1
|
Zhu Y, Zhang X, Huang W, Luo M, Feng X, Zhang H, Qi Q. Protective Effect of Enterococcus faecium Against Alcohol-Induced Acute Liver Injury Via Extracellular Vesicles in Rats. Foodborne Pathog Dis 2025. [PMID: 40256984 DOI: 10.1089/fpd.2025.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Abstract
The beneficial effects of probiotics on alcohol-induced liver injury have been studied, but the mechanisms by which Enterococcus regulates liver function are still under investigation. In this study, we examined Enterococcus faecium (Efm) and E. faecium-derived extracellular vesicles (EfmEVs) to provide a protective effect against ethanol-induced liver injury in rats. We evaluated the impact of EfmEVs on liver histological lesions, antioxidative function, alanine aminotransferase (ALT), aspartate aminotransferase (AST) activities, and serum ALT, AST, blood alcohol concentration. The results demonstrated that pretreatment with Efm significantly ameliorated ethanol-induced liver injury. Efm pretreatment mitigated the decline in ethanol-induced liver antioxidant indicators (malondialdehyde, superoxide dismutase, and glutathione peroxidase. Additionally, Efm pretreatment significantly reduced ethanol-induced ALT activities in the liver and serum, potentially by lowering blood ethanol concentration. Further, functional studies on three bioactive components (inactivated Efm, EfmEVs, and EVs-free supernatants) from the bacterial culture revealed that EVs were primarily responsible for the liver-protective effect. Moreover, EVs secretion contributed to the overall liver-protective effect of Efm. In summary, EfmEVs mediated the protective effect of Efm against ethanol-induced liver injury, potentially by improving antioxidative function and lowering blood ethanol concentration. These findings suggest that EfmEVs could serve as a potential antioxidative strategy to alleviate alcohol-induced acute liver injury.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Xiaofang Zhang
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - WenHui Huang
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Meiying Luo
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Xin Feng
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Huihua Zhang
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Qien Qi
- School of Animal Science and Technology, Foshan University, Foshan, China
| |
Collapse
|
2
|
Zhang Y, Wang B, Gu Y. A network pharmacology approach and experimental validation to investigate the neuroprotective mechanism of quercetin against alcoholic brain injury via the JNK/P38 MAPK signaling pathway. Biochem Biophys Res Commun 2025; 763:151789. [PMID: 40220489 DOI: 10.1016/j.bbrc.2025.151789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
OBJECTIVE Alcoholic brain damage (ABD) is a progressive neurodegenerative disorder resulting from prolonged and excessive alcohol consumption, characterized by neuronal injury and cognitive decline. Currently, effective therapeutic strategies remain limited. Quercetin, a natural flavonoid, has demonstrated robust antioxidative, anti-inflammatory, and neuroprotective properties, suggesting its potential utility in ABD management. This study aimed to elucidate the molecular mechanisms underlying quercetin's therapeutic effects on ABD, specifically focusing on its regulatory role in the JNK/P38 MAPK signaling pathway, a critical mediator involved in neuroinflammation and apoptosis. Our findings provide mechanistic insights into the protective effects of quercetin and underscore its promise as a novel therapeutic agent targeting neuronal injury pathways associated with alcoholic brain damage. METHODS The components and targets of QE and ABD were identified from multiple databases, and potential targets and pathways were predicted using protein-protein interaction (PPI) network analysis and pathway enrichment analysis. Molecular docking was then employed to validate the predicted results. In vivo, an EtOH-induced ABD rat model was established, while in vitro, EtOH-induced BV2 microglial cells were used to investigate the anti-inflammatory and anti-apoptotic effects of QE. The potential mechanisms of QE were further validated through both in vivo and in vitro experiments. RESULTS KEGG analysis indicated that the JNK/P38 MAPK signaling pathway is likely associated with the protective effects of QE against ABD. Molecular docking results demonstrated that QE effectively binds to key proteins. QE significantly reduced brain tissue damage in ABD rats, and molecular biology analyses revealed that QE inhibited the protein expression of inflammatory cytokines in ABD and reduced oxidative stress levels in BV2 cells. Additionally, QE markedly decreased the protein expression levels of phosphorylated JNK and P38. CONCLUSION The study results indicate that QE significantly mitigates the progression and severity of alcoholic brain damage (ABD), with its anti-inflammatory and neuroprotective effects associated with the downregulation of the JNK/P38 MAPK pathway.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Binchuan Wang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yingjiang Gu
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
3
|
Ding Z, Wang L, Sun J, Zheng L, Tang Y, Tang H. Hepatocellular carcinoma: pathogenesis, molecular mechanisms, and treatment advances. Front Oncol 2025; 15:1526206. [PMID: 40265012 PMCID: PMC12011620 DOI: 10.3389/fonc.2025.1526206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Hepatocellular Carcinoma (HCC), a highly prevalent malignancy, poses a significant global health challenge. Its pathogenesis is intricate and multifactorial, involving a complex interplay of environmental and genetic factors. Viral hepatitis, excessive alcohol consumption, and cirrhosis are known to significantly elevate the risk of developing HCC. The underlying biological processes driving HCC are equally complex, encompassing aberrant activation of molecular signaling pathways, dysregulation of hepatocellular differentiation and angiogenesis, and immune dysfunction. This review delves into the multifaceted nature of HCC, exploring its etiology and the intricate molecular signaling pathways involved in its development. We examine the role of immune dysregulation in HCC progression and discuss the potential of emerging therapeutic strategies, including immune-targeted therapy and tumor-associated macrophage interventions. Additionally, we explore the potential of traditional Chinese medicine (TCM) monomers in inhibiting tumor growth. By elucidating the complex interplay of factors contributing to HCC, this review aims to provide a comprehensive understanding of the disease and highlight promising avenues for future research and therapeutic development.
Collapse
Affiliation(s)
- Zhixian Ding
- General Clinical Research Center, Wanbei Coal-Electricity Group General Hospital, Suzhou, China
- Laboratory of Inflammation and Repair of Liver Injury and Tumor Immunity, Wanbei Coal-Electricity Group General Hospital, Hefei, China
| | - Lusheng Wang
- General Clinical Research Center, Wanbei Coal-Electricity Group General Hospital, Suzhou, China
- Laboratory of Inflammation and Repair of Liver Injury and Tumor Immunity, Wanbei Coal-Electricity Group General Hospital, Hefei, China
| | - Jiting Sun
- General Clinical Research Center, Wanbei Coal-Electricity Group General Hospital, Suzhou, China
- Laboratory of Inflammation and Repair of Liver Injury and Tumor Immunity, Wanbei Coal-Electricity Group General Hospital, Hefei, China
| | - Lijie Zheng
- General Clinical Research Center, Wanbei Coal-Electricity Group General Hospital, Suzhou, China
- Laboratory of Inflammation and Repair of Liver Injury and Tumor Immunity, Wanbei Coal-Electricity Group General Hospital, Hefei, China
| | - Yu Tang
- General Clinical Research Center, Wanbei Coal-Electricity Group General Hospital, Suzhou, China
- Laboratory of Inflammation and Repair of Liver Injury and Tumor Immunity, Wanbei Coal-Electricity Group General Hospital, Hefei, China
| | - Heng Tang
- General Clinical Research Center, Wanbei Coal-Electricity Group General Hospital, Suzhou, China
- Laboratory of Inflammation and Repair of Liver Injury and Tumor Immunity, Wanbei Coal-Electricity Group General Hospital, Hefei, China
| |
Collapse
|
4
|
Barathi A, Krishnamoorthy Y, Kannan S, Govindhan D, Elangovan V, Subbiah P, Kuberan D. The mediating role of BMI in alcohol-linked liver enzyme elevation among adults at a tertiary care hospital in South India. Eur J Gastroenterol Hepatol 2025:00042737-990000000-00491. [PMID: 39975998 DOI: 10.1097/meg.0000000000002949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Excessive alcohol consumption is a major risk factor for liver disease, with significant variations in its impact across populations. BMI has been identified as a potential mediator in alcohol-related liver damage. This study aimed to examine the association between alcohol consumption and liver function and to explore the mediating role of BMI in a population from India, where both are rising public health concerns. MATERIALS AND METHODS A cross-sectional study was conducted using data from adult participants. Liver function was assessed using serum levels of gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). Alcohol consumption was self-reported, and BMI was calculated AST from height and weight measurements. Multiple linear regression models were used to evaluate the relationship between alcohol consumption and liver enzymes while adjusting for BMI as a mediator. Statistical significance was set at P < 0.05. RESULTS The results indicated that higher alcohol consumption was significantly associated with elevated levels of GGT, ALT, and AST. BMI was found to mediate this relationship, with individuals having higher BMI showing a greater increase in liver enzyme levels in response to alcohol consumption. However, no significant association was observed for ALP. BMI also independently correlated with higher levels of GGT, ALT, and AST. CONCLUSION This study highlights the mediating role of BMI in alcohol-induced liver dysfunction in the Indian population. Public health interventions focusing on both reducing alcohol intake and managing obesity may help mitigate the risk of liver disease in this high-risk population.
Collapse
|
5
|
Zhang Y, Gong C, Tao L, Zhai J, Huang F, Zhang S. Involvement of SIRT1-mediated aging in liver diseases. Front Cell Dev Biol 2025; 13:1548015. [PMID: 40052151 PMCID: PMC11882576 DOI: 10.3389/fcell.2025.1548015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025] Open
Abstract
Liver disease is a significant global health issue, responsible for millions of deaths annually. Aging, characterized by the gradual decline in cellular and physiological functions, impairs tissue regeneration, increases susceptibility to liver diseases, and leads to a decline in liver health. Silent information regulator 1 (SIRT1), a NAD⁺-dependent deacetylase, has emerged as a pivotal factor in modulating age-related changes in the liver. SIRT1 preserves liver function by regulating essential aging-related pathways, including telomere maintenance, epigenetic modifications, cellular senescence, intercellular communication, inflammation, and mitochondrial function. Notably, SIRT1 levels naturally decline with age, contributing to liver disease progression and increased vulnerability to injury. This review summarizes the regulatory role of SIRT1 in aging and its impact on liver diseases such as liver fibrosis, alcoholic associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and metabolic dysfunction-associated steatohepatitis (MASH), hepatocellular carcinoma (HCC). We also discuss emerging therapeutic approaches, including SIRT1 activators, gene therapy, and nutritional interventions, which are evaluated for their potential to restore SIRT1 function and mitigate liver disease progression. Finally, we highlight future research directions to optimize SIRT1-targeted therapies for clinical applications in age-related liver conditions.
Collapse
Affiliation(s)
- Yueming Zhang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Chang Gong
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Lina Tao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Jinghui Zhai
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Fengwei Huang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
- College of Pharmacy, Jilin University, Changchun, Jilin, China
| | - Sixi Zhang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
- College of Pharmacy, Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Tang S, Wu S, Zhang W, Ma L, Zuo L, Wang H. Immunology and treatments of fatty liver disease. Arch Toxicol 2025; 99:127-152. [PMID: 39692857 DOI: 10.1007/s00204-024-03920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are two major chronic liver diseases worldwide. The triggers for fatty liver can be derived from external sources such as adipose tissue, the gut, personal diet, and genetics, or internal sources, including immune cell responses, lipotoxicity, hepatocyte death, mitochondrial dysfunction, and extracellular vesicles. However, their pathogenesis varies to some extent. This review summarizes various immune mechanisms and therapeutic targets associated with these two types of fatty liver disease. It describes the gut-liver axis and adipose tissue-liver crosstalk, as well as the roles of different immune cells (both innate and adaptive immune cells) in fatty liver disease. Additionally, mitochondrial dysfunction, extracellular vesicles, microRNAs (miRNAs), and gastrointestinal hormones are also related to the pathogenesis of fatty liver. Understanding the pathogenesis of fatty liver and corresponding therapeutic strategies provides a new perspective for developing novel treatments for fatty liver disease.
Collapse
Affiliation(s)
- Sainan Tang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, 230022, Anhui, China
| | - Shanshan Wu
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Wenzhe Zhang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Lili Ma
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China.
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
7
|
Berköz M, Aslan A, Yunusoğlu O, Krośniak M, Francik R. Hepatoprotective potentials of Usnea longissima Ach. and Xanthoparmelia somloensis (Gyelnik) Hale extracts in ethanol-induced liver injury. Drug Chem Toxicol 2025; 48:136-149. [PMID: 39322224 DOI: 10.1080/01480545.2024.2407867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
In our study, the antioxidant and anti-inflammatory effects of different lichen applications were investigated in rats using an experimental ethanol toxicity model. 48 rats were used in the study and they were divided into 6 groups with 8 rats in each group. These groups were: control, ethanol (2 g/kg), ethanol + Usnea longissima Ach. (200 mg/kg), ethanol + Usnea longissima Ach. (400 mg/kg), ethanol + Xanthoparmelia somloensis (Gyelnik) Hale (100 mg/kg) and ethanol + Xanthoparmelia somloensis (Gyelnik) Hale (200 mg/kg). The experimental work continued for 21 days. Lichen extracts and ethanol were administered by gavage to rats divided into groups. According to the experimental protocol, the experimental animals were sacrificed and their liver tissues were isolated. Biochemical parameters in serum, histological examinations, oxidative stress and inflammation parameters both at biochemical and molecular level in liver tissues were performed. Oxidative stress and inflammatory response were increased in the liver tissue of rats treated with ethanol for 21 days, and liver functions were impaired. It was found that U. longissima and X. somloensis extracts showed good antioxidant activity and conferred protective effects against ethanol-induced oxidative stress and inflammation. This could be attributed to the presence of secondary metabolites in the extract, which act as natural antioxidants and could be responsible for increasing the defence mechanisms against free radical production induced by ethanol administration.
Collapse
Affiliation(s)
- Mehmet Berköz
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| | - Ali Aslan
- Department of Pharmacology, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Oruç Yunusoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Cracow, Poland
| | - Renata Francik
- Department of Bioorganic Chemistry, Medical College, Jagiellonian University, Cracow, Poland
| |
Collapse
|
8
|
Alrashed M, Aldeghaither NS, Almutairi SY, Almutairi M, Alghamdi A, Alqahtani T, Almojathel GH, Alnassar NA, Alghadeer SM, Alshehri A, Alnuhait M, Almohammed OA. The Perils of Methanol Exposure: Insights into Toxicity and Clinical Management. TOXICS 2024; 12:924. [PMID: 39771139 PMCID: PMC11728796 DOI: 10.3390/toxics12120924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
Methanol is a widely used industrial and household alcohol that poses significant health risks upon exposure. Despite its extensive use, methanol poisoning remains a critical public health concern globally, often resulting from accidental or intentional ingestion and outbreaks linked to contaminated beverages. Methanol toxicity stems from its metabolic conversion to formaldehyde and formic acid, leading to severe metabolic acidosis and multiorgan damage, including profound CNS effects and visual impairments. Epidemiological data underscore the widespread impact of methanol poisoning, with alarming case fatality rates reported in various countries. Comprehensive prevention and effective management strategies are urgently needed to address the significant morbidity and mortality associated with methanol poisoning. The clinical manifestations of methanol toxicity vary between adult and pediatric populations and between acute and chronic exposure. Adults typically present with gastrointestinal and neurological symptoms, whereas pediatric patients often exhibit more severe outcomes due to differences in metabolism and body weight. The diagnosis of methanol poisoning involves a combination of clinical evaluation, laboratory testing, and advanced diagnostic techniques. The identification of metabolic acidosis, elevated anion and osmolal gaps, and confirmation through methanol and formate levels are critical for accurate diagnosis. Timely intervention is crucial, and the management of methanol poisoning includes securing the airway, breathing, and circulation; addressing metabolic acidosis with sodium bicarbonate; administering antidotes such as fomepizole or ethanol; and administering hemodialysis, which plays a pivotal role in eliminating methanol and its toxic metabolites, especially in severe cases. The complexity of methanol poisoning necessitates a comprehensive approach encompassing early recognition, prompt intervention, and coordinated care among healthcare providers. Increased awareness, effective prevention strategies, and timely treatment protocols are essential to mitigate severe health consequences and improve patient survival and recovery.
Collapse
Affiliation(s)
- Mohammed Alrashed
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (N.S.A.); (S.Y.A.); (M.A.); (A.A.)
- Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia;
| | - Norah S. Aldeghaither
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (N.S.A.); (S.Y.A.); (M.A.); (A.A.)
| | - Shatha Y. Almutairi
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (N.S.A.); (S.Y.A.); (M.A.); (A.A.)
| | - Meshari Almutairi
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (N.S.A.); (S.Y.A.); (M.A.); (A.A.)
| | - Abdulrhman Alghamdi
- Emergency Medical Services Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia;
| | - Tariq Alqahtani
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia;
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
| | - Ghada H. Almojathel
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia; (G.H.A.); (N.A.A.); (S.M.A.); (O.A.A.)
| | - Nada A. Alnassar
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia; (G.H.A.); (N.A.A.); (S.M.A.); (O.A.A.)
| | - Sultan M. Alghadeer
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia; (G.H.A.); (N.A.A.); (S.M.A.); (O.A.A.)
| | - Abdulmajeed Alshehri
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (N.S.A.); (S.Y.A.); (M.A.); (A.A.)
- Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia;
| | - Mohammed Alnuhait
- Pharmaceutical Practices Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Omar A. Almohammed
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia; (G.H.A.); (N.A.A.); (S.M.A.); (O.A.A.)
- Pharmacoeconomics Research Unit, College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia
| |
Collapse
|
9
|
Lin HM, Zhang JR, Li MX, Hou H, Wang H, Huang Y. Cigarette smoking and alcohol-related liver disease. LIVER RESEARCH 2024; 8:237-245. [PMID: 39958918 PMCID: PMC11771264 DOI: 10.1016/j.livres.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 12/04/2024] [Indexed: 02/18/2025]
Abstract
China is a major consumer of alcohol and tobacco. Tobacco and alcohol use are closely linked, with up to 90% of alcoholics having a history of tobacco use, and heavy smokers also tending to be alcoholics. Alcohol-related liver disease (ALD), one of the most common and serious complications of chronic alcohol intake, involving hepatic steatosis, hepatitis, hepatic fibrosis, cirrhosis and hepatocellular carcinoma (HCC), has become one of the globally prevalent chronic diseases. An increasing number of studies have focused on the association between smoking and ALD and explored the mechanisms involved. Clinical evidence suggests that smoking has a negative impact on the incidence and severity of fatty liver disease, progression of liver fibrosis, development of HCC, prognosis of patients with advanced liver disease, and alcohol-related liver transplant recipients. The underlying mechanisms are complex and involve different pathophysiological pathways, including free radical exposure, endoplasmic reticulum stress, insulin resistance, and oncogenic signaling. This review discusses the deleterious effects of smoking on ALD patients and the possible underlying mechanisms at several levels. It emphasizes the importance of discouraging smoking among ALD patients. Finally, the pathogenic role of electronic cigarettes, which have emerged in recent years, is discussed, calling for an emphasis on social missions for young people.
Collapse
Affiliation(s)
- Hui-Min Lin
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing-Rong Zhang
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Meng-Xue Li
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Hui Hou
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hua Wang
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yan Huang
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Philips CA. A comprehensive review of diagnosis and management of alcohol-associated hepatitis. SAGE Open Med 2024; 12:20503121241297000. [PMID: 39526098 PMCID: PMC11549690 DOI: 10.1177/20503121241297000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Alcohol-associated hepatitis is an extreme form of alcohol-related liver disease associated with high short-term mortality. Currently, there are no authorized therapies for the treatment of severe alcohol-associated hepatitis. Important diagnostic steps for alcohol-associated hepatitis include recognizing the presence of an alcohol use disorder, distinguishing alcohol-related liver disease from metabolic-dysfunction-associated steatotic liver disease, ruling out alternative causes of acute hepatitis, confirming the diagnosis with validated criteria or a liver biopsy, and using the model for end-stage liver disease score to predict clinical outcome and initiate therapy. Due to the lack of other effective therapy options, corticosteroids continue to be used as initial treatment for patients with severe alcohol-associated hepatitis. Patients who do not improve while on steroid treatment and are ideal candidates should be considered for curative liver transplantation as soon as possible. Avoiding unnecessary and ineffective pharmacological and interventional therapy can help to keep costs down. If a patient is not a good candidate for a transplant or is rapidly deteriorating in health due to a condition such as acute or chronic liver failure, a salvage/bridge to transplant should be pursued through enrolment in a clinical trial program. The role of healthy donor stool transplant and targeted bacteriophage therapy seems promising, pending prospective controlled trials.
Collapse
Affiliation(s)
- Cyriac Abby Philips
- Department of Clinical and Translational Hepatology, The Liver Institute, Rajagiri Hospital, Aluva, Kerala, India
| |
Collapse
|
11
|
Thomas LA, Hopkinson RJ. The biochemistry of the carcinogenic alcohol metabolite acetaldehyde. DNA Repair (Amst) 2024; 144:103782. [PMID: 39566398 DOI: 10.1016/j.dnarep.2024.103782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Acetaldehyde (AcH) is the first metabolite of ethanol and is proposed to be responsible for the genotoxic effects of alcohol consumption. As an electrophilic aldehyde, AcH can form multiple adducts with DNA and other biomolecules, leading to function-altering and potentially toxic and carcinogenic effects. In this review, we describe sources of AcH in humans, including AcH biosynthesis mechanisms, and outline the structures, properties and functions of AcH-derived adducts with biomolecules. We also describe human AcH detoxification mechanisms and discuss ongoing challenges in the field.
Collapse
Affiliation(s)
- Liam A Thomas
- Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Richard J Hopkinson
- Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
12
|
Deng W, Yang QN, Wu DT, Li J, Liu HY, Hu YC, Zou L, Gan RY, Yan HL, Huang JW. Comparison of Protective Effects of Polyphenol-Enriched Extracts from Thinned Immature Kiwifruits and Mature Kiwifruits against Alcoholic Liver Disease in Mice. Foods 2024; 13:3072. [PMID: 39410107 PMCID: PMC11475074 DOI: 10.3390/foods13193072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Alcoholic liver disease (ALD) is regarded as one of the main global health problems. Accumulated evidence indicates that fruit-derived polyphenols can lower the risk of ALD, this attributed to their strong antioxidant capacities. Thinned immature kiwifruits (TIK) are the major agro-byproducts in the production of kiwifruits, which have abundantly valuable polyphenols. However, knowledge about the protective effects of polyphenol-enriched extract from TIK against ALD is still lacking, which ultimately restricts their application as value-added functional products. To promote their potential applications, phenolic compounds from TIK and their corresponding mature fruits were compared, and their protective effects against ALD were studied in the present study. The findings revealed that TIK possessed extremely high levels of total phenolics (116.39 ± 1.51 mg GAE/g DW) and total flavonoids (33.88 ± 0.59 mg RE/g DW), which were about 7.4 times and 4.8 times greater than those of their corresponding mature fruits, respectively. Furthermore, the level of major phenolic components in TIK was measured to be 29,558.19 ± 1170.58 μg/g DW, which was about 5.4 times greater than that of mature fruits. In particular, neochlorogenic acid, epicatechin, procyanidin B1, and procyanidin B2 were found as the predominant polyphenols in TIK. In addition, TIK exerted stronger in vitro antioxidant and anti-inflammatory effects than those of mature fruits, which was probably because of their higher levels of polyphenols. Most importantly, compared with mature fruits, TIK exhibited superior hepatoprotective effects on alcohol-induced liver damage in mice. The administration of polyphenol-enriched extract from TIK (YK) could increase the body weight of mice, reduce the serum levels of ALP, AST, and ALT, lower the levels of hepatic TG and TC, and diminish lipid droplet accumulation and hepatic tissue damage. In addition, the treatment of YK could also significantly restore the levels of antioxidant enzymes (e.g., SOD and CAT) in the liver and lower the levels of hepatic proinflammatory cytokines (e.g., IL-6, IL-1β, and TNF-α), indicating that YK could effectively ameliorate ALD in mice by reducing hepatic oxidative stress and hepatic inflammation. Collectively, our findings can provide sufficient evidence for the development of TIK and their extracts as high value-added functional products for the intervention of ALD.
Collapse
Affiliation(s)
- Wen Deng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Qian-Ni Yang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ding-Tao Wu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jie Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ren-You Gan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Hui-Ling Yan
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jing-Wei Huang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
13
|
Lu JF, Xing SP, Wei X, Yang CX, Zhao GS, Ma XL, Sun XM, Guo HW, Su ZH, Fang B, Lin J, Liu YY, Zhu D. Elucidating the role of 4-hydroxy-2(3H)-benzoxazolone in chronic alcoholic liver disease via transcriptomics and metabolomics. Front Pharmacol 2024; 15:1447560. [PMID: 39323644 PMCID: PMC11422225 DOI: 10.3389/fphar.2024.1447560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
Background Chronic alcoholic liver disease (CALD) is a global health problem which includes multiple pathological processes such as immune inflammation and oxidative stress. 4-hydroxy-2(3H)-benzoxazolone (HBOA), an alkaloid isolated from Acanthus ilicifolius L, has been shown to exert hepatoprotective and immunomodulatory effects. However, its effects on CALD remain unclear. This study aimed to investigate the effects and underlying mechanisms of HBOA on CALD. Methods Rats were administered alcohol by gavage continuously for 12 weeks to establish the CALD model, and then treated with HBOA by gavage for 4 weeks. Transcriptomics and metabolomics were used to predict the potential mechanisms of the effects of HBOA on CALD. Liver histology and function, oxidative stress, inflammatory cytokines, and the TLR4/NF-κB pathway components were evaluated. Results HBOA significantly improved alcohol-induced liver injury and steatosis. It decreased the expression levels of pro-inflammatory cytokines (tumour necrosis factor-α [TNF-α], interleukin (IL)-1β, and IL-6), and increased the activities of antioxidant enzymes (superoxide dismutase [SOD], glutathione [GSH], and glutathione peroxidase [GSH-Px]). Western blotting confirmed that HBOA treatment largely diminished NF-κBp65 nuclear translocation. Comprehensive transcriptomics and metabolomics analyses indicated that HBOA regulated the glycerophospholipid metabolism pathway to achieve therapeutic effects in rats with CALD. Conclusion HBOA has a therapeutic effect on rats with CALD. Its mechanism of action mainly affects the glycerophospholipid metabolic pathway to promote lipid metabolism homeostasis by regulating the expression of Etnppl, Gpcpd1, and Pla2g4c. In addition, it may also inhibit the TLR4/NF-κB signaling pathway, thereby reducing the immune-inflammatory response.
Collapse
Affiliation(s)
- Jun-Fei Lu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Department of Pharmacy, College and Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Shang-Ping Xing
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xia Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Chun-Xia Yang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Gen-Shi Zhao
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xiao-Lin Ma
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xue-Mei Sun
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Hong-Wei Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Geriatric Diseases, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Zhi-Heng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Bin Fang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jun Lin
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yan-Ying Liu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Dan Zhu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, Nanning, China
| |
Collapse
|
14
|
Staller DW, Bennett RG, Mahato RI. Therapeutic perspectives on PDE4B inhibition in adipose tissue dysfunction and chronic liver injury. Expert Opin Ther Targets 2024; 28:545-573. [PMID: 38878273 PMCID: PMC11305103 DOI: 10.1080/14728222.2024.2369590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Chronic liver disease (CLD) is a complex disease associated with profound dysfunction. Despite an incredible burden, the first and only pharmacotherapy for metabolic-associated steatohepatitis was only approved in March of this year, indicating a gap in the translation of preclinical studies. There is a body of preclinical work on the application of phosphodiesterase 4 inhibitors in CLD, none of these molecules have been successfully translated into clinical use. AREAS COVERED To design therapies to combat CLD, it is essential to consider the dysregulation of other tissues that contribute to its development and progression. As such, proper therapies must combat this throughout the body rather than focusing only on the liver. To detail this, literature characterizing the pathogenesis of CLD was pulled from PubMed, with a particular focus placed on the role of PDE4 in inflammation and metabolism. Then, the focus is shifted to detailing the available information on existing PDE4 inhibitors. EXPERT OPINION This review gives a brief overview of some of the pathologies of organ systems that are distinct from the liver but contribute to disease progression. The demonstrated efficacy of PDE4 inhibitors in other human inflammatory diseases should earn them further examination for the treatment of CLD.
Collapse
Affiliation(s)
- Dalton W. Staller
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Robert G. Bennett
- Department of Internal Medicine, Division of Diabetes Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Ram I. Mahato
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
15
|
Kumar H, Dhanjal DS, Guleria S, Nepovimova E, Sethi N, Dhalaria R, Kuca K. Hepatoprotective effects of fruits pulp, seed, and peel against chemical-induced toxicity: Insights from in vivo studies. Food Chem Toxicol 2024; 189:114742. [PMID: 38754807 DOI: 10.1016/j.fct.2024.114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The liver is a vital organ in human physiology positioned in the upper right quadrant of the peritoneal cavity, which plats a critical role in metabolic processes, detoxification of various substances and overall homeostasis. Along with these critical functions, hepatic diseases impose as significant global health threat. Liver illness is the cause of two million fatalities every year, or 4% of all deaths. Traditionally, healthcare providers have prescribed antibacterial and antiviral medications to address liver illness. Nephrotoxicity is a frequently observed negative reaction to drugs, with the majority of such events happening in individuals who have advanced cirrhosis. Thus, recognizing this gap, there is a dire need of exploration of pharmaceutical alterative for hepatic diseases, with special focus on their efficacy and reduced toxicity. Fruits have long been known to therapeutic impact on human health, thus exploration of fruits components namely pulp, seeds and peels containing phytochemicals have emerged as a promising avenue for hepatoprotective interventions. Thus, review comprehends the information about worldwide burden of chemical induced toxicity and injuries as well as highlight the on-going challenges in hepatic disease management. It also shed light on the valuable contributions fruit parts and their phytocompounds obtained from different components of fruits. Fruit pulp, especially when rich in flavonoids, has demonstrated significant potential in animal model studies. It has been observed to enhance the activity of antioxidant enzymes and reduce the expression of pro-inflammatory markers. The methanolic and ethanolic extracts have demonstrated the most favorable outcomes. Further, this review also discusses about the safety assessments of fruits extracts for their utilization as hepatoprotective agents.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001, India.
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Nidhi Sethi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| |
Collapse
|
16
|
Teschke R. Copper, Iron, Cadmium, and Arsenic, All Generated in the Universe: Elucidating Their Environmental Impact Risk on Human Health Including Clinical Liver Injury. Int J Mol Sci 2024; 25:6662. [PMID: 38928368 PMCID: PMC11203474 DOI: 10.3390/ijms25126662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Humans are continuously exposed to various heavy metals including copper, iron, cadmium, and arsenic, which were specifically selected for the current analysis because they are among the most frequently encountered environmental mankind and industrial pollutants potentially causing human health hazards and liver injury. So far, these issues were poorly assessed and remained a matter of debate, also due to inconsistent results. The aim of the actual report is to thoroughly analyze the positive as well as negative effects of these four heavy metals on human health. Copper and iron are correctly viewed as pollutant elements essential for maintaining human health because they are part of important enzymes and metabolic pathways. Healthy individuals are prepared through various genetically based mechanisms to maintain cellular copper and iron homeostasis, thereby circumventing or reducing hazardous liver and organ injury due to excessive amounts of these metals continuously entering the human body. In a few humans with gene aberration, however, liver and organ injury may develop because excessively accumulated copper can lead to Wilson disease and substantial iron deposition to hemochromatosis. At the molecular level, toxicities of some heavy metals are traced back to the Haber Weiss and Fenton reactions involving reactive oxygen species formed in the course of oxidative stress. On the other hand, cellular homeostasis for cadmium and arsenic cannot be provided, causing their life-long excessive deposition in the liver and other organs. Consequently, cadmium and arsenic represent health hazards leading to higher disability-adjusted life years and increased mortality rates due to cancer and non-cancer diseases. For unknown reasons, however, liver injury in humans exposed to cadmium and arsenic is rarely observed. In sum, copper and iron are good for the human health of most individuals except for those with Wilson disease or hemochromatosis at risk of liver injury through radical formation, while cadmium and arsenic lack any beneficial effects but rather are potentially hazardous to human health with a focus on increased disability potential and risk for cancer. Primary efforts should focus on reducing the industrial emission of hazardous heavy metals.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, 63450 Hanau, Germany; ; Tel.: +49-6181/21859; Fax: +49-6181/2964211
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, 60590 Hanau, Germany
| |
Collapse
|
17
|
Chen P, Huang P, Liang Y, Wang Q, Miao J. The antioxidant peptides from walnut protein hydrolysates and their protective activity against alcoholic injury. Food Funct 2024; 15:5315-5328. [PMID: 38605685 DOI: 10.1039/d4fo00091a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
In this study, walnut protein was hydrolyzed, separated by ultrafiltration, purified by RP-HPLC, identified by LC-MS/MS, and screened by molecular docking to finally obtain three novel antioxidant peptides HGEPGQQQR (1189.584 Da), VAPFPEVFGK (1089.586 Da) and HNVADPQR (949.473 Da). These three peptides exhibited excellent cellular antioxidant activity (CAA) with EC50 values of 0.0120 mg mL-1, 0.0068 mg mL-1, and 0.0069 mg mL-1, respectively, which were superior to that of the positive control GSH (EC50: 0.0122 mg mL-1). In the ethanol injury model, three antioxidant peptides enhanced the survival of cells treated with ethanol from 47.36% to 62.69%, 57.06% and 71.64%, respectively. Molecular docking results showed that the three antioxidant peptides could effectively bind to Keap1, CYP2E1 and TLR4 proteins. These results suggested that walnut-derived antioxidant peptides could be potential antioxidants and hepatoprotective agents for application in functional foods.
Collapse
Affiliation(s)
- Peihang Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Pantian Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yingyan Liang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qiaoe Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Xiao C, Li XG, Zhao M. Bioactive peptides as a novel strategy to prevent alcoholic liver injury. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:243-274. [PMID: 38906588 DOI: 10.1016/bs.afnr.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Alcohol intake has become one of the leading risks to human health and wellness, among which acute and/or chronic alcohol-induced liver injury is a leading threaten, with few therapeutic options other than abstinence. In recent years, studies suggested that certain bioactive peptides from food sources could represent natural and safe alternatives for the prevention of alcoholic liver injury. Hence, this chapter focus on the advanced research on bioactive peptides exerting hepatoprotective activity against alcoholic liver injury. The main sources of protein, strategies for the preparation of hepatoprotective hydrolysates and peptides, underlying mechanisms of peptides on hepatoprotection, and possible structure-activity relationship between peptides and hepatoprotective activity were summarized and discussed, aiming to give a systematic insight into the research progress of hepatoprotective peptides. However, more efforts would be needed to give a clearer insight into the underlying mechanisms and structure-activity relationship before using hepatoprotective peptides as functional food ingredients or dietary supplements.
Collapse
Affiliation(s)
- Chuqiao Xiao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P.R. China.
| | - Xiang-Guang Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P.R. China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, P.R. China.
| |
Collapse
|
19
|
Wu D, Cheng M, Yi X, Xia G, Liu Z, Shi H, Shen X. Effects of Mactra chinenesis Peptides on Alcohol-Induced Acute Liver Injury and Intestinal Flora in Mice. Foods 2024; 13:1431. [PMID: 38790731 PMCID: PMC11119424 DOI: 10.3390/foods13101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Food-borne bioactive peptides have shown promise in preventing and mitigating alcohol-induced liver injury. This study was the first to assess the novel properties of Mactra chinenesis peptides (MCPs) in mitigating acute alcoholic liver injury in mice, and further elucidated the underlying mechanisms associated with this effect. The results showed that MCPs can improve lipid metabolism by modulating the AMPK signaling pathway, decreasing fatty acid synthase activity, and increasing carnitine palmitoyltransferase 1a activity. Meanwhile, MCPs ameliorate inflammation by inhibiting the NF-κB activation, leading to reduced levels of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1β). Additionally, a 16S rDNA sequencing analysis revealed that MCPs can restore the balance of gut microbiota and increase the relative abundance of beneficial bacteria. These findings suggest that supplementation of MCPs could attenuate alcohol intake-induced acute liver injury, and, thus, may be utilized as a functional dietary supplement for the successful treatment and prevention of acute liver injury.
Collapse
Affiliation(s)
- Dong Wu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Ming Cheng
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xiangzhou Yi
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Guanghua Xia
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhongyuan Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Haohao Shi
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Xuanri Shen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China
| |
Collapse
|
20
|
Jaffar HM, Al‐Asmari F, Khan FA, Rahim MA, Zongo E. Silymarin: Unveiling its pharmacological spectrum and therapeutic potential in liver diseases-A comprehensive narrative review. Food Sci Nutr 2024; 12:3097-3111. [PMID: 38726410 PMCID: PMC11077231 DOI: 10.1002/fsn3.4010] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 05/12/2024] Open
Abstract
Liver diseases, encompassing conditions such as cirrhosis, present a substantial global health challenge with diverse etiologies, including viral infections, alcohol consumption, and non-alcoholic fatty liver disease (NAFLD). The exploration of natural compounds as therapeutic agents has gained traction, notably the herbal remedy milk thistle (Silybum marianum), with its active extract, silymarin, demonstrating remarkable antioxidant and hepatoprotective properties in extensive preclinical investigations. It can protect healthy liver cells or those that have not yet sustained permanent damage by reducing oxidative stress and mitigating cytotoxicity. Silymarin, a natural compound with antioxidant properties, anti-inflammatory effects, and antifibrotic activity, has shown potential in treating liver damage caused by alcohol, NAFLD, drug-induced toxicity, and viral hepatitis. Legalon® is a top-rated medication with excellent oral bioavailability, effective absorption, and therapeutic effectiveness. Its active component, silymarin, has antioxidant and hepatoprotective properties, Eurosil 85® also, a commercial product, has lipophilic properties enhanced by special formulation processes. Silymarin, during clinical trials, shows potential improvements in liver function, reduced mortality rates, and alleviation of symptoms across various liver disorders, with safety assessments showing low adverse effects. Overall, silymarin emerges as a promising natural compound with multifaceted hepatoprotective properties and therapeutic potential in liver diseases.
Collapse
Affiliation(s)
- Hafiza Madiha Jaffar
- University Institute of Diet & Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Fahad Al‐Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food SciencesKing Faisal UniversityAl‐AhsaSaudi Arabia
| | - Faima Atta Khan
- University Institute of Diet & Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
- Department of Food Science, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Abdul Rahim
- Department of Food Science, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
- Department of Food Science & Nutrition, Faculty of Medicine and Allied Health SciencesTimes InstituteMultanPakistan
| | - Eliasse Zongo
- Laboratoire de Recherche et d'Enseignement en Santé et Biotechnologies AnimalesUniversité Nazi BONIBobo DioulassoBurkina Faso
| |
Collapse
|
21
|
Teschke R, Eickhoff A. Wilson Disease: Copper-Mediated Cuproptosis, Iron-Related Ferroptosis, and Clinical Highlights, with Comprehensive and Critical Analysis Update. Int J Mol Sci 2024; 25:4753. [PMID: 38731973 PMCID: PMC11084815 DOI: 10.3390/ijms25094753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Wilson disease is a genetic disorder of the liver characterized by excess accumulation of copper, which is found ubiquitously on earth and normally enters the human body in small amounts via the food chain. Many interesting disease details were published on the mechanistic steps, such as the generation of reactive oxygen species (ROS) and cuproptosis causing a copper dependent cell death. In the liver of patients with Wilson disease, also, increased iron deposits were found that may lead to iron-related ferroptosis responsible for phospholipid peroxidation within membranes of subcellular organelles. All topics are covered in this review article, in addition to the diagnostic and therapeutic issues of Wilson disease. Excess Cu2+ primarily leads to the generation of reactive oxygen species (ROS), as evidenced by early experimental studies exemplified with the detection of hydroxyl radical formation using the electron spin resonance (ESR) spin-trapping method. The generation of ROS products follows the principles of the Haber-Weiss reaction and the subsequent Fenton reaction leading to copper-related cuproptosis, and is thereby closely connected with ROS. Copper accumulation in the liver is due to impaired biliary excretion of copper caused by the inheritable malfunctioning or missing ATP7B protein. As a result, disturbed cellular homeostasis of copper prevails within the liver. Released from the liver cells due to limited storage capacity, the toxic copper enters the circulation and arrives at other organs, causing local accumulation and cell injury. This explains why copper injures not only the liver, but also the brain, kidneys, eyes, heart, muscles, and bones, explaining the multifaceted clinical features of Wilson disease. Among these are depression, psychosis, dysarthria, ataxia, writing problems, dysphagia, renal tubular dysfunction, Kayser-Fleischer corneal rings, cardiomyopathy, cardiac arrhythmias, rhabdomyolysis, osteoporosis, osteomalacia, arthritis, and arthralgia. In addition, Coombs-negative hemolytic anemia is a key feature of Wilson disease with undetectable serum haptoglobin. The modified Leipzig Scoring System helps diagnose Wilson disease. Patients with Wilson disease are well-treated first-line with copper chelators like D-penicillamine that facilitate the removal of circulating copper bound to albumin and increase in urinary copper excretion. Early chelation therapy improves prognosis. Liver transplantation is an option viewed as ultima ratio in end-stage liver disease with untreatable complications or acute liver failure. Liver transplantation finally may thus be a life-saving approach and curative treatment of the disease by replacing the hepatic gene mutation. In conclusion, Wilson disease is a multifaceted genetic disease representing a molecular and clinical challenge.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany;
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt, D-60590 Frankfurt, Germany
| | - Axel Eickhoff
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany;
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt, D-60590 Frankfurt, Germany
| |
Collapse
|
22
|
Scarlata GGM, Colaci C, Scarcella M, Dallio M, Federico A, Boccuto L, Abenavoli L. The Role of Cytokines in the Pathogenesis and Treatment of Alcoholic Liver Disease. Diseases 2024; 12:69. [PMID: 38667527 PMCID: PMC11048950 DOI: 10.3390/diseases12040069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Alcoholic liver disease (ALD) is a major cause of chronic liver disease. This term covers a broad spectrum of liver lesions, from simple steatosis to alcoholic hepatitis and cirrhosis. The pathogenesis of ALD is multifactorial and not fully elucidated due to complex mechanisms related to direct ethanol toxicity with subsequent hepatic and systemic inflammation. The accumulation of pro-inflammatory cytokines and the reduction of anti-inflammatory cytokines promote the development and progression of ALD. To date, there are no targeted therapies to counter the progression of chronic alcohol-related liver disease and prevent acute liver failure. Corticosteroids reduce mortality by acting on the hepatic-systemic inflammation. On the other hand, several studies analyzed the effect of inhibiting pro-inflammatory cytokines and stimulating anti-inflammatory cytokines as potential therapeutic targets in ALD. This narrative review aims to clarify the role of the main cytokines involved in the pathogenesis and treatment of ALD.
Collapse
Affiliation(s)
| | - Carmen Colaci
- Department of Health Sciences, University “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy; (G.G.M.S.); (C.C.)
| | - Marialaura Scarcella
- Anesthesia, Intensive Care and Nutritional Science, Azienda Ospedaliera “Santa Maria”, Via Tristano di Joannuccio, 05100 Terni, Italy;
| | - Marcello Dallio
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.D.); (A.F.)
| | - Alessandro Federico
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.D.); (A.F.)
| | - Luigi Boccuto
- Healthcare Genetics and Genomics Doctoral Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy; (G.G.M.S.); (C.C.)
| |
Collapse
|
23
|
Lee HL, Kim JM, Go MJ, Joo SG, Kim TY, Lee HS, Kim JH, Son JS, Heo HJ. Fermented Protaetia brevitarsis Larvae Ameliorates Chronic Ethanol-Induced Hepatotoxicity in Mice via AMPK and TLR-4/TGF-β1 Pathways. J Microbiol Biotechnol 2024; 34:606-621. [PMID: 38111317 PMCID: PMC11016765 DOI: 10.4014/jmb.2310.10003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/20/2023]
Abstract
This study evaluated the hepatoprotective effect of fermented Protaetia brevitarsis larvae (FPB) in ethanol-induced liver injury mice. As a result of amino acids in FPB, 18 types of amino acids including essential amino acids were identified. In the results of in vitro tests, FPB increased alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities. In addition, FPB treatment increased cell viability on ethanol- and H2O2-induced HepG2 cells. FPB ameliorated serum biomarkers related to hepatoxicity including glutamic oxaloacetic transaminase, glutamine pyruvic transaminase, total bilirubin, and lactate dehydrogenase and lipid metabolism including triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. Also, FPB controlled ethanol metabolism enzymes by regulating the protein expression levels of ADH, ALDH, and cytochrome P450 2E1 in liver tissue. FPB protected hepatic oxidative stress by improving malondialdehyde content, reduced glutathione, and superoxide dismutase levels. In addition, FPB reversed mitochondrial dysfunction by regulating reactive oxygen species production, mitochondrial membrane potential, and ATP levels. FPB protected ethanol-induced apoptosis, fatty liver, and hepatic inflammation through p-AMP-activated protein kinase and TLR-4/NF-κB signaling pathways. Furthermore, FPB prevented hepatic fibrosis by decreasing TGF-β1/Smad pathway. In summary, these results suggest that FPB might be a potential prophylactic agent for the treatment of alcoholic liver disease via preventing liver injury such as fatty liver, hepatic inflammation due to chronic ethanol-induced oxidative stress.
Collapse
Affiliation(s)
- Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Gyum Joo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae Yoon Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ju Hui Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin-Sung Son
- HMO Health Dream Agricultural Association Corporation, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
24
|
Hsu MF, LeBleu G, Flores L, Parkhurst A, Nagy LE, Haj FG. Hepatic protein tyrosine phosphatase Shp2 disruption mitigates the adverse effects of ethanol in the liver by modulating oxidative stress and ERK signaling. Life Sci 2024; 340:122451. [PMID: 38253311 DOI: 10.1016/j.lfs.2024.122451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
AIMS Chronic excessive alcohol intake is a significant cause of alcohol-associated liver disease (ALD), a leading contributor to liver-related morbidity and mortality. The Src homology phosphatase 2 (Shp2; encoded by Ptpn11) is a widely expressed protein tyrosine phosphatase that modulates hepatic functions, but its role in ALD is mostly uncharted. MAIN METHODS Herein, we explore the effects of liver-specific Shp2 genetic disruption using the established chronic-plus-binge mouse model of ALD. KEY FINDINGS We report that the hepatic Shp2 disruption had beneficial effects and partially ameliorated ethanol-induced injury, inflammation, and steatosis in the liver. Consistently, Shp2 deficiency was associated with decreased ethanol-evoked activation of extracellular signal-regulated kinase (ERK) and oxidative stress in the liver. Moreover, primary hepatocytes with Shp2 deficiency exhibited similar outcomes to those observed upon Shp2 disruption in vivo, including diminished ethanol-induced ERK activation, inflammation, and oxidative stress. Furthermore, pharmacological inhibition of ERK in primary hepatocytes mimicked the effects of Shp2 deficiency and attenuated oxidative stress caused by ethanol. SIGNIFICANCE Collectively, these findings highlight Shp2 as a modulator of hepatic oxidative stress upon ethanol challenge and suggest the evaluation of this phosphatase as a potential therapeutic target for ALD.
Collapse
Affiliation(s)
- Ming-Fo Hsu
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA.
| | - Grace LeBleu
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Lizbeth Flores
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Amy Parkhurst
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Laura E Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
25
|
Tan Y, Wang Y, Wan Y, Liang Y, Liu Q, Wei M, Hou T. Preparation, Structural Identification, and Screening of Egg-Derived Peptides with Facilitating Alcohol Metabolism Activity. Foods 2024; 13:745. [PMID: 38472859 DOI: 10.3390/foods13050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to obtain egg-derived peptides with facilitating alcohol metabolism (EPs) by enzymolysis, to identify their structures, and screen small polypeptides with higher activity by molecular docking. The optimum conditions for preparing EPs with facilitating alcohol metabolism were obtained by a single factor experiment, adding 2% Protamex and performing enzymolysis for 3 h with a liquid-material ratio of 35:1. The dose-response relationship experiment showed that 800 mg/kg·bw EPs played a better role in facilitating alcohol metabolism. EPs contained 40% hydrophobic amino acids (HAA), including 9.24% Leu. Eighty-four peptides were identified by HPLC-MS/MS and four peptides with potential activation of alcohol dehydrogenase were further selected by molecular docking. The tetrapeptide Trp-Ile-Val-Asp (WIVD) with the highest binding energy reached -7.16 kcal/mol. These findings suggest that egg is a good source for the preparation of peptides with facilitating alcohol metabolism activity.
Collapse
Affiliation(s)
- Yali Tan
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yulin Wang
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China
| | - Yuan Wan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaocui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengya Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Hou
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430000, China
| |
Collapse
|
26
|
Teschke R. Hemochromatosis: Ferroptosis, ROS, Gut Microbiome, and Clinical Challenges with Alcohol as Confounding Variable. Int J Mol Sci 2024; 25:2668. [PMID: 38473913 DOI: 10.3390/ijms25052668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Hemochromatosis represents clinically one of the most important genetic storage diseases of the liver caused by iron overload, which is to be differentiated from hepatic iron overload due to excessive iron release from erythrocytes in patients with genetic hemolytic disorders. This disorder is under recent mechanistic discussion regarding ferroptosis, reactive oxygen species (ROS), the gut microbiome, and alcohol abuse as a risk factor, which are all topics of this review article. Triggered by released intracellular free iron from ferritin via the autophagic process of ferritinophagy, ferroptosis is involved in hemochromatosis as a specific form of iron-dependent regulated cell death. This develops in the course of mitochondrial injury associated with additional iron accumulation, followed by excessive production of ROS and lipid peroxidation. A low fecal iron content during therapeutic iron depletion reduces colonic inflammation and oxidative stress. In clinical terms, iron is an essential trace element required for human health. Humans cannot synthesize iron and must take it up from iron-containing foods and beverages. Under physiological conditions, healthy individuals allow for iron homeostasis by restricting the extent of intestinal iron depending on realistic demand, avoiding uptake of iron in excess. For this condition, the human body has no chance to adequately compensate through removal. In patients with hemochromatosis, the molecular finetuning of intestinal iron uptake is set off due to mutations in the high-FE2+ (HFE) genes that lead to a lack of hepcidin or resistance on the part of ferroportin to hepcidin binding. This is the major mechanism for the increased iron stores in the body. Hepcidin is a liver-derived peptide, which impairs the release of iron from enterocytes and macrophages by interacting with ferroportin. As a result, iron accumulates in various organs including the liver, which is severely injured and causes the clinically important hemochromatosis. This diagnosis is difficult to establish due to uncharacteristic features. Among these are asthenia, joint pain, arthritis, chondrocalcinosis, diabetes mellitus, hypopituitarism, hypogonadotropic hypogonadism, and cardiopathy. Diagnosis is initially suspected by increased serum levels of ferritin, a non-specific parameter also elevated in inflammatory diseases that must be excluded to be on the safer diagnostic side. Diagnosis is facilitated if ferritin is combined with elevated fasting transferrin saturation, genetic testing, and family screening. Various diagnostic attempts were published as algorithms. However, none of these were based on evidence or quantitative results derived from scored key features as opposed to other known complex diseases. Among these are autoimmune hepatitis (AIH) or drug-induced liver injury (DILI). For both diseases, the scored diagnostic algorithms are used in line with artificial intelligence (AI) principles to ascertain the diagnosis. The first-line therapy of hemochromatosis involves regular and life-long phlebotomy to remove iron from the blood, which improves the prognosis and may prevent the development of end-stage liver disease such as cirrhosis and hepatocellular carcinoma. Liver transplantation is rarely performed, confined to acute liver failure. In conclusion, ferroptosis, ROS, the gut microbiome, and concomitant alcohol abuse play a major contributing role in the development and clinical course of genetic hemochromatosis, which requires early diagnosis and therapy initiation through phlebotomy as a first-line treatment.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, D-60590 Frankfurt am Main, Germany
| |
Collapse
|
27
|
Chen HJ, Huang TX, Jiang YX, Chen X, Wang AF. Multifunctional roles of inflammation and its causative factors in primary liver cancer: A literature review. World J Hepatol 2023; 15:1258-1271. [PMID: 38223416 PMCID: PMC10784815 DOI: 10.4254/wjh.v15.i12.1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023] Open
Abstract
Primary liver cancer is a severe and complex disease, leading to 800000 global deaths annually. Emerging evidence suggests that inflammation is one of the critical factors in the development of hepatocellular carcinoma (HCC). Patients with viral hepatitis, alcoholic hepatitis, and steatohepatitis symptoms are at higher risk of developing HCC. However, not all inflammatory factors have a pathogenic function in HCC development. The current study describes the process and mechanism of hepatitis development and its progression to HCC, particularly focusing on viral hepatitis, alcoholic hepatitis, and steatohepatitis. Furthermore, the roles of some essential inflammatory cytokines in HCC progression are described in addition to a summary of future research directions.
Collapse
Affiliation(s)
- Hong-Jin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Ting-Xiong Huang
- School of Clinical Medical, Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Yu-Xi Jiang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou 325035, Zhejiang Province, China
| | - Xiong Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
- Department of Endocrinology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan 317600, Zhejiang Province, China
| | - Ai-Fang Wang
- Department of Endocrinology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan 317600, Zhejiang Province, China.
| |
Collapse
|
28
|
Qiu L, Feng R, Wu QS, Wan JB, Zhang QW. Total saponins from Panax japonicus attenuate acute alcoholic liver oxidative stress and hepatosteatosis by p62-related Nrf2 pathway and AMPK-ACC/PPARα axis in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116785. [PMID: 37321425 DOI: 10.1016/j.jep.2023.116785] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax japonicus (T. Nees) C.A. Mey. (PJ) has been used as a tonic traditional Chinese medicine (TCM) for years. Based on its meridian tropism in liver, spleen, and lung, PJ was popularly used to enhance the function of these organs. It is originally recorded with detoxicant effect on binge drink in Ben Cao Gang Mu Shi Yi, a persuasive Chinese materia medica. And binge dink has a close relationship with alcoholic liver disease (ALD). Hence, it's meaningful to investigate whether PJ exerts liver protection against binge drink toxicity. AIM OF THE STUDY This investigation was carried out not only to emphasize the right recognition of total saponins from PJ (SPJ), but also to study on its sober-up effectiveness and defensive mechanism against acute alcoholic liver injury in vivo and in vitro. MATERIALS AND METHODS SPJ constituents were verified by HPLC-UV analysis. In vivo, acute alcoholic liver oxidative stress and hepatosteatosis were established by continuous ethanol gavage to C57BL/6 mice for 3 days. SPJ was pre-administered for 7 days to investigate its protective efficacy. Loss of righting reflex (LORR) assay was employed to assess anti-inebriation effect of SPJ. Transaminases levels and hematoxylin and eosin (H&E) staining were measured to indicate the alcoholic liver injury. Antioxidant enzymes were measured to evaluate the oxidative stress degree in liver. Measurement of hepatic lipid accumulation was based on Oil Red O staining. Levels of inflammatory cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA). In vitro, HepG2 cells were treated with ethanol for 24 h, and SPJ was pre-administered for 2 h. 2,7-dichlorofluorescein diacetate (DCFH-DA) was used as a probe to indicate reactive oxygen species (ROS) generation. Nrf2 activation was verified by the favor of specific inhibitor, ML385. The nuclear translocation of Nrf2 was indicated with immunofluorescence analysis. Proteins expressions of related pathways were determined by Western blotting. RESULTS Oleanane-type saponins are the most abundant constituents of SPJ. In this acute model, SPJ released inebriation of mice in a dose dependent manner. It decreased levels of serum ALT and AST, and hepatic TG. Besides, SPJ inhibited CYP2E1 expression and reduced MDA level in liver, with upregulations of antioxidant enzymes GSH, SOD and CAT. p62-related Nrf2 pathway was activated by SPJ with downstream upregulations of GCLC and NQO1 in liver. AMPK-ACC/PPARα axis was upregulated by SPJ to alleviate hepatic lipidosis. Hepatic IL-6 and TNF-α levels were downregulated by SPJ, which indicated a regressive lipid peroxidation in liver. In HepG2 cells, SPJ reduced ethanol-exposed ROS generation. Activated p62-related Nrf2 pathway was verified to contribute to the alleviation of alcohol-induced oxidative stress in hepatic cells. CONCLUSION This attenuation of hepatic oxidative stress and steatosis suggested the therapeutic value of SPJ for ALD.
Collapse
Affiliation(s)
- Ling Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China
| | - Qiu-Shuang Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China; Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, Taipa, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China.
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China.
| |
Collapse
|
29
|
Fang C, Zhang J, Han J, Lei Y, Cao Z, Pan J, Pan Z, Zhang Z, Qu N, Luo H, Ma Y, Han D. Tiaogan Jiejiu Tongluo Formula attenuated alcohol-induced chronic liver injury by regulating lipid metabolism in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116838. [PMID: 37355081 DOI: 10.1016/j.jep.2023.116838] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tiaogan Jiejiu Tongluo Formula (TJTF), a traditional Chinese medicine formula, is modified from the well-known ancient prescription Danzhi-Xiaoyao Powder (DXP). Owing to its ability to regulate liver, strengthen spleen, detoxicating, and dredge collaterals in Chinese medicine, TJTF is usually used to treat anxiety, hypertension, alcoholic fatty liver disease in clinical application. However, the protective effect and potential molecular mechanism of TJTF on alcoholic liver injury has not fully been clarified. AIM OF THE STUDY To explore the effect of TJTF on chronic alcoholic liver injury and figure out whether its effects were due to the regulation of lipid metabolism. MATERIAL AND METHODS 75 male SD rats were divided into the following five groups, control group, EtOH group, TJTF high dose group, TJTF low dose group and silybin group. Then a chronic alcoholic liver injury model was established by increasing concentration of 56% ethanol in rats. The rats in each TJTF group were given the corresponding dose of TJTF, the rats in the silybin group were given silybin, the rats in the control group and the EtOH group were given distilled water by gavage, once a day for 8 consecutive weeks. The components of TJTF were analyzed by UPLC-Q-TOF-MS. Hematoxylin and Eosin (H&E) was used to assess the severity of liver injury. in the pathological examination. Periodic acid-Schiff (PAS) and oil red O staining were used to evaluate the degree of the liver glycogen accumulation and lipid deposition, respectively. The serum ALT, AST, T-CHO, TG, LDL-C, ADH, HDL-C, and ALDH levels as well as liver tissue GSH, MDA, and SOD levels were analyzed in rats. Immunohistochemistry and western blotting were used to detect lipid metabolism-related proteins expressed in rat liver. RESULTS TJTF significantly alleviated the chronic liver injury caused by alcohol in rats, and enhanced liver function. TJTF significantly decreased AST, ALT, ADH levels and increased ALDH level of serum, and increased GSH, SOD levels and decreased MDA level of liver tissue. In addition, TJTF significantly decreased the serum T-CHO, TG and LDL-C levels and increased HDL-C level in chronic alcoholic liver injury rats by regulating the expression of lipid metabolism associated proteins including p-LKB1, p-AMPKα, p-ACC, FAS, HMGCR, SREBP-1c, PPARα and CPT-1A. The results of western blot and immunohistochemical staining confirmed that TJTF can inhibit lipid production and promote fatty acid oxidation in the liver tissue of chronic alcoholic liver injury rats by activating the LKB1-AMPKα axis and then downregulating the protein expressions of p-ACC, FAS, HMGCR and SREBP-1c, as well as promoting the protein expressions of PPARα and CPT-1A. Meanwhile, TJTF also increased the glycogen content of liver and alleviated the liver damage. CONCLUSION According to current research, TJTF is effective in treating chronic liver damage induced by alcohol in rats. Additionally, TJTF exhibits the protective benefits by modulating LKB1-AMPKα signal axis, which in turn inhibits the synthesis of lipids and promotes the oxidation of fatty acids.
Collapse
Affiliation(s)
- Chunqiu Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, PR China
| | - Jingzhou Zhang
- First Affiliated Hospital, Changchun University of Chinese Medicine, Jilin, PR China
| | - Jiajun Han
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, PR China
| | - Yuting Lei
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, PR China
| | - Zhanhong Cao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Jilin, PR China
| | - Jianheng Pan
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, PR China
| | - Zhi Pan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Jilin, PR China
| | - Zhong Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Jilin, PR China
| | - Ning Qu
- First Affiliated Hospital, Changchun University of Chinese Medicine, Jilin, PR China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, PR China.
| | - Yan Ma
- Department of Endocrinology and Metabolism, Jilin Province People's Hospital, Jilin, PR China.
| | - Dong Han
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, PR China.
| |
Collapse
|
30
|
Romero-Herrera I, Nogales F, Gallego-López MDC, Díaz-Castro J, Moreno-Fernandez J, Ochoa JJ, Carreras O, Ojeda ML. Adipose tissue homeostasis orchestrates the oxidative, energetic, metabolic and endocrine disruption induced by binge drinking in adolescent rats. J Physiol 2023; 601:5617-5633. [PMID: 37994192 DOI: 10.1113/jp285362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023] Open
Abstract
Binge drinking (BD) is the most common alcohol consumption model for adolescents, and has recently been related to the generation of high oxidation and insulin resistance (IR). White adipose tissue (WAT) is a target organ for insulin action that regulates whole-body metabolism by secreting adipokines. The present study aimed to analyse the oxidative, inflammatory, energetic and endocrine profile in the WAT of BD-exposed adolescent rats, to obtain an integrative view of insulin secretion and WAT in IR progression. Two groups of male adolescent rats were used: control (n = 8) and BD (n = 8). An intermittent i.p. BD model (20% v/v) was used during 3 consecutive weeks. BD exposure led to a pancreatic oxidative imbalance, which was joint to high insulin secretion by augmenting deacetylase sirtuin-1 (SIRT-1) pancreatic expression and serum adipsin levels. However, BD rats had hyperglycaemia and high homeostasis model assessment of insulin resistance value (HOMA-IR). BD exposure in WAT increased lipid oxidation, as well as decreased insulin receptor substrate 1 (IRS-1) and AKT expression, sterol regulatory element-binding protein 1 (SREBP1), forkhead box O3A (FOXO3a) and peroxisome proliferator-activated receptor γ (PPARγ), and adipocyte size. BD also affected the expression of proteins related to energy balance, such as SIRT-1 and AMP activated protein kinase (AMPK), affecting the adipokine secretion profile (increasing resistin/adiponectin ratio). BD altered the entire serum lipid profile, increasing the concentration of free fatty acids. In conclusion, BD led to an oxidative imbalance and IR process in WAT, which modified the energy balance in this tissue, decreasing the WAT lipogenic/lipolytic ratio, affecting adipokine secretion and the systemic lipid profile, and contributing to the progression of IR. Therefore, WAT is key in the generation of metabolic and endocrine disruption after BD exposure during adolescence in rats. KEY POINTS: Adolescent rat binge drinking (BD) exposure leads to hepatic and systemic oxidative stress (OS) via reactive oxygen species generation, causing hepatic insulin resistance (IR) and altered energy metabolism. In the present study, BD exposure in adolescent rats induces OS in the pancreas, with increased insulin secretion despite hyperglycaemia, indicating a role for IR in white adipose tissue (WAT) homeostasis. In WAT, BD produces IR and an oxidative and energetic imbalance, triggering an intense lipolysis where the serum lipid profile is altered and free fatty acids are increased, consistent with liver lipid accumulation and steatosis. BD exposure heightens inflammation in WAT, elevating pro-inflammatory and reducing anti-inflammatory adipokines, favouring cardiovascular damage. This research provides a comprehensive view of how adolescent BD in rats impacts liver, WAT and pancreas homeostasis, posing a risk for future cardiometabolic complications in adulthood.
Collapse
Affiliation(s)
- Inés Romero-Herrera
- Department of Physiology, Faculty of Pharmacy, Seville University, Seville, Spain
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, Seville University, Seville, Spain
| | | | - Javier Díaz-Castro
- Institute of Nutrition and Food Technology 'José Mataix Verdú', University of Granada, Granada, Spain
- Department of Physiology, University of Granada, Granada, Spain
| | - Jorge Moreno-Fernandez
- Institute of Nutrition and Food Technology 'José Mataix Verdú', University of Granada, Granada, Spain
- Department of Physiology, University of Granada, Granada, Spain
| | - Julio José Ochoa
- Institute of Nutrition and Food Technology 'José Mataix Verdú', University of Granada, Granada, Spain
- Department of Physiology, University of Granada, Granada, Spain
| | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, Seville University, Seville, Spain
| | - Mª Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, Seville University, Seville, Spain
| |
Collapse
|
31
|
Jiang N, Li W, Jiang S, Xie M, Liu R. Acetylation in pathogenesis: Revealing emerging mechanisms and therapeutic prospects. Biomed Pharmacother 2023; 167:115519. [PMID: 37729729 DOI: 10.1016/j.biopha.2023.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Protein acetylation modifications play a central and pivotal role in a myriad of biological processes, spanning cellular metabolism, proliferation, differentiation, apoptosis, and beyond, by effectively reshaping protein structure and function. The metabolic state of cells is intricately connected to epigenetic modifications, which in turn influence chromatin status and gene expression patterns. Notably, pathological alterations in protein acetylation modifications are frequently observed in diseases such as metabolic syndrome, cardiovascular disorders, and cancer. Such abnormalities can result in altered protein properties and loss of function, which are closely associated with developing and progressing related diseases. In recent years, the advancement of precision medicine has highlighted the potential value of protein acetylation in disease diagnosis, treatment, and prevention. This review includes provocative and thought-provoking papers outlining recent breakthroughs in acetylation modifications as they relate to cardiovascular disease, mitochondrial metabolic regulation, liver health, neurological health, obesity, diabetes, and cancer. Additionally, it covers the molecular mechanisms and research challenges in understanding the role of acetylation in disease regulation. By summarizing novel targets and prognostic markers for the treatment of related diseases, we aim to contribute to the field. Furthermore, we discuss current hot topics in acetylation research related to health regulation, including N4-acetylcytidine and liquid-liquid phase separation. The primary objective of this review is to provide insights into the functional diversity and underlying mechanisms by which acetylation regulates proteins in disease contexts.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenyong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Shuanglin Jiang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu 062550, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
32
|
Umman V, Gumus T, Korucuk E, Temel R, Sertoz OO, Gunsar F, Uguz A, Zeytunlu M, Emre S. A new method for predicting alcohol relapse in patients undergoing liver transplantation for alcohol-related liver failure: Barratt scale. HEPATOLOGY FORUM 2023; 4:118-122. [PMID: 37822308 PMCID: PMC10564253 DOI: 10.14744/hf.2023.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
Background and Aim Alcohol-induced liver disease has become one of the major causes of chronic liver disease worldwide with the increasing use of alcohol in society. The most important step in treatment is cessation of alcohol consumption. In patients with advanced liver disease, the most effective treatment is liver transplantation. Careful evaluation of patients with alcoholic liver disease before transplantation can help identify those at high risk of relapsing. Materials and Methods Of a total of 42 patients who underwent liver transplantation for alcohol-related liver failure in our hospital between 2011 and 2022, 26 surviving patients were included in the study. Patient data were analyzed retrospectively. Demographic data, MELD score, history of alcohol consumption, alcohol treatment, post-transplant prognosis and survival were analyzed. The Barratt Impulsivity Scale-11 Short Form (BIS-11 SF) was applied to the surviving patients for impulsivity analysis to predict the possibility of relapse. Results Of the 26 patients who were included in the study, all were male. The mean age at transplantation was 53 (31-71) years. Mean MELD score was 22.31 (9-36). 12 patients (46.2%) received living donor liver transplantation and 14 patients (53.8%) received cadaveric liver transplantation. 25 patients (96.2%) had no post-transplant dependence, while 1 patient (3.8%) had post-transplant dependence. 5 patients (19.2%) continued to consume alcohol after transplantation. Conclusion In our study, we observed that patients with high motor impulsivity tendency according to BSI-11 SF had alcohol relapse. We believe that revising this scale with more detailed questions for alcohol-dependent liver patients and applying it to patients before transplantation will be effective in better selection for transplantation and guiding patients to appropriate therapy and thus preventing relapse after transplantation.
Collapse
Affiliation(s)
- Veysel Umman
- Department of General Surgery, Ege University Hospital, Izmir, Turkiye
| | - Tufan Gumus
- Department of General Surgery, Ege University Hospital, Izmir, Turkiye
| | - Ebubekir Korucuk
- Department of General Surgery, Ege University Hospital, Izmir, Turkiye
| | - Recep Temel
- Department of General Surgery, Ege University Hospital, Izmir, Turkiye
| | - Ozen Onen Sertoz
- Department of Psychiatry, Ege University Hospital, Izmir, Turkiye
| | - Fulya Gunsar
- Department of Gastroenterology, Ege University Hospital, Izmir, Turkiye
| | - Alper Uguz
- Department of General Surgery, Ege University Hospital, Izmir, Turkiye
| | - Murat Zeytunlu
- Department of General Surgery, Ege University Hospital, Izmir, Turkiye
| | - Sukru Emre
- Department of General Surgery, Ege University Hospital, Izmir, Turkiye
| |
Collapse
|
33
|
Dogra A, Li F. Small-molecule chemical probes for the potential therapeutic targets in alcoholic liver diseases. LIVER RESEARCH 2023; 7:177-188. [PMID: 39958379 PMCID: PMC11792063 DOI: 10.1016/j.livres.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 02/18/2025]
Abstract
Alcoholic liver disease (ALD) encompasses a range of conditions resulting from prolonged and excessive alcohol consumption, causing liver damage such as alcoholic fatty liver, inflammation, fibrosis, and cirrhosis. Alcohol consumption contributes to millions of deaths each year. So far, the effective treatments for ALD are limited. To date, the most effective treatment for ALD is still prevention by avoiding excessive alcohol consumption, and only few specialized medicines are in the market for the treatment of patients suffering from ALD. Small molecules targeting various pathways implicated in ALD pathogenesis can potentially be used for effective therapeutics development. In this review, we provide a concise overview of the latest research findings on potential therapeutic targets, specifically emphasizing small-molecule interventions for the treatment and prevention of ALD.
Collapse
Affiliation(s)
- Ashish Dogra
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Feng Li
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry & Molecular Pharmacology & Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
34
|
Goikoetxea-Usandizaga N, Bravo M, Egia-Mendikute L, Abecia L, Serrano-Maciá M, Urdinguio RG, Clos-García M, Rodríguez-Agudo R, Araujo-Legido R, López-Bermudo L, Delgado TC, Lachiondo-Ortega S, González-Recio I, Gil-Pitarch C, Peña-Cearra A, Simón J, Benedé-Ubieto R, Ariño S, Herranz JM, Azkargorta M, Salazar-Bermeo J, Martí N, Varela-Rey M, Falcón-Pérez JM, Lorenzo Ó, Nogueiras R, Elortza F, Nevzorova YA, Cubero FJ, Saura D, Martínez-Cruz LA, Sabio G, Palazón A, Sancho-Bru P, Elguezabal N, Fraga MF, Ávila MA, Bataller R, Marín JJ, Martín F, Martínez-Chantar ML. The outcome of boosting mitochondrial activity in alcohol-associated liver disease is organ-dependent. Hepatology 2023; 78:878-895. [PMID: 36745935 PMCID: PMC10442112 DOI: 10.1097/hep.0000000000000303] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Alcohol-associated liver disease (ALD) accounts for 70% of liver-related deaths in Europe, with no effective approved therapies. Although mitochondrial dysfunction is one of the earliest manifestations of alcohol-induced injury, restoring mitochondrial activity remains a problematic strategy due to oxidative stress. Here, we identify methylation-controlled J protein (MCJ) as a mediator for ALD progression and hypothesize that targeting MCJ may help in recovering mitochondrial fitness without collateral oxidative damage. APPROACH AND RESULTS C57BL/6 mice [wild-type (Wt)] Mcj knockout and Mcj liver-specific silencing (MCJ-LSS) underwent the NIAAA dietary protocol (Lieber-DeCarli diet containing 5% (vol/vol) ethanol for 10 days, plus a single binge ethanol feeding at day 11). To evaluate the impact of a restored mitochondrial activity in ALD, the liver, gut, and pancreas were characterized, focusing on lipid metabolism, glucose homeostasis, intestinal permeability, and microbiota composition. MCJ, a protein acting as an endogenous negative regulator of mitochondrial respiration, is downregulated in the early stages of ALD and increases with the severity of the disease. Whole-body deficiency of MCJ is detrimental during ALD because it exacerbates the systemic effects of alcohol abuse through altered intestinal permeability, increased endotoxemia, and dysregulation of pancreatic function, which overall worsens liver injury. On the other hand, liver-specific Mcj silencing prevents main ALD hallmarks, that is, mitochondrial dysfunction, steatosis, inflammation, and oxidative stress, as it restores the NAD + /NADH ratio and SIRT1 function, hence preventing de novo lipogenesis and improving lipid oxidation. CONCLUSIONS Improving mitochondrial respiration by liver-specific Mcj silencing might become a novel therapeutic approach for treating ALD.
Collapse
Affiliation(s)
- Naroa Goikoetxea-Usandizaga
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Miren Bravo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Leticia Abecia
- Inflammation and Macrophage Plasticity Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Immunology, Microbiology and Parasitology Department, Medicine and Nursing Faculty, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marina Serrano-Maciá
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Rocío G. Urdinguio
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain
- Health Research Institute of Asturias (ISPA), Oviedo, Spain
- University Institute of Oncology (IUOPA), University of Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Madrid, Spain
| | - Marc Clos-García
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Rubén Rodríguez-Agudo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Raquel Araujo-Legido
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Sevilla-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERdem), Spain
| | - Lucía López-Bermudo
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Sevilla-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERdem), Spain
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Sofía Lachiondo-Ortega
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Irene González-Recio
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Clàudia Gil-Pitarch
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Ainize Peña-Cearra
- Inflammation and Macrophage Plasticity Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Jorge Simón
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Raquel Benedé-Ubieto
- Department of Immunology, Ophthalmology and ENT Complutense University School of Medicine Madrid Spain
- Gregorio Maraóón Health Research Institute, Madrid, Spain
- Department of Genetics, Physiology and Microbiology. Faculty of Biology. Complutense University of Madrid, Madrid, Spain
| | - Silvia Ariño
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Jose M. Herranz
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERdem), Spain
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
- Hepatology Program, Cima-University of Navarra, Navarra, Spain
| | - Mikel Azkargorta
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Julio Salazar-Bermeo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE). Edificio Torregaitán, Universidad Miguel Hernández de Elche (UMH), Elche, Spain
| | - Nuria Martí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE). Edificio Torregaitán, Universidad Miguel Hernández de Elche (UMH), Elche, Spain
| | - Marta Varela-Rey
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Juan M. Falcón-Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Óscar Lorenzo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERdem), Spain
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
| | - Rubén Nogueiras
- Department of Physiology, Research Centre of Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| | - Félix Elortza
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Yulia A. Nevzorova
- Department of Immunology, Ophthalmology and ENT Complutense University School of Medicine Madrid Spain
- Gregorio Maraóón Health Research Institute, Madrid, Spain
- Department of Internal Medicine III, University Hospital RWTH Aachen, Germany
| | - Francisco J. Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT Complutense University School of Medicine Madrid Spain
- Gregorio Maraóón Health Research Institute, Madrid, Spain
| | - Domingo Saura
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE). Edificio Torregaitán, Universidad Miguel Hernández de Elche (UMH), Elche, Spain
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Stress Kinases in Diabetes, Cancer and Biochemistry, Madrid, Spain
| | - Asís Palazón
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Pau Sancho-Bru
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Natalia Elguezabal
- Animal Health Department, NEIKER-BRTA-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
| | - Mario F. Fraga
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain
- Health Research Institute of Asturias (ISPA), Oviedo, Spain
- University Institute of Oncology (IUOPA), University of Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Madrid, Spain
| | - Matías A. Ávila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
- Hepatology Program, Cima-University of Navarra, Navarra, Spain
| | - Ramón Bataller
- Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition, and Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, North Carolina, USA
- Department of Gastroenterology and Hepatology, Division of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - José J.G. Marín
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Franz Martín
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Sevilla-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERdem), Spain
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| |
Collapse
|
35
|
Lin CY, Omoscharka E, Liu Y, Cheng K. Establishment of a Rat Model of Alcoholic Liver Fibrosis with Simulated Human Drinking Patterns and Low-Dose Chemical Stimulation. Biomolecules 2023; 13:1293. [PMID: 37759693 PMCID: PMC10526499 DOI: 10.3390/biom13091293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Although alcohol is a well-known causal factor associated with liver diseases, challenges remain in inducing liver fibrosis in experimental rodent models. These challenges include rodents' natural aversion to high concentrations of alcohol, rapid alcohol metabolism, the need for a prolonged duration of alcohol administration, and technical difficulties. Therefore, it is crucial to establish an experimental model that can replicate the features of alcoholic liver fibrosis. The objective of this study was to develop a feasible rat model of alcoholic liver fibrosis that emulates human drinking patterns and combines low-dose chemicals within a relatively short time frame. We successfully developed an 8-week rat model of alcoholic liver fibrosis that mimics chronic and heavy drinking patterns. Rats were fed with a control liquid diet, an alcohol liquid diet, or alcohol liquid diet combined with multiple binges via oral gavage. To accelerate the progression of alcoholic liver fibrosis, we introduced low-dose carbon tetrachloride (CCl4) through intraperitoneal injection. This model allows researchers to efficiently evaluate potential therapeutics in preclinical studies of alcoholic liver fibrosis within a reasonable time frame.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Evanthia Omoscharka
- Department of Pathology, University Health/Truman Medical Center, School of Medicine, University of Missouri-Kansas City, 2301 Holmes Street, Kansas City, MO 64108, USA
| | - Yanli Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| |
Collapse
|
36
|
Jangjou A, Moqadas M, Mohsenian L, Kamyab H, Chelliapan S, Alshehery S, Ali MA, Dehbozorgi F, Yadav KK, Khorami M, Zarei Jelyani N. Awareness raising and dealing with methanol poisoning based on effective strategies. ENVIRONMENTAL RESEARCH 2023; 228:115886. [PMID: 37072082 DOI: 10.1016/j.envres.2023.115886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023]
Abstract
Intoxication with methanol most commonly occurs as a consequence of ingesting, inhaling, or coming into contact with formulations that include methanol as a base. Clinical manifestations of methanol poisoning include suppression of the central nervous system, gastrointestinal symptoms, and decompensated metabolic acidosis, which is associated with impaired vision and either early or late blindness within 0.5-4 h after ingestion. After ingestion, methanol concentrations in the blood that are greater than 50 mg/dl should raise some concern. Ingested methanol is typically digested by alcohol dehydrogenase (ADH), and it is subsequently redistributed to the body's water to attain a volume distribution that is about equivalent to 0.77 L/kg. Moreover, it is removed from the body as its natural, unchanged parent molecules. Due to the fact that methanol poisoning is relatively uncommon but frequently involves a large number of victims at the same time, this type of incident occupies a special position in the field of clinical toxicology. The beginning of the COVID-19 pandemic has resulted in an increase in erroneous assumptions regarding the preventative capability of methanol in comparison to viral infection. More than 1000 Iranians fell ill, and more than 300 of them passed away in March of this year after they consumed methanol in the expectation that it would protect them from a new coronavirus. The Atlanta epidemic, which involved 323 individuals and resulted in the deaths of 41, is one example of mass poisoning. Another example is the Kristiansand outbreak, which involved 70 people and resulted in the deaths of three. In 2003, the AAPCC received reports of more than one thousand pediatric exposures. Since methanol poisoning is associated with high mortality rates, it is vital that the condition be addressed seriously and managed as quickly as feasible. The objective of this review was to raise awareness about the mechanism and metabolism of methanol toxicity, the introduction of therapeutic interventions such as gastrointestinal decontamination and methanol metabolism inhibition, the correction of metabolic disturbances, and the establishment of novel diagnostic/screening nanoparticle-based strategies for methanol poisoning such as the discovery of ADH inhibitors as well as the detection of the adulteration of alcoholic drinks by nanoparticles in order to prevent methanol poisoning. In conclusion, increasing warnings and knowledge about clinical manifestations, medical interventions, and novel strategies for methanol poisoning probably results in a decrease in the death load.
Collapse
Affiliation(s)
- Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran; Emergency Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Moqadas
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran; Emergency Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Mohsenian
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran; Emergency Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jln Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Sultan Alshehery
- Department of Mechanical Engineering King Khalid University, zip code - 62217, Saudi Arabia
| | - Mohammed Azam Ali
- Department of Mechanical Engineering King Khalid University, zip code - 62217, Saudi Arabia
| | - Farbod Dehbozorgi
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran; Emergency Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Masoud Khorami
- Department of Civil Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Najmeh Zarei Jelyani
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran; Emergency Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
37
|
Gohari Mahmoudabad A, Gheybi F, Mehrabi M, Masoudi A, Mobasher Z, Vahedi H, Gharravi AM, Bitaraf FS, Rezayat Sorkhabadi SM. Synthesis, characterization and hepatoprotective effect of silymarin phytosome nanoparticles on ethanol-induced hepatotoxicity in rats. BIOIMPACTS : BI 2023; 13:301-311. [PMID: 37645028 PMCID: PMC10460772 DOI: 10.34172/bi.2023.24128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/25/2022] [Accepted: 09/13/2022] [Indexed: 08/31/2023]
Abstract
Introduction Silymarin proved to be a beneficial herbal medicine against many hepatic disorders such as alcoholic liver disease (ALD). However, its application is restricted due to its low bioavailability and consequently decreased efficacy. We herein used a nano-based approach known as "phytosome", to improve silymarin bioavailability and increase its efficacy. Methods Phytosome nanoparticles (NPs) were synthesized using thin film hydration method. NPs size, electrical charge, morphology, stability, molecular interaction, entrapment efficiency (EE %) and loading capacity (LC %) were determined. Moreover, in vitro toxicity of NPs was investigated on mesenchymal stem cells (MSCs) viability using MTT assay. In vivo experiments were performed using 24 adult rats that were divided into four groups including control, ethanol (EtOH) treatment, silymarin/EtOH treatment and silymarin phytosome/EtOH, with 6 mice in each group. Experimental groups were given 40% EtOH, silymarin (50 mg/kg) and silymarin phytosome (200 mg/kg) through the gastric gavage once a day for 3 weeks. Biochemical parameters, containing ALP, ALT, AST, GGT, GPx and MDA were measured before and after experiment to investigate the protective effect of silymarin and its phytosomal form. And histopathological examination was done to evaluate pathological changes. Results Silymarin phytosome NPs with the mean size of 100 nm were produced and were well tolerated in cell culture. These NPs showed a considerable protective effect against ALD through inverting the biochemical parameters (ALP, ALT, AST, GGT, GPx) and histopathological alterations. Conclusion Silymarin phytosomal NPs can be used as an efficient treatment for ALD.
Collapse
Affiliation(s)
- Arezoo Gohari Mahmoudabad
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Alireza Masoudi
- Department of Pharmacology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Zeinab Mobasher
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamid Vahedi
- Clinical Research Development Unit, Imam Hossein Hospital, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Gastroenterology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Anneh Mohammad Gharravi
- Tissue Engineering and Stem Cell Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Sadat Bitaraf
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | |
Collapse
|
38
|
Wang L, Song L, Ma J, Wang H, Li Y, Huang D. Alcohol induces apoptosis and autophagy in microglia BV-2 cells. Food Chem Toxicol 2023; 177:113849. [PMID: 37217066 DOI: 10.1016/j.fct.2023.113849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Alcohol (ethanol) has proven to be toxic to nearly all organs, with the brain being one of the principal targets. As one of the important components of the brain's blood-brain barrier (BBB) and central nervous system, the state of microglia may be associated with some symptoms of alcohol intoxication. In the present study, microglia BV-2 cells were exposed to various concentrations of alcohol for 3 or 12 h, imitating different stages of drunkenness after alcohol use, respectively. From the perspective of the autophagy-phagocytosis axis, our findings show that alcohol alters autophagy levels or promotes apoptosis in BV-2 cells. The current study adds to the understanding of the action mechanisms of alcohol neurotoxicity. We anticipate that this study will increase public awareness of alcohol's negative effects and contribute to the creation of novel alcoholism treatment approaches.
Collapse
Affiliation(s)
- Luchen Wang
- State Key Laboratory of Food Science and Technology, International Institute of Food Innovation, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Lingmin Song
- State Key Laboratory of Food Science and Technology, International Institute of Food Innovation, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Juan Ma
- State Key Laboratory of Food Science and Technology, International Institute of Food Innovation, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Huimei Wang
- State Key Laboratory of Food Science and Technology, International Institute of Food Innovation, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Yingzhi Li
- State Key Laboratory of Food Science and Technology, International Institute of Food Innovation, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Danfei Huang
- State Key Laboratory of Food Science and Technology, International Institute of Food Innovation, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
| |
Collapse
|
39
|
Dymond MK. A Membrane Biophysics Perspective on the Mechanism of Alcohol Toxicity. Chem Res Toxicol 2023. [PMID: 37186813 DOI: 10.1021/acs.chemrestox.3c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Motivations for understanding the underlying mechanisms of alcohol toxicity range from economical to toxicological and clinical. On the one hand, acute alcohol toxicity limits biofuel yields, and on the other hand, acute alcohol toxicity provides a vital defense mechanism to prevent the spread of disease. Herein the role that stored curvature elastic energy (SCE) in biological membranes might play in alcohol toxicity is discussed, for both short and long-chain alcohols. Structure-toxicity relationships for alcohols ranging from methanol to hexadecanol are collated, and estimates of alcohol toxicity per alcohol molecule in the cell membrane are made. The latter reveal a minimum toxicity value per molecule around butanol before alcohol toxicity per molecule increases to a maximum around decanol and subsequently decreases again. The impact of alcohol molecules on the lamellar to inverse hexagonal phase transition temperature (TH) is then presented and used as a metric to assess the impact of alcohol molecules on SCE. This approach suggests the nonmonotonic relationship between alcohol toxicity and chain length is consistent with SCE being a target of alcohol toxicity. Finally, in vivo evidence for SCE-driven adaptations to alcohol toxicity in the literature are discussed.
Collapse
Affiliation(s)
- Marcus K Dymond
- Chemistry Research and Enterprise Group, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| |
Collapse
|
40
|
Shi JF, Liu Y, Wang Y, Gao R, Wang Y, Liu J. Targeting ferroptosis, a novel programmed cell death, for the potential of alcohol-related liver disease therapy. Front Pharmacol 2023; 14:1194343. [PMID: 37214434 PMCID: PMC10196366 DOI: 10.3389/fphar.2023.1194343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Ferroptosis is a new iron-dependent cell death mode, which is different from the other types of programmed cell death, such as apoptosis, necrosis, and autophagy. Ferroptosis is characterized by a process in which fatal lipids from lipid peroxidation accumulate in cells and eventually lead to cell death. Alcohol-related liver disease (ALD) is a type of liver injury caused by excessive alcohol intake. Alcohol-related liver disease is a broad-spectrum disease category, which includes fatty liver, steatohepatitis, hepatitis, cirrhosis, and hepatocellular tumors. Recent studies have found that ferroptosis is involved in the pathological development of non-viral liver diseases. Therefore, ferroptosis may be an ideal target for the treatment of non-viral liver diseases. In this review article, we will elaborate the molecular mechanism and regulatory mechanism of ferroptosis, explore the key role of ferroptosis in the Alcohol-related liver disease process, and summarize the existing targeted ferroptosis drugs and their feasibility for the treatment of Alcohol-related liver disease.
Collapse
Affiliation(s)
- Jing-Fen Shi
- Institute for Health Policy and Hospital Management, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Wenjiang District People’s Hospital of Chengdu, Chengdu, China
| | - Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Yan Wang
- Wenjiang District People’s Hospital of Chengdu, Chengdu, China
| | - Ru Gao
- Wenjiang District People’s Hospital of Chengdu, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Liu
- Wenjiang District People’s Hospital of Chengdu, Chengdu, China
- Department of Ultrasound Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
41
|
George TE, Okhiai PO, Osonuga IO, Oyesola OA. Protective Effect of Commercial Grade Vitamin C against Alcohol-induced Testicular Damage in Male Wistar Rats. J Hum Reprod Sci 2023; 16:99-105. [PMID: 37547092 PMCID: PMC10404017 DOI: 10.4103/jhrs.jhrs_39_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 08/08/2023] Open
Abstract
Background Alcohol consumption has a negative effect on male fertility, but Vitamin C may be able to alleviate this effect. Aims In this study, the protective effect of Vitamin C against alcohol-induced testicular damage in adult male Wistar rats was evaluated. Settings and Design This study was conducted in a University setting. Following a 14-day acclimatisation period, forty adult male Wistar rats were randomly divided into eight groups of five rats. The control group received only food and water, test group B received alcohol only, test group C to E received different doses of Vitamin C, test group F to G received different doses of Vitamin C and alcohol. Materials and Methods After a 21-day treatment period, the testis were harvested and analysed for sperm parameters, antioxidant enzyme activity, level of lipid peroxidation and histopathological changes. Statistical Analysis Used All analyses was performed using SPSS (version 16) and Microsoft Excel (2019) using Student's t-test. Results The results showed that in groups administered with alcohol only, there was a decrease in sperm count. Sperm motility, morphology, viability and antioxidant enzyme activity, but increase in the level of lipid peroxidation. In groups treated with Vitamin C and alcohol, there was improvement in the sperm parameters, antioxidant enzymes activity and a decrease and decrease in lipid peroxidation. Furthermore, in the histology of the testis, regenerative changes were seen. Conclusion The chronic consumption of alcohol can have a deleterious effect on the testis, but commercial-grade Vitamin C can reverse these effects.
Collapse
Affiliation(s)
- Taiwo Emmanuel George
- Department of Physiology, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Ikeji-Arakiji, Osun State, Nigeria
| | - Peter Okhemukhokho Okhiai
- Department of Nursing Sciences, College of Health Sciences, Joseph Ayo Babalola University, Ikeji-Arakiji, Osun State, Nigeria
| | - Ifabunmi Oduyemi Osonuga
- Department of Physiology, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Ikeji-Arakiji, Osun State, Nigeria
| | - Olusoji Adebusoye Oyesola
- Department of Physiology, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Ikeji-Arakiji, Osun State, Nigeria
| |
Collapse
|
42
|
Martinez-Castillo M, Altamirano-Mendoza I, Sánchez-Valle S, García-Islas L, Sánchez-Barragán M, Hernández-Santillán M, Hernández-Barragán A, Pérez-Hernández J, Higuera-de la Tijera F, Gutierrez-Reyes G. Desregulación inmunológica y fisiopatología del consumo de alcohol y la enfermedad hepática alcohólica. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2023; 88:136-154. [DOI: 10.1016/j.rgmx.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
Gao Y, Zong Z, Xia W, Fang X, Liu R, Wu W, Mu H, Han Y, Xiao S, Gao H, Chen H. Hepatoprotective effect of water bamboo shoot (
Zizania latifolia
) extracts against acute alcoholic liver injury in a mice model and screening of bioactive phytochemicals. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
44
|
Han SC, Huang RP, Zhang QY, Yan CY, Li XY, Li YF, He RR, Li WX. Antialcohol and Hepatoprotective Effects of Tamarind Shell Extract on Ethanol-Induced Damage to HepG2 Cells and Animal Models. Foods 2023; 12:1078. [PMID: 36900595 PMCID: PMC10000874 DOI: 10.3390/foods12051078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Alcohol liver disease (ALD) is one of the leading outcomes of acute and chronic liver injury. Accumulative evidence has confirmed that oxidative stress is involved in the development of ALD. In this study, we used chick embryos to establish ALD model to study the hepatoprotective effects of tamarind shell exttract (TSE). Chick embryos received 25% ethanol (75 μL) and TSE (250, 500, 750 μg/egg/75 μL) from embryonic development day (EDD) 5.5. Both ethanol and TSE were administrated every two days until EDD15. Ethanol-exposed zebrafish and HepG2 cell model were also employed. The results suggested that TSE effectively reversed the pathological changes, liver dysfunction and ethanol-metabolic enzyme disorder in ethanol-treated chick embryo liver, zebrafish and HepG2 cells. TSE suppressed the excessive reactive oxygen species (ROS) in zebrafish and HepG2 cells, as well as rebuilt the irrupted mitochondrial membrane potential. Meanwhile, the declined antioxidative activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD), together with the content of total glutathione (T-GSH) were recovered by TSE. Moreover, TSE upregulated nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxyense-1 (HO-1) expression in protein and mRNA level. All the phenomena suggested that TSE attenuated ALD through activating NRF2 to repress the oxidative stress induced by ethanol.
Collapse
Affiliation(s)
- Shao-Cong Han
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Rong-Ping Huang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Qiong-Yi Zhang
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
| | - Chang-Yu Yan
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
| | - Xi-You Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yi-Fang Li
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
| | - Rong-Rong He
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
| | - Wei-Xi Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
45
|
Martinez-Castillo M, Altamirano-Mendoza I, Sánchez-Valle S, García-Islas L, Sánchez-Barragán M, Hernández-Santillán M, Hernández-Barragán A, Pérez-Hernández J, Higuera-de la Tijera F, Gutierrez-Reyes G. Immune dysregulation and pathophysiology of alcohol consumption and alcoholic liver disease. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2023; 88:136-154. [PMID: 36973122 DOI: 10.1016/j.rgmxen.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/13/2023] [Indexed: 03/28/2023] Open
Abstract
Alcoholic liver disease (ALD) is a clinical-pathologic entity caused by the chronic excessive consumption of alcohol. The disease includes a broad spectrum of anomalies at the cellular and tissual level that can cause acute-on-chronic (alcoholic hepatitis) or chronic (fibrosis, cirrhosis, hepatocellular cancer) injury, having a great impact on morbidity and mortality worldwide. Alcohol is metabolized mainly in the liver. During alcohol metabolism, toxic metabolites, such as acetaldehyde and oxygen reactive species, are produced. At the intestinal level, alcohol consumption can cause dysbiosis and alter intestinal permeability, promoting the translocation of bacterial products and causing the production of inflammatory cytokines in the liver, perpetuating local inflammation during the progression of ALD. Different study groups have reported systemic inflammatory response disturbances, but reports containing a compendium of the cytokines and cells involved in the pathophysiology of the disease, from the early stages, are difficult to find. In the present review article, the role of the inflammatory mediators involved in ALD progression are described, from risky patterns of alcohol consumption to advanced stages of the disease, with the aim of understanding the involvement of immune dysregulation in the pathophysiology of ALD.
Collapse
|
46
|
Cao L, Wu D, Qin L, Tan D, Fan Q, Jia X, Yang M, Zhou T, Feng C, Lu Y, He Y. Single-Cell RNA Transcriptome Profiling of Liver Cells of Short-Term Alcoholic Liver Injury in Mice. Int J Mol Sci 2023; 24:ijms24054344. [PMID: 36901774 PMCID: PMC10002329 DOI: 10.3390/ijms24054344] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Alcoholic liver disease (ALD) is currently considered a global healthcare problem with limited pharmacological treatment options. There are abundant cell types in the liver, such as hepatocytes, endothelial cells, Kupffer cells and so on, but little is known about which kind of liver cells play the most important role in the process of ALD. To obtain a cellular resolution of alcoholic liver injury pathogenesis, 51,619 liver single-cell transcriptomes (scRNA-seq) with different alcohol consumption durations were investigated, 12 liver cell types were identified, and the cellular and molecular mechanisms of the alcoholic liver injury were revealed. We found that more aberrantly differential expressed genes (DEGs) were present in hepatocytes, endothelial cells, and Kupffer cells than in other cell types in alcoholic treatment mice. Alcohol promoted the pathological processes of liver injury; the specific mechanisms involved: lipid metabolism, oxidative stress, hypoxia, complementation and anticoagulation, and hepatocyte energy metabolism on hepatocytes; NO production, immune regulation, epithelial and cell migration on endothelial cells; antigen presentation and energy metabolism on Kupffer cells, based on the GO analysis. In addition, our results showed that some transcription factors (TFs) are activated in alcohol-treated mice. In conclusion, our study improves the understanding of liver cell heterogeneity in alcohol-fed mice at the single-cell level. It has potential value for understanding key molecular mechanisms and improving current prevention and treatment strategies for short-term alcoholic liver injury.
Collapse
Affiliation(s)
- Ligang Cao
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
| | - Di Wu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Daopeng Tan
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Qingjie Fan
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xiaohuan Jia
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
| | - Mengting Yang
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
| | - Tingting Zhou
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
| | - Chengcheng Feng
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
| | - Yanliu Lu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Correspondence:
| |
Collapse
|
47
|
Zinc-glutathione in Chinese Baijiu prevents alcohol-associated liver injury. Heliyon 2023; 9:e13722. [PMID: 36873153 PMCID: PMC9975285 DOI: 10.1016/j.heliyon.2023.e13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Zinc depletion is associated with alcohol-associated liver injury. We tested the hypothesis that increasing zinc availability along with alcohol consumption prevents alcohol-associated liver injury. Zinc-glutathione (ZnGSH) was synthesized and directly added to Chinese Baijiu. Mice were administered a single gastric dose of 6 g/kg ethanol in Chinese Baijiu with or without ZnGSH. ZnGSH in Chinese Baijiu did not change the likeness of the drinkers but significantly reduced the recovery time from drunkenness along with elimination of high-dose mortality. ZnGSH in Chinese Baijiu decreased serum AST and ALT, suppressed steatosis and necrosis, and increased zinc and GSH concentrations in the liver. It also increased alcohol dehydrogenase and aldehyde dehydrogenase in the liver, stomach, and intestine and reduced acetaldehyde in the liver. Thus, ZnGSH in Chinese Baijiu prevents alcohol-associated liver injury by increasing alcohol metabolism timely with alcohol consumption, providing an alternative approach to the management of alcohol-associated drinking.
Collapse
|
48
|
Neonatal Orally Administered Zingerone Attenuates Alcohol-Induced Fatty Liver Disease in Experimental Rat Models. Metabolites 2023; 13:metabo13020167. [PMID: 36837786 PMCID: PMC9966972 DOI: 10.3390/metabo13020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Alcohol intake at different developmental stages can lead to the development of alcohol-induced fatty liver disease (AFLD). Zingerone (ZO) possess hepato-protective properties; thus, when administered neonatally, it could render protection against AFLD. This study aimed to evaluate the potential long-term protective effect of ZO against the development of AFLD. One hundred and twenty-three 10-day-old Sprague-Dawley rat pups (60 males; 63 females) were randomly assigned to four groups and orally administered the following treatment regimens daily during the pre-weaning period from postnatal day (PND) 12-21: group 1-nutritive milk (NM), group 2-NM +1 g/kg ethanol (Eth), group 3-NM + 40 mg/kg ZO, group 4-NM + Eth +ZO. From PND 46-100, each group from the neonatal stage was divided into two; subgroup I had tap water and subgroup II had ethanol solution as drinking fluid, respectively, for eight weeks. Mean daily ethanol intake, which ranged from 10 to 14.5 g/kg body mass/day, resulted in significant CYP2E1 elevation (p < 0.05). Both late single hit and double hit with alcohol increased liver fat content, caused hepatic macrosteatosis, dysregulated mRNA expression of SREBP1c and PPAR-α in male and female rats (p < 0.05). However, neonatal orally administered ZO protected against liver lipid accretion and SREBP1c upregulation in male rats only and attenuated the alcohol-induced hepatic PPAR-α downregulation and macrosteatosis in both sexes. This data suggests that neonatal orally administered zingerone can be a potential prophylactic agent against the development of AFLD.
Collapse
|
49
|
Zhou Y, Hua J, Huang Z. Effects of beer, wine, and baijiu consumption on non-alcoholic fatty liver disease: Potential implications of the flavor compounds in the alcoholic beverages. Front Nutr 2023; 9:1022977. [PMID: 36687705 PMCID: PMC9852916 DOI: 10.3389/fnut.2022.1022977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease and its global incidence is estimated to be 24%. Beer, wine, and Chinese baijiu have been consumed worldwide including by the NAFLD population. A better understanding of the effects of these alcoholic beverages on NAFLD would potentially improve management of patients with NAFLD and reduce the risks for progression to fibrosis, cirrhosis, and hepatocellular carcinoma. There is evidence suggesting some positive effects, such as the antioxidative effects of bioactive flavor compounds in beer, wine, and baijiu. These effects could potentially counteract the oxidative stress caused by the metabolism of ethanol contained in the beverages. In the current review, the aim is to evaluate and discuss the current human-based and laboratory-based study evidence of effects on hepatic lipid metabolism and NAFLD from ingested ethanol, the polyphenols in beer and wine, and the bioactive flavor compounds in baijiu, and their potential mechanism. It is concluded that for the potential beneficial effects of wine and beer on NAFLD, inconsistence and contrasting data exist suggesting the need for further studies. There is insufficient baijiu specific human-based study for the effects on NAFLD. Although laboratory-based studies on baijiu showed the antioxidative effects of the bioactive flavor compounds on the liver, it remains elusive whether the antioxidative effect from the relatively low abundance of the bioactivate compounds could outweigh the oxidative stress and toxic effects from the ethanol component of the beverages.
Collapse
Affiliation(s)
- Yabin Zhou
- School of Biological Engineering, Sichuan University of Science and Engineering (SUSE), Zigong, Sichuan, China,Liquor-Making Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering (SUSE), Zigong, Sichuan, China,College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Jin Hua
- School of Biological Engineering, Sichuan University of Science and Engineering (SUSE), Zigong, Sichuan, China,College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Zhiguo Huang
- School of Biological Engineering, Sichuan University of Science and Engineering (SUSE), Zigong, Sichuan, China,Liquor-Making Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering (SUSE), Zigong, Sichuan, China,*Correspondence: Zhiguo Huang,
| |
Collapse
|
50
|
Nguyen Huu T, Park J, Zhang Y, Duong Thanh H, Park I, Choi JM, Yoon HJ, Park SC, Woo HA, Lee SR. The Role of Oxidative Inactivation of Phosphatase PTEN and TCPTP in Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12010120. [PMID: 36670982 PMCID: PMC9854873 DOI: 10.3390/antiox12010120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are becoming increasingly prevalent worldwide. Despite the different etiologies, their spectra and histological feature are similar, from simple steatosis to more advanced stages such as steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Studies including peroxiredoxin knockout models revealed that oxidative stress is crucial in these diseases, which present as consequences of redox imbalance. Protein tyrosine phosphatases (PTPs) are a superfamily of enzymes that are major targets of reactive oxygen species (ROS) because of an oxidation-susceptible nucleophilic cysteine in their active site. Herein, we review the oxidative inactivation of two tumor suppressor PTPs, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and T-cell protein tyrosine phosphatase (TCPTP), and their contribution to the pathogenicity of ALD and NAFLD, respectively. This review might provide a better understanding of the pathogenic mechanisms of these diseases and help develop new therapeutic strategies to treat fatty liver disease.
Collapse
Affiliation(s)
- Thang Nguyen Huu
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun 58 128, Republic of Korea
| | - Jiyoung Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Ying Zhang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hien Duong Thanh
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun 58 128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Iha Park
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jin Myung Choi
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hyun Joong Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Sang Chul Park
- The Future Life and Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- Correspondence: ; Tel.: +82-61-379-2775; Fax: +82-61-379-2782
| |
Collapse
|