1
|
Cui Y, Ma X, Wei J, Chen C, Shakir N, Guirram H, Dai Z, Anderson T, Ferguson D, Qiu S. MET receptor tyrosine kinase promotes the generation of functional synapses in adult cortical circuits. Neural Regen Res 2025; 20:1431-1444. [PMID: 39075910 PMCID: PMC11624886 DOI: 10.4103/nrr.nrr-d-23-01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/02/2024] [Accepted: 04/20/2024] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00026/figure1/v/2024-07-28T173839Z/r/image-tiff Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration, however, few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function. We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis. To investigate whether enhancing MET in adult cortex has synapse regenerating potential, we created a knockin mouse line, in which the human MET gene expression and signaling can be turned on in adult (10-12 months) cortical neurons through doxycycline-containing chow. We found that similar to the developing brain, turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons. These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses. Prolonged MET signaling resulted in an increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-D-aspartate (AMPA/NMDA) receptor current ratio, indicative of enhanced synaptic function and connectivity. Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain. These findings may have implications for regenerative therapy in aging and neurodegeneration conditions.
Collapse
Affiliation(s)
- Yuehua Cui
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Jing Wei
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Chang Chen
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Neha Shakir
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Hitesch Guirram
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Zhiyu Dai
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Trent Anderson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Deveroux Ferguson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| |
Collapse
|
2
|
Migliorini F, Pilone M, Eschweiler J, Katusic D, Memminger MK, Maffulli N. Therapeutic strategies that modulate the acute phase of secondary spinal cord injury scarring and inflammation and improve injury outcomes. Expert Rev Neurother 2025; 25:477-490. [PMID: 40042224 DOI: 10.1080/14737175.2025.2470326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/18/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION The acute phase of secondary spinal cord injury (SCI) is a crucial therapeutic window to mitigate ongoing damage and promote tissue repair. The present systematic review critically evaluates the efficacy and safety of current management modalities for this phase, identifying gaps in knowledge and providing insights for future research directions. METHODS In December 2024, PubMed, Web of Science, Google Scholar, and Embase were accessed with no time constraints. All the clinical studies investigating the pharmacological management of secondary SCI were accessed. RESULTS Data from 3017 patients (385 women) were collected. The mean length of the follow-up was 6 ± 3.4 months, and the mean age of the patients was 43.3 ± 10.3 years. CONCLUSION Erythropoietin (EPO) improves motor function, reduces impairment in secondary spinal cord injury, modulates antioxidation and neurogenesis, and minimizes apoptosis and inflammation. Although commonly administered, methylprednisolone shows uncertain efficacy. The rho-GTPases inhibitor VX-210 and levetiracetam did not demonstrate effectiveness in treatment. Monosialotetrahexosylganglioside Sodium Salt (GM-1) and riluzole are associated with favorable neurological outcomes. Granulocyte Colony-Stimulating Factor (G-CSF) and Hepatocyte Growth Factor (HGF) offer improved motor scores with fewer side effects.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Life Sciences, Health, and Health Professions, Link Campus University, Rome, Italy
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Bolzano, Italy
| | - Marco Pilone
- Residency Program in Orthopaedic and Trauma Surgery, University of Milan, Milan, Italy
| | - Jörg Eschweiler
- Department of Orthopaedic and Trauma Surgery, BG Klinikum Bergmannstrost Halle, Halle, Germany
| | - Dragana Katusic
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Bolzano, Italy
| | - Michael Kurt Memminger
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Bolzano, Italy
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University La Sapienza, Roma, Italy
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Stoke on Trent, UK
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, London, UK
| |
Collapse
|
3
|
Norouzirad R, Zahedi K, Behvandi MM, Moridnia A, Sabbagh S. Mitigation of Methotrexate-Induced Intestinal Mucositis in Male Wistar Rats by Gallic Acid: The Role of HGF and C-Met Genes. J Toxicol 2025; 2025:9990692. [PMID: 40129451 PMCID: PMC11932751 DOI: 10.1155/jt/9990692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/10/2025] [Indexed: 03/26/2025] Open
Abstract
Purpose: Gastrointestinal mucositis (GI-M) is the most common adverse effect of methotrexate (MTX). Gallic acid (GA) is a polyphenolic component rich in green tea, gall nuts, hops, grapes, and oak bark and has anti-inflammatory and antioxidant properties. The aim was to investigate the impact of GA on proinflammatory cytokines, expression level of hepatocyte growth factor (HGF) and C-met genes, and histopathological alterations of MTX-induced GI-M in rats. Methods: Twenty-four male Wistar rats were randomly divided into four groups: control, GA, MTX, and MTX + GA. Mucositis was induced in the experimental groups (MTX and MTX + GA) through three intradermal injections (the third to fifth days) of 2.5 mg/kg MTX in the suprascapular region. The GA group received 100 mg/kg GA via gavage, while the control group received normal saline by gavage (7 continuous days) and via intradermal injection (the third to fifth days) in the suprascapular region. The intestinal jejunal tissue and serum were analyzed for HGF and C-met mRNA expression, as well as levels of tumor necrosis factor-α (TNF-α) and interleukin-1 β (IL-1β). In addition, a histopathological study was to eperformedvaluate the villi of mucosa and fibrosis of submucosal layers. Results: Decreased levels of HGF and C-met gene expression in the MTX group were significantly increased by GA administration (p < 0.05). GA administration decreased the elevated levels of TNF-α and IL-1β (p < 0.001) in the MTX group. Histopathological findings showed an adverse effect of MTX in mucosa which was relatively ameliorated in the MTX + GA ones. Conclusion: GA could increase HGF and C-met expression, decrease inflammatory cytokines, and improve histological injuries, affected by MTX, indicating a beneficial role for GA following GI-M.
Collapse
Affiliation(s)
- Reza Norouzirad
- Department of Biochemistry, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Khashayar Zahedi
- Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran
| | | | - Abbas Moridnia
- Department of Genetics and Molecular Medicine, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
- Infectious and Tropical Diseases Research Center, Dezful University of Medical Sciences, Dezful, Iran
| | - Susan Sabbagh
- Department of Anatomical Science, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
4
|
Shishido-Takahashi N, Garcet S, Cueto I, Miura S, Li X, Rambhia D, Kunjravia N, Hur HB, Lee YI, Ham S, Anis N, Kim J, Krueger JG. Hepatocyte Growth Factor Has Unique Functions in Keratinocytes that Differ from those of IL-17A and TNF and May Contribute to Inflammatory Pathways in Hidradenitis Suppurativa. J Invest Dermatol 2025; 145:536-547.e7. [PMID: 39038532 DOI: 10.1016/j.jid.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024]
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory disease that is difficult to control, and its mechanism remains unclear. Hepatocyte GF (HGF) has been reported to be significantly upregulated in the serum and skin of patients with HS, especially in the lesions with tunnels. In this study, we examined the transcriptome of HGF-treated keratinocytes and compared it with genetic profiling of HS lesions. HGF was highly expressed in HS skin, especially in the deep dermis, compared with that in healthy controls, and its source was mainly fibroblasts. HGF upregulated more genes in keratinocytes than IL-17A or TNF-a, and these genes included multiple epithelial-mesenchymal transition-related genes. Differentially expressed genes in HGF-stimulated keratinocytes were involved in activation of epithelial-mesenchymal transition-related pathways. These HGF-induced genes were significantly upregulated in HS lesions compared with those in healthy skin and nonlesions and were more strongly associated with HS tunnels. In summary, HGF was highly expressed in HS and induced epithelial-mesenchymal transition-related genes in keratinocytes; HGF-induced genes were highly associated with gene profiling of HS with tunnels, suggesting that HGF may be involved in HS tunnel formation through epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Naomi Shishido-Takahashi
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA; Department of Dermatology, The University of Tokyo, Tokyo, Japan
| | - Sandra Garcet
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Inna Cueto
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Shunsuke Miura
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA; Department of Dermatology, The University of Tokyo, Tokyo, Japan
| | - Xuan Li
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Darshna Rambhia
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Norma Kunjravia
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Hong Beom Hur
- Research Bioinformatics, Center for Clinical and Translational Science, The Rockefeller University, New York, New York, USA
| | - Young In Lee
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Seoyoon Ham
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Nabeeha Anis
- West Windsor-Plainsboro High School South, West Windsor, New Jersey, USA
| | - Jaehwan Kim
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA; Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - James G Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA.
| |
Collapse
|
5
|
Bogatkevich GS, Huggins TJ, Ismail AA, Atanelishvili I, Silver RM. Anti-fibrotic effects of thrombin inhibition in systemic sclerosis-associated interstitial lung disease: Proof of concept. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2025:23971983241311625. [PMID: 40013233 PMCID: PMC11851584 DOI: 10.1177/23971983241311625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/12/2024] [Indexed: 02/28/2025]
Abstract
Introduction Activation of the coagulation cascade leading to generation of thrombin is well documented in various forms of lung injury including systemic sclerosis-associated interstitial lung disease (SSc-ILD). We previously demonstrated that the direct thrombin inhibitor dabigatran inhibits thrombin-induced profibrotic signaling in lung fibroblasts isolated from scleroderma patients. The objective of this study was to characterize and compare lung fibroblasts from an SSc-ILD patient at baseline and after dabigatran treatment to ascertain this therapy's differential effects on fibrogenic gene expression. Materials and methods Lung fibroblasts isolated by bronchoalveolar lavage (BAL) from a SSc-ILD patient before and after receiving dabigatran (Pradaxa®) 75 mg twice daily for 6 months (ClinicalTrials.gov Identifier NCT02426229) were analyzed by RNA sequencing, real-time quantitative reverse transcription polymerase chain reaction (qRT)-PCR, and immunofluorescent staining. Results Thrombin inhibition for six-months by oral dabigatran resulted in significantly decreased expression of 708 lung fibroblast genes as compared to basal levels before dabigatran treatment. Using Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, we determined that thrombin-inhibition by dabigatran primarily affected extracellular matrix (ECM) and ECM-related genes. Fibrosis-associated genes, including smooth muscle alpha-actin (SMA, ACTA2), tenascin C, collagen 1 alpha 1 (COL1A1), collagen 3 alpha1 (COL3A1), collagen 8 alpha 2 (COL8A2), collagen 10 alpha 1 (COL10A1), collagen 5 alpha 1 (COL5A1), fibronectin 1, connective tissue growth factor (CTGF), and procollagen-lysine-2-oxoglutarate-5-dioxygenase-2 (PLOD2) were all significantly down regulated following thrombin inhibition by dabigatran treatment. Real-time qRT-PCR and immunofluorescent staining confirmed significant downregulation of the selected genes at the mRNA and protein levels. Conclusion Inhibition of thrombin in this SSc-ILD patient treated with low-dose dabigatran etexilate downregulated profibrotic proteins in lung fibroblasts, providing further support for the use of thrombin inhibitors as a therapeutic approach for the treatment of patients with SSc-ILD.
Collapse
Affiliation(s)
| | | | - Ahmed A Ismail
- Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
6
|
Banu S, Anusha PV, Mandal K, Idris MM. Exploration of phosphoproteomic association during epimorphic regeneration. Sci Rep 2025; 15:4854. [PMID: 39924536 PMCID: PMC11808059 DOI: 10.1038/s41598-024-84735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/26/2024] [Indexed: 02/11/2025] Open
Abstract
Unravelling the intricate patterns of site-specific protein phosphorylation during Epimorphic regeneration holds the key to unlocking the secrets of tissue complexity. Understanding these precise modifications and their impact on protein function could shed light on the remarkable regenerative capacity of tissues, with potential implications for therapeutic interventions. In this study we have systematically mapped the global phosphorylation modifications within regenerating tissue of zebrafish caudal fins, elucidating the intricate landscape of signalling pathway associate with the regeneration process. Based on mass spectrometry analysis, we identified 440 phosphorylated proteins using the immunoprecipitation method with phosphoserine, phosphothreonine, and phosphotyrosine antibodies, and 74 phosphorylated proteins using the TiO₂ column enrichment method were found differentially phosphorylated during the regeneration process from 12 hpa to 7 dpa compared to the control. Interestingly 95% of the proteins identified from TiO2 enrichment method were also found to be identified through the phosphoprotein antibody pull down method impacting the high accuracy and significance of the methods and greater association of the 70 proteins undergoing differential phosphorylation during the process of regeneration. Whole mount immunohistochemistry analysis reveals high association of phosphorylation at 1dpa, 2dpa and 3dpa regeneration time points. Network pathway analysis revealed that cancer-related diseases, organismal injuries and abnormalities as the most strongly associated canonical network pathways with the differentially expressed phosphoproteome in the mechanism of regeneration. This research enhances our comprehension on protein post-translational modification in the context of zebrafish caudal fin tissue regeneration, shedding light on its prospective application in the field of regenerative medicine.
Collapse
|
7
|
Cerqua M, Foiani M, Boccaccio C, Comoglio PM, Altintas DM. The integrated stress response drives MET oncogene overexpression in cancers. EMBO J 2025; 44:1107-1130. [PMID: 39774381 PMCID: PMC11832788 DOI: 10.1038/s44318-024-00338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/09/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer cells rely on invasive growth to survive in a hostile microenvironment; this growth is characterised by interconnected processes such as epithelial-to-mesenchymal transition and migration. A master regulator of these events is the MET oncogene, which is overexpressed in the majority of cancers; however, since mutations in the MET oncogene are seen only rarely in cancers and are relatively infrequent, the mechanisms that cause this widespread MET overexpression remain obscure. Here, we show that the 5' untranslated region (5'UTR) of MET mRNA harbours two functional stress-responsive elements, conferring translational regulation by the integrated stress response (ISR), regulated by phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) at serine 52. ISR activation by serum starvation, leucine deprivation, hypoxia, irradiation, thapsigargin or gemcitabine is followed by MET protein overexpression. We mechanistically link MET translation to the ISR by (i) mutation of the two uORFs within the MET 5'UTR, (ii) CRISPR/Cas9-mediated mutation of eIF2α (S52A), or (iii) the application of ISR pathway inhibitors. All of these interventions reduce stress-induced MET overexpression. Finally, we show that blocking stress-induced MET translation blunts MET-dependent invasive growth. These findings indicate that upregulation of the MET oncogene is a functional requirement linking integrated stress response to cancer progression.
Collapse
Affiliation(s)
- Marina Cerqua
- IFOM ETS-The AIRC Institute of Molecular Oncology, 20139, Milano, Italy
| | - Marco Foiani
- IFOM ETS-The AIRC Institute of Molecular Oncology, 20139, Milano, Italy
| | - Carla Boccaccio
- Candiolo Cancer Institute, 10060 Candiolo, Torino, Italy
- Department of Oncology, University of Torino, 10100, Torino, Italy
| | - Paolo M Comoglio
- IFOM ETS-The AIRC Institute of Molecular Oncology, 20139, Milano, Italy.
| | - Dogus M Altintas
- IFOM ETS-The AIRC Institute of Molecular Oncology, 20139, Milano, Italy.
| |
Collapse
|
8
|
Hernandez-Padilla L, Duran-Maldonado MX, Martinez-Alcantar L, Rodriguez-Zavala JS, Campos-Garcia J. The HGF/Met Receptor Mediates Cytotoxic Effect of Bacterial Cyclodipeptides in Human Cervical Cancer Cells. Curr Cancer Drug Targets 2025; 25:230-243. [PMID: 38629372 DOI: 10.2174/0115680096285034240323035013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/10/2024] [Accepted: 03/01/2024] [Indexed: 02/26/2025]
Abstract
BACKGROUND Human cervix adenocarcinoma (CC) caused by papillomavirus is the third most common cancer among female malignant tumors. Bioactive compounds such as cyclodipeptides (CDPs) possess cytotoxic effects in human cervical cancer HeLa cells mainly by blocking the PI3K/Akt/mTOR pathway and subsequently inducing gene expression by countless transcription regulators. However, the upstream elements of signaling pathways have not been well studied. METHODS To elucidate the cytotoxic and antiproliferative responses of the HeLa cell line to CDPs by a transcriptomic analysis previously carried out, we identified by immunochemical analyses, differential expression of genes related to the hepatocyte growth factor/mesenchymal-epithelial transition factor (HGF/MET) receptors. Furthermore, molecular docking was carried out to evaluate the interactions of CDPs with the EGF and MET substrate binding sites. RESULTS Immunochemical and molecular docking analyses suggest that the HGF/MET receptor participation in CDPs cytotoxic effect was independent of the protein expression levels. However, protein modulation of downstream Met-targets occurred due to the inhibition of phosphorylation of the HGF/MET receptor. Results suggest that the antiproliferative and cytotoxicity of CDPs in HeLa cells involve the HGF/MET receptor upstream of PI3K/Akt/mTOR pathway; assays with the human breast cancer MCF-7 and MDA-MB-231cell lines supported the finding. CONCLUSION Data provide new insights into the molecular mechanisms involved in CDPs cytotoxicity and antiproliferative effects, suggesting that the signal transduction mechanism may be related to the inhibition of the phosphorylation of the EGF/MET receptor at the level of substrate binding site by an inhibition mechanism similar to that of Gefitinib and Foretinib anti-neoplastic drugs.
Collapse
Affiliation(s)
- Laura Hernandez-Padilla
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich, México
| | - Mayra X Duran-Maldonado
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich, México
| | - Lorena Martinez-Alcantar
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich, México
| | | | - Jesus Campos-Garcia
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich, México
| |
Collapse
|
9
|
Nam YH, Kim JS, Yum Y, Yoon J, Song H, Kim HJ, Lim J, Park S, Jung SC. Application of Mesenchymal Stem Cell-Derived Schwann Cell-like Cells Spared Neuromuscular Junctions and Enhanced Functional Recovery After Peripheral Nerve Injury. Cells 2024; 13:2137. [PMID: 39768225 PMCID: PMC11674609 DOI: 10.3390/cells13242137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
In general, the nerve cells of the peripheral nervous system regenerate normally within a certain period after the physical damage of their axon. However, when peripheral nerves are transected by trauma or tissue extraction for cancer treatment, spontaneous nerve regeneration cannot occur. Therefore, it is necessary to perform microsurgery to connect the transected nerve directly or insert a nerve conduit to connect it. In this study, we applied human tonsillar mesenchymal stem cell (TMSC)-derived Schwann cell-like cells (TMSC-SCs) to facilitate nerve regeneration and prevent muscle atrophy after neurorrhaphy. The TMSC-SCs were manufactured in a good manufacturing practice facility and termed neuronal regeneration-promoting cells (NRPCs). A rat model of peripheral nerve injury (PNI) was generated and a mixture of NRPCs and fibrin glue was transplanted into the injured nerve after neurorrhaphy. The application of NRPCs and fibrin glue led to the efficient induction of sciatic nerve regeneration, with the sparing of gastrocnemius muscles and neuromuscular junctions. This sparing effect of NRPCs toward neuromuscular junctions might prevent muscle atrophy after neurorrhaphy. These results suggest that a mixture of NRPCs and fibrin glue may be a therapeutic candidate to enable peripheral nerve and muscle regeneration in the context of neurorrhaphy in patients with PNI.
Collapse
Affiliation(s)
- Yu Hwa Nam
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
| | - Ji-Sup Kim
- Department of Orthopaedic Surgery, College of Medicine, Seoul Hospital, Ewha Womans University, Seoul 07804, Republic of Korea;
| | - Yoonji Yum
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
| | - Juhee Yoon
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
| | - Hyeryung Song
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
| | - Ho-Jin Kim
- Cellatoz Therapeutics Inc., Seongnam 13487, Republic of Korea; (H.-J.K.); (J.L.)
| | - Jaeseung Lim
- Cellatoz Therapeutics Inc., Seongnam 13487, Republic of Korea; (H.-J.K.); (J.L.)
| | - Saeyoung Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Republic of Korea
| |
Collapse
|
10
|
Tsai YF, Fang MC, Chen CH, Yu IS, Shun CT, Tao MH, Sun CP, Lu J, Sheu JC, Hsu YC, Lin SW. Enhancement of adult liver regeneration in mice through the hepsin-mediated epidermal growth factor receptor signaling pathway. Commun Biol 2024; 7:1672. [PMID: 39702454 DOI: 10.1038/s42003-024-07357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Given the widespread use of partial hepatectomy for treating various liver pathologies, understanding the mechanisms of liver regeneration is vital for enhancing liver resection and transplantation therapies. Here, we demonstrate the critical role of the serine protease Hepsin in promoting hepatocyte hypertrophy and proliferation. Under steady-state conditions, liver-specific overexpression of Hepsin in adult wild-type mice triggers hepatocyte hypertrophy and proliferation, significantly increasing liver size. This effect is predominantly driven by the catalytic activity of Hepsin, engaging the EGFR-Raf-MEK-ERK signaling pathway. Significantly, administering Hepsin substantially enhances hepatocyte proliferation and facilitates liver regeneration following a 70% partial hepatectomy. Crucially, the proliferation induced by Hepsin is a transient event, without leading to long-term adverse effects such as liver fibrosis or hepatocellular carcinoma, as evidenced by extensive observation. These results offer substantial potential for future clinical applications and translational research endeavors in the field of liver regeneration post-hepatectomy.
Collapse
Affiliation(s)
- Yu-Fei Tsai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mo-Chu Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Hung Chen
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Tung Shun
- Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pathology, Good Liver Clinic, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mi-Hua Tao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Pu Sun
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jean Lu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jin-Chuan Sheu
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
| | - Yu-Chen Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan.
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
11
|
Zhang G, Yue S, Geng H, Wang XY, Tian T, Cui Z, Bi S. Tumor Cell-Specific Signal Processing Platform Controlled by ATP for Non-invasive Modulation of Cellular Behavior. NANO LETTERS 2024; 24:14829-14837. [PMID: 39527480 DOI: 10.1021/acs.nanolett.4c04445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Regulating the spatial distribution of membrane receptors can artificially reprogram cellular behaviors, which play a critical biological role in various physiological and pathological processes. Herein, we construct a tumor cell-specific signal processing platform (TCS-SPP) for controlled promotion/inhibition of cellular-mesenchymal epithelial transition factor (c-Met) receptor dimerization to noninvasively modulate cellular behaviors. Upon the dual-aptamer recognition in the upstream input signal circuit (UISC) to discriminate target cancer cells, the membrane-anchored DNA signal processor (DSP) is activated for signal amplification via rolling circle amplification (RCA) followed by the working of an ATP molecular switch for signal conversion, achieving receptor modulation in the downstream output signal circuit (DOSC). Benefiting from the rigid structure of DSP, the protective effect, and spatial confinement effect of RCA products, this TCS-SPP has demonstrated good performance in accurately modulating cellular behavior such as cell migration, invasion, and proliferation, showing great potential for targeted cancer therapy and biomedical engineering applications.
Collapse
Affiliation(s)
- Guofang Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, P. R. China
| | - Shuzhen Yue
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, P. R. China
| | - Hongyan Geng
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Xin-Yan Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Tian Tian
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, P. R. China
| | - Zhumei Cui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, P. R. China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
12
|
Hu Y, Chen H, Yang M, Xu J, Liu J, He Q, Xu X, Ji Z, Yang Y, Yan M, Zhang H. Hepatocyte growth factor facilitates the repair of spinal cord injuries by driving the chemotactic migration of mesenchymal stem cells through the β-catenin/TCF4/Nedd9 signaling pathway. Stem Cells 2024; 42:957-975. [PMID: 39269318 DOI: 10.1093/stmcls/sxae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
Transplanted mesenchymal stem cells (MSCs) can significantly aid in repairing spinal cord injuries (SCIs) by migrating to and settling at the injury site. However, this process is typically inefficient, as only a small fraction of MSCs successfully reach the target lesion area. During SCI, the increased expression and secretion of hepatocyte growth factor (HGF) act as a chemoattractant that guides MSC migration. Nonetheless, the precise mechanisms by which HGF influences MSC migration are not fully understood. This study focused on unraveling the molecular pathways that drive MSC migration toward the SCI site in response to HGF. It was found that HGF can activate β-catenin signaling in MSCs by either phosphorylating LRP6, suppressing GSK3β phosphorylation through the AKT and ERK1/2 pathways, or enhancing the expression and nuclear translocation of TCF4. This activation leads to elevated Nedd9 expression, which promotes focal adhesion formation and F-actin polymerization, facilitating chemotactic migration. Transplanting MSCs during peak HGF expression in injured tissues substantially improves nerve regeneration, reduces scarring, and enhances hind limb mobility. Additionally, prolonging HGF release can further boost MSC migration and engraftment, thereby amplifying regenerative outcomes. However, inhibiting HGF/Met or interfering with β-catenin or Nedd9 signaling significantly impairs MSC engraftment, obstructing tissue repair and functional recovery. Together, these findings provide a theoretical basis and practical strategy for MSC transplantation therapy in SCI, highlighting the specific molecular mechanisms by which HGF regulates β-catenin signaling in MSCs, ultimately triggering their chemotactic migration.
Collapse
Affiliation(s)
- Ya'nan Hu
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Huanhuan Chen
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, People's Republic of China
- Clinical Medicine Research Center, The Suqian Clinical College of Xuzhou Medical University, Suqian 223800, People's Republic of China
| | - Min Yang
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Jianwei Xu
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Jinming Liu
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Qisheng He
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaojing Xu
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Zhongqing Ji
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Ying Yang
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Mengwen Yan
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Huanxiang Zhang
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
13
|
Tanaka S, Elgaabari A, Seki M, Kuwakado S, Zushi K, Miyamoto J, Sawano S, Mizunoya W, Ehara K, Watanabe N, Ogawa Y, Imakyure H, Fujimaru R, Osaki R, Shitamitsu K, Mizoguchi K, Ushijima T, Maeno T, Nakashima T, Suzuki T, Nakamura M, Anderson JE, Tatsumi R. In vitro immuno-prevention of nitration/dysfunction of myogenic stem cell activator HGF, towards developing a strategy for age-related muscle atrophy. Aging Cell 2024; 23:e14337. [PMID: 39297318 PMCID: PMC11464115 DOI: 10.1111/acel.14337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 10/11/2024] Open
Abstract
In response to peroxynitrite (ONOO-) generation, myogenic stem satellite cell activator HGF (hepatocyte growth factor) undergoes nitration of tyrosine residues (Y198 and Y250) predominantly on fast IIa and IIx myofibers to lose its binding to the signaling receptor c-met, thereby disturbing muscle homeostasis during aging. Here we show that rat anti-HGF monoclonal antibody (mAb) 1H41C10, which was raised in-house against a synthetic peptide FTSNPEVRnitroY198EV, a site well-conserved in mammals, functions to confer resistance to nitration dysfunction on HGF. 1H41C10 was characterized by recognizing both nitrated and non-nitrated HGF with different affinities as revealed by Western blotting, indicating that the paratope of 1H41C10 may bind to the immediate vicinity of Y198. Subsequent experiments showed that 1H41C10-bound HGF resists peroxynitrite-induced nitration of Y198. A companion mAb-1H42F4 presented similar immuno-reactivity, but did not protect Y198 nitration, and thus served as the control. Importantly, 1H41C10-HGF also withstood Y250 nitration to retain c-met binding and satellite cell activation functions in culture. The Fab region of 1H41C10 exerts resistivity to Y250 nitration possibly due to its localization in the immediate vicinity to Y250, as supported by an additional set of experiments showing that the 1H41C10-Fab confers Y250-nitration resistance which the Fc segment does not. Findings highlight the in vitro preventive impact of 1H41C10 on HGF nitration-dysfunction that strongly impairs myogenic stem cell dynamics, potentially pioneering cogent strategies for counteracting or treating age-related muscle atrophy with fibrosis (including sarcopenia and frailty) and the therapeutic application of investigational HGF drugs.
Collapse
Affiliation(s)
- Sakiho Tanaka
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Alaa Elgaabari
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
- Department of Physiology, Faculty of Veterinary MedicineKafrelsheikh UniversityKafrelsheikhEgypt
| | - Miyumi Seki
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - So Kuwakado
- Department of Orthopaedic Surgery, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kahona Zushi
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Junri Miyamoto
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Shoko Sawano
- Department of Food and Life Science, School of Life and Environmental ScienceAzabu UniversitySagamiharaJapan
| | - Wataru Mizunoya
- Department of Animal Science and Biotechnology, School of Veterinary MedicineAzabu UniversitySagamiharaJapan
| | - Kenshiro Ehara
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Naruha Watanabe
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Yohei Ogawa
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Hikaru Imakyure
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Reina Fujimaru
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Rika Osaki
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Kazuki Shitamitsu
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Kaoru Mizoguchi
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Tomoki Ushijima
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Takahiro Maeno
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Takashi Nakashima
- Department of Bioscience and Biotechnology, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Mako Nakamura
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Judy E. Anderson
- Department of Biological Sciences, Faculty of ScienceUniversity of ManitobaWinnipegManitobaCanada
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| |
Collapse
|
14
|
Jung S, Cheong S, Lee Y, Lee J, Lee J, Kwon MS, Oh YS, Kim T, Ha S, Kim SJ, Jo DH, Ko J, Jeon NL. Integrating Vascular Phenotypic and Proteomic Analysis in an Open Microfluidic Platform. ACS NANO 2024; 18:24909-24928. [PMID: 39208278 PMCID: PMC11394367 DOI: 10.1021/acsnano.4c05537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
This research introduces a vascular phenotypic and proteomic analysis (VPT) platform designed to perform high-throughput experiments on vascular development. The VPT platform utilizes an open-channel configuration that facilitates angiogenesis by precise alignment of endothelial cells, allowing for a 3D morphological examination and protein analysis. We study the effects of antiangiogenic agents─bevacizumab, ramucirumab, cabozantinib, regorafenib, wortmannin, chloroquine, and paclitaxel─on cytoskeletal integrity and angiogenic sprouting, observing an approximately 50% reduction in sprouting at higher drug concentrations. Precise LC-MS/MS analyses reveal global protein expression changes in response to four of these drugs, providing insights into the signaling pathways related to the cell cycle, cytoskeleton, cellular senescence, and angiogenesis. Our findings emphasize the intricate relationship between cytoskeletal alterations and angiogenic responses, underlining the significance of integrating morphological and proteomic data for a comprehensive understanding of angiogenesis. The VPT platform not only advances our understanding of drug impacts on vascular biology but also offers a versatile tool for analyzing proteome and morphological features across various models beyond blood vessels.
Collapse
Affiliation(s)
- Sangmin Jung
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Sunghun Cheong
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Yoonho Lee
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Jungseub Lee
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Jihye Lee
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
| | - Min-Seok Kwon
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
- Department
of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Sun Oh
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
| | - Taewan Kim
- Department
of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungjae Ha
- ProvaLabs,
Inc., Seoul 08826, Republic of Korea
| | - Sung Jae Kim
- Department
of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
- SOFT
Foundry, Seoul National University, Seoul 08826, Republic of Korea
- Inter-university
Semiconductor Research Center, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Dong Hyun Jo
- Department
of Anatomy and Cell Biology, Seoul National
University College of Medicine, Seoul 03080, Republic of Korea
| | - Jihoon Ko
- Department
of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic
of Korea
| | - Noo Li Jeon
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Institute
of Advanced Machines and Design, Seoul National
University, Seoul 08826, Republic
of Korea
- Qureator, Inc., San
Diego, California 92121, United States
| |
Collapse
|
15
|
Tratnig-Frankl M, Luft N, Magistro G, Priglinger S, Ohlmann A, Kassumeh S. Hepatocyte Growth Factor Modulates Corneal Endothelial Wound Healing In Vitro. Int J Mol Sci 2024; 25:9382. [PMID: 39273330 PMCID: PMC11395100 DOI: 10.3390/ijms25179382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
In this study, we assessed the impact of hepatocyte growth factor (HGF) on corneal endothelial cells (CECs), finding that HGF concentrations of 100-250 ng/mL significantly increased CEC proliferation by 30%, migration by 32% and improved survival under oxidative stress by 28% compared to untreated controls (p < 0.05). The primary objective was to identify non-fibrotic pharmacological strategies to enhance corneal endothelial regeneration, addressing a critical need in conditions like Fuchs' endothelial dystrophy (FED), where donor tissue is scarce. To confirm the endothelial nature of the cultured CECs, Na+/K+-ATPase immunohistochemistry was performed. Proliferation rates were determined through BrdU incorporation assays, while cell migration was assessed via scratch assays. Cell viability was evaluated under normal and oxidative stress conditions using WST-1 assays. To ensure that HGF treatment did not trigger epithelial-mesenchymal transition, which could lead to undesirable fibrotic changes, α-SMA staining was conducted. These comprehensive methodologies provided robust data on the effects of HGF, confirming its potential as a therapeutic agent for corneal endothelial repair without inducing harmful EMT, as indicated by the absence of α-SMA expression. These findings suggest that HGF holds therapeutic promise for enhancing corneal endothelial repair, warranting further investigation in in vivo models to confirm its clinical applicability.
Collapse
Affiliation(s)
- Merle Tratnig-Frankl
- Department of Ophthalmology, LMU University Hospital, Ludwig-Maximilians University Munich, Mathildenstrasse 8, 80336 Munich, Germany
- Department of Ophthalmology and Optometry, Medical University Vienna, AKH Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Nikolaus Luft
- Department of Ophthalmology, LMU University Hospital, Ludwig-Maximilians University Munich, Mathildenstrasse 8, 80336 Munich, Germany
| | - Guiseppe Magistro
- Department of Urology, Asklepios Westklinikum Hamburg GmbH, Suurheid 20, 22559 Hamburg, Germany
| | - Siegfried Priglinger
- Department of Ophthalmology, LMU University Hospital, Ludwig-Maximilians University Munich, Mathildenstrasse 8, 80336 Munich, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology, LMU University Hospital, Ludwig-Maximilians University Munich, Mathildenstrasse 8, 80336 Munich, Germany
| | - Stefan Kassumeh
- Department of Ophthalmology, LMU University Hospital, Ludwig-Maximilians University Munich, Mathildenstrasse 8, 80336 Munich, Germany
| |
Collapse
|
16
|
Reda SM, Setti SE, Berthiaume AA, Wu W, Taylor RW, Johnston JL, Stein LR, Moebius HJ, Church KJ. Fosgonimeton attenuates amyloid-beta toxicity in preclinical models of Alzheimer's disease. Neurotherapeutics 2024; 21:e00350. [PMID: 38599894 PMCID: PMC11067346 DOI: 10.1016/j.neurot.2024.e00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/12/2024] Open
Abstract
Positive modulation of hepatocyte growth factor (HGF) signaling may represent a promising therapeutic strategy for Alzheimer's disease (AD) based on its multimodal neurotrophic, neuroprotective, and anti-inflammatory effects addressing the complex pathophysiology of neurodegeneration. Fosgonimeton is a small-molecule positive modulator of the HGF system that has demonstrated neurotrophic and pro-cognitive effects in preclinical models of dementia. Herein, we evaluate the neuroprotective potential of fosgonimeton, or its active metabolite, fosgo-AM, in amyloid-beta (Aβ)-driven preclinical models of AD, providing mechanistic insight into its mode of action. In primary rat cortical neurons challenged with Aβ (Aβ1-42), fosgo-AM treatment significantly improved neuronal survival, protected neurite networks, and reduced tau hyperphosphorylation. Interrogation of intracellular events indicated that cortical neurons treated with fosgo-AM exhibited a significant decrease in mitochondrial oxidative stress and cytochrome c release. Following Aβ injury, fosgo-AM significantly enhanced activation of pro-survival effectors ERK and AKT, and reduced activity of GSK3β, one of the main kinases involved in tau hyperphosphorylation. Fosgo-AM also mitigated Aβ-induced deficits in Unc-like kinase 1 (ULK1) and Beclin-1, suggesting a potential effect on autophagy. Treatment with fosgo-AM protected cortical neurons from glutamate excitotoxicity, and such effects were abolished in the presence of an AKT or MEK/ERK inhibitor. In vivo, fosgonimeton administration led to functional improvement in an intracerebroventricular Aβ25-35 rat model of AD, as it significantly rescued cognitive function in the passive avoidance test. Together, our data demonstrate the ability of fosgonimeton to counteract mechanisms of Aβ-induced toxicity. Fosgonimeton is currently in clinical trials for mild-to-moderate AD (NCT04488419; NCT04886063).
Collapse
Affiliation(s)
- Sherif M Reda
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Sharay E Setti
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | | | - Wei Wu
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Robert W Taylor
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Jewel L Johnston
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Liana R Stein
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Hans J Moebius
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Kevin J Church
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA.
| |
Collapse
|
17
|
Wu S, Shang X, Guo M, Su L, Wang J. Exosomes in the Diagnosis of Neuropsychiatric Diseases: A Review. BIOLOGY 2024; 13:387. [PMID: 38927267 PMCID: PMC11200774 DOI: 10.3390/biology13060387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Exosomes are 30-150 nm small extracellular vesicles (sEVs) which are highly stable and encapsulated by a phospholipid bilayer. Exosomes contain proteins, lipids, RNAs (mRNAs, microRNAs/miRNAs, long non-coding RNAs/lncRNAs), and DNA of their parent cell. In pathological conditions, the composition of exosomes is altered, making exosomes a potential source of biomarkers for disease diagnosis. Exosomes can cross the blood-brain barrier (BBB), which is an advantage for using exosomes in the diagnosis of central nervous system (CNS) diseases. Neuropsychiatric diseases belong to the CNS diseases, and many potential diagnostic markers have been identified for neuropsychiatric diseases. Here, we review the potential diagnostic markers of exosomes in neuropsychiatric diseases and discuss the potential application of exosomal biomarkers in the early and accurate diagnosis of these diseases. Additionally, we outline the limitations and future directions of exosomes in the diagnosis of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Song Wu
- Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan 430068, China; (S.W.); (X.S.); (M.G.)
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Xinmiao Shang
- Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan 430068, China; (S.W.); (X.S.); (M.G.)
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Meng Guo
- Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan 430068, China; (S.W.); (X.S.); (M.G.)
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Lei Su
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China;
| | - Jun Wang
- Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan 430068, China; (S.W.); (X.S.); (M.G.)
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
18
|
Elgaabari A, Imatomi N, Kido H, Nakashima T, Okuda S, Manabe Y, Sawano S, Mizunoya W, Kaneko R, Tanaka S, Maeno T, Matsuyoshi Y, Seki M, Kuwakado S, Zushi K, Daneshvar N, Nakamura M, Suzuki T, Sunagawa K, Anderson JE, Allen RE, Tatsumi R. Age-related nitration/dysfunction of myogenic stem cell activator HGF. Aging Cell 2024; 23:e14041. [PMID: 37985931 PMCID: PMC10861216 DOI: 10.1111/acel.14041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023] Open
Abstract
Mechanical perturbation triggers activation of resident myogenic stem cells to enter the cell cycle through a cascade of events including hepatocyte growth factor (HGF) release from its extracellular tethering and the subsequent presentation to signaling-receptor c-met. Here, we show that with aging, extracellular HGF undergoes tyrosine-residue (Y) nitration and loses c-met binding, thereby disturbing muscle homeostasis. Biochemical studies demonstrated that nitration/dysfunction is specific to HGF among other major growth factors and is characterized by its locations at Y198 and Y250 in c-met-binding domains. Direct-immunofluorescence microscopy of lower hind limb muscles from three age groups of rat, provided direct in vivo evidence for age-related increases in nitration of ECM-bound HGF, preferentially stained for anti-nitrated Y198 and Y250-HGF mAbs (raised in-house) in fast IIa and IIx myofibers. Overall, findings highlight inhibitory impacts of HGF nitration on myogenic stem cell dynamics, pioneering a cogent discussion for better understanding age-related muscle atrophy and impaired regeneration with fibrosis (including sarcopenia and frailty).
Collapse
Affiliation(s)
- Alaa Elgaabari
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
- Department of Physiology, Faculty of Veterinary MedicineKafrelsheikh UniversityKafrelsheikhEgypt
| | - Nana Imatomi
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Hirochika Kido
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Takashi Nakashima
- Department of Bioscience and Biotechnology, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Shoko Okuda
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Yoshitaka Manabe
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Shoko Sawano
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
- Present address:
Department of Food and Life Science, School of Life and Environmental ScienceAzabu UniversitySagamiharaJapan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
- Present address:
Department of Animal Science and Biotechnology, School of Veterinary MedicineAzabu UniversitySagamiharaJapan
| | - Ryuki Kaneko
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Sakiho Tanaka
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Takahiro Maeno
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Yuji Matsuyoshi
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Miyumi Seki
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - So Kuwakado
- Department of Orthopaedic Surgery, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kahona Zushi
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Nasibeh Daneshvar
- Department of Biological Sciences, Faculty of ScienceUniversity of ManitobaWinnipegManitobaCanada
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Kenji Sunagawa
- Department of Cardiovascular Medicine, Graduate School of MedicineKyushu UniversityFukuokaJapan
| | - Judy E. Anderson
- Department of Biological Sciences, Faculty of ScienceUniversity of ManitobaWinnipegManitobaCanada
| | - Ronald E. Allen
- The School of Animal and Comparative Biomedical SciencesUniversity of ArizonaTucsonArizonaUSA
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| |
Collapse
|
19
|
Mi X, Chen C, Feng C, Qin Y, Chen ZJ, Yang Y, Zhao S. The Functions and Application Prospects of Hepatocyte Growth Factor in Reproduction. Curr Gene Ther 2024; 24:347-355. [PMID: 39005061 DOI: 10.2174/0115665232291010240221104445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 07/16/2024]
Abstract
Hepatocyte growth factor (HGF) is expressed in multiple systems and mediates a variety of biological activities, such as mitosis, motility, and morphogenesis. A growing number of studies have revealed the expression patterns and functions of HGF in ovarian and testicular physiology from the prenatal to the adult stage. HGF regulates folliculogenesis and steroidogenesis by modulating the functions of theca cells and granulosa cells in the ovary. It also mediates somatic cell proliferation and steroidogenesis, thereby affecting spermatogenesis in males. In addition to its physiological effects on the reproductive system, HGF has shown advantages in preclinical studies over recent years for the treatment of male and female infertility, particularly in women with premature ovarian insufficiency. This review aims to summarize the pleiotropic functions of HGF in the reproductive system and to provide prospects for its clinical application.
Collapse
Affiliation(s)
- Xin Mi
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Caiyi Chen
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Chen Feng
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Yingying Qin
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Zi-Jiang Chen
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring (No.2021RU001), Chinese Academy of Medical Sciences, Jinan, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yajuan Yang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Shidou Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| |
Collapse
|
20
|
Nakamoto Y, Nakamura T, Nakai R, Azuma T, Omori K. Transplantation of autologous bone marrow-derived mononuclear cells into cerebrospinal fluid in a canine model of spinal cord injury. Regen Ther 2023; 24:574-581. [PMID: 38028937 PMCID: PMC10654139 DOI: 10.1016/j.reth.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Spinal cord injury (SCI) is associated with severe dysfunction of nervous tissue, and repair via the transplantation of bone marrow-derived mononuclear cells (BM-MNCs) into cerebrospinal fluid yields promising results. It is essential to understand the underlying mechanisms; therefore, this study aimed to evaluate the regenerative potential of autologous BM-MNC transplantation in a canine model of acute SCI. Methods Six dogs were included in this study, and SCI was induced using an epidural balloon catheter between L2 and L3, particularly in the area of the anterior longitudinal ligament. BM-MNC transplantation was performed, and T2-weighted magnetic resonance imaging (MRI) was conducted at specific time points (i.e., immediately after inducing SCI and at 1, 2, and 4 weeks after inducing SCI); moreover, the expression of growth-associated protein 43 (GAP-43) was evaluated. Results MRI revealed that the signal intensity reduced over time in both BM-MNC-treated and control groups. However, the BM-MNC-treated group exhibited a significantly faster reduction than the control group during the early stages of SCI induction (BM-MNC-treated group: 4.82 ± 0.135 cm [day 0], 1.71 ± 0.134 cm [1 week], 1.37 ± 0.036 cm [2 weeks], 1.21 cm [4 weeks]; control group: 4.96 ± 0.211 cm [day 0], 2.49 ± 0.570 cm [1 week], 1.56 ± 0.045 cm [2 weeks], 1.32 cm [4 weeks]). During the early stages of treatment, GAP-43 was significantly expressed at the proximal end of the injured spinal cord in the BM-MSC-treated group, whereas it was scarcely expressed in the control group. Conclusions In SCI, transplanted BM-MNCs can activate the expression of GAP-43, which is involved in axonal elongation (an important process in spinal cord regeneration). Thus, cell therapy with BM-MNCs can provide favorable outcomes in terms of better regenerative capabilities compared with other therapies.
Collapse
Affiliation(s)
- Yuya Nakamoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Regeneration Science and Engineering Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Neuro Vets Animal Neurology Clinic, Kyoto, Japan
- Laboratory of Veterinary Surgery, Department of Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Veterinary Medical Center, Osaka Prefecture University, Osaka, Japan
| | - Tatsuo Nakamura
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Regeneration Science and Engineering Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryusuke Nakai
- Institute for the Future of Human Society, Kyoto University, Kyoto, Japan
| | - Takashi Azuma
- Department of Regeneration Science and Engineering Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Sani F, Sani M, Moayedfard Z, Darayee M, Tayebi L, Azarpira N. Potential advantages of genetically modified mesenchymal stem cells in the treatment of acute and chronic liver diseases. Stem Cell Res Ther 2023; 14:138. [PMID: 37226279 DOI: 10.1186/s13287-023-03364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Liver damage caused by toxicity can lead to various severe conditions, such as acute liver failure (ALF), fibrogenesis, and cirrhosis. Among these, liver cirrhosis (LC) is recognized as the leading cause of liver-related deaths globally. Unfortunately, patients with progressive cirrhosis are often on a waiting list, with limited donor organs, postoperative complications, immune system side effects, and high financial costs being some of the factors restricting transplantation. Although the liver has some capacity for self-renewal due to the presence of stem cells, it is usually insufficient to prevent the progression of LC and ALF. One potential therapeutic approach to improving liver function is the transplantation of gene-engineered stem cells. Several types of mesenchymal stem cells from various sources have been suggested for stem cell therapy for liver disease. Genetic engineering is an effective strategy that enhances the regenerative potential of stem cells by releasing growth factors and cytokines. In this review, we primarily focus on the genetic engineering of stem cells to improve their ability to treat damaged liver function. We also recommend further research into accurate treatment methods that involve safe gene modification and long-term follow-up of patients to increase the effectiveness and reliability of these therapeutic strategies.
Collapse
Affiliation(s)
- Farnaz Sani
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Sani
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Moayedfard
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Darayee
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili Street, P.O. Box: 7193711351, Shiraz, Iran.
| |
Collapse
|
22
|
Sterner RC, Sterner RM. Immune response following traumatic spinal cord injury: Pathophysiology and therapies. Front Immunol 2023; 13:1084101. [PMID: 36685598 PMCID: PMC9853461 DOI: 10.3389/fimmu.2022.1084101] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition that is often associated with significant loss of function and/or permanent disability. The pathophysiology of SCI is complex and occurs in two phases. First, the mechanical damage from the trauma causes immediate acute cell dysfunction and cell death. Then, secondary mechanisms of injury further propagate the cell dysfunction and cell death over the course of days, weeks, or even months. Among the secondary injury mechanisms, inflammation has been shown to be a key determinant of the secondary injury severity and significantly worsens cell death and functional outcomes. Thus, in addition to surgical management of SCI, selectively targeting the immune response following SCI could substantially decrease the progression of secondary injury and improve patient outcomes. In order to develop such therapies, a detailed molecular understanding of the timing of the immune response following SCI is necessary. Recently, several studies have mapped the cytokine/chemokine and cell proliferation patterns following SCI. In this review, we examine the immune response underlying the pathophysiology of SCI and assess both current and future therapies including pharmaceutical therapies, stem cell therapy, and the exciting potential of extracellular vesicle therapy.
Collapse
Affiliation(s)
- Robert C. Sterner
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Rosalie M. Sterner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States,*Correspondence: Rosalie M. Sterner,
| |
Collapse
|
23
|
Zhao J, Birjandi AA, Ahmed M, Redhead Y, Olea JV, Sharpe P. Telocytes regulate macrophages in periodontal disease. eLife 2022; 11:e72128. [PMID: 36193890 PMCID: PMC9576272 DOI: 10.7554/elife.72128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Telocytes (TCs) or interstitial cells are characterised in vivo by their long projections that contact other cell types. Although telocytes can be found in many different tissues including the heart, lung, and intestine, their tissue-specific roles are poorly understood. Here we identify a specific cell signalling role for telocytes in the periodontium whereby telocytes regulate macrophage activity. We performed scRNA-seq and lineage tracing to identify telocytes and macrophages in mouse periodontium in homeostasis and periodontitis and carried out hepatocyte growth factor (HGF) signalling inhibition experiments using tivantinib. We show that telocytes are quiescent in homeostasis; however, they proliferate and serve as a major source of HGF in periodontitis. Macrophages receive telocyte-derived HGF signals and shift from an M1 to an M1/M2 state. Our results reveal the source of HGF signals in periodontal tissue and provide new insights into the function of telocytes in regulating macrophage behaviour in periodontitis through HGF/Met cell signalling, which may provide a novel approach in periodontitis treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
- Department of Oral and Maxillofacial Implantology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Anahid A Birjandi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| | - Mohi Ahmed
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| | - Yushi Redhead
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| | - Jose Villagomez Olea
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| | - Paul Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| |
Collapse
|
24
|
Wei J, Ma X, Nehme A, Cui Y, Zhang L, Qiu S. Reduced HGF/MET Signaling May Contribute to the Synaptic Pathology in an Alzheimer's Disease Mouse Model. Front Aging Neurosci 2022; 14:954266. [PMID: 35903536 PMCID: PMC9314739 DOI: 10.3389/fnagi.2022.954266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder strongly associates with aging. While amyloid plagues and neurofibrillary tangles are pathological hallmarks of AD, recent evidence suggests synaptic dysfunction and physical loss may be the key mechanisms that determine the clinical syndrome and dementia onset. Currently, no effective therapy prevents neuropathological changes and cognitive decline. Neurotrophic factors and their receptors represent novel therapeutic targets to treat AD and dementia. Recent clinical literature revealed that MET receptor tyrosine kinase protein is reduced in AD patient's brain. Activation of MET by its ligand hepatocyte growth factor (HGF) initiates pleiotropic signaling in the developing brain that promotes neurogenesis, survival, synaptogenesis, and plasticity. We hypothesize that if reduced MET signaling plays a role in AD pathogenesis, this might be reflected in the AD mouse models and as such provides opportunities for mechanistic studies on the role of HGF/MET in AD. Examining the 5XFAD mouse model revealed that MET protein exhibits age-dependent progressive reduction prior to overt neuronal pathology, which cannot be explained by indiscriminate loss of total synaptic proteins. In addition, genetic ablation of MET protein in cortical excitatory neurons exacerbates amyloid-related neuropathology in 5XFAD mice. We further found that HGF enhances prefrontal layer 5 neuron synaptic plasticity measured by long-term potentiation (LTP). However, the degree of LTP enhancement is significantly reduced in 5XFAD mice brain slices. Taken together, our study revealed that early reduction of HGF/MET signaling may contribute to the synaptic pathology observed in AD.
Collapse
|
25
|
Krama A, Tokura N, Isoda H, Shigemori H, Miyamae Y. Cyanidin 3-Glucoside Induces Hepatocyte Growth Factor in Normal Human Dermal Fibroblasts through the Activation of β 2-Adrenergic Receptor. ACS OMEGA 2022; 7:22889-22895. [PMID: 35811916 PMCID: PMC9261277 DOI: 10.1021/acsomega.2c02659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Hepatocyte growth factor (HGF) is expressed in various organs and involved in the fundamental cellular functions such as mitogenic, motogenic, and morphogenic activities. Induction of HGF may be therapeutically useful for controlling organ regeneration, wound healing, and embryogenesis. In this study, we examined the stimulation effect of cyanidin 3-glucoside (C3G), an anthocyanidin derivative, on HGF production in normal human dermal fibroblasts (NHDFs) and the underlying mechanisms. C3G induced HGF production at both mRNA and protein levels in NHDF cells and enhanced the phosphorylation of cAMP-response element-binding protein. We also observed that treatment with C3G increased intracellular cAMP level and promoter activity of cAMP-response element in HEK293 cells expressing β2-adrenergic receptor (β2AR). In contrast, cyanidin, an aglycon of C3G, did not show the activation of β2AR signaling and HGF production. These results indicate that C3G behaves as an agonist for β2AR signaling to activate the protein kinase A pathway and induce the production of HGF.
Collapse
Affiliation(s)
- Annisa Krama
- Life
Science Innovation, School of Integrative
and Global Majors, Tennnodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Natsu Tokura
- Agro-Bioresources
Science and Technology, Life and Earth Sciences, Tennnodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroko Isoda
- Faculty
of Life and Environmental Sciences, Tennnodai, Tsukuba, Ibaraki 305-8572, Japan
- Alliance
for Research on the Mediterranean and North Africa, Tennnodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hideyuki Shigemori
- Faculty
of Life and Environmental Sciences, Tennnodai, Tsukuba, Ibaraki 305-8572, Japan
- Microbiology
Research Center for Sustainability, University
of Tsukuba, 1-1-1, Tennnodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yusaku Miyamae
- Faculty
of Life and Environmental Sciences, Tennnodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
26
|
Ma K, Que W, Hu X, Guo W, Gu E, Zhong L, Morello V, Cazzanti M, Michieli P, Takahara T, Li X. A Mesenchymal-Epithelial Transition Factor-Agonistic Antibody Accelerates Cirrhotic Liver Regeneration and Improves Mouse Survival Following Partial Hepatectomy. Liver Transpl 2022; 28:782-793. [PMID: 34529892 PMCID: PMC9293082 DOI: 10.1002/lt.26301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 01/18/2023]
Abstract
Small-for-size syndrome (SFSS) is a common complication following partial liver transplantation and extended hepatectomy. SFSS is characterized by postoperative liver dysfunction caused by insufficient regenerative capacity and portal hyperperfusion and is more frequent in patients with preexisting liver disease. We explored the effect of the Mesenchymal-epithelial transition factor (MET)-agonistic antibody 71D6 on liver regeneration and functional recovery in a mouse model of SFSS. Male C57/BL6 mice were exposed to repeated carbon tetrachloride injections for 10 weeks and then randomized into 2 arms receiving 3 mg/kg 71D6 or a control immunoglobulin G (IgG). At 2 days after the randomization, the mice were subjected to 70% hepatectomy. Mouse survival was recorded up to 28 days after hepatectomy. Satellite animals were euthanized at different time points to analyze liver regeneration, fibrosis, and inflammation. Serum 71D6 administration significantly decreased mouse mortality consequent to insufficient regeneration of the cirrhotic liver. Analysis of liver specimens in satellite animals revealed that 71D6 promoted powerful activation of the extracellular signal-regulated kinase pathway and accelerated liver regeneration, characterized by increased liver-to-body weight, augmented mitotic index, and higher serum albumin levels. Moreover, 71D6 accelerated the resolution of hepatic fibrosis as measured by picrosirius red, desmin, and α-smooth muscle actin staining, and suppressed liver infiltration by macrophages as measured by CD68 and F4/80 staining. Analysis of gene expression by reverse-transcription polymerase chain reaction confirmed that 71D6 administration suppressed the expression of key profibrotic genes, including platelet-derived growth factor, tissue inhibitor of metalloproteinase 3, and transforming growth factor-β1, and of key proinflammatory genes, including tumor necrosis factor-α, interleukin-1β, chemokine (C-C motif) ligand 3, and chemokine (C-C motif) ligand 5. These results suggest that activating the MET pathway via an hepatocyte growth factor-mimetic antibody may be beneficial in patients with SFSS and possibly other types of acute and chronic liver disorders.
Collapse
Affiliation(s)
- Kuai Ma
- Division of Transplantation ImmunologyNational Research Institute for Child Health and DevelopmentTokyoJapan,Department of Gastroenterology and HepatologyJing’an District Central HospitalJing’an Branch of Huashan HospitalFudan UniversityShanghaiChina
| | - Weitao Que
- Division of Transplantation ImmunologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Xin Hu
- Division of Transplantation ImmunologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Wen‐Zhi Guo
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Er‐li Gu
- Department of Gastroenterology and HepatologyJing’an District Central HospitalJing’an Branch of Huashan HospitalFudan UniversityShanghaiChina
| | - Liang Zhong
- Department of GastroenterologyHuashan HospitalFudan UniversityShanghaiChina
| | | | | | - Paolo Michieli
- AgomAb Therapeutics NVGentBelgium,Molecular Biotechnology CenterUniversity of Torino Medical SchoolTorinoItaly
| | - Terumi Takahara
- Third Department of Internal MedicineUniversity of ToyamaToyamaJapan
| | - Xiao‐Kang Li
- Division of Transplantation ImmunologyNational Research Institute for Child Health and DevelopmentTokyoJapan,Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
27
|
To KKW, Cho WCS. Mesenchymal Epithelial Transition Factor (MET): A Key Player in Chemotherapy Resistance and an Emerging Target for Potentiating Cancer Immunotherapy. Curr Cancer Drug Targets 2022; 22:269-285. [PMID: 35255791 DOI: 10.2174/1568009622666220307105107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 11/22/2022]
Abstract
The MET protein is a cell surface receptor tyrosine kinase predominately expressed in epithelial cells. Upon binding of its only known ligand, hepatocyte growth factor (HGF), MET homodimerizes, phosphorylates, and stimulates intracellular signalling to drive cell proliferation. Amplification or hyperactivation of MET is frequently observed in various cancer types and it is associated with poor response to conventional and targeted chemotherapy. More recently, emerging evidence also suggests that MET/HGF signalling may play an immunosuppressive role and it could confer resistance to cancer immunotherapy. In this review, we summarized the preclinical and clinical evidence of MET's role in drug resistance to conventional chemotherapy, targeted therapy, and immunotherapy. Previous clinical trials investigating MET-targeted therapy in unselected or MET-overexpressing cancers yielded mostly unfavourable results. More recent clinical studies focusing on MET exon 14 alterations and MET amplification have produced encouraging treatment responses to MET inhibitor therapy. The translational relevance of MET inhibitor therapy to overcome drug resistance in cancer patients is discussed.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
28
|
Hong J, Dragas R, Khazaei M, Ahuja CS, Fehlings MG. Hepatocyte Growth Factor-Preconditioned Neural Progenitor Cells Attenuate Astrocyte Reactivity and Promote Neurite Outgrowth. Front Cell Neurosci 2021; 15:741681. [PMID: 34955750 PMCID: PMC8695970 DOI: 10.3389/fncel.2021.741681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The astroglial scar is a defining hallmark of secondary pathology following central nervous system (CNS) injury that, despite its role in limiting tissue damage, presents a significant barrier to neuroregeneration. Neural progenitor cell (NPC) therapies for tissue repair and regeneration have demonstrated favorable outcomes, the effects of which are ascribed not only to direct cell replacement but trophic support. Cytokines and growth factors secreted by NPCs aid in modifying the inhibitory and cytotoxic post-injury microenvironment. In an effort to harness and enhance the reparative potential of NPC secretome, we utilized the multifunctional and pro-regenerative cytokine, hepatocyte growth factor (HGF), as a cellular preconditioning agent. We first demonstrated the capacity of HGF to promote NPC survival in the presence of oxidative stress. We then assessed the capacity of this modified conditioned media (CM) to attenuate astrocyte reactivity and promote neurite outgrowth in vitro. HGF pre-conditioned NPCs demonstrated significantly increased levels of tissue inhibitor of metalloproteinases-1 and reduced vascular endothelial growth factor compared to untreated NPCs. In reactive astrocytes, HGF-enhanced NPC-CM effectively reduced glial fibrillary acidic protein (GFAP) expression and chondroitin sulfate proteoglycan deposition to a greater extent than either treatment alone, and enhanced neurite outgrowth of co-cultured neurons. in vivo, this combinatorial treatment strategy might enable tactical modification of the post-injury inhibitory astroglial environment to one that is more conducive to regeneration and functional recovery. These findings have important translational implications for the optimization of current cell-based therapies for CNS injury.
Collapse
Affiliation(s)
- James Hong
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rachel Dragas
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Mohammad Khazaei
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Christopher S Ahuja
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Spinal Program, University Health Network, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
29
|
Chu C, Rao Z, Pan Q, Zhu W. An updated patent review of small-molecule c-Met kinase inhibitors (2018-present). Expert Opin Ther Pat 2021; 32:279-298. [PMID: 34791961 DOI: 10.1080/13543776.2022.2008356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION c-Met tyrosine kinase receptor is a high-affinity ligand of hepatocyte growth factor (HGF). c-Met is widely expressed in a variety of normal human tissues, but shows abnormally high expression, amplification or mutation in tumour tissues such as lung, gastric and breast cancers. Therefore, the use of c-Met as a target can achieve the inhibition of a series of abnormal physiological processes such as tumourigenesis, development and metastasis. A number of small molecule tyrosine kinase inhibitors targeting c-Met have been successfully marketed. AREAS COVERED This article reviews recent advances in patented c-Met small molecule inhibitors and their inhibitory activity against various cancer cells from 2018 to date. EXPERT OPINION To date, small molecule inhibitors targeting c-Met have demonstrated impressive therapeutic efficacy in the clinical setting. Most recent patents have focused on addressing the direction of c-Met amplification and overexpression. Despite the great success in the development of selective c-Met inhibitors, the effects of bypass secretion and mutagenesis have led to a need for new c-Met small molecule inhibitors that are safe, efficient, selective and less toxic with novel structures and effective against other targets.
Collapse
Affiliation(s)
- Cilong Chu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Zixuan Rao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
30
|
De novo peptide grafting to a self-assembling nanocapsule yields a hepatocyte growth factor receptor agonist. iScience 2021; 24:103302. [PMID: 34805784 PMCID: PMC8581506 DOI: 10.1016/j.isci.2021.103302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Lasso-grafting (LG) technology is a method for generating de novo biologics (neobiologics) by genetically implanting macrocyclic peptide pharmacophores, which are selected in vitro against a protein of interest, into loops of arbitrary protein scaffolds. In this study, we have generated a neo-capsid that potently binds the hepatocyte growth factor receptor MET by LG of anti-MET peptide pharmacophores into a circularly permuted variant of Aquifex aeolicus lumazine synthase (AaLS), a self-assembling protein nanocapsule. By virtue of displaying multiple-pharmacophores on its surface, the neo-capsid can induce dimerization (or multimerization) of MET, resulting in phosphorylation and endosomal internalization of the MET-capsid complex. This work demonstrates the potential of the LG technology as a synthetic biology approach for generating capsid-based neobiologics capable of activating signaling receptors. Lasso-grafting enabled multiple display of peptide pharmacophore on protein capsid Engineered capsids induced dimerization of MET resulting in phosphorylation Engineered capsids were internalized into endosome via MET phosphorylation
Collapse
|
31
|
Berger DR, Centeno CJ, Kisiday JD, McIlwraith CW, Steinmetz NJ. Colony Forming Potential and Protein Composition of Commercial Umbilical Cord Allograft Products in Comparison With Autologous Orthobiologics. Am J Sports Med 2021; 49:3404-3413. [PMID: 34398643 DOI: 10.1177/03635465211031275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Umbilical cord (UC) connective tissues contain plastic-adherent, colony forming unit-fibroblasts (CFU-Fs) amenable to culture expansion for potential therapeutic use. Recently, UC-derived allograft products have been made available to practitioners in orthopaedics and other specialties, by companies purporting "stem cell"-based healing. However, such marketing claims conflict with existing regulations for these human tissues, generating questions over the cellular and protein composition of current commercially available UC allograft products. PURPOSE To evaluate commercial UC allograft products for viable cells, CFU-Fs, and protein makeup. STUDY DESIGN Descriptive laboratory study. METHODS Five commercial UC allograft products claiming to contain viable, undescribed "stem cells," 2 obtained from UC blood (UCB) and 3 from UC tissue (UCT), were analyzed. Image-based methods were used to measure cell concentration and viability, a traditional CFU-F assay was used to evaluate in vitro behavior indicative of a connective tissue progenitor cell phenotype often referred to as mesenchymal stem/stromal cells, and quantitative immunoassay arrays were used to measure a combination of cytokines and growth factors. Bone marrow concentrate (BMC) and plasma derived from the blood and bone marrow of middle-aged individuals served as comparative controls for cell culture and protein analyses, respectively. RESULTS Viable cells were identified within all 5 UC allograft products, with those derived from UCB having greater percentages of living cells (40%-59%) than those from UCT (1%-22%). Compared with autologous BMC (>95% viability and >300 million living cells), no CFU-Fs were observed within any UC allograft product (<15 million living cells). Moreover, a substantial number of proteins, particularly those within UCB allograft products, were undetectable or present at lower concentrations compared with blood and bone marrow plasma controls. Interestingly, several important growth factors and cytokines, including basic fibroblast growth factor, hepatocyte growth factor, interleukin-1 receptor antagonist, and osteoprotegerin, were most prevalent in 1 or more UCT allograft products as compared with blood and bone marrow plasma. CONCLUSION CFU-Fs, often referred to as stem cells, were not found within any of the commercial UC allograft products analyzed, and clinicians should remain wary of marketing claims stating otherwise. CLINICAL RELEVANCE Any therapeutic benefit of current UC allograft products in orthopaedic medicine is more likely to be attributed to their protein composition (UCT > UCB) or inclusion of cells without colony forming potential (UCB > UCT).
Collapse
Affiliation(s)
- Dustin R Berger
- Research and Development, Regenexx, LLC, Broomfield, Colorado, USA
| | - Christopher J Centeno
- Research and Development, Regenexx, LLC, Broomfield, Colorado, USA
- Centeno-Schultz Clinic, Broomfield, Colorado, USA
| | - John D Kisiday
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - C Wayne McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, Colorado, USA
| | | |
Collapse
|
32
|
Lahmann I, Griger J, Chen JS, Zhang Y, Schuelke M, Birchmeier C. Met and Cxcr4 cooperate to protect skeletal muscle stem cells against inflammation-induced damage during regeneration. eLife 2021; 10:57356. [PMID: 34350830 PMCID: PMC8370772 DOI: 10.7554/elife.57356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Acute skeletal muscle injury is followed by an inflammatory response, removal of damaged tissue, and the generation of new muscle fibers by resident muscle stem cells, a process well characterized in murine injury models. Inflammatory cells are needed to remove the debris at the site of injury and provide signals that are beneficial for repair. However, they also release chemokines, reactive oxygen species, as well as enzymes for clearance of damaged cells and fibers, which muscle stem cells have to withstand in order to regenerate the muscle. We show here that MET and CXCR4 cooperate to protect muscle stem cells against the adverse environment encountered during muscle repair. This powerful cyto-protective role was revealed by the genetic ablation of Met and Cxcr4 in muscle stem cells of mice, which resulted in severe apoptosis during early stages of regeneration. TNFα neutralizing antibodies rescued the apoptosis, indicating that TNFα provides crucial cell-death signals during muscle repair that are counteracted by MET and CXCR4. We conclude that muscle stem cells require MET and CXCR4 to protect them against the harsh inflammatory environment encountered in an acute muscle injury.
Collapse
Affiliation(s)
- Ines Lahmann
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Joscha Griger
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Jie-Shin Chen
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Yao Zhang
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Markus Schuelke
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carmen Birchmeier
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| |
Collapse
|
33
|
Maeta N, Tamura K, Ezuka F, Takemitsu H. Comparative analysis of canine mesenchymal stem cells and bone marrow-derived mononuclear cells. Vet World 2021; 14:1028-1037. [PMID: 34083956 PMCID: PMC8167527 DOI: 10.14202/vetworld.2021.1028-1037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background and aim: Mesenchymal stem cells (MSCs), which have multi-lineage differentiation potentials, are a promising source for regenerative medicine. However, the focus of study of MSCs is shifting from the characterization of the differentiation potential to their secretion potential for cell transplantation. Tissue regeneration and the attenuation of immune responses are thought to be affected by the secretion of multiple growth factors and cytokines by MSCs. However, the secretion potential of MSCs profiling remains incompletely characterized. In this study, we focused on the secretion ability related and protein mRNA expression of dog adipose tissue-derived MSCs (AT-MSC), bone marrow (BM)-derived MSCs, and BM-derived mononuclear cells (BM-MNC). Materials and Methods: Real-time polymerase chain reaction analyses revealed mRNA expression of nine growth factors and seven interleukins in these types of cells and three growth factors protein expression were determined using Enzyme-linked immunosorbent assay. Results: For the BM-MNC growth factors, the mRNA expression of transforming growth factor-β (TGF-β) was the highest. For the BM-derived MSC (BM-MSC) and AT-MSC growth factors, the mRNA expression of vascular endothelial growth factor (VEGF) was highest. BM-MSCs and AT-MSCs showed similar expression profiles. In contrast, BM-MNCs showed unique expression profiles for hepatocyte growth factor and epidermal growth factor. The three types of cells showed a similar expression of TGF-β. Conclusion: We conclude that expression of cytokine proteins and mRNAs suggests involvement in tissue repair and protection.
Collapse
Affiliation(s)
- Noritaka Maeta
- Aikouishida Animal Hospital, Isehara, 1195-4 Takamori, Isehara, Kanagawa, 259-1114, Japan.,Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Katsutoshi Tamura
- Aikouishida Animal Hospital, Isehara, 1195-4 Takamori, Isehara, Kanagawa, 259-1114, Japan
| | - Fuuna Ezuka
- Science and Humanities Master's Programme, Graduate School of Science and the Humanities, Kurashiki University of Science and The Arts, 2640 Nishinoura Tsurajima Kurashiki Okayama, 712-8505, Japan
| | - Hiroshi Takemitsu
- Science and Humanities Master's Programme, Graduate School of Science and the Humanities, Kurashiki University of Science and The Arts, 2640 Nishinoura Tsurajima Kurashiki Okayama, 712-8505, Japan.,Department of Comparative Animal Science, College of Life Science, Kurashiki University of Science and The Arts, 2640 Nishinoura Tsurajima Kurashiki Okayama, 712-8505, Japan
| |
Collapse
|
34
|
Fetz AE, Wallace SE, Bowlin GL. Electrospun Polydioxanone Loaded With Chloroquine Modulates Template-Induced NET Release and Inflammatory Responses From Human Neutrophils. Front Bioeng Biotechnol 2021; 9:652055. [PMID: 33987174 PMCID: PMC8111017 DOI: 10.3389/fbioe.2021.652055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
The implantation of a biomaterial quickly initiates a tissue repair program initially characterized by a neutrophil influx. During the acute inflammatory response, neutrophils release neutrophil extracellular traps (NETs) and secrete soluble signals to modulate the tissue environment. In this work, we evaluated chloroquine diphosphate, an antimalarial with immunomodulatory and antithrombotic effects, as an electrospun biomaterial additive to regulate neutrophil-mediated inflammation. Electrospinning of polydioxanone was optimized for rapid chloroquine elution within 1 h, and acute neutrophil-biomaterial interactions were evaluated in vitro with fresh human peripheral blood neutrophils at 3 and 6 h before quantifying the release of NETs and secretion of inflammatory and regenerative factors. Our results indicate that chloroquine suppresses NET release in a biomaterial surface area–dependent manner at the early time point, whereas it modulates signal secretion at both early and late time points. More specifically, chloroquine elution down-regulates interleukin 8 (IL-8) and matrix metalloproteinase nine secretion while up-regulating hepatocyte growth factor, vascular endothelial growth factor A, and IL-22 secretion, suggesting a potential shift toward a resolving neutrophil phenotype. Our novel repurposing of chloroquine as a biomaterial additive may therefore have synergistic, immunomodulatory effects that are advantageous for biomaterial-guided in situ tissue regeneration applications.
Collapse
Affiliation(s)
- Allison E Fetz
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| | - Shannon E Wallace
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| |
Collapse
|
35
|
Gundogdu G, Tosun M, Morhardt D, Gheinani AH, Algarrahi K, Yang X, Costa K, Alegria CG, Adam RM, Yang W, Mauney JR. Molecular mechanisms of esophageal epithelial regeneration following repair of surgical defects with acellular silk fibroin grafts. Sci Rep 2021; 11:7086. [PMID: 33782465 PMCID: PMC8007829 DOI: 10.1038/s41598-021-86511-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Constructive remodeling of focal esophageal defects with biodegradable acellular grafts relies on the ability of host progenitor cell populations to repopulate implant regions and facilitate growth of de novo functional tissue. Intrinsic molecular mechanisms governing esophageal repair processes following biomaterial-based, surgical reconstruction is largely unknown. In the present study, we utilized mass spectrometry-based quantitative proteomics and in silico pathway evaluations to identify signaling cascades which were significantly activated during neoepithelial formation in a Sprague Dawley rat model of onlay esophagoplasty with acellular silk fibroin scaffolds. Pharmacologic inhibitor and rescue experiments revealed that epithelialization of neotissues is significantly dependent in part on pro-survival stimuli capable of suppressing caspase activity in epithelial progenitors via activation of hepatocyte growth factor receptor (c-MET), tropomyosin receptor kinase A (TrkA), phosphoinositide 3-kinase (PI3K), and protein kinase B (Akt) signaling mechanisms. These data highlight the molecular machinery involved in esophageal epithelial regeneration following surgical repair with acellular implants.
Collapse
Affiliation(s)
- Gokhan Gundogdu
- Departments of Urology and Biomedical Engineering, University of California, Irvine, Orange, CA, 92868, USA
| | - Mehmet Tosun
- Departments of Urology and Biomedical Engineering, University of California, Irvine, Orange, CA, 92868, USA
| | - Duncan Morhardt
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Ali Hashemi Gheinani
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
| | - Khalid Algarrahi
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Xuehui Yang
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Kyle Costa
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Cinthia Galvez Alegria
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Rosalyn M Adam
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
| | - Wei Yang
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Joshua R Mauney
- Departments of Urology and Biomedical Engineering, University of California, Irvine, Orange, CA, 92868, USA.
- Departments of Urology and Biomedical Engineering, University of California, Irvine, Building 55, 101 The City Drive South., Rm. 300, Orange, CA, 92868, USA.
| |
Collapse
|
36
|
Imidazopyridine hydrazone derivatives exert antiproliferative effect on lung and pancreatic cancer cells and potentially inhibit receptor tyrosine kinases including c-Met. Sci Rep 2021; 11:3644. [PMID: 33574356 PMCID: PMC7878917 DOI: 10.1038/s41598-021-83069-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/28/2021] [Indexed: 01/01/2023] Open
Abstract
Aberrant activation of c-Met signalling plays a prominent role in cancer development and progression. A series of 12 imidazo [1,2-α] pyridine derivatives bearing 1,2,3-triazole moiety were designed, synthesized and evaluated for c-Met inhibitory potential and anticancer effect. The inhibitory activity of all synthesized compounds against c-Met kinase was evaluated by a homogeneous time-resolved fluorescence (HTRF) assay at the concentration range of 5-25 µM. Derivatives 6d, 6e and 6f bearing methyl, tertiary butyl and dichloro-phenyl moieties on the triazole ring, respectively, were the compounds with the highest potential. They significantly inhibited c-Met by 55.3, 53.0 and 51.3%, respectively, at the concentration of 25 µM. Synthetic compounds showed antiproliferative effects against lung (EBC-1) and pancreatic cancer cells (AsPc-1, Suit-2 and Mia-PaCa-2) expressing different levels of c-Met, with IC50 values as low as 3.0 µM measured by sulforhodamine B assay. Active derivatives significantly blocked c-Met phosphorylation, inhibited cell growth in three-dimensional spheroid cultures and also induced apoptosis as revealed by Annexin V/propidium iodide flow cytometric assay in AsPc-1 cells. They also inhibited PDGFRA and FLT3 at 25 µM among a panel of 16 kinases. Molecular docking and dynamics simulation studies corroborated the experimental findings and revealed possible binding modes of the select derivatives with target receptor tyrosine kinases. The results of this study show that some imidazopyridine derivatives bearing 1,2,3-triazole moiety could be promising molecularly targeted anticancer agents against lung and pancreatic cancers.
Collapse
|
37
|
Tonomura H, Nagae M, Takatori R, Ishibashi H, Itsuji T, Takahashi K. The Potential Role of Hepatocyte Growth Factor in Degenerative Disorders of the Synovial Joint and Spine. Int J Mol Sci 2020; 21:ijms21228717. [PMID: 33218127 PMCID: PMC7698933 DOI: 10.3390/ijms21228717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023] Open
Abstract
This paper aims to provide a comprehensive review of the changing role of hepatocyte growth factor (HGF) signaling in the healthy and diseased synovial joint and spine. HGF is a multifunctional growth factor that, like its specific receptor c-Met, is widely expressed in several bone and joint tissues. HGF has profound effects on cell survival and proliferation, matrix metabolism, inflammatory response, and neurotrophic action. HGF plays an important role in normal bone and cartilage turnover. Changes in HGF/c-Met have also been linked to pathophysiological changes in degenerative joint diseases, such as osteoarthritis (OA) and intervertebral disc degeneration (IDD). A therapeutic role of HGF has been proposed in the regeneration of osteoarticular tissues. HGF also influences bone remodeling and peripheral nerve activity. Studies aimed at elucidating the changing role of HGF/c-Met signaling in OA and IDD at different pathophysiological stages, and their specific molecular mechanisms are needed. Such studies will contribute to safe and effective HGF/c-Met signaling-based treatments for OA and IDD.
Collapse
|
38
|
Phase 3 trial Design of the Hepatocyte Growth Factor Mimetic ANG-3777 in Renal Transplant Recipients With Delayed Graft Function. Kidney Int Rep 2020; 6:296-303. [PMID: 33615054 PMCID: PMC7879201 DOI: 10.1016/j.ekir.2020.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 01/03/2023] Open
Abstract
Introduction One-third of kidney transplantation patients experience acute kidney injury (AKI) resulting in delayed graft function (DGF), associated with increased risk of graft failure and mortality. Preclinical and phase 2 data indicate that treatment with ANG-3777 (formerly BB3), a hepatocyte growth factor (HGF) mimetic, may improve long-term kidney function and reduce health care resource use and cost, but these data require validation in a phase 3 randomized controlled trial. Methods The Graft Improvement Following Transplant (GIFT) trial is a multicenter, double-blind randomized controlled trial, designed to determine the efficacy and safety of ANG-3777 in renal transplantation patients showing signs of DGF. Subjects are randomized 1:1 to ANG-3777 (2 mg/kg) administered intravenously once daily for 3 consecutive days starting within 30 hours after transplantation, or to placebo. Results The primary endpoint is estimated glomerular filtration rate (eGFR) at 12 months. Secondary endpoints include proportion of subjects with eGFR >30 at days 30, 90, 180, and 360; proportion of subjects whose graft function is slow, delayed, or primary nonfunction; length of hospitalization; and duration of dialysis through day 30. Adverse events are assessed throughout the study. Conclusion GIFT will generate data that are important to advancing treatment of DGF in this medically complex population.
Collapse
|
39
|
Sato H, Imamura R, Suga H, Matsumoto K, Sakai K. Cyclic Peptide-Based Biologics Regulating HGF-MET. Int J Mol Sci 2020; 21:ijms21217977. [PMID: 33121208 PMCID: PMC7662982 DOI: 10.3390/ijms21217977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Using a random non-standard peptide integrated discovery system, we obtained cyclic peptides that bind to hepatocyte growth factor (HGF) or mesenchymal-epithelial transition factor. (MET) HGF-inhibitory peptide-8 (HiP-8) selectively bound to two-chain active HGF, but not to single-chain precursor HGF. HGF showed a dynamic change in its molecular shape in atomic force microscopy, but HiP-8 inhibited dynamic change in the molecular shape into a static status. The inhibition of the molecular dynamics of HGF by HiP-8 was associated with the loss of the ability to bind MET. HiP-8 could selectively detect active HGF in cancer tissues, and active HGF probed by HiP-8 showed co-localization with activated MET. Using HiP-8, cancer tissues with active HGF could be detected by positron emission tomography. HiP-8 seems to be applicable for the diagnosis and treatment of cancers. In contrast, based on the receptor dimerization as an essential process for activation, the cross-linking of the cyclic peptides that bind to the extracellular region of MET successfully generated an artificial ligand to MET. The synthetic MET agonists activated MET and exhibited biological activities which were indistinguishable from the effects of HGF. MET agonists composed of cyclic peptides can be manufactured by chemical synthesis but not recombinant protein expression, and thus are expected to be new biologics that are applicable to therapeutics and regenerative medicine.
Collapse
Affiliation(s)
- Hiroki Sato
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (H.S.); (R.I.); (K.M.)
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Ryu Imamura
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (H.S.); (R.I.); (K.M.)
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (H.S.); (R.I.); (K.M.)
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Tumor Microenvironment Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Katsuya Sakai
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (H.S.); (R.I.); (K.M.)
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Correspondence:
| |
Collapse
|
40
|
Pasupneti S, Tian W, Tu AB, Dahms P, Granucci E, Gandjeva A, Xiang M, Butcher EC, Semenza GL, Tuder RM, Jiang X, Nicolls MR. Endothelial HIF-2α as a Key Endogenous Mediator Preventing Emphysema. Am J Respir Crit Care Med 2020; 202:983-995. [PMID: 32515984 PMCID: PMC7528783 DOI: 10.1164/rccm.202001-0078oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: Endothelial injury may provoke emphysema, but molecular pathways of disease development require further discernment. Emphysematous lungs exhibit decreased expression of HIF-2α (hypoxia-inducible factor-2α)-regulated genes, and tobacco smoke decreases pulmonary HIF-2α concentrations. These findings suggest that decreased HIF-2α expression is important in the development of emphysema.Objectives: The objective of this study was to evaluate the roles of endothelial-cell (EC) HIF-2α in the pathogenesis of emphysema in mice.Methods: Mouse lungs were examined for emphysema after either the loss or the overexpression of EC Hif-2α. In addition, SU5416, a VEGFR2 inhibitor, was used to induce emphysema. Lungs were evaluated for HGF (hepatocyte growth factor), a protein involved in alveolar development and homeostasis. Lungs from patients with emphysema were measured for endothelial HIF-2α expression.Measurements and Main Results: EC Hif-2α deletion resulted in emphysema in association with fewer ECs and pericytes. After SU5416 exposure, EC Hif-2α-knockout mice developed more severe emphysema, whereas EC Hif-2α-overexpressing mice were protected. EC Hif-2α-knockout mice demonstrated lower levels of HGF. Human emphysema lung samples exhibited reduced EC HIF-2α expression.Conclusions: Here, we demonstrate a unique protective role for pulmonary endothelial HIF-2α and how decreased expression of this endogenous factor causes emphysema; its pivotal protective function is suggested by its ability to overcome VEGF antagonism. HIF-2α may maintain alveolar architecture by promoting vascular survival and associated HGF production. In summary, HIF-2α may be a key endogenous factor that prevents the development of emphysema, and its upregulation has the potential to foster lung health in at-risk patients.
Collapse
Affiliation(s)
- Shravani Pasupneti
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- School of Medicine, Stanford University, Stanford, California
| | - Wen Tian
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- School of Medicine, Stanford University, Stanford, California
| | - Allen B. Tu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- School of Medicine, Stanford University, Stanford, California
| | - Petra Dahms
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- School of Medicine, Stanford University, Stanford, California
| | - Eric Granucci
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- School of Medicine, Stanford University, Stanford, California
| | - Aneta Gandjeva
- School of Medicine, University of Colorado, Colorado; and
| | - Menglan Xiang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- School of Medicine, Stanford University, Stanford, California
| | - Eugene C. Butcher
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- School of Medicine, Stanford University, Stanford, California
| | - Gregg L. Semenza
- Vascular Program, Institute for Cell Engineering
- Sidney Kimmel Comprehensive Cancer Center
- Department of Genetic Medicine
- Department of Pediatrics
- Department of Medicine
- Department of Oncology
- Department of Radiation Oncology, and
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rubin M. Tuder
- School of Medicine, University of Colorado, Colorado; and
| | - Xinguo Jiang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- School of Medicine, Stanford University, Stanford, California
| | - Mark R. Nicolls
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- School of Medicine, Stanford University, Stanford, California
| |
Collapse
|
41
|
Hepatocyte Growth Factor Mimetic ANG-3777 for Cardiac Surgery-Associated Acute Kidney Injury. Kidney Int Rep 2020; 5:2325-2332. [PMID: 33305126 PMCID: PMC7710816 DOI: 10.1016/j.ekir.2020.09.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction Nearly one-third of patients undergoing cardiac surgery involving cardiopulmonary bypass (CPB) experience cardiac surgery–associated (CSA) acute kidney injury (AKI); 5% require renal replacement therapy. ANG-3777 is a hepatocyte growth factor mimetic. In vitro, ANG-3777 reduces apoptosis and increases cell proliferation, migration, morphogenesis, and angiogenesis in injured kidneys. In animal models, ANG-3777 mitigates the effects of renal damage secondary to ischemia reperfusion injury and nephrotoxic chemicals. Phase 2 data in AKI of renal transplantation have shown improved renal function and comparable safety relative to placebo. The Guard Against Renal Damage (GUARD) study is a phase 2 proof of concept trial of ANG-3777 in CSA-AKI. Methods GUARD is a 240-patient, multicenter, double-blind, randomized placebo-controlled trial to assess the efficacy and safety of ANG-3777 in patients at elevated pre-surgery risk for AKI undergoing coronary artery bypass graft (CABG) or heart valve repair/replacement requiring CPB. Subjects are randomized 1:1 to receive ANG-3777 (2 mg/kg) or placebo. Study drug is dosed via 4 daily intravenous 30-minute infusions. The first dose is administered less than 4 hours after completing CPB, second at 24 ± 2 hours post-CPB, with two subsequent doses at 24 ± 2 hours after the previous dose. Results The primary efficacy endpoint is percent change from baseline serum creatinine to mean area under the curve from days 2 through 6. Secondary endpoints include change in estimated glomerular filtration rate from baseline to day 30, the proportion of patients diagnosed with AKI by stage through day 5, and the length of CSA-AKI hospitalization. Safety will include adverse events and laboratory measures. Conclusion This phase 2 study of ANG-3777 provides data to develop a phase 3 registrational study in this medically complex condition.
Collapse
|
42
|
Nishikoba N, Kumagai K, Kanmura S, Nakamura Y, Ono M, Eguchi H, Kamibayashiyama T, Oda K, Mawatari S, Tanoue S, Hashimoto S, Tsubouchi H, Ido A. HGF-MET Signaling Shifts M1 Macrophages Toward an M2-Like Phenotype Through PI3K-Mediated Induction of Arginase-1 Expression. Front Immunol 2020; 11:2135. [PMID: 32983173 PMCID: PMC7492554 DOI: 10.3389/fimmu.2020.02135] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/06/2020] [Indexed: 01/01/2023] Open
Abstract
Backgrounds and Aims: Hepatocyte Growth Factor (HGF)-MET signaling is known to promote biological functions such as cell survival, cell motility, and cell proliferation. However, it is unknown if HGF-MET alters the macrophage phenotype. In this study, we aimed to study the effects of HGF-MET signaling on the M1 macrophage phenotype. Methods and Materials: Bone marrow-derived macrophages (BMDMs) isolated from mice were either polarized to an M1 phenotype by IFN-γ and LPS treatment or to an M2 phenotype by IL-4 treatment. Changes in M1 or M2 markers induced by HGF-MET signaling were evaluated. Mechanisms responsible for alternations in the macrophage phenotype and intracellular metabolism were analyzed. Results: c-Met was expressed especially in M1 macrophages polarized by treatment with IFN-γ and LPS. In M1 macrophages, HGF-MET signaling induced the expression of Arg-1 mRNA and secretion of IL-10 and TGF-β1 and downregulated the mRNA expression of iNOS, TNF-α, and IL-6. In addition, activation of the PI3K pathway and inactivation of NFκB were also observed in M1 macrophages treated with HGF. The increased Arg-1 expression and IL-10 secretion were abrogated by PI3K inhibition, whereas, no changes were observed in TNF-α and IL-6 expression. The inactivation of NFκB was found to be independent of the PI3K pathway. HGF-MET signaling shifted the M1 macrophages to an M2-like phenotype, mainly through PI3K-mediated induction of Arg-1 expression. Finally, HGF-MET signaling also shifted the M1 macrophage intracellular metabolism toward an M2 phenotype, especially with respect to fatty acid metabolism. Conclusion: Our results suggested that HGF treatment not only promotes regeneration in epithelial cells, but also leads to tissue repair by altering M1 macrophages to an M2-like phenotype.
Collapse
Affiliation(s)
- Nao Nishikoba
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kotaro Kumagai
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shuji Kanmura
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuko Nakamura
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mayumi Ono
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiromi Eguchi
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomomi Kamibayashiyama
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kohei Oda
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Seiichi Mawatari
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shiroh Tanoue
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shinichi Hashimoto
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hirohito Tsubouchi
- Department of Gastroenterology and Hepatology, Kagoshima City Hospital, Kagoshima, Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
43
|
Nagoshi N, Tsuji O, Kitamura K, Suda K, Maeda T, Yato Y, Abe T, Hayata D, Matsumoto M, Okano H, Nakamura M. Phase I/II Study of Intrathecal Administration of Recombinant Human Hepatocyte Growth Factor in Patients with Acute Spinal Cord Injury: A Double-Blind, Randomized Clinical Trial of Safety and Efficacy. J Neurotrauma 2020; 37:1752-1758. [PMID: 32323609 DOI: 10.1089/neu.2019.6854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Spinal cord injury (SCI) is an abrupt traumatic injury that leads to permanent functional loss, and no practical treatment is available. We have developed pharmaceutical recombinant human hepatocyte growth factor (KP-100), and its efficacy for SCI has been verified using animal models. The purpose of this study was to evaluate the safety and efficacy of intrathecal KP-100 administration for SCI patients in the acute phase. This investigation was a multi-center, randomized, double-blind study. Subjects with modified Frankel grade A/B1/B2 at 72 h after SCI were included. KP-100 was administered intrathecally. Subjects were followed up for 168 days after the first administration. Outcomes were evaluated using American Spinal Injury Association (ASIA) scores and subjected to analysis of covariance. Our results demonstrated that the subjects did not show any serious adverse events caused by KP-100. Forty-three subjects underwent neurological function testing (26 in KP-100 group; 17 in placebo group), which revealed that KP-100 contributed to motor improvement at Days 140 (p = 0.050) and 168 (p = 0.079). In the subset of subjects with Frankel grade A, the proportions of subjects who gained at least 1 point on their lower-extremity motor scores were 33.3% (5/15) and 6.3% (1/16) in the KP-100 and placebo groups, respectively (p = 0.083). Therefore, KP-100 has the potential to be useful and beneficial for SCI patients during the acute phase. However, this was a phase I/II trial and did not definitely address the question of efficacy; a larger phase III trial would be required to assess the efficacy.
Collapse
Affiliation(s)
- Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Osahiko Tsuji
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kazuya Kitamura
- Department of Orthopedic Surgery, Saiseikai Yokohama-shi Tobu Hospital, Kanagawa, Japan
| | - Kota Suda
- Department of Orthopedic Surgery, Hokkaido Spinal Cord Injury Center, Hokkaido, Japan
| | - Takeshi Maeda
- Department of Orthopedic Surgery, Spinal Injuries Center, Fukuoka, Japan
| | - Yoshiyuki Yato
- Department of Orthopedic Surgery, Murayama Medical Center, National Hospital Organization, Tokyo, Japan
| | - Takayuki Abe
- Faculty of Data Science, Yokohama City University School of Data Science, Kanagawaken, Japan.,Biostatistics, Clinical and Translational Research Center, and Keio University School of Medicine, Tokyo, Japan
| | | | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
44
|
Morell RJ, Olszewski R, Tona R, Leitess S, Wafa TT, Taukulis I, Schultz JM, Thomason EJ, Richards K, Whitley BN, Hill C, Saunders T, Starost MF, Fitzgerald T, Wilson E, Ohyama T, Friedman TB, Hoa M. Noncoding Microdeletion in Mouse Hgf Disrupts Neural Crest Migration into the Stria Vascularis, Reduces the Endocochlear Potential, and Suggests the Neuropathology for Human Nonsyndromic Deafness DFNB39. J Neurosci 2020; 40:2976-2992. [PMID: 32152201 PMCID: PMC7141880 DOI: 10.1523/jneurosci.2278-19.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a multifunctional protein that signals through the MET receptor. HGF stimulates cell proliferation, cell dispersion, neuronal survival, and wound healing. In the inner ear, levels of HGF must be fine-tuned for normal hearing. In mice, a deficiency of HGF expression limited to the auditory system, or an overexpression of HGF, causes neurosensory deafness. In humans, noncoding variants in HGF are associated with nonsyndromic deafness DFNB39 However, the mechanism by which these noncoding variants causes deafness was unknown. Here, we reveal the cause of this deafness using a mouse model engineered with a noncoding intronic 10 bp deletion (del10) in Hgf Male and female mice homozygous for del10 exhibit moderate-to-profound hearing loss at 4 weeks of age as measured by tone burst auditory brainstem responses. The wild type (WT) 80 mV endocochlear potential was significantly reduced in homozygous del10 mice compared with WT littermates. In normal cochlea, endocochlear potentials are dependent on ion homeostasis mediated by the stria vascularis (SV). Previous studies showed that developmental incorporation of neural crest cells into the SV depends on signaling from HGF/MET. We show by immunohistochemistry that, in del10 homozygotes, neural crest cells fail to infiltrate the developing SV intermediate layer. Phenotyping and RNAseq analyses reveal no other significant abnormalities in other tissues. We conclude that, in the inner ear, the noncoding del10 mutation in Hgf leads to developmental defects of the SV and consequently dysfunctional ion homeostasis and a reduction in the EP, recapitulating human DFNB39 nonsyndromic deafness.SIGNIFICANCE STATEMENT Hereditary deafness is a common, clinically and genetically heterogeneous neurosensory disorder. Previously, we reported that human deafness DFNB39 is associated with noncoding variants in the 3'UTR of a short isoform of HGF encoding hepatocyte growth factor. For normal hearing, HGF levels must be fine-tuned as an excess or deficiency of HGF cause deafness in mouse. Using a Hgf mutant mouse with a small 10 bp deletion recapitulating a human DFNB39 noncoding variant, we demonstrate that neural crest cells fail to migrate into the stria vascularis intermediate layer, resulting in a significantly reduced endocochlear potential, the driving force for sound transduction by inner ear hair cells. HGF-associated deafness is a neurocristopathy but, unlike many other neurocristopathies, it is not syndromic.
Collapse
Affiliation(s)
| | | | | | | | - Talah T Wafa
- Mouse Auditory Testing Core Facility, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | - Thomas Saunders
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, Michigan 48109-5674
| | - Matthew F Starost
- Division of Veterinarian Resources, National Institutes of Health, Maryland 20892, and
| | - Tracy Fitzgerald
- Mouse Auditory Testing Core Facility, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Takahiro Ohyama
- Department of Otolaryngology, University of Southern California, Los Angeles, California 90033
| | | | - Michael Hoa
- Auditory Development and Restoration Program,
| |
Collapse
|
45
|
Ueki R, Uchida S, Kanda N, Yamada N, Ueki A, Akiyama M, Toh K, Cabral H, Sando S. A chemically unmodified agonistic DNA with growth factor functionality for in vivo therapeutic application. SCIENCE ADVANCES 2020; 6:eaay2801. [PMID: 32270033 PMCID: PMC7112757 DOI: 10.1126/sciadv.aay2801] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/19/2019] [Indexed: 05/25/2023]
Abstract
Although growth factors have great therapeutic potential because of their regenerative functions, they often have intrinsic drawbacks, such as low thermal stability and high production cost. Oligonucleotides have recently emerged as promising chemical entities for designing synthetic alternatives to growth factors. However, their applications in vivo have been recognized as a challenge because of their susceptibility to nucleases and limited distribution to a target tissue. Here, we present the first example of oligonucleotide-based growth factor mimetics that exerts therapeutic effects at a target tissue after systemic injection. The aptamer was designed to dimerize a growth factor receptor for its activation and mitigated the progression of Fas-induced fulminant hepatitis in a mouse model. This unprecedented functionality of the aptamer can be reasonably explained by its high nuclease stability and migration to the liver parenchyma. These mechanistic analyses provided insights for the successful application of aptamer-based receptor agonists.
Collapse
Affiliation(s)
- Ryosuke Ueki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoshi Uchida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Naoto Kanda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoki Yamada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ayaka Ueki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Momoko Akiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuko Toh
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
46
|
Yang F, Deng L, Li J, Chen M, Liu Y, Hu Y, Zhong W. Emodin Retarded Renal Fibrosis Through Regulating HGF and TGFβ-Smad Signaling Pathway. Drug Des Devel Ther 2020; 14:3567-3575. [PMID: 32943844 PMCID: PMC7478377 DOI: 10.2147/dddt.s245847] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/25/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Renal fibrosis is a frequently occurring type of chronic kidney disease that can cause end-stage renal disease. It has been verified that emodin or HGF can inhibit the development of renal fibrosis. However, the antifibrotic effect of emodin in combination with HGF remains unclear. METHODS Cell viability was detected with CCK8. Gene and protein expression in HK2 cells was detected by qRT-PCR and Western blot, respectively. Moreover, a unilateral ureteral obstruction-induced mouse model of renal fibrosis was established for investigating the antifibrotic effect of emodin in combination with HGF in vivo. RESULTS HGF notably increased the expression of collagen II in TGFβ-treated HK2 cells. In addition, HGF-induced increase in collagen II expression was further enhanced by emodin. In contrast, fibronectin, αSMA and Smad2 expression in TGFβ-stimulated HK2 cells was significantly inhibited by HGF and further decreased by combination treatment (emodin plus HGF). Moreover, we found that combination treatment exhibited better antifibrotic effects compared with emodin or HGF in vivo. CONCLUSION These data demonstrated that emodin plus HGF exhibited better antifibrotic effects compared with emodin or HGF. As such, emodin in combination with HGF may serve as a new possibilty for treatment of renal fibrosis.
Collapse
Affiliation(s)
- Fan Yang
- Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, People’s Republic of China
| | - Lu Deng
- Department of Thyroid Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, People’s Republic of China
| | - JinPeng Li
- Department of Thyroid and Breast Surgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei430071, People’s Republic of China
| | - MuHu Chen
- Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, People’s Republic of China
| | - Ying Liu
- Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, People’s Republic of China
| | - YingChun Hu
- Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, People’s Republic of China
| | - Wu Zhong
- Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, People’s Republic of China
- Correspondence: Wu Zhong Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan646000, People’s Republic of China Email
| |
Collapse
|
47
|
De Pascale MR, Della Mura N, Vacca M, Napoli C. Useful applications of growth factors for cardiovascular regenerative medicine. Growth Factors 2020; 38:35-63. [PMID: 33028111 DOI: 10.1080/08977194.2020.1825410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Novel advances for cardiovascular diseases (CVDs) include regenerative approaches for fibrosis, hypertrophy, and neoangiogenesis. Studies indicate that growth factor (GF) signaling could promote heart repair since most of the evidence is derived from preclinical models. Observational studies have evaluated GF serum/plasma levels as feasible biomarkers for risk stratification of CVDs. Noteworthy, two clinical interventional published studies showed that the administration of growth factors (GFs) induced beneficial effect on left ventricular ejection fraction (LVEF), myocardial perfusion, end-systolic volume index (ESVI). To date, large scale ongoing studies are in Phase I-II and mostly focussed on intramyocardial (IM), intracoronary (IC) or intravenous (IV) administration of vascular endothelial growth factor (VEGF) and fibroblast growth factor-23 (FGF-23) which result in the most investigated GFs in the last 10 years. Future data of ongoing randomized controlled studies will be crucial in understanding whether GF-based protocols could be in a concrete way effective in the clinical setting.
Collapse
Affiliation(s)
| | | | - Michele Vacca
- Division of Immunohematology and Transfusion Medicine, Cardarelli Hospital, Naples, Italy
| | - Claudio Napoli
- IRCCS Foundation SDN, Naples, Italy
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
48
|
Multipotent Neurotrophic Effects of Hepatocyte Growth Factor in Spinal Cord Injury. Int J Mol Sci 2019; 20:ijms20236078. [PMID: 31810304 PMCID: PMC6928986 DOI: 10.3390/ijms20236078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 01/02/2023] Open
Abstract
Spinal cord injury (SCI) results in neural tissue loss and so far untreatable functional impairment. In addition, at the initial injury site, inflammation induces secondary damage, and glial scar formation occurs to limit inflammation-mediated tissue damage. Consequently, it obstructs neural regeneration. Many studies have been conducted in the field of SCI; however, no satisfactory treatment has been established to date. Hepatocyte growth factor (HGF) is one of the neurotrophic growth factors and has been listed as a candidate medicine for SCI treatment. The highlighted effects of HGF on neural regeneration are associated with its anti-inflammatory and anti-fibrotic activities. Moreover, HGF exerts positive effects on transplanted stem cell differentiation into neurons. This paper reviews the mechanisms underlying the therapeutic effects of HGF in SCI recovery, and introduces recent advances in the clinical applications of HGF therapy.
Collapse
|
49
|
Renoprotective effects of a novel cMet agonistic antibody on kidney fibrosis. Sci Rep 2019; 9:13495. [PMID: 31530851 PMCID: PMC6749055 DOI: 10.1038/s41598-019-49756-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/23/2019] [Indexed: 01/06/2023] Open
Abstract
Hepatocyte growth factor (HGF) and its receptor, cMet, activate biological pathways necessary for repair and regeneration following kidney injury. Because HGF is a highly unstable molecule in its biologically active form, we asked whether a monoclonal antibody (Ab) that displays full agonist activity at the receptor could protect the kidney from fibrosis. We attempted to determine whether the cMet agonistic Ab might reduce fibrosis, the final common pathway for chronic kidney diseases (CKD). A mouse model of kidney fibrosis disease induced by unilateral ureteral obstruction was introduced and subsequently validated with primary cultured human proximal tubular epithelial cells (PTECs). In kidney biopsy specimens from patients with CKD, cMet immunohistochemistry staining showed a remarkable increase compared with patients with normal renal functions. cMet Ab treatment significantly increased the levels of phospho-cMet and abrogated the protein expression of fibrosis markers such as fibronectin, collagen 1, and αSMA as well as Bax2, which is a marker of apoptosis triggered by recombinant TGF-β1 in PTECs. Remarkably, injections of cMet Ab significantly prevented kidney fibrosis in obstructed kidneys as quantified by Masson trichrome staining. Consistent with these data, cMet Ab treatment decreased the expression of fibrosis markers, such as collagen1 and αSMA, whereas the expression of E-cadherin, which is a cell-cell adhesion molecule, was restored. In conclusion, cMet-mediated signaling may play a considerable role in kidney fibrosis. Additionally, the cMet agonistic Ab may be a valuable substitute for HGF because it is more easily available in a biologically active, stable, and purified form.
Collapse
|
50
|
Arfian N, Setyaningsih WAW, Anggorowati N, Romi MM, Sari DCR. Ethanol Extract of Centella asiatica (Gotu Kola) Attenuates Tubular Injury Through Inhibition of Inflammatory Cytokines and Enhancement of Anti-Fibrotic Factor in Mice with 5/6 Subtotal Nephrectomy. Malays J Med Sci 2019; 26:53-63. [PMID: 31728118 PMCID: PMC6839655 DOI: 10.21315/mjms2019.26.5.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/15/2019] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) leads to inflammation, fibrosis and destruction of the renal architecture. Centella asiatica (CeA) is an herbaceous plant with anti-inflammatory effects. We aimed to elucidate the effect of CeA on inflammation, fibrosis, vascular remodelling and antifibrotic substances in a 5/6 subtotal nephrectomy (SN) model in mice. METHODS Mice were divided into three groups: sham operation (SO, n = 6), 5/6 SN for seven days (SN7, n = 7) and SN7 with oral CeA treatment (SN7-CeA, n = 7). At day 7, mice were euthanised, kidneys were harvested and stained with periodic-acid Schiff (for tubular injury and glomerulosclerosis) and sirius red (for fibrosis and vascular remodeling) staining. mRNA expression of prepro-endothelin-1, nephrin, E-cadherin, bone morphogenic protein-7 (BMP-7), toll-like receptor 4 (TLR4), tumour necrosis factor-α (TNFα) and hepatocyte growth factor (HGF) were quantified using reverse transcriptase-PCR. RESULTS SN group demonstrated significant higher interstitial fibrosis, vascular remodeling, tubular injury and glomerulosclerosis (P < 0.01) compared to SO group. Meanwhile, in SN7-CeA demonstrated attenuation of vascular remodeling as shown by significant higher lumen area with lower Wall/Lumen area ratio compared to SN7. RT-PCR analysis showed up-regulation of nephrin, BMP-7 and E-cadherin mRNA expression (P < 0.05) and down-regulation of ppET-1 in SN7-CeA group compared to SN7 group (P < 0.05). CONCLUSION CeA may ameliorate renal injury in the SN model in mice.
Collapse
Affiliation(s)
- Nur Arfian
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Nungki Anggorowati
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Muhammad Mansyur Romi
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Cahyani Ratna Sari
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|