut microbial metabolites and GPCRome in Alzheimer's disease. Cell Rep 2024; 43:114128. [PMID: 38652661 PMCID: PMC11968202 DOI: 10.1016/j.celrep.2024.114128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Shifts in the magnitude and nature of gut microbial metabolites have been implicated in Alzheimer's disease (AD), but the host receptors that sense and respond to these metabolites are largely unknown. Here, we develop a systems biology framework that integrates machine learning and multi-omics to identify molecular relationships of gut microbial metabolites with non-olfactory G-protein-coupled receptors (termed the "GPCRome"). We evaluate 1.09 million metabolite-protein pairs connecting 408 human GPCRs and 335 gut microbial metabolites. Using genetics-derived Mendelian randomization and integrative analyses of human brain transcriptomic and proteomic profiles, we identify orphan GPCRs (i.e., GPR84) as potential drug targets in AD and that triacanthine experimentally activates GPR84. We demonstrate that phenethylamine and agmatine significantly reduce tau hyperphosphorylation (p-tau181 and p-tau205) in AD patient induced pluripotent stem cell-derived neurons. This study demonstrates a systems biology framework to uncover the GPCR targets of human gut microbiota in AD and other complex diseases if broadly applied.
Collapse
Affiliation(s)
- Yunguang Qiu
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yuan Hou
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dhruv Gohel
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yadi Zhou
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jielin Xu
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Marina Bykova
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yuxin Yang
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jessica Z K Caldwell
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Las Vegas, NV 89106, USA
| | - J Mark Brown
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Department of Cancer Biology, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
18
|
El Baassiri MG, Raouf Z, Badin S, Escobosa A, Sodhi CP, Nasr IW. Dysregulated brain-gut axis in the setting of traumatic brain injury: review of mechanisms and anti-inflammatory pharmacotherapies. J Neuroinflammation 2024; 21:124. [PMID: 38730498 PMCID: PMC11083845 DOI: 10.1186/s12974-024-03118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Traumatic brain injury (TBI) is a chronic and debilitating disease, associated with a high risk of psychiatric and neurodegenerative diseases. Despite significant advancements in improving outcomes, the lack of effective treatments underscore the urgent need for innovative therapeutic strategies. The brain-gut axis has emerged as a crucial bidirectional pathway connecting the brain and the gastrointestinal (GI) system through an intricate network of neuronal, hormonal, and immunological pathways. Four main pathways are primarily implicated in this crosstalk, including the systemic immune system, autonomic and enteric nervous systems, neuroendocrine system, and microbiome. TBI induces profound changes in the gut, initiating an unrestrained vicious cycle that exacerbates brain injury through the brain-gut axis. Alterations in the gut include mucosal damage associated with the malabsorption of nutrients/electrolytes, disintegration of the intestinal barrier, increased infiltration of systemic immune cells, dysmotility, dysbiosis, enteroendocrine cell (EEC) dysfunction and disruption in the enteric nervous system (ENS) and autonomic nervous system (ANS). Collectively, these changes further contribute to brain neuroinflammation and neurodegeneration via the gut-brain axis. In this review article, we elucidate the roles of various anti-inflammatory pharmacotherapies capable of attenuating the dysregulated inflammatory response along the brain-gut axis in TBI. These agents include hormones such as serotonin, ghrelin, and progesterone, ANS regulators such as beta-blockers, lipid-lowering drugs like statins, and intestinal flora modulators such as probiotics and antibiotics. They attenuate neuroinflammation by targeting distinct inflammatory pathways in both the brain and the gut post-TBI. These therapeutic agents exhibit promising potential in mitigating inflammation along the brain-gut axis and enhancing neurocognitive outcomes for TBI patients.
Collapse
Affiliation(s)
- Mahmoud G El Baassiri
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Zachariah Raouf
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sarah Badin
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alejandro Escobosa
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Chhinder P Sodhi
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Isam W Nasr
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
19
|
Marsh JL, Zinnel L, Bentil SA. Predicting shock-induced cavitation using machine learning: implications for blast-injury models. Front Bioeng Biotechnol 2024; 12:1268314. [PMID: 38380268 PMCID: PMC10877722 DOI: 10.3389/fbioe.2024.1268314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
While cavitation has been suspected as a mechanism of blast-induced traumatic brain injury (bTBI) for a number of years, this phenomenon remains difficult to study due to the current inability to measure cavitation in vivo. Therefore, numerical simulations are often implemented to study cavitation in the brain and surrounding fluids after blast exposure. However, these simulations need to be validated with the results from cavitation experiments. Machine learning algorithms have not generally been applied to study blast injury or biological cavitation models. However, such algorithms have concrete measures for optimization using fewer parameters than those of finite element or fluid dynamics models. Thus, machine learning algorithms are a viable option for predicting cavitation behavior from experiments and numerical simulations. This paper compares the ability of two machine learning algorithms, k-nearest neighbor (kNN) and support vector machine (SVM), to predict shock-induced cavitation behavior. The machine learning models were trained and validated with experimental data from a three-dimensional shock tube model, and it has been shown that the algorithms could predict the number of cavitation bubbles produced at a given temperature with good accuracy. This study demonstrates the potential utility of machine learning in studying shock-induced cavitation for applications in blast injury research.
Collapse
Affiliation(s)
- Jenny L. Marsh
- Department of Mechanical Engineering, The Bentil Group, Iowa State University, Ames, IA, United States
| | - Laura Zinnel
- Department of Mechanical Engineering, The Bentil Group, Iowa State University, Ames, IA, United States
- Department of Mathematics, Iowa State University, Ames, IA, United States
| | - Sarah A. Bentil
- Department of Mechanical Engineering, The Bentil Group, Iowa State University, Ames, IA, United States
| |
Collapse
|
20
|
Anton PE, Rutt LN, Kaufman ML, Busquet N, Kovacs EJ, McCullough RL. Binge ethanol exposure in advanced age elevates neuroinflammation and early indicators of neurodegeneration and cognitive impairment in female mice. Brain Behav Immun 2024; 116:303-316. [PMID: 38151165 PMCID: PMC11446185 DOI: 10.1016/j.bbi.2023.12.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023] Open
Abstract
Binge drinking is rising among aged adults (>65 years of age), however the contribution of alcohol misuse to neurodegenerative disease development is not well understood. Both advanced age and repeated binge ethanol exposure increase neuroinflammation, which is an important component of neurodegeneration and cognitive dysfunction. Surprisingly, the distinct effects of binge ethanol exposure on neuroinflammation and associated degeneration in the aged brain have not been well characterized. Here, we establish a model of intermittent binge ethanol exposure in young and aged female mice to investigate the effects of advanced age and binge ethanol on these outcomes. Following intermittent binge ethanol exposure, expression of pro-inflammatory mediators (tnf-α, il-1β, ccl2) was distinctly increased in isolated hippocampal tissue by the combination of advanced age and ethanol. Binge ethanol exposure also increased measures of senescence, the nod like receptor pyrin domain containing 3 (NLRP3) inflammasome, and microglia reactivity in the brains of aged mice compared to young. Binge ethanol exposure also promoted neuropathology in the hippocampus of aged mice, including tau hyperphosphorylation and neuronal death. We further identified advanced age-related deficits in contextual memory that were further negatively impacted by ethanol exposure. These data suggest binge drinking superimposed with advanced age promotes early markers of neurodegenerative disease development and cognitive decline, which may be driven by heightened neuroinflammatory responses to ethanol. Taken together, we propose this novel exposure model of intermittent binge ethanol can be used to identify therapeutic targets to prevent advanced age- and ethanol-related neurodegeneration.
Collapse
Affiliation(s)
- Paige E Anton
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lauren N Rutt
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael L Kaufman
- RNA Bioscience Initiative, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Nicolas Busquet
- Animal Behavior and In Vivo Neurophysiology Core, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Elizabeth J Kovacs
- GI and Liver Innate Immune Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Division of GI Trauma and Endocrine Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rebecca L McCullough
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; GI and Liver Innate Immune Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
21
|
Leonard J, Ladner L, Harris EA, de Jager C, Theus MH. The Neuroimmune Interface: Age-Related Responses to Traumatic Brain Injury. ADVANCES IN NEUROBIOLOGY 2024; 42:241-262. [PMID: 39432046 DOI: 10.1007/978-3-031-69832-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Traumatic Brain Injury (TBI) is a significant public health issue, with diverse consequences across the lifespan. This comprehensive review explores the complex interplay between age-related responses and the immune system following TBI. TBI exhibits distinct effects in pediatric, adult, and elderly populations, with profound implications for recovery and long-term outcomes. The immune system, as a key player in the post-TBI inflammatory cascade, exerts age-dependent influences on inflammation, neuroinflammation, and tissue repair. We examine the evolving understanding of age-related neuroinflammatory responses, cytokine profiles, and the role of immune cells, such as microglia and T cells, in the context of TBI. Furthermore, we evaluate the therapeutic implications of age-specific immunomodulation strategies toward mitigating TBI-associated neuropathology. This review consolidates the current knowledge on age-related immune responses in TBI, shedding light on potential avenues for tailored therapeutic interventions across the age spectrum. Understanding these nuanced responses is crucial for optimizing patient care and enhancing recovery outcomes in the aftermath of traumatic brain injury.
Collapse
Affiliation(s)
- John Leonard
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Liliana Ladner
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Elizabeth A Harris
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Caroline de Jager
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Michelle H Theus
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, USA.
| |
Collapse
|
22
|
Race NS, Moschonas EH, Kline AE, Bondi CO. Cognition and Behavior in the Aging Brain Following TBI: Surveying the Preclinical Evidence. ADVANCES IN NEUROBIOLOGY 2024; 42:219-240. [PMID: 39432045 DOI: 10.1007/978-3-031-69832-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Elderly individuals (65 years and older) represent the fastest-growing demographic of new clinical traumatic brain injury (TBI) cases, yet there is a paucity of preclinical research in aged animals. The limited preclinical work available aligns with the clinical literature in that there appear to be significant differences in pathophysiology, recovery potential, and response to medications between animals at different points across the age spectrum. The aim of this review is to discuss the limited studies and highlight critical age-related differences in affective, cognitive, and neurobehavioral deficits, to discuss factors that influence functional outcomes, and to identify targets for future research. The consensus is that aged rodents face challenges related to dysregulated inflammation, reduced neuroplasticity, and age-related cellular changes, which hinder their recovery after TBI. The most successful intervention studies in animal models to date, of the limited array available, have explored interventions targeting inflammatory downregulation. Current standards of neuropsychopharmacology for post-TBI neurocognitive recovery have not been investigated in a significant capacity. In addition, currently available animal models do not sufficiently account for important age-related comorbidities, dual insults, or differences in TBI mechanism of injury in elderly individuals. TBI in the aged population is more likely to lead to additional neurodegenerative diseases that further complicate recovery. The findings underscore the need for tailored therapeutic interventions to improve outcomes in both adult and elderly populations.
Collapse
Affiliation(s)
- Nicholas S Race
- Department of Physical Medicine & Rehabilitation and Safar Center for Resuscitation Research, Association of Academic Physiatrists Rehabilitation Medicine Scientist Training Program,University of Pittsburgh, Pittsburgh, PA, USA
| | - Eleni H Moschonas
- Department of Physical Medicine & Rehabilitation, Center for Neuroscience, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony E Kline
- Departments of Physical Medicine & Rehabilitation, Critical Care Medicine, and Psychology, Center for Neuroscience, Center for the Neural Basis of Cognition, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Corina O Bondi
- Departments of Physical Medicine & Rehabilitation and Neurobiology, Center for Neuroscience, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Sridharan PS, Miller E, Pieper AA. Application of P7C3 Compounds to Investigating and Treating Acute and Chronic Traumatic Brain Injury. Neurotherapeutics 2023; 20:1616-1628. [PMID: 37651054 PMCID: PMC10684439 DOI: 10.1007/s13311-023-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading worldwide cause of disability, and there are currently no medicines that prevent, reduce, or reverse acute or chronic neurodegeneration in TBI patients. Here, we review the target-agnostic discovery of nicotinamide adenine dinucleotide (NAD+)/NADH-stabilizing P7C3 compounds through a phenotypic screen in mice and describe how P7C3 compounds have been applied to advance understanding of the pathophysiology and potential treatment of TBI. We summarize how P7C3 compounds have been shown across multiple laboratories to mitigate disease progression safely and effectively in a broad range of preclinical models of disease related to impaired NAD+/NADH metabolism, including acute and chronic TBI, and note the reported safety and neuroprotective efficacy of P7C3 compounds in nonhuman primates. We also describe how P7C3 compounds facilitated the recent first demonstration that chronic neurodegeneration 1 year after TBI in mice, the equivalent of many decades in people, can be reversed to restore normal neuropsychiatric function. We additionally review how P7C3 compounds have facilitated discovery of new pathophysiologic mechanisms of neurodegeneration after TBI. This includes the role of rapid TBI-induced tau acetylation that drives axonal degeneration, and the discovery of brain-derived acetylated tau as the first blood-based biomarker of neurodegeneration after TBI that directly correlates with the abundance of a therapeutic target in the brain. We additionally review the identification of TBI-induced tau acetylation as a potential mechanistic link between TBI and increased risk of Alzheimer's disease. Lastly, we summarize historical accounts of other successful phenotypic-based drug discoveries that advanced medical care without prior recognition of the specific molecular target needed to achieve the desired therapeutic effect.
Collapse
Affiliation(s)
- Preethy S Sridharan
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Emiko Miller
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA.
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
24
|
Tripathi SJ, Chakraborty S, Miller E, Pieper AA, Paul BD. Hydrogen sulfide signalling in neurodegenerative diseases. Br J Pharmacol 2023:10.1111/bph.16170. [PMID: 37338307 PMCID: PMC10730776 DOI: 10.1111/bph.16170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023] Open
Abstract
The gaseous neurotransmitter hydrogen sulfide (H2 S) exerts neuroprotective efficacy in the brain via post-translational modification of cysteine residues by sulfhydration, also known as persulfidation. This process is comparable in biological impact to phosphorylation and mediates a variety of signalling events. Unlike conventional neurotransmitters, H2 S cannot be stored in vesicles due to its gaseous nature. Instead, it is either locally synthesized or released from endogenous stores. Sulfhydration affords both specific and general neuroprotective effects and is critically diminished in several neurodegenerative disorders. Conversely, some forms of neurodegenerative disease are linked to excessive cellular H2 S. Here, we review the signalling roles of H2 S across the spectrum of neurodegenerative diseases, including Huntington's disease, Parkinson's disease, Alzheimer's disease, Down syndrome, traumatic brain injury, the ataxias, and amyotrophic lateral sclerosis, as well as neurodegeneration generally associated with ageing.
Collapse
Affiliation(s)
- Sunil Jamuna Tripathi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Suwarna Chakraborty
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emiko Miller
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, Ohio, USA
- School of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Translational Therapeutics Core, Cleveland Alzheimer's Disease Research Center, Cleveland, Ohio, USA
| | - Bindu D Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Lieber Institute for Brain Development, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Chornyy S, Borovicka JA, Patel D, Shin MK, Vázquez-Rosa E, Miller E, Wilson B, Pieper AA, Dana H. Longitudinal in vivo monitoring of axonal degeneration after brain injury. CELL REPORTS METHODS 2023; 3:100481. [PMID: 37323578 PMCID: PMC10261926 DOI: 10.1016/j.crmeth.2023.100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 06/17/2023]
Abstract
Traumatic brain injury (TBI)-induced axonal degeneration leads to acute and chronic neuropsychiatric impairment, neuronal death, and accelerated neurodegenerative diseases of aging, including Alzheimer's and Parkinson's diseases. In laboratory models, axonal degeneration is traditionally studied through comprehensive postmortem histological evaluation of axonal integrity at multiple time points. This requires large numbers of animals to power for statistical significance. Here, we developed a method to longitudinally monitor axonal functional activity before and after injury in vivo in the same animal over an extended period. Specifically, after expressing an axonal-targeting genetically encoded calcium indicator in the mouse dorsolateral geniculate nucleus, we recorded axonal activity patterns in the visual cortex in response to visual stimulation. In vivo aberrant axonal activity patterns after TBI were detectable from 3 days after injury and persisted chronically. This method generates longitudinal same-animal data that substantially reduces the number of required animals for preclinical studies of axonal degeneration.
Collapse
Affiliation(s)
- Sergiy Chornyy
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Julie A. Borovicka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Davina Patel
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Min-Kyoo Shin
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Research Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08226, Republic of Korea
| | - Edwin Vázquez-Rosa
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Research Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Emiko Miller
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Research Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Brigid Wilson
- Department of Infectious Diseases and HIV Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Andrew A. Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Research Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Hod Dana
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
26
|
Paul BD, Pieper AA. Protective Roles of Hydrogen Sulfide in Alzheimer's Disease and Traumatic Brain Injury. Antioxidants (Basel) 2023; 12:1095. [PMID: 37237961 PMCID: PMC10215281 DOI: 10.3390/antiox12051095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The gaseous signaling molecule hydrogen sulfide (H2S) critically modulates a plethora of physiological processes across evolutionary boundaries. These include responses to stress and other neuromodulatory effects that are typically dysregulated in aging, disease, and injury. H2S has a particularly prominent role in modulating neuronal health and survival under both normal and pathologic conditions. Although toxic and even fatal at very high concentrations, emerging evidence has also revealed a pronounced neuroprotective role for lower doses of endogenously generated or exogenously administered H2S. Unlike traditional neurotransmitters, H2S is a gas and, therefore, is unable to be stored in vesicles for targeted delivery. Instead, it exerts its physiologic effects through the persulfidation/sulfhydration of target proteins on reactive cysteine residues. Here, we review the latest discoveries on the neuroprotective roles of H2S in Alzheimer's disease (AD) and traumatic brain injury, which is one the greatest risk factors for AD.
Collapse
Affiliation(s)
- Bindu D. Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Andrew A. Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Translational Therapeutics Core, Cleveland Alzheimer’s Disease Research Center, Cleveland, OH 44106, USA
| |
Collapse
|