1
|
Wang D, Fukuda T, Wu T, Xu X, Isaji T, Gu J. Exogenous L-fucose attenuates depression induced by chronic unpredictable stress: Implicating core fucosylation has an antidepressant potential. J Biol Chem 2025; 301:108230. [PMID: 39864626 PMCID: PMC11879694 DOI: 10.1016/j.jbc.2025.108230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Core fucosylation is one of the most essential modifications of the N-glycans, catalyzed by α1,6-fucosyltransferase (Fut8), which transfers fucose from guanosine 5'-diphosphate (GDP)-fucose to the innermost N-acetylglucosamine residue of N-glycans in an α1-6 linkage. Our previous studies demonstrated that lipopolysaccharide (LPS) can induce a more robust neuroinflammatory response in Fut8 homozygous knockout (KO) (Fut8-/-) and heterozygous KO (Fut8+/-) mice contrasted to the wild-type (Fut8+/+) mice. Exogenous administration of L-fucose suppressed LPS-induced neuroinflammation. Numerous studies indicate that neuroinflammation plays a vital role in the development of depression. Here, we investigated whether core fucosylation regulates depression induced by chronic unpredictable stress (CUS), a well-established model for depression. Our results showed that Fut8+/- mice exhibited depressive-like behaviors and increased neuroinflammation earlier than Fut8+/+ mice. Administration of L-fucose significantly reduced CUS-induced depressive-like behaviors and pro-inflammatory cytokine levels in Fut8+/- mice. The L-fucose treatment produced antidepressant effects by attenuating the complex formation between gp130 and the interleukin-6 (IL-6) receptor and the JAK2/STAT3 signaling pathway. Notably, L-fucose treatment increased dendritic spine density and postsynaptic density protein 95 (PSD-95) expression, which were suppressed in CUS-induced depression. Furthermore, the effects of L-fucose on the CUS-induced depression were also observed in Fut8+/+ mice. Our results clearly demonstrate that L-fucose ameliorates neuroinflammation and synaptic defects in CUS-induced depression, implicating that core fucosylation has significant anti-neuroinflammatory activity and an antidepressant potential.
Collapse
Affiliation(s)
- Dan Wang
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| | - Tiangui Wu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Xing Xu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
2
|
Şahin F, Kaya ZZ, Serteser M, Öztürk HÜ, Baykal AT. Glycan profiling of multiple sclerosis oligoclonal bands with MALDI-TOF. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:850-858. [PMID: 39744984 DOI: 10.1039/d4ay01639d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Multiple sclerosis (MS) is a common autoimmune disease that primarily affects young adults. In this condition, the immune system attacks the myelin sheath of nerve cells, leading to a variety of neurological symptoms. MS diagnosis often relies on the analysis of oligoclonal bands (OCBs), which involves detecting oligoclonal immunoglobulin G (IgG) bands in cerebrospinal fluid (CSF) and serum. The objective of this study was to investigate the glycosylation profiles of IgG in patients suspected of having MS, using glycan analysis with MALDI-TOF mass spectrometry. Serum samples were analysed, and the IgG glycosylation patterns were compared across different OCB types. Our findings suggest that alterations in IgG glycans may serve as potential biomarkers for MS, providing insights into the disease's molecular mechanisms and aiding in early diagnosis. This study highlights the importance of glycomics in understanding the pathogenesis of MS and in the development of novel diagnostic techniques.
Collapse
Affiliation(s)
- Furkan Şahin
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34450, Turkey.
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydınlar University, Istanbul 34450, Turkey
- TUBITAK Marmara Research Center, Kocaeli, 41470, Turkey
| | - Zelal Zuhal Kaya
- Department of Medical Biochemistry, Faculty of Medicine, Nisantasi University, Istanbul 34398, Turkey
| | - Mustafa Serteser
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34450, Turkey.
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydınlar University, Istanbul 34450, Turkey
| | | | - Ahmet Tarık Baykal
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34450, Turkey.
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydınlar University, Istanbul 34450, Turkey
| |
Collapse
|
3
|
Radovani B, Nimmerjahn F. IgG Glycosylation: Biomarker, Functional Modulator, and Structural Component. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1573-1584. [PMID: 39556784 DOI: 10.4049/jimmunol.2400447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/27/2024] [Indexed: 11/20/2024]
Abstract
The family of IgG Abs is a crucial component of adaptive immunity. Glycosylation of IgG maintains its structural integrity and modulates its effector functions. In this review, we discuss IgG glycosylation covering cell biological as well as therapeutic and disease-related aspects, focusing on the glycan structures in distinct IgG regions (Fab versus Fc). We also cover the impact of IgG glycosylation on disease modulation and therapeutic outcomes, alongside the potential for development of vaccines designed to induce Ag-specific IgG with glycoforms for optimal immune responses. Overall, we emphasize the significance of studying glycosylation to enhance our understanding of the dynamics and functional impacts of IgG glycosylation. These insights could be beneficial for advancing future research and clinical applications.
Collapse
Affiliation(s)
- Barbara Radovani
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
- Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Profile Center Immunomedicine, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
4
|
Krištić J, Lauc G. The importance of IgG glycosylation-What did we learn after analyzing over 100,000 individuals. Immunol Rev 2024; 328:143-170. [PMID: 39364834 PMCID: PMC11659926 DOI: 10.1111/imr.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
All four subclasses of immunoglobulin G (IgG) antibodies have glycan structures attached to the protein part of the IgG molecules. Glycans linked to the Fc portion of IgG are found in all IgG antibodies, while about one-fifth of IgG antibodies in plasma also have glycans attached to the Fab portion of IgG. The IgG3 subclass is characterized by more complex glycosylation compared to other IgG subclasses. In this review, we discuss the significant influence that glycans exert on the structural and functional properties of IgG. We provide a comprehensive overview of how the composition of these glycans can affect IgG's effector functions by modulating its interactions with Fcγ receptors and other molecules such as the C1q component of complement, which in turn influence various immune responses triggered by IgG, including antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). In addition, the importance of glycans for the efficacy of therapeutics like monoclonal antibodies and intravenous immunoglobulin (IVIg) therapy is discussed. Moreover, we offer insights into IgG glycosylation characteristics and roles derived from general population, disease-specific, and interventional studies. These studies indicate that IgG glycans are important biomarkers and functional effectors in health and disease.
Collapse
Affiliation(s)
| | - Gordan Lauc
- Genos Glycoscience Research LaboratoryZagrebCroatia
- Faculty of Pharmacy and BiochemistryUniversity of ZagrebZagrebCroatia
| |
Collapse
|
5
|
Hatchett CJ, Hall MK, Messer AR, Schwalbe RA. Lowered GnT-I Activity Decreases Complex-Type N-Glycan Amounts and Results in an Aberrant Primary Motor Neuron Structure in the Spinal Cord. J Dev Biol 2024; 12:21. [PMID: 39189261 PMCID: PMC11348029 DOI: 10.3390/jdb12030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
The attachment of sugar to proteins and lipids is a basic modification needed for organismal survival, and perturbations in glycosylation cause severe developmental and neurological difficulties. Here, we investigated the neurological consequences of N-glycan populations in the spinal cord of Wt AB and mgat1b mutant zebrafish. Mutant fish have reduced N-acetylglucosaminyltransferase-I (GnT-I) activity as mgat1a remains intact. GnT-I converts oligomannose N-glycans to hybrid N-glycans, which is needed for complex N-glycan production. MALDI-TOF MS profiles identified N-glycans in the spinal cord for the first time and revealed reduced amounts of complex N-glycans in mutant fish, supporting a lesion in mgat1b. Further lectin blotting showed that oligomannose N-glycans were more prevalent in the spinal cord, skeletal muscle, heart, swim bladder, skin, and testis in mutant fish relative to WT AB, supporting lowered GnT- I activity in a global manner. Developmental delays were noted in hatching and in the swim bladder. Microscopic images of caudal primary (CaP) motor neurons of the spinal cord transiently expressing EGFP in mutant fish were abnormal with significant reductions in collateral branches. Further motor coordination skills were impaired in mutant fish. We conclude that identifying the neurological consequences of aberrant N-glycan processing will enhance our understanding of the role of complex N-glycans in development and nervous system health.
Collapse
Affiliation(s)
| | | | | | - Ruth A. Schwalbe
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (C.J.H.); (M.K.H.); (A.R.M.)
| |
Collapse
|
6
|
Wu Y, Zhang Z, Chen L, Sun S. Immunoglobulin G glycosylation and its alterations in aging-related diseases. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1221-1233. [PMID: 39126246 PMCID: PMC11399422 DOI: 10.3724/abbs.2024137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Immunoglobulin G (IgG) is an important serum glycoprotein and a major component of antibodies. Glycans on IgG affect the binding of IgG to the Fc receptor or complement C1q, which in turn affects the biological activity and biological function of IgG. Altered glycosylation patterns on IgG emerge as important biomarkers in the aging process and age-related diseases. Key aging-related alterations observed in IgG glycosylation include reductions in galactosylation and sialylation, alongside increases in agalactosylation, and bisecting GlcNAc. Understanding the role of IgG glycosylation in aging-related diseases offers insights into disease mechanisms and provides opportunities for the development of diagnostic and therapeutic strategies. This review summarizes five aspects of IgG: an overview of IgG, IgG glycosylation, IgG glycosylation with inflammation mediation, IgG glycan changes with normal aging, as well as the relevance of IgG glycan changes to aging-related diseases. This review provides a reference for further investigation of the regulatory mechanisms of IgG glycosylation in aging-related diseases, as well as for evaluating the potential of IgG glycosylation changes as markers of aging and aging-related diseases.
Collapse
Affiliation(s)
- Yongqi Wu
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| | - Zhida Zhang
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| | - Lin Chen
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| | - Shisheng Sun
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| |
Collapse
|
7
|
Deng G, Chen X, Shao L, Wu Q, Wang S. Glycosylation in autoimmune diseases: A bibliometric and visualization study. Heliyon 2024; 10:e30026. [PMID: 38707406 PMCID: PMC11066412 DOI: 10.1016/j.heliyon.2024.e30026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
An increasing amount of research has shown that glycosylation plays a crucial role in autoimmune diseases (ADs), prompting our interest in conducting research on the knowledge framework and hot topics in this field based on bibliometric analysis. Studies on glycosylation in the field of ADs from 2003 to 2023 were collected by searching the Web of Science Core Collection database. Bibliometric analysis was conducted using VOSviewer, CiteSpace, and Bibliometrix software. This study included a total of 530 studies. According to the H, G, and M indices, the United States has made the most contributions worldwide, with China making significant contributions in recent years. Leiden University from the Netherlands ranks among the top institutions in terms of publication and citation rankings, with the institution's author Manfred Wuhrer contributing the most to this field. Frontiers in Immunology is the journal with the highest H-index. Research in this field has focused on antibody glycosylation, particularly the specific glycosylation of IgG and IgA, and its role in various ADs. The application of glycoengineering glycosylated proteins in the synthesis of targeted monoclonal antibodies, drug delivery, and regenerative medical materials may be a new trend in the treatment of ADs. Artificial intelligence is an emerging tool in glycobiology. This study summarizes the objective data on glycosylation in the field of AD publications in recent years, providing a reference for researchers in this field.
Collapse
Affiliation(s)
- Guoqian Deng
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyi Chen
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Le Shao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
- Zhuhai MUST Science and Technology Research Institute, Zhuhai, Guangdong, China
| | - Shenzhi Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
8
|
Gao S, Jiao X, Guo R, Song X, Li B, Guo L. Reduced serum IgG galactosylation is associated with increased inflammation during relapses of neuromyelitis optica spectrum disorders. Front Immunol 2024; 15:1357475. [PMID: 38576616 PMCID: PMC10991735 DOI: 10.3389/fimmu.2024.1357475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Background and Objective Post-translational modifications of antibodies, with a specific focus on galactosylation, have garnered increasing attention in the context of understanding the pathogenesis and therapeutic implications of autoimmune diseases. However, the comprehensive scope and the clinical significance of antibody galactosylation in the context of Neuromyelitis Optica Spectrum Disorder (NMOSD) remain enigmatic.The primary aim of this research was to discern disparities in serum IgG galactosylation levels between individuals in the acute stage of NMOSD relapse and their age- and sex-matched healthy counterparts. Methods A total of fourteen untreated NMOSD patients experiencing an acute relapse phase, along with thirteen patients under medication, were enrolled, and an additional twelve healthy controls of the same age and gender were recruited for this investigation. Western blot and lectin enzyme techniques were used to determine the level of IgG galactosylation in the serum samples from these subjects. The expression of CD45+, CD3+, CD3+CD4+, CD3+CD8+, CD19+, and CD16+CD56+ in peripheral blood leukocytes was measured by flow cytometry. The enzyme-linked immunosorbent assay (ELISA) was also used to quantify the amounts of IgG. Magnetic particle luminescence assays are used to detect cytokines. Robust statistical analysis was executed to ascertain the potential associations between IgG galactosylation and the aforementioned immune indices. Results In the context of NMOSD relapses, serum IgG galactosylation exhibited a notable decrease in untreated patients (0.2482 ± 0.0261), while it remained comparatively stable in medicated patients when contrasted with healthy controls (0.3625 ± 0.0259) (p=0.0159). Furthermore, a noteworthy inverse correlation between serum IgG galactosylation levels and the Expanded Disability Status Scale (EDSS) score during NMOSD relapse was observed (r=-0.4142; p=0.0317). Notably, IgG galactosylation displayed an inverse correlation with NMOSD relapse among peripheral blood CD45+, CD3+, CD3+CD8+, CD19+ cells, as well as with IL-6 and IL-8. Nevertheless, it was not determined whether IgG galactosylation and CD3+CD4+ T cells or other cytokines are statistically significantly correlated. Conclusion Our research identified reduced IgG galactosylation in the serum of NMOSD patients during relapses, significantly correlated with disease severity, thereby providing a novel target for the diagnosis and treatment of NMOSD in the realm of medical research.
Collapse
Affiliation(s)
- Shiyu Gao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Xin Jiao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Ruoyi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Xiujuan Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| |
Collapse
|
9
|
Bellucci G, Buscarinu MC, Reniè R, Rinaldi V, Bigi R, Mechelli R, Romano S, Salvetti M, Ristori G. Disentangling multiple sclerosis phenotypes through Mendelian disorders: A network approach. Mult Scler 2024; 30:325-335. [PMID: 38333907 DOI: 10.1177/13524585241227119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
BACKGROUND The increasing knowledge about multiple sclerosis (MS) pathophysiology has reinforced the need for an improved description of disease phenotypes, connected to disease biology. Growing evidence indicates that complex diseases constitute phenotypical and genetic continuums with "simple," monogenic disorders, suggesting shared pathomechanisms. OBJECTIVES The objective of this study was to depict a novel MS phenotypical framework leveraging shared physiopathology with Mendelian diseases and to identify phenotype-specific candidate drugs. METHODS We performed an enrichment testing of MS-associated variants with Mendelian disorders genes. We defined a "MS-Mendelian network," further analyzed to define enriched phenotypic subnetworks and biological processes. Finally, a network-based drug screening was implemented. RESULTS Starting from 617 MS-associated loci, we showed a significant enrichment of monogenic diseases (p < 0.001). We defined an MS-Mendelian molecular network based on 331 genes and 486 related disorders, enriched in four phenotypic classes: neurologic, immunologic, metabolic, and visual. We prioritized a total of 503 drugs, of which 27 molecules active in 3/4 phenotypical subnetworks and 140 in subnetwork pairs. CONCLUSION The genetic architecture of MS contains the seeds of pathobiological multiplicities shared with immune, neurologic, metabolic and visual monogenic disorders. This result may inform future classifications of MS endophenotypes and support the development of new therapies in both MS and rare diseases.
Collapse
Affiliation(s)
- Gianmarco Bellucci
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Maria Chiara Buscarinu
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Roberta Reniè
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Virginia Rinaldi
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Rachele Bigi
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Rosella Mechelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Pisana, Rome, Italy San Raffaele Roma Open University, Rome, Italy
| | - Silvia Romano
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Marco Salvetti
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Giovanni Ristori
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
10
|
Adzic Bukvic M, Laketa D, Dragic M, Lavrnja I, Nedeljkovic N. Expression of functionally distinct ecto-5'-nucleotidase/CD73 glycovariants in reactive astrocytes in experimental autoimmune encephalomyelitis and neuroinflammatory conditions in vitro. Glia 2024; 72:19-33. [PMID: 37646205 DOI: 10.1002/glia.24459] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Ecto-5'-nucleotidase/CD73 (eN/CD73) is a membrane-bound enzyme involved in extracellular production of adenosine and a cell adhesion molecule involved in cell-cell interactions. In neuroinflammatory conditions such as experimental autoimmune encephalomyelitis (EAE), reactive astrocytes occupying active demyelination areas significantly upregulate eN/CD73 and express additional eN/CD73 variants. The present study investigated whether the different eN/CD73 variants represent distinct glycoforms and the functional consequences of their expression in neuroinflammatory states. The study was performed in animals at different stages of EAE and in primary astrocyte cultures treated with a range of inflammatory cytokines. Upregulation at the mRNA, protein, and functional levels, as well as the appearance of multiple eN/CD73 glycovariants were detected in the inflamed spinal cord tissue. At the peak of the disease, eN/CD73 exhibited higher AMP turnover and lower enzyme-substrate affinity than the control group, which was attributed to altered glycosylation under neuroinflammatory conditions. A subsequent in vitro study showed that primary astrocytes upregulated eN/CD73 and expressed the multiple glycovariants upon stimulation with TNFα, IL-1β, IL-6, and ATP, with the effect occurring at least in part via induction of JAK/STAT3 signaling. Experimental removal of glycan moieties from membrane glycoproteins by PNGaseF decreased eN/CD73 activity but had no effect on the enzyme's involvement in astrocyte migration. Our results suggest that neuroinflammatory states are associated with the appearance of functionally distinct eN/CD73 glycovariants, which may play a role in the development of the reactive astrocyte phenotype.
Collapse
Affiliation(s)
- Marija Adzic Bukvic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Danijela Laketa
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Turčić A, Radovani B, Vogrinc Ž, Habek M, Rogić D, Gabelić T, Zaninović L, Lauc G, Gudelj I. Higher MRI lesion load in multiple sclerosis is related to the N-glycosylation changes of cerebrospinal fluid immunoglobulin G. Mult Scler Relat Disord 2023; 79:104921. [PMID: 37634467 DOI: 10.1016/j.msard.2023.104921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Intrathecal clonal expansion of antibody-producing plasma cells in multiple sclerosis (MS) perpetuates central nervous system injury and is associated with active demyelination. Immunoglobulin G (IgG) effector functions are modulated by linked N-glycan structures. The aim of the study was to detect potential differences in N-glycosylation of IgG in serum and cerebrospinal fluid (CSF) and total sera proteins between people with MS and those in whom the diagnosis of MS was excluded. Furthermore, we investigated the association with standard laboratory biomarkers of intrathecal inflammation as well as clinical and neuroradiological disease activity. METHODS This cross-sectional study included patients with suspected demyelinating disease. MS diagnosis was based on the 2017 McDonald criteria and controls were patients with excluded MS diagnosis. N-glycans were compared with Expanded Disability Status Scale (EDSS), magnetic resonance imaging (MRI) markers of disease activity and biomarkers of intrathecal inflammation (cell count, CSF-IgG concentration, percentage of intrathecal IgG, oligoclonal bands (OCB), virus-specific antibody index (MRZH reaction)). RESULTS Differences between groups were observed only in the CSF-IgG N-glycome. In MS, the presence of bisecting N-acetylglucosamine (Padj=2.63E-05) and monogalactosylation (Padj=1.49E-06) were more abundant and associated with positive OCBs. N-glycans monogalactosylated at the α6 arm FA2[6]G1 (r = 0.56) and FA2[6]BG1 (r = 0.45) correlated with percentage of intrathecal IgG, but not total CSF-IgG. This trait was also more abundant in MRZH positive people with MS who had higher MRI lesion load (P = 0.018) but unrelated to active lesions or EDSS. CONCLUSIONS More abundant monogalactosylation of intrathecally synthesized IgG is the most prominent trait in MS and is associated with higher MRI lesion load.
Collapse
Affiliation(s)
- Ana Turčić
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Barbara Radovani
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Željka Vogrinc
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia; Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Mario Habek
- Department of Neurology, University of Zagreb School of Medicine, Zagreb, Croatia; Referral Center for Autonomic Nervous System Disorders, Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Dunja Rogić
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia; Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Tereza Gabelić
- Department of Neurology, University of Zagreb School of Medicine, Zagreb, Croatia; Referral Center for Autonomic Nervous System Disorders, Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ljiljana Zaninović
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia; Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Ivan Gudelj
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia; Genos Glycoscience Research Laboratory, Zagreb, Croatia.
| |
Collapse
|
12
|
Zhang R, Guo L, Sha J, Chang S, Zhao J, Wang K, Wang J, Gu J, Liu J, Ren S. α2,3-Sialylation with Fucosylation Associated with More Severe Anti-MDA5 Positive Dermatomyositis Induced by Rapidly Progressive Interstitial Lung Disease. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:457-468. [PMID: 37881316 PMCID: PMC10593694 DOI: 10.1007/s43657-023-00096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 10/27/2023]
Abstract
Dermatomyositis (DM) is a heterogeneous autoimmune disease associated with numerous myositis specific antibodies (MSAs) in which DM with anti-melanoma differentiation-associated gene 5-positive (MDA5 + DM) is a unique subtype of DM with higher risk of developing varying degrees of Interstitial lung disease (ILD). Glycosylation is a complex posttranslational modification of proteins associated with many autoimmune diseases. However, the association of total plasma N-glycome (TPNG) and DM, especially MDA5 + DM, is still unknown. TPNG of 94 DM patients and 168 controls were analyzed by mass spectrometry with in-house reliable quantitative method called Bionic Glycome method. Logistic regression with age and sex adjusted was used to reveal the aberrant glycosylation of DM and the association of TPNG and MDA5 + DM with or without rapidly progressive ILD (RPILD). The elastic net model was used to evaluate performance of glycans in distinguishing RPLID from non-RPILD, and survival analysis was analyzed with N-glycoslyation score by Kaplan-Meier survival analysis. It was found that the plasma protein N-glycome in DM showed higher fucosylation and bisection, lower sialylation (α2,3- not α2,6-linked) and galactosylation than controls. In MDA5 + DM, more severe disease condition was associated with decreased sialylation (specifically α2,3-sialylation with fucosylation) while accompanying elevated H6N5S3 and H5N4FSx, decreased galactosylation and increased fucosylation and the complexity of N-glycans. Moreover, glycosylation traits have better discrimination ability to distinguish RPILD from non-RPILD with AUC 0.922 than clinical features and is MDA5-independent. Survival advantage accrued to MDA5 + DM with lower N-glycosylation score (p = 3e-04). Our study reveals the aberrant glycosylation of DM for the first time and indicated that glycosylation is associated with disease severity caused by ILD in MDA5 + DM, which might be considered as the potential biomarker for early diagnosis of RPILD and survival evaluation of MDA5 + DM. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00096-z.
Collapse
Affiliation(s)
- Rongrong Zhang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Li Guo
- Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, 200032 China
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 China
| | - Jichen Sha
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Shuwai Chang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Jiangfeng Zhao
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 China
| | - Kaiwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200032 China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200032 China
| | - Jianxin Gu
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Jing Liu
- Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, 200032 China
| | - Shifang Ren
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| |
Collapse
|
13
|
Lu X, Wang L, Wang M, Li Y, Zhao Q, Shi Y, Zhang Y, Wang Y, Wang W, Ji L, Hou H, Li D. Association between immunoglobulin G N-glycosylation and lupus nephritis in female patients with systemic lupus erythematosus: a case-control study. Front Immunol 2023; 14:1257906. [PMID: 37809087 PMCID: PMC10552529 DOI: 10.3389/fimmu.2023.1257906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Background Lupus nephritis (LN) is a crucial complication of systemic lupus erythematosus (SLE) and has important clinical implications in guiding treatment. N-glycosylation of immunoglobulin G (IgG) plays a key role in the development of SLE by affecting the balance of anti-inflammatory and proinflammatory responses. This study aimed to evaluate the performance of IgG N-glycosylation for diagnosing LN in a sample of female SLE patients. Methods This case-control study recruited 188 women with SLE, including 94 patients with LN and 94 age-matched patients without LN. The profiles of plasma IgG N-glycans were detected by hydrophilic interaction chromatography with ultra-performance liquid chromatography (HILIC-UPLC). A multivariate logistic regression model was used to explore the associations between IgG N-glycans and LN. A diagnostic model was developed using the significant glycans as well as demographic factors. The performance of IgG N-glycans in the diagnosis of LN was evaluated by receiver operating characteristic (ROC) curve analysis, and the area under the curve (AUC) and its 95% confidence interval (CI) were calculated. Results There were significant differences in 9 initial glycans (GP2, GP4, GP6, GP8, GP10, GP14, GP16, GP18 and GP23) between women with SLE with and without LN (P < 0.05). The levels of sialylated, galactosylated and fucosylated glycans were significantly lower in the LN patients than in the control group, while bisected N-acetylglucosamine (GlcNAc) glycans were increased in LN patients (P < 0.05). GP8, GP10, GP18, and anemia were included in our diagnostic model, which performed well in differentiating female SLE patients with LN from those without LN (AUC = 0.792, 95% CI: 0.727 to 0.858). Conclusion Our findings indicate that decreased sialylation, galactosylation, and core fucosylation and increased bisecting GlcNAc might play a role in the development of LN by upregulating the proinflammatory response of IgG. IgG N-glycans can serve as potential biomarkers to differentiate individuals with LN among SLE patients.
Collapse
Affiliation(s)
- Xinxia Lu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Liangao Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Meng Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Jinshan District Center for Disease Control and Prevention, Shanghai, China
| | - Yuejin Li
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Qinqin Zhao
- Department of Geriatric Cognitive Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Yanjun Shi
- Department of Rheumatology and Immunology, Liaocheng People’s Hospital, Liao’cheng, China
| | - Yujing Zhang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yingjie Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Long Ji
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Haifeng Hou
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Dong Li
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Clinical Research Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| |
Collapse
|
14
|
Lai Z, Wang Z, Yuan Z, Zhang J, Zhou J, Li D, Zhang D, Li N, Peng P, Zhou J, Li Z. Disease-Specific Haptoglobin N-Glycosylation in Inflammatory Disorders between Cancers and Benign Diseases of 3 Types of Female Internal Genital Organs. Clin Chim Acta 2023:117420. [PMID: 37285951 DOI: 10.1016/j.cca.2023.117420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND N-glycosylation of the haptoglobin is closely related to pathological states. This study aims to evaluate the association of glycosylation of disease-specific Hp (DSHp) β chain with different pathological states of the cervix, uterus, and ovary to explore differences in their inflammatory responses and to screen potential biomarkers to distinguish cancer from benign diseases. METHODS DSHp-β chains of 1956 patients with cancers and benign diseases located in the cervix, uterus, and ovary organs were separated from serum immunoinflammatory-related protein complexes (IIRPCs). The N-glycopeptides from DSHp-β chains were detected using mass spectrometry, followed by an analysis of machine learning algorithms. RESULTS 55 N-glycopeptides at N207/N211, 19 at N241, and 21 at N184 glycosylation sites of DSHp for each sample were identified. Fucosylation and sialylation of DSHp in cervix, uterus, and ovary cancer were significantly increased compared to their corresponding benign diseases (p < 0.001). The cervix diagnostic model, a combination of G2N3F, G4NFS, G7N2F2S5, GS-N&GS-N, G2N2&G4N3FS, G7N2F2S5, G2S2&G-N, and GN2F&G2F at N207/N211 sites, G3NFS2 and G3NFS at N241site, G9N2S, G6N3F6, G4N3F5S, G4N3F4S2, and G6N3F4S at N184 site), has shown a good diagnostic capability to distinguish cancer from benign diseases, with the area under curve (AUC) of 0.912. The uterus diagnostic model including G4NFS, G2S2&G2S2, G3N2S2, GG5N2F5, G2&G3NFS, and G5N2F3S3 at N207/N211 sites, and G2NF3S2 at N184 site, with an AUC of 0.731. The ovary diagnostic model including G2N3F, GF2S-N &G2F3S2, G2S&G2, and G2S&G3NS at N207/N211 sites; G2S and G3NFS at N241 site, G6N3F4S at N184 site, with an AUC of 0.747. CONCLUSIONS These findings provide insights into differences in organ-specific inflammatory responses of DSHp for different pathological states among the organs of the cervix, uterus, and ovary.
Collapse
Affiliation(s)
- Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhigang Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhonghao Yuan
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Jiyun Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Jinyu Zhou
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Dan Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Dan Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Na Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Peng Peng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, 1 Shuai Fu Yuan, Beijing, 100730, China.
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Beijing, 100871, China.
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China.
| |
Collapse
|
15
|
Pradeep P, Kang H, Lee B. Glycosylation and behavioral symptoms in neurological disorders. Transl Psychiatry 2023; 13:154. [PMID: 37156804 PMCID: PMC10167254 DOI: 10.1038/s41398-023-02446-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Glycosylation, the addition of glycans or carbohydrates to proteins, lipids, or other glycans, is a complex post-translational modification that plays a crucial role in cellular function. It is estimated that at least half of all mammalian proteins undergo glycosylation, underscoring its importance in the functioning of cells. This is reflected in the fact that a significant portion of the human genome, around 2%, is devoted to encoding enzymes involved in glycosylation. Changes in glycosylation have been linked to various neurological disorders, including Alzheimer's disease, Parkinson's disease, autism spectrum disorder, and schizophrenia. Despite its widespread occurrence, the role of glycosylation in the central nervous system remains largely unknown, particularly with regard to its impact on behavioral abnormalities in brain diseases. This review focuses on examining the role of three types of glycosylation: N-glycosylation, O-glycosylation, and O-GlcNAcylation, in the manifestation of behavioral and neurological symptoms in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Prajitha Pradeep
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
- IBS School, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Hyeyeon Kang
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Boyoung Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea.
- IBS School, University of Science and Technology (UST), Daejeon, 34113, South Korea.
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| |
Collapse
|
16
|
Oh MJ, Lee SH, Kim U, An HJ. In-depth investigation of altered glycosylation in human haptoglobin associated cancer by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:496-518. [PMID: 34037272 DOI: 10.1002/mas.21707] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 05/08/2023]
Abstract
Serum haptoglobin (Hp), a highly sialylated biomolecule with four N-glycosylation sites, is a positive acute-phase response glycoprotein that acts as an immunomodulator. Hp has gained considerable attention due to its potential as a signature molecule that exhibits aberrant glycosylation in inflammatory disorders and malignancies. Its glycosylation can be analyzed qualitatively and quantitatively by various methods using mass spectrometry. In this review, we have provided a brief overview of Hp structure and biological function and described mass spectrometry-based techniques for analyzing glycosylation ranging from macroheterogeneity to microheterogeneity of Hp in diseases and cancer. The sugars on haptoglobin can be a sweet bridge to link the potential of cancer-specific biomarkers to clinically relevant applications.
Collapse
Affiliation(s)
- Myung Jin Oh
- Asia-Pacific Glycomics Reference Site, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Sung Hyeon Lee
- Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, South Korea
| | - Unyoung Kim
- Division of Bioanalysis, Biocomplete Inc., Seoul, South Korea
| | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
17
|
Liu L, Li J, Yang Y, Hu C, Tian X. Altered glycosylation profiles of serum IgG in Takayasu arteritis. Eur J Med Res 2023; 28:69. [PMID: 36755310 PMCID: PMC9906894 DOI: 10.1186/s40001-023-01035-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Takayasu arteritis (TAK) is an autoimmune inflammatory disorder with an undefined etiology. This study aimed to characterize the glycosylation profiles of serum immunoglobulin G (IgG) in patients with TAK. METHODS Lectin microarrays containing 56 types of lectins were used to detect the glycan levels of serum IgG in 164 patients with TAK, 128 patients with atherosclerosis used as disease controls (DCs), and 100 healthy controls (HCs). Differentially altered glycosylation patterns between TAK and control groups as well as between TAK subgroups were identified and further validated by lectin blot. The classification performance of the TAK-specific glycosylation change was measured by receiver-operating characteristic (ROC) curve analysis. RESULTS Lectin microarray analysis revealed significantly increased N-Acetylgalactosamine (GalNAc) levels in the TAK group compared to the DC and HC groups (all p < 0.01). For TAK subgroups, significantly decreased mannosylation was observed in patients with active TAK compared to patients with inactive disease (p < 0.01). These differences were validated by lectin blot. In addition, GalNAc levels exhibited a considerable potential for discriminating patients with TAK from patients with atherosclerosis, with an area under the curve of 0.749 (p < 0.001), a sensitivity of 71.7%, and a specificity of 73.8%. CONCLUSIONS Serum IgG in patients with TAK displayed disease-specific glycosylation alterations. Aberrant GalNAc glycosylation showed substantial value as a diagnostic biomarker. The potential proinflammatory properties of the abnormal glycans may provide new insights into the role of humoral immunity in the pathogenesis of TAK.
Collapse
Affiliation(s)
- Lingyu Liu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jing Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yunjiao Yang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Chaojun Hu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| |
Collapse
|
18
|
Dojcsák D, Ilosvai ÁM, Vanyorek L, Gilányi I, Oláh C, Horváth L, Váradi C. NH 2-Functionalized Magnetic Nanoparticles for the N-Glycomic Analysis of Patients with Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23169095. [PMID: 36012360 PMCID: PMC9409089 DOI: 10.3390/ijms23169095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Glycosylation is vital for well-functioning glycoproteins and is reportedly altered in chronic inflammatory disorders, including multiple sclerosis (MS). High-throughput quantitative measurement of protein glycosylation is challenging, as glycans lack fluorophore groups and require fluorescent labeling. The attachment of fluorescent tags to each glycan moiety necessitates sample clean-up for reliable quantitation. The use of magnetic particles in glycan sample preparation is reportedly an easy-to-use solution to accomplish large-scale biomarker discovery studies. In this study, NH2-funtionalized magnetic nanoparticles were synthetized, characterized and applied for the glycosylation analysis of serum samples from patients diagnosed with multiple sclerosis and corresponding healthy controls. Serum samples were PNGase F digested and labeled by procainamide via reductive amination, followed by magnetic nanoparticle-based purification. The prepared samples were analyzed by hydrophilic interaction liquid chromatography, allowing for the relative quantitation of the individual glycan species. Significant glycosylation alterations were detected between MS patients and healthy controls, especially when analyzing the different gender groups.
Collapse
Affiliation(s)
- Dalma Dojcsák
- Advanced Materials and Intelligent Technologies Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc, Hungary
| | - Ágnes Mária Ilosvai
- Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, 3515 Miskolc, Hungary
| | - László Vanyorek
- Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, 3515 Miskolc, Hungary
| | - Ibolya Gilányi
- Borsod-Abaúj-Zemplén County Center Hospital and University Teaching Hospital, Miskolc, 3526 Miskolc, Hungary
| | - Csaba Oláh
- Borsod-Abaúj-Zemplén County Center Hospital and University Teaching Hospital, Miskolc, 3526 Miskolc, Hungary
| | - László Horváth
- Borsod-Abaúj-Zemplén County Center Hospital and University Teaching Hospital, Miskolc, 3526 Miskolc, Hungary
| | - Csaba Váradi
- Advanced Materials and Intelligent Technologies Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc, Hungary
- Correspondence: ; Tel.: +36-308-947-730
| |
Collapse
|
19
|
Flevaris K, Kontoravdi C. Immunoglobulin G N-glycan Biomarkers for Autoimmune Diseases: Current State and a Glycoinformatics Perspective. Int J Mol Sci 2022; 23:5180. [PMID: 35563570 PMCID: PMC9100869 DOI: 10.3390/ijms23095180] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
The effective treatment of autoimmune disorders can greatly benefit from disease-specific biomarkers that are functionally involved in immune system regulation and can be collected through minimally invasive procedures. In this regard, human serum IgG N-glycans are promising for uncovering disease predisposition and monitoring progression, and for the identification of specific molecular targets for advanced therapies. In particular, the IgG N-glycome in diseased tissues is considered to be disease-dependent; thus, specific glycan structures may be involved in the pathophysiology of autoimmune diseases. This study provides a critical overview of the literature on human IgG N-glycomics, with a focus on the identification of disease-specific glycan alterations. In order to expedite the establishment of clinically-relevant N-glycan biomarkers, the employment of advanced computational tools for the interpretation of clinical data and their relationship with the underlying molecular mechanisms may be critical. Glycoinformatics tools, including artificial intelligence and systems glycobiology approaches, are reviewed for their potential to provide insight into patient stratification and disease etiology. Challenges in the integration of such glycoinformatics approaches in N-glycan biomarker research are critically discussed.
Collapse
Affiliation(s)
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
20
|
Proteomics in Multiple Sclerosis: The Perspective of the Clinician. Int J Mol Sci 2022; 23:ijms23095162. [PMID: 35563559 PMCID: PMC9100097 DOI: 10.3390/ijms23095162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is the inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS) that affects approximately 2.8 million people worldwide. In the last decade, a new era was heralded in by a new phenotypic classification, a new diagnostic protocol and the first ever therapeutic guideline, making personalized medicine the aim of MS management. However, despite this great evolution, there are still many aspects of the disease that are unknown and need to be further researched. A hallmark of these research are molecular biomarkers that could help in the diagnosis, differential diagnosis, therapy and prognosis of the disease. Proteomics, a rapidly evolving discipline of molecular biology may fulfill this dire need for the discovery of molecular biomarkers. In this review, we aimed to give a comprehensive summary on the utility of proteomics in the field of MS research. We reviewed the published results of the method in case of the pathogenesis of the disease and for biomarkers of diagnosis, differential diagnosis, conversion of disease courses, disease activity, progression and immunological therapy. We found proteomics to be a highly effective emerging tool that has been providing important findings in the research of MS.
Collapse
|
21
|
Bućan I, Škunca Herman J, Jerončić Tomić I, Gornik O, Vatavuk Z, Bućan K, Lauc G, Polašek O. N-Glycosylation Patterns across the Age-Related Macular Degeneration Spectrum. Molecules 2022; 27:molecules27061774. [PMID: 35335137 PMCID: PMC8949900 DOI: 10.3390/molecules27061774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
The pathogenesis of age-related macular degeneration (AMD) remains elusive, despite numerous research studies. Therefore, we aimed to investigate the changes of plasma and IgG-specific N-glycosylation across the disease severity spectrum. We examined 2835 subjects from the 10.001 Dalmatians project, originating from the isolated Croatian islands of Vis and Korčula. All subjects were classified into four groups, namely (i) bilateral AMD, (ii) unilateral AMD, (iii) early-onset drusen, and (iv) controls. We analysed plasma and IgG N-glycans measured by HPLC and their association with retinal fundus photographs. There were 106 (3.7%) detected cases of AMD; 66 of them were bilateral. In addition, 45 (0.9%) subjects were recorded as having early-onset retinal drusen. We detected several interesting differences across the analysed groups, suggesting that N-glycans can be used as a biomarker for AMD. Multivariate analysis suggested a significant decrease in the immunomodulatory bi-antennary glycan structures in unilateral AMD (adjusted odds ratio 0.43 (95% confidence interval 0.22–0.79)). We also detected a substantial increase in the pro-inflammatory tetra-antennary plasma glycans in bilateral AMD (7.90 (2.94–20.95)). Notably, some of these associations were not identified in the aggregated analysis, where all three disease stages were collapsed into a single category, suggesting the need for better-refined phenotypes and the use of disease severity stages in the analysis of more complex diseases. Age-related macular degeneration progression is characterised by the complex interplay of various mechanisms, some of which can be detected by measuring plasma and IgG N-glycans. As opposed to a simple case-control study, more advanced and refined study designs are needed to understand the pathogenesis of complex diseases.
Collapse
Affiliation(s)
- Ivona Bućan
- Clinical Hospital Centre Split, 21000 Split, Croatia; (I.B.); (K.B.)
| | - Jelena Škunca Herman
- Clinical Hospital Centre Sisters of Mercy, 10000 Zagreb, Croatia; (J.Š.H.); (Z.V.)
| | - Iris Jerončić Tomić
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia;
| | - Olga Gornik
- Department of Ophthalmology, University of Split School of Medicine, 21000 Split, Croatia;
- Genos Ltd., 10000 Zagreb, Croatia;
| | - Zoran Vatavuk
- Clinical Hospital Centre Sisters of Mercy, 10000 Zagreb, Croatia; (J.Š.H.); (Z.V.)
| | - Kajo Bućan
- Clinical Hospital Centre Split, 21000 Split, Croatia; (I.B.); (K.B.)
- Department of Ophthalmology, University of Split School of Medicine, 21000 Split, Croatia;
| | - Gordan Lauc
- Genos Ltd., 10000 Zagreb, Croatia;
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Ozren Polašek
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia;
- Algebra LAB, Algebra University College, Ilica 242, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-91-5163443
| |
Collapse
|
22
|
Cvetko A, Tijardović M, Bilandžija-Kuš I, Gornik O. Comparison of self-sampling blood collection for N-glycosylation analysis. BMC Res Notes 2022; 15:61. [PMID: 35172879 PMCID: PMC8849020 DOI: 10.1186/s13104-022-05958-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 02/07/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Self-sampling of capillary blood provides easier sample collection, handling, and shipping compared to more invasive blood sampling via venepuncture. Recently, other means of capillary blood collection were introduced to the market, such as Neoteryx sticks and Noviplex cards. We tested the comparability of these two self-sampling methods, alongside dried blood spots (DBS), with plasma acquired from venepunctured blood in N-glycoprofiling of total proteins. We have also tested the intra-day repeatability of the three mentioned self-sampling methods. Capillary blood collection with Neoteryx, Noviplex and DBS was done following the manufacturers’ instructions and N-glycoprofiling of released, fluorescently labelled N-glycans was performed with ultra-performance liquid chromatography. Results Comparability with plasma was assessed by calculating the relative deviance, which was 0.674 for DBS, 0.092 for Neoteryx sticks, and 0.069 for Noviplex cards. In repeatability testing, similar results were obtained, with Noviplex cards and Neoteryx sticks performing substantially better than DBS (CVs = 4.831% and 7.098%, compared to 14.305%, respectively). Our preliminary study on the use of Neoteryx and Noviplex self-sampling devices in glycoanalysis demonstrates their satisfactory performance in both the comparability and repeatability testing, however, they should be further tested in larger collaborations and cohorts. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-05958-9.
Collapse
Affiliation(s)
- Ana Cvetko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia
| | - Marko Tijardović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia
| | | | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia.
| |
Collapse
|
23
|
Wang W, Xu X, Huang C, Gao C. N-glycan profiling alterations of serum and immunoglobulin G in immune thrombocytopenia. J Clin Lab Anal 2021; 36:e24201. [PMID: 34957618 PMCID: PMC8842136 DOI: 10.1002/jcla.24201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
Background The glycosylation alterations of serum and IgG are involved in a variety of autoimmune and inflammatory diseases and have shown great potential in biomarker field. The diagnosis of immune thrombocytopenia (ITP) is exclusive. Our study aimed to discover the potential glyco‐biomarkers for auxiliary diagnosis of ITP. Methods The serum samples were obtained from 61 ITP patients and 35 healthy controls, and IgG samples were purified from 34 out of 61 ITP patients and 35 healthy controls. DNA sequencer‐assisted fluorophore‐assisted carbohydrate electrophoresis (DSA‐FACE) was used to analyze serum and IgG N‐glycan profiling. Results 6 of 12 serum N‐glycan peaks, 6 of 7 IgG N‐glycan peaks, serum fucosylation, and IgG galactosylation were significantly different between ITP patients and healthy controls (p < 0.05). IgG peak 7 showed good diagnostic efficacy for discriminating ITP patients from healthy individuals (AUC 0.967). ITP patients with severe thrombocytopenia had a significantly lower serum fucosylation than ITP patients with mild and moderate thrombocytopenia (p < 0.05). Serum fucosylation and serum peak 5 were correlated with platelet counts in ITP patients with severe thrombocytopenia, and the absolute values of correlation coefficient were both over 0.5. Conclusions The specific N‐glycan patterns of serum and IgG were observed in ITP patients. IgG peak 7 was a potential biomarker for auxiliary diagnosis of ITP.
Collapse
Affiliation(s)
- Wei Wang
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuewen Xu
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chenjun Huang
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chunfang Gao
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
24
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
25
|
Mortimer NT, Fischer ML, Waring AL, Kr P, Kacsoh BZ, Brantley SE, Keebaugh ES, Hill J, Lark C, Martin J, Bains P, Lee J, Vrailas-Mortimer AD, Schlenke TA. Extracellular matrix protein N-glycosylation mediates immune self-tolerance in Drosophila melanogaster. Proc Natl Acad Sci U S A 2021; 118:e2017460118. [PMID: 34544850 PMCID: PMC8488588 DOI: 10.1073/pnas.2017460118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
In order to respond to infection, hosts must distinguish pathogens from their own tissues. This allows for the precise targeting of immune responses against pathogens and also ensures self-tolerance, the ability of the host to protect self tissues from immune damage. One way to maintain self-tolerance is to evolve a self signal and suppress any immune response directed at tissues that carry this signal. Here, we characterize the Drosophila tuSz1 mutant strain, which mounts an aberrant immune response against its own fat body. We demonstrate that this autoimmunity is the result of two mutations: 1) a mutation in the GCS1 gene that disrupts N-glycosylation of extracellular matrix proteins covering the fat body, and 2) a mutation in the Drosophila Janus Kinase ortholog that causes precocious activation of hemocytes. Our data indicate that N-glycans attached to extracellular matrix proteins serve as a self signal and that activated hemocytes attack tissues lacking this signal. The simplicity of this invertebrate self-recognition system and the ubiquity of its constituent parts suggests it may have functional homologs across animals.
Collapse
Affiliation(s)
- Nathan T Mortimer
- School of Biological Sciences, Illinois State University, Normal, IL 61790;
| | - Mary L Fischer
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Ashley L Waring
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Pooja Kr
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Balint Z Kacsoh
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Susanna E Brantley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Joshua Hill
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Chris Lark
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Julia Martin
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Pravleen Bains
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Jonathan Lee
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | | | - Todd A Schlenke
- Department of Entomology, University of Arizona, Tucson, AZ 85719
| |
Collapse
|
26
|
Serum N-Glycomics Stratifies Bacteremic Patients Infected with Different Pathogens. J Clin Med 2021; 10:jcm10030516. [PMID: 33535571 PMCID: PMC7867038 DOI: 10.3390/jcm10030516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/08/2023] Open
Abstract
Bacteremia—i.e., the presence of pathogens in the blood stream—is associated with long-term morbidity and is a potential precursor condition to life-threatening sepsis. Timely detection of bacteremia is therefore critical to reduce patient mortality, but existing methods lack precision, speed, and sensitivity to effectively stratify bacteremic patients. Herein, we tested the potential of quantitative serum N-glycomics performed using porous graphitized carbon liquid chromatography tandem mass spectrometry to stratify bacteremic patients infected with Escherichia coli (n = 11), Staphylococcus aureus (n = 11), Pseudomonas aeruginosa (n = 5), and Streptococcus viridans (n = 5) from healthy donors (n = 39). In total, 62 N-glycan isomers spanning 41 glycan compositions primarily comprising complex-type core fucosylated, bisecting N-acetylglucosamine (GlcNAc), and α2,3-/α2,6-sialylated structures were profiled across all samples using label-free quantitation. Excitingly, unsupervised hierarchical clustering and principal component analysis of the serum N-glycome data accurately separated the patient groups. P. aeruginosa-infected patients displayed prominent N-glycome aberrations involving elevated levels of fucosylation and bisecting GlcNAcylation and reduced sialylation relative to other bacteremic patients. Notably, receiver operating characteristic analyses demonstrated that a single N-glycan isomer could effectively stratify each of the four bacteremic patient groups from the healthy donors (area under the curve 0.93–1.00). Thus, the serum N-glycome represents a new hitherto unexplored class of potential diagnostic markers for bloodstream infections.
Collapse
|
27
|
Abstract
Changes in immunoglobulin G (IgG) glycosylation pattern have been observed in a vast array of auto- and alloimmune, infectious, cardiometabolic, malignant, and other diseases. This chapter contains an updated catalog of over 140 studies within which IgG glycosylation analysis was performed in a disease setting. Since the composition of IgG glycans is known to modulate its effector functions, it is suggested that a changed IgG glycosylation pattern in patients might be involved in disease development and progression, representing a predisposition and/or a functional effector in disease pathology. In contrast to the glycopattern of bulk serum IgG, which likely relates to the systemic inflammatory background, the glycosylation profile of antigen-specific IgG probably plays a direct role in disease pathology in several infectious and allo- and autoimmune antibody-dependent diseases. Depending on the specifics of any given disease, IgG glycosylation read-out might therefore in the future be developed into a useful clinical biomarker or a supplementary to currently used biomarkers.
Collapse
Affiliation(s)
- Marija Pezer
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia.
| |
Collapse
|
28
|
Ząbczyńska M, Link-Lenczowski P, Pocheć E. Glycosylation in Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:205-218. [PMID: 34495537 DOI: 10.1007/978-3-030-70115-4_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Autoimmune diseases are accompanied by changes in protein glycosylation, in both the immune system and target tissues. The best-studied alteration in autoimmunity is agalactosylation of immunoglobulin G (IgG), characterized primarily in rheumatoid arthritis (RA), and then detected also in systemic lupus erythematosus (SLE), inflammatory bowel disease (IBD), and multiple sclerosis (MS). The rebuilding of IgG N-glycans in RA correlates with the relapses and remissions of the disease, is associated with physiological states such as pregnancy but also depends on applied anti-inflammatory therapy. In turn, a decreased core fucosylation of the whole pool of IgG N-glycans is a serum glycomarker in autoimmune thyroid diseases (AITD) encompassing Hashimoto's thyroiditis (HT) and Grave's disease (GD). However, fucosylation of anti-thyroglobulin IgG (an immunological marker of HT) was elevated in HT serum. Core fucosylation of IgG oligosaccharides was also lowered in MS and SLE. In AITD and IBD, chronic inflammation T lymphocytes showed the reduced expression of MGAT5 gene encoding β1,6-N-acetylglucosaminyltransferase V (GnT-V) responsible for β1,6-branching of N-glycans, which is important for T cell receptor activation. Structural changes of glycans have a profound effect on the pro-inflammatory activity of immune cells and serum immune proteins, including IgG in autoimmunity.
Collapse
Affiliation(s)
- Marta Ząbczyńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Paweł Link-Lenczowski
- Department of Medical Physiology, Jagiellonian University Medical College, Kraków, Poland
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|