1
|
Marinho E, Silva BM, Miranda CS, Pinho SLC, Felgueiras HP. Polycaprolactone/sodium alginate coaxial wet-spun fibers modified with carbon nanofibers and ceftazidime for improved clotting and infection control in wounds. Biomater Sci 2025; 13:2047-2065. [PMID: 40026077 DOI: 10.1039/d4bm01667j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Chronic wounds (CWs) are a significant public health concern and affect 1-2% of the world's population. They are responsible for high morbidity and mortality rates. Bacterial infections caused by Staphylococcus aureus and Pseudomonas aeruginosa are very common in CWs and prevent normal wound healing steps from taking place. Carbon nanofibers (CNFs) have attracted interest due to their inherent antibacterial and blood clotting abilities, as well as mechanical strength. The aim of this research was to engineer coaxial fibers by wet-spinning as new platforms for drug delivery in CW care (promoting rapid blood clotting and consequent tissue regeneration). Coaxial fibers were produced with an outer layer (shell) made of a mechanically resilient polycaprolactone (PCL at 10 wt%) reinforced with carbon nanofibers (CNFs at 50, 100, and 150 μg mL-1), while the inner layer (core) was made of a highly hydrated mixture of 2 wt% sodium alginate (SA) loaded with ceftazidime (CZ) at 128 μg mL-1 (minimum bactericidal concentration). The fibers' double-layer structure was verified by scanning electron microscopy. Core-shell fibers were deemed highly flexible and mechanically resilient and resistant to rupture, with such properties being improved with the incorporation of CNFs. Most fibers preserved their structural integrity after 28 days of incubation in physiological-like medium. Furthermore, data reported the ability of CZ combined with CNFs to fight microbial proliferation and showed that the presence of CNFs promoted blood clotting, with PCL/CNFs50 being the most effective from the group. It was found that higher concentrations of CNFs had a detrimental effect, highlighting a concentration-dependent response. The presence of PLC in the fibers resulted in a mitigation of the CNFs' cytotoxic impact on keratinocytes. The incorporation of CZ had no effect on the metabolic activity of the cells. Overall, the results demonstrated the potentialities of the engineered coaxial fibers for applications in wound care.
Collapse
Affiliation(s)
- Elina Marinho
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.
| | - Beatriz M Silva
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.
| | - Catarina S Miranda
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.
| | - Sonia L C Pinho
- Center for Neuroscience and Cell Biology (CNC), Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-517, Coimbra, Portugal
- Research Centre for Natural Resources, Environment and Society (CERNAS), Coimbra Agriculture School, Polytechnic of Coimbra, 3045-601 Coimbra, Portugal
- Vasco da Gama Research Center (CIVG), Vasco da Gama University School, 3020-210 Coimbra, Portugal.
| | - Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.
| |
Collapse
|
2
|
Zhang W, Liu Y, Zhang L, Shen X. Development of hyaluronic acid-based hydrogels for chronic diabetic wound healing: A review. Int J Biol Macromol 2025; 308:142273. [PMID: 40112998 DOI: 10.1016/j.ijbiomac.2025.142273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
This research delves into the advancements in chronic skin wound treatment, with a particular focus on diabetic foot ulcers, utilizing hyaluronic acid (HA)-based hydrogels. Hyaluronic acid, an integral component of the skin's extracellular matrix, plays a crucial role in process such as inflammation, angiogenesis, and tissue regeneration. Due to their three-dimensional network structure, biocompatibility, hydrophilicity, and gas exchange capabilities, HA-based hydrogels are considered highly suitable for promoting wound healing. Nonetheless, pure HA hydrogels exhibit limitations including insufficient mechanical strength and rapid release of encapsulated substances. To address these limitations, the incorporation of bioactive materials such as chitosan and collagen was investigated. This combination not only optimized mechanical strength and degradation rates but also enhanced antibacterial and anti-inflammatory properties. Furthermore, responsive hydrogel dressings were developed to adapt to the specific characteristics of the diabetic wound microenvironment, enabling on-demand drug release. These advancements present new perspectives for the treatment of diabetic foot ulcers.
Collapse
Affiliation(s)
- Wenhao Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Ling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Xinni Shen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| |
Collapse
|
3
|
Pei J, Kanwal S, Sivaramakrishnan R, Katelakha K. Therapeutic potential of microalgae-derived natural compounds in diabetic wound healing: A comprehensive review. Heliyon 2025; 11:e42723. [PMID: 40040991 PMCID: PMC11876918 DOI: 10.1016/j.heliyon.2025.e42723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/06/2025] Open
Abstract
A variety of cell types and chemical systems are known to interact throughout the complex process of wound healing. In addition to being very uncomfortable for patients, wounds that do not heal properly or become chronic can place a heavy burden on society. The creation of novel treatment approaches can expedite the healing process, reduce the societal burden, and improve patient outcomes. Due to advancements in the field of biomedical science, microalgae have significant potential for use in diabetic wound healing and other wound healing applications. This review delves into the physiological process of wound healing, the use of microalgae in wound healing, and a detailed explanation of the wound healing roles of various microalgal originated bioactive compounds including alginate, pigments, fatty acids, proteins, polysaccharides, flavonoids and phenols. The study discusses the efficacy of photosynthetic hydrogels in drugs and oxygen delivery to the wounded area that is crucial for promoting a good healing process, as well as highlights the drawbacks and challenges involved in using microalgae for wound healing. Given the current state of the art in utilizing microalgae for wound care, this review provides new perspectives for further research, along with insightful advice and innovative suggestions for academics engaged in this area.
Collapse
Affiliation(s)
- Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Simab Kanwal
- Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Kasinee Katelakha
- The Halal Science Center, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
4
|
B J, R R. A critical review on pharmacological properties of sulfated polysaccharides from marine macroalgae. Carbohydr Polym 2024; 344:122488. [PMID: 39218536 DOI: 10.1016/j.carbpol.2024.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
The marine ecosystem contains an assorted range of organisms, among which macroalgae stands out marine resources as an invaluable reservoir of structurally diverse bioactive compounds. Marine macroalgae are considered as primary consumers have gained more attention for their bioactive components. Sulfated polysaccharides (SPs) are complex polymers found in macroalgae that play a crucial role in their cell wall composition. This review consolidates high-tech methodologies employed in the extraction of macroalgal SPs, offering a valuable resource for researchers focuses in the pharmacological relevance of marine macromolecules. The pharmacological activities of SPs, focusing on their therapeutic action by encompassing diverse study models are summarized. Furthermore, in silico docking studies facilitates a comprehensive understanding of SPs interactions with their binding sites providing a valuable insight for future endeavors. The biological properties of algal SPs, along with a brief reference to mode of action based on different targets are presented. This review utilizes up-to-date research discoveries across various study models to elucidate the biological functions of SPs, focusing on their molecular-level mechanisms and offering insights for prospective investigations. Besides, the significance of SPs from seaweeds is highlighted, showcasing their potential beneficial applications in promoting human health. With promising biomedical prospects, this review explores the extensive uses and experimental evidence supporting the important roles of SPs in various fields.
Collapse
Affiliation(s)
- Jegadeshwari B
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Rajaram R
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
5
|
Premarathna AD, Sooäär A, Ahmed TA, Rjabovs V, Hincke MT, Tuvikene R. Isolation, structural characterization and biological activities of polysaccharides from Chondrus crispus. Food Hydrocoll 2024; 154:110131. [DOI: 10.1016/j.foodhyd.2024.110131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Liu F, Duan G, Yang H. Recent advances in exploiting carrageenans as a versatile functional material for promising biomedical applications. Int J Biol Macromol 2023; 235:123787. [PMID: 36858089 DOI: 10.1016/j.ijbiomac.2023.123787] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
Carrageenans are a group of biopolymers widely found in red seaweeds. Commercial carrageenans have been traditionally used as emulsifiers, stabilizers, and thickening and gelling agents in food products. Carrageenans are regarded as bioactive polysaccharides with disease-modifying and microbiota-modulating activities. Novel biomedical applications of carrageenans as biocompatible functional materials for fabricating hydrogels and nanostructures, including carbon dots, nanoparticles, and nanofibers, have been increasingly exploited. In this review, we describe the unique structural characteristics of carrageenans and their functional relevance. We summarize salient physicochemical features, including thixotropic and shear-thinning properties, of carrageenans. Recent results from clinical trials in which carrageenans were applied as both antiviral and antitumor agents and functional materials are discussed. We also highlight the most recent advances in the development of carrageenan-based targeted drug delivery systems with various pharmaceutical formulations. Promising applications of carrageenans as a bioink material for 3D printing in tissue engineering and regenerative medicine are systematically evaluated. We envisage some key hurdles and challenges in the commercialization of carrageenans as a versatile material for clinical practice. This comprehensive review of the intimate relationships among the structural features, unique rheological properties, and biofunctionality of carrageenans will provide novel insights into their biomedicine application potential.
Collapse
Affiliation(s)
- Fang Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
7
|
Sadeghi A, Zare-Gachi M, Najjar-Asl M, Rajabi S, Fatemi MJ, Forghani SF, Daemi H, Pezeshki-Modaress M. Hybrid gelatin-sulfated alginate scaffolds as dermal substitutes can dramatically accelerate healing of full-thickness diabetic wounds. Carbohydr Polym 2023; 302:120404. [PMID: 36604076 DOI: 10.1016/j.carbpol.2022.120404] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Diabetic foot ulcers (DFUs) are defined as chronic and non-healing wounds that cause skin disorders. Here, we introduce a novel biodegradable gelatin/sulfated alginate hybrid scaffold as a dermal substitute to accelerate the healing of full-thickness diabetic ulcers in a diabetic mouse model. The hybrid scaffold possessing different weight ratios of sulfated alginate, from 10 % up to 50 %, were prepared through chemical crosslinking by carbodiimide chemistry and further freeze-drying. Based on the in vitro cytotoxicity experiments, the hybrid scaffolds not only showed no cytotoxicity, but the cell growth also dramatically increased by increasing the sulfated alginate content. Finally, the pathology of hybrid scaffolds as the dermal substitutes for healing of full-thickness diabetic wounds showed the more appropriate formation of epidermal layer, more homogeneous distribution of collagenous tissue and lower penetration of immune cells for the hybrid scaffolds-treated wounds.
Collapse
Affiliation(s)
- Amin Sadeghi
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Zare-Gachi
- Zharfandishan Fanavar Zistbaspar (ZFZ) Chemical Company, Tehran, Iran
| | - Mostafa Najjar-Asl
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, ACECR, Royan Institute, Tehran, Iran
| | - Sarah Rajabi
- Department of Cell Engineering, Stem Cells and Developmental Biology, Cell Science Research Center, ACECR, Royan Institute, Tehran, Iran
| | - Mohammad Javad Fatemi
- Department of Plastic and Reconstructive surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Siamak Farokh Forghani
- Department of Plastic and Reconstructive surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Daemi
- Department of Cell Engineering, Stem Cells and Developmental Biology, Cell Science Research Center, ACECR, Royan Institute, Tehran, Iran.
| | | |
Collapse
|
8
|
Rudtanatip T, Somintara S, Sakaew W, El-Abid J, Cano ME, Jongsomchai K, Wongprasert K, Kovensky J. Sulfated Galactans from Gracilaria fisheri with Supplementation of Octanoyl Promote Wound Healing Activity In Vitro and In Vivo. Macromol Biosci 2022; 22:e2200172. [PMID: 36066490 DOI: 10.1002/mabi.202200172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/22/2022] [Indexed: 01/15/2023]
Abstract
Sulfated galactans (SG) isolated from Gracilaria fisheri is partially degraded (DSG), and subsequentially supplemented with octanoyl (DSGO) and sulfate (DSGS) groups. The molecular weights of DSG, DSGO, and DSGS are 7.87, 152.79, and 97.07 kDa, respectively. The modification is confirmed using FTIR and NMR, while in vitro wound healing activity is assessed using scratched wound fibroblasts. The results reveal that DSGO exhibits highest percentage of wound closure in scratched fibroblast L929 cells. Furthermore, DSGO is able to promote proliferation and accelerate migration of scratched fibroblasts, which correspond to the regulation of proteins and mRNA (Ki67, p-FAK, vimentin, and E-cadherin) determined by Western blotting and qPCR analysis. The superior wound healing activity of DSGO is also confirmed in excision wound of rats. The results demonstrate that DSGO significantly enhances the percentage of wound closure, re-epithelialization, and collagen arrangement, increases α-smoth muscle actin (α-SMA) and vimentin expression, and decreases that of tumor necrosis factor-α (TNF-α) at the wound site. The results suggest that degraded SG supplemented with medium-chain fatty acids of octanoyl group may pass through the membrane, subsequently activating the mediators associated with proliferation and migration of fibroblasts, which can potentially lead to the promotion of wound healing activity.
Collapse
Affiliation(s)
- Tawut Rudtanatip
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Mueang, Khon Kaen, 40002, Thailand
| | - Somsuda Somintara
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Mueang, Khon Kaen, 40002, Thailand
| | - Waraporn Sakaew
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Mueang, Khon Kaen, 40002, Thailand
| | - Jamal El-Abid
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A) CNRS UMR 7378, Institut de Chimie de Picardie FR 3085, Université de Picardie Jules Verne, 33 rue Saint Leu, Amiens, 80039, France
| | - Maria Emilia Cano
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
| | - Kamonwan Jongsomchai
- Division of Anatomy, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - José Kovensky
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A) CNRS UMR 7378, Institut de Chimie de Picardie FR 3085, Université de Picardie Jules Verne, 33 rue Saint Leu, Amiens, 80039, France
| |
Collapse
|
9
|
Akasheh H, Jahandideh A, Khajerahimi A, Kakoolaki S, Hesaraki S. The Effect of Gracilaria Corticata and Scenedesmus Acuminates Extract Mixture on the Healing of Wounds Contaminated with Staphylococcus in the Rat Model. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2022; 10:e70. [PMID: 36381975 PMCID: PMC9637266 DOI: 10.22037/aaem.v10i1.1686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Wound healing processes are dependent on the severity of the trauma, invasion of opportunistic microorganisms, and inflammatory, immunological, and metabolic responses. We tried to show the ability of algae to inhibit wound infection, which can lead to proper wound healing. METHODS Eighty rats were housed according to laboratory animal care protocols and divided into four groups at each operating time. Group I consisted of the non-treated animals. Group II was treated with 25% zinc oxide as a choice treatment. In the treated groups 3 and 4, an equal ratio of Gracilaria Corticata and Scenedesmus acuminate marine algae (mixed algae) was applied as 3% and 7% ointment pomade. Percentage of wound closure, number of bacteria in the wound surface, angiogenesis (Vascular endothelial growth factor; VEGF), the number of macrophages, collagen production level and transforming growth factor-beta (TGFβ), epithelialization, and fibrosis were evaluated. RESULTS Applying mixed algae extract 7% and zinc oxide 25% could result in a mild improvement in wound closure (df: 9, 48; F=5.97; p<0.0001). In addition, mixed algae 3%, mixed algae 7% and zinc oxide could reduce the rate of bacterial growth compared to non-treated animals (df: 3, 16; F=5.74; p=0.0007). However, these improvements do not seem to be clinically significant. Induction of angiogenesis, increase in macrophage infiltration rate, and expression of TGFβ are possible underlying mechanisms of mixed algae in accelerating wound healing process. CONCLUSION The result showed that the administration of 3% and 7% mixed algae could mildly accelerate the wound healing process in a rat model of pelleted skin wound. However, it seems that its effect is not clinically significant compared to non-treated and zinc oxide treated animals.
Collapse
Affiliation(s)
- Hooman Akasheh
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Jahandideh
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Corresponding author: Alireza Jahandideh; Department of Clinical Science, Faculty of Specialized Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran. , ORCID: 0000-0002-4212-6416, Tel: 00989122476037
| | - Amireghbal Khajerahimi
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shapour Kakoolaki
- Iranian Fisheries Science Research Institute, Agriculture Research Education and Extension Organization (AREEO), Tehran, Iran
| | - Saeed Hesaraki
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Ulvan-Based Nanofibrous Patches Enhance Wound Healing of Skin Trauma Resulting from Cryosurgical Treatment of Keloids. Mar Drugs 2022; 20:md20090551. [PMID: 36135740 PMCID: PMC9505379 DOI: 10.3390/md20090551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Keloids are skin fibroproliferative disorders, resulting from abnormal healing of deep cutaneous injuries. Cryosurgery, the most common treatment for keloids, causes skin traumas. Even though the clinical practice of cryosurgery has increased, effective wound healing therapy is still lacking. In this investigation, nonwoven nanofibrous patches composed of ulvan, a marine sulfated polysaccharide exhibiting anti-inflammatory and antioxidant activities, and polyethylene oxide (PEO) were fabricated through electrospinning and characterized. Their wound healing efficacy on skin traumas resulting from cryosurgical treatment of keloids was clinically tested and evaluated in comparison to a reference product. Twenty-four volunteer patients undergoing cryosurgery as a treatment of keloids were selected to apply either the ulvan/PEO patch or the reference product for 21 days. The ulvan/PEO patch, 21 days after cryosurgery, showed significant wound healing, elimination of skin inflammation, restoration of biophysical parameters similar to normal values and significant decrease in haemoglobin concentration, skin texture and volume, while no discomfort or adverse reaction was observed. In contrast, the reference product showed inferior performance in all evaluated parameters. The designed ulvan/PEO patch represents the first wound dressing to effectively heal skin trauma after cryosurgical treatment of keloids.
Collapse
|
11
|
Terezaki A, Kikionis S, Ioannou E, Sfiniadakis I, Tziveleka LA, Vitsos A, Roussis V, Rallis M. Ulvan/gelatin-based nanofibrous patches as a promising treatment for burn wounds. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Barrier effect and wound healing activity of the medical device REF-FTP78 in the treatment of gastroesophageal reflux disease. Sci Rep 2022; 12:6136. [PMID: 35414705 PMCID: PMC9005723 DOI: 10.1038/s41598-022-10171-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/04/2022] [Indexed: 12/16/2022] Open
Abstract
REF-FTP78 is a class IIb medical device present on the market with different trade names and developed for the treatment of gastroesophageal reflux disease (GERD). This medical device is based on polysaccharides from Aloe Barbadensis and fucoidans from brown seaweeds, such as Undaria pinnatifida and Fucus vesiculosus, and aims to exert a protective effect on the esophageal mucosa against the noxious components of refluxate. The present study reports on the efficacy of REF-FTP78 devoting a particular attention to the barrier effect and wound healing properties, combined with antioxidant and anti-inflammatory activities. Film-forming properties and barrier effect were investigated on in vitro reconstructed human esophageal epithelium, through TEER measurement and evaluation of caffeine and Lucifer yellow permeability, and in an ex vivo swine model of esophageal mucosa damage. Antioxidant and anti-inflammatory properties were evaluated in terms of scavenging activity towards DPPH, ABTS and NO radicals and a wound healing assay was carried out to study the influence of the product on cell migration. The obtained results highlighted a significant barrier effect, with a reduction in caffeine penetration equal to 65.3%, the ability to both repair and prevent the damage caused by an acid insult, confirmed by a good transepithelial resistance for the tissue treated with the tested item, and the capacity to promote wound healing. Furthermore, the tested product showed good antioxidant and anti-inflammatory properties in the performed radical scavenging assays. These findings support the use of REF-FTP78 in the treatment of GERD.
Collapse
|
13
|
Swathi N, Kumar AG, Parthasarathy V, Sankarganesh P. Isolation of Enteromorpha species and analyzing its crude extract for the determination of in vitro antioxidant and antibacterial activities. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-10. [PMID: 35345496 PMCID: PMC8941838 DOI: 10.1007/s13399-022-02591-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The extract of green algae (Enteromorpha species) was prepared by the cold extraction technique. The prepared algal extract exhibits a high antioxidant potential due to the presence of sulfated polysaccharides (SPs). The extract of Enteromorpha species was analyzed to identify the presence of significant biochemical composition. The extract of Enteromorpha species was evaluated to assess the DPPH-free radical scavenging activity, total antioxidant activity by phosphomolybdenum assay, in vitro anti-bacterial by agar diffusion method, and cell viability by MTT assay. It was found that the extract of Enteromorpha species contains the various chemical composition such as carbohydrates (0.13 g/ml), xylose (0.0819 g/ml), sulfate (0.0153 g/ml), and proteins (0.0363 g/ml). Phytochemicals such as flavonoids and phenolic compounds were found in the extract. The antioxidant potential of the crude extract was investigated by the total antioxidant assay (400 µl/ml) and DPPH-free radical scavenging assay (5 µl/ml). The prepared green algal extract produced the highest inhibitory zone up to 18 mm, 13 mm, and 18 mm at 200 µl/ml concentrations against Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli, respectively. The above results revealed that the extract of Enteromorpha species exhibited strong antioxidant and anti-bacterial activities due to the presence of sulfated polysaccharides.
Collapse
Affiliation(s)
- N. Swathi
- Department of Microbiology, United Alacrity India Pvt. Ltd, Chennai-600 058, Ambattur, Tamil Nadu India
| | - A. Ganesh Kumar
- Center for Research and Development, Department of Microbiology, Hindustan College of Arts & Science, Chennai-603 103, Padur, Tamil Nadu India
| | - V. Parthasarathy
- Department of Physics, Hindustan Institute of Technology and Science, Chennai-603 103, Padur, Tamil Nadu India
| | - P. Sankarganesh
- Department of Food Technology, Hindustan Institute of Technology and Science, Chennai-603 103, Padur, Tamil Nadu India
| |
Collapse
|
14
|
Bouissil S, Guérin C, Roche J, Dubessay P, El Alaoui-Talibi Z, Pierre G, Michaud P, Mouzeyar S, Delattre C, El Modafar C. Induction of Defense Gene Expression and the Resistance of Date Palm to Fusarium oxysporum f. sp. Albedinis in Response to Alginate Extracted from Bifurcaria bifurcata. Mar Drugs 2022; 20:88. [PMID: 35200618 PMCID: PMC8876945 DOI: 10.3390/md20020088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/31/2022] Open
Abstract
In many African countries, the Bayoud is a common disease spread involving the fungus Fusarium oxusporum f. sp. albedinis (Foa). The induction of plant natural defenses through the use of seaweed polysaccharides to help plants against pathogens is currently a biological and ecological approach that is gaining more and more importance. In the present study, we used alginate, a natural polysaccharide extracted from a brown algae Bifurcaria bifurcata, to activate date palm defenses, which involve phenylalanine ammonia-lyase (PAL), a key enzyme of phenylpropanoid metabolism. The results obtained showed that at low concentration (1 g·L-1), alginate stimulated PAL activity in date palm roots 5 times more compared to the negative control (water-treated) after 24 h following treatment and 2.5 times more compared to the laminarin used as a positive stimulator of plant natural defenses (positive control of induction). Using qRT-PCR, the expression of a selection of genes involved in three different levels of defense mechanisms known to be involved in response to biotic stresses were investigated. The results showed that, generally, the PAL gene tested and the genes encoding enzymes involved in early oxidative events (SOD and LOX) were overexpressed in the alginate-treated plants compared to their levels in the positive and negative controls. POD and PR protein genes selected encoding β-(1,3)-glucanases and chitinases in this study did not show any significant difference between treatments; suggesting that other genes encoding POD and PR proteins that were not selected may be involved. After 17 weeks following the inoculation of the plants with the pathogen Foa, treatment with alginate reduced the mortality rate by up to 80% compared to the rate in control plants (non-elicited) and plants pretreated with laminarin, which agrees with the induction of defense gene expression and the stimulation of natural defenses in date palm with alginate after 24 h. These results open promising prospects for the use of alginate in agriculture as an inducer that triggers immunity of plants against telluric pathogens in general and of date palm against Fusarium oxysporum f. sp. albedinis in particular.
Collapse
Affiliation(s)
- Soukaina Bouissil
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Faculté des Sciences et Techniques Marrakech, Université Cadi Ayyad, Marrakech 40000, Morocco; (Z.E.A.-T.); (C.E.M.)
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France; (P.D.); (G.P.); (C.D.)
| | - Claire Guérin
- UMR 1095 GDEC INRA-Université Clermont-Auvergne, 1 Impasse Amélie Murat, 63178 Aubière, France; (C.G.); (J.R.); (S.M.)
| | - Jane Roche
- UMR 1095 GDEC INRA-Université Clermont-Auvergne, 1 Impasse Amélie Murat, 63178 Aubière, France; (C.G.); (J.R.); (S.M.)
| | - Pascal Dubessay
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France; (P.D.); (G.P.); (C.D.)
| | - Zainab El Alaoui-Talibi
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Faculté des Sciences et Techniques Marrakech, Université Cadi Ayyad, Marrakech 40000, Morocco; (Z.E.A.-T.); (C.E.M.)
| | - Guillaume Pierre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France; (P.D.); (G.P.); (C.D.)
| | - Philippe Michaud
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France; (P.D.); (G.P.); (C.D.)
| | - Said Mouzeyar
- UMR 1095 GDEC INRA-Université Clermont-Auvergne, 1 Impasse Amélie Murat, 63178 Aubière, France; (C.G.); (J.R.); (S.M.)
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France; (P.D.); (G.P.); (C.D.)
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| | - Cherkaoui El Modafar
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Faculté des Sciences et Techniques Marrakech, Université Cadi Ayyad, Marrakech 40000, Morocco; (Z.E.A.-T.); (C.E.M.)
| |
Collapse
|
15
|
Polysaccharide Stalks in Didymosphenia geminata Diatom: Real World Applications and Strategies to Combat Its Spread. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Didymosphenia geminata is a species of freshwater diatom that is known as invasive and is propagating quickly around the world. While invasive species are generally considered a nuisance, this paper attempts to find useful applications for D. geminata in the biomedical field and wastewater remediation. Here, we highlight the polysaccharide-based stalks of D. geminata that enable versatile potential applications and uses as a biopolymer, in drug delivery and wound healing, and as biocompatible scaffolding in cell adhesion and proliferation. Furthermore, this review focuses on how the polysaccharide nature of stalks and their metal-adsorption capacity allows them to have excellent wastewater remediation potential. This work also aims to assess the economic impact of D. geminata, as an invasive species, on its immediate environment. Potential government measures and legislation are recommended to prevent the spread of D. geminata, emphasizing the importance of education and collaboration between stakeholders.
Collapse
|
16
|
Shao T, Yuan P, Zhang W, Dou D, Wang F, Hao C, Liu C, Han J, Chen K, Wang G. Preparation and characterization of sulfated inulin-type fructans from Jerusalem artichoke tubers and their antitumor activity. Carbohydr Res 2021; 509:108422. [PMID: 34478936 DOI: 10.1016/j.carres.2021.108422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/05/2023]
Abstract
The modification of polysaccharides is important for enhancing their biological activities. In this study, a pure inulin-type fructan, denoted as Jerusalem artichoke polysaccharide (P-JAP), was purified from Jerusalem artichoke tubers and modified by sulfation via treatment with a sulfur trioxide-pyridine complex to produce its sulfated derivative (S-JAP). Fourier-transform infrared spectroscopic analysis confirmed the successful introduction of sulfate groups. The inhibitory effects of S-JAP on the proliferation of human liver hepatocellular carcinoma (HepG2) cells was evaluated via a CCK-8 assay, and the pro-apoptotic effects were assessed using annexin V-FITC/PI double staining. The inhibition rates of various concentrations of S-JAP on HepG2 cells after 24, 48, and 72 h were significantly higher than those of P-JAP; moreover, S-JAP succeeded in promoting cell apoptosis. Thus, the sulfate-modified polysaccharide extracted from Jerusalem artichoke tubers was shown to exhibit effective antitumor activity with potential for further development.
Collapse
Affiliation(s)
- Taili Shao
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, 241002, China; Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Pingchuan Yuan
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, 241002, China
| | - Wenzhi Zhang
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Deyu Dou
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, 241002, China
| | - Fengge Wang
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Chengyi Hao
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Chunyan Liu
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, 241002, China; Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Jun Han
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, 241002, China; Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Kaoshan Chen
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, 241002, China; Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Guodong Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, 241002, China; Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| |
Collapse
|
17
|
Shen S, Chen X, Shen Z, Chen H. Marine Polysaccharides for Wound Dressings Application: An Overview. Pharmaceutics 2021; 13:1666. [PMID: 34683959 PMCID: PMC8541487 DOI: 10.3390/pharmaceutics13101666] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 01/11/2023] Open
Abstract
Wound dressings have become a crucial treatment for wound healing due to their convenience, low cost, and prolonged wound management. As cutting-edge biomaterials, marine polysaccharides are divided from most marine organisms. It possesses various bioactivities, which allowing them to be processed into various forms of wound dressings. Therefore, a comprehensive understanding of the application of marine polysaccharides in wound dressings is particularly important for the studies of wound therapy. In this review, we first introduce the wound healing process and describe the characteristics of modern commonly used dressings. Then, the properties of various marine polysaccharides and their application in wound dressing development are outlined. Finally, strategies for developing and enhancing marine polysaccharide wound dressings are described, and an outlook of these dressings is given. The diverse bioactivities of marine polysaccharides including antibacterial, anti-inflammatory, haemostatic properties, etc., providing excellent wound management and accelerate wound healing. Meanwhile, these biomaterials have higher biocompatibility and biodegradability compared to synthetic ones. On the other hand, marine polysaccharides can be combined with copolymers and active substances to prepare various forms of dressings. Among them, emerging types of dressings such as nanofibers, smart hydrogels and injectable hydrogels are at the research frontier of their development. Therefore, marine polysaccharides are essential materials in wound dressings fabrication and have a promising future.
Collapse
Affiliation(s)
- Shenghai Shen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
| | - Xiaowen Chen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
| | - Zhewen Shen
- School of Humanities, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia;
| | - Hao Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| |
Collapse
|
18
|
Enhanced antitumor activity of inulin-capped Se nanoparticles synthesized using Jerusalem artichoke tubers. Glycoconj J 2021; 38:599-607. [PMID: 34313918 DOI: 10.1007/s10719-021-10011-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
An inulin polysaccharide with a molecular weight of ~ 2600 Da was derived from Jerusalem artichoke tubers and referred to as "JAP". Previous studies have shown that inulin can improve glucose tolerance and the liver lipid profile; however, its antitumor activity remains to be examined in detail. Therefore, to investigate the possible improvement of the antitumor activity of JAP, a novel nanostructured biomaterial was constructed by capping Se nanoparticles with JAP using sodium selenite, via a redox reaction with ascorbic acid, and referred to as "JAP-SeNPs". Transmission electron microscopy revealed that the average diameter of JAP-SeNPs is ~ 50 nm, and the C:Se mass ratio in JAP-SeNPs was found to be 15.4:1 by energy-dispersive X-ray spectroscopy. The well-dispersed JAP-SeNPs exhibited a significant in vitro antiproliferative effect on mouse forestomach carcinoma cells at a concentration of 400 μg/mL when incubated for 48 h, with an inhibition rate of 41.5%. Moreover, 38.9% of later apoptotic cells were observed. These results reveal that a combination of Se and JAP can effectively enhance the antitumor activity of polysaccharides obtained from Jerusalem artichoke tubers.
Collapse
|
19
|
Bilal M, Qindeel M, Nunes LV, Duarte MTS, Ferreira LFR, Soriano RN, Iqbal HMN. Marine-Derived Biologically Active Compounds for the Potential Treatment of Rheumatoid Arthritis. Mar Drugs 2020; 19:10. [PMID: 33383638 PMCID: PMC7823916 DOI: 10.3390/md19010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease with a prevalence rate of up to 1% and is significantly considered a common worldwide public health concern. Commercially, several traditional formulations are available to treat RA to some extent. However, these synthetic compounds exert toxicity and considerable side effects even at lower therapeutic concentrations. Considering the above-mentioned critiques, research is underway around the world in finding and exploiting potential alternatives. For instance, marine-derived biologically active compounds have gained much interest and are thus being extensively utilized to confront the confines of in practice counterparts, which have become ineffective for 21st-century medical settings. The utilization of naturally available bioactive compounds and their derivatives can minimize these synthetic compounds' problems to treat RA. Several marine-derived compounds exhibit anti-inflammatory and antioxidant properties and can be effectively used for therapeutic purposes against RA. The results of several studies ensured that the extraction of biologically active compounds from marine sources could provide a new and safe source for drug development against RA. Finally, current challenges, gaps, and future perspectives have been included in this review.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Leonardo Vieira Nunes
- Department of Medicine, Federal University of Juiz de Fora, Juiz de Fora-MG 36036-900, Brazil;
| | | | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe 49032-490, Brazil;
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe 49032-490, Brazil
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares-MG 35010-180, Brazil;
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
20
|
Šimat V, Elabed N, Kulawik P, Ceylan Z, Jamroz E, Yazgan H, Čagalj M, Regenstein JM, Özogul F. Recent Advances in Marine-Based Nutraceuticals and Their Health Benefits. Mar Drugs 2020; 18:E627. [PMID: 33317025 PMCID: PMC7764318 DOI: 10.3390/md18120627] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
The oceans have been the Earth's most valuable source of food. They have now also become a valuable and versatile source of bioactive compounds. The significance of marine organisms as a natural source of new substances that may contribute to the food sector and the overall health of humans are expanding. This review is an update on the recent studies of functional seafood compounds (chitin and chitosan, pigments from algae, fish lipids and omega-3 fatty acids, essential amino acids and bioactive proteins/peptides, polysaccharides, phenolic compounds, and minerals) focusing on their potential use as nutraceuticals and health benefits.
Collapse
Affiliation(s)
- Vida Šimat
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Avenue de la République, BP 77-1054 Amilcar, Tunisia;
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Zafer Ceylan
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Van Yüzüncü Yıl University, 65080 Van, Turkey;
| | - Ewelina Jamroz
- Institute of Chemistry, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Hatice Yazgan
- Faculty of Veterinary Medicine, Cukurova University, 01330 Adana, Turkey;
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey
| |
Collapse
|
21
|
Khrunyk Y, Lach S, Petrenko I, Ehrlich H. Progress in Modern Marine Biomaterials Research. Mar Drugs 2020; 18:E589. [PMID: 33255647 PMCID: PMC7760574 DOI: 10.3390/md18120589] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
The growing demand for new, sophisticated, multifunctional materials has brought natural structural composites into focus, since they underwent a substantial optimization during long evolutionary selection pressure and adaptation processes. Marine biological materials are the most important sources of both inspiration for biomimetics and of raw materials for practical applications in technology and biomedicine. The use of marine natural products as multifunctional biomaterials is currently undergoing a renaissance in the modern materials science. The diversity of marine biomaterials, their forms and fields of application are highlighted in this review. We will discuss the challenges, solutions, and future directions of modern marine biomaterialogy using a thorough analysis of scientific sources over the past ten years.
Collapse
Affiliation(s)
- Yuliya Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, 620002 Ekaterinburg, Russia;
- Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, 620990 Ekaterinburg, Russia
| | - Slawomir Lach
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|