1
|
Xie B, Xiao Z, Ling J, Peng Y, Chen T. Exploring the application of metal-based photothermal agents in photothermal therapy combined with immune checkpoint therapy. Front Pharmacol 2025; 16:1553158. [PMID: 40017598 PMCID: PMC11865196 DOI: 10.3389/fphar.2025.1553158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/23/2025] [Indexed: 03/01/2025] Open
Abstract
Photothermal therapy (PTT), a popular local treatment that uses heat to ablate tumors, has limited efficacy in addressing metastatic and deeply located tumors when used alone. Integrating PTT with immunotherapy not only yields a synergistic effect but also promotes cancer regression and confers the benefit of immune memory, which can surmount the challenges faced by PTT when used in isolation. Metal-based nanomaterials, renowned for their superior photothermal conversion efficiency and distinctive photochemical properties, have been extensively researched and applied in the field of PTT. This review summarizes the latest developments in combination therapies, with a specific focus on the combination of PTT and immune checkpoint therapy (ICT) for cancer treatment, including a comprehensive overview of the recent advancements in noble metal-based and 2D transition metal chalcogenides (TMDCs)-based photothermal agents, and their anticancer effect when combining PTT with immune checkpoint blockades (anti-CTLA-4 and anti-PD-L1) therapy. The goal of this review is to present an overview of the application, current challenges and future prospects of metal-based photothermal agents in PTT combined with ICT for cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Yichao Peng
- Department of Pharmacy and General Surgery of Puning People’s Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, China
| | - Tianfeng Chen
- Department of Pharmacy and General Surgery of Puning People’s Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, China
| |
Collapse
|
2
|
Chong YY, Thiagarajan S, Tan QX, Lim HJ, Tan JWS, Hendrikson J, Ng G, Liu Y, Chong CYL, Guo W, Ngo NT, Leow WQ, Loh T, Sam XX, Lim TKH, Cai M, Seo CJ, Wong JSM, Soo KC, Chia CS, Shannon NB, Ong CAJ. The immunomodulatory role of paracrine signalling factor VSIG4 in peritoneal metastases. Sci Rep 2024; 14:17522. [PMID: 39080370 PMCID: PMC11289330 DOI: 10.1038/s41598-024-64449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/10/2024] [Indexed: 08/02/2024] Open
Abstract
Peritoneal metastasis (PM), the regional progression of intra-abdominal malignancies, is a common sequelae of colorectal cancer (CRC). Immunotherapy is slated to be effective in generating long-lasting anti-tumour response as it utilizes the specificity and memory of the immune system. In the tumour microenvironment, tumour associated macrophages (TAMs) are posited to create an anti-inflammatory pro-tumorigenic environment. In this paper, we aimed to identify immunomodulatory factors associated with colorectal PM (CPM). A publicly available colorectal single cell database (GSE183916) was analysed to identify possible immunological markers that are associated with the activation of macrophages in cancers. Immunohistochemical analysis for V-set and immunoglobin containing domain 4 (VSIG4) expression was performed on tumour microarrays (TMAs) of tumours of colorectal origin (n = 211). Expression of VSIG4 in cell-free ascites obtained from CPM patients (n = 39) was determined using enzyme-linked immunosorbent assay (ELISA). CD163-positive TAMs cluster expression was extracted from a publicly available single cell database and evaluated for the top 100 genes. From these macrophage-expressed genes, VSIG4, a membrane protein produced by the M2 macrophages, mediates the up-regulation of anti-inflammatory and down-regulation of pro-inflammatory macrophages, contributing to an overall anti-inflammatory state. CRC TMA IHC staining showed that low expression of VSIG4 in stromal tissues of primary CRC are associated with poor prognosis (p = 0.0226). CPM ascites also contained varying concentrations of VSIG4, which points to a possible role of VSIG4 in the ascites. The contribution of VSIG4 to CPM development can be further evaluated for its potential as an immunotherapeutic agent.
Collapse
Affiliation(s)
- Yik Yan Chong
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Singapore General Hospital, Singapore, Singapore
| | - Sasinthiran Thiagarajan
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Singapore General Hospital, Singapore, Singapore
| | - Qiu Xuan Tan
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Singapore General Hospital, Singapore, Singapore
| | - Hui Jun Lim
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Singapore General Hospital, Singapore, Singapore
| | - Joey Wee-Shan Tan
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Singapore General Hospital, Singapore, Singapore
| | - Josephine Hendrikson
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Singapore General Hospital, Singapore, Singapore
| | - Gillian Ng
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Singapore General Hospital, Singapore, Singapore
| | - Ying Liu
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Singapore General Hospital, Singapore, Singapore
| | - Clara Yieh Lin Chong
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Singapore General Hospital, Singapore, Singapore
| | - Wanyu Guo
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Singapore General Hospital, Singapore, Singapore
| | - Nye Thane Ngo
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Wei-Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Tracy Loh
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Xin Xiu Sam
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Mingzhe Cai
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Singapore General Hospital, Singapore, Singapore
| | - Chin Jin Seo
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Singapore General Hospital, Singapore, Singapore
| | - Jolene Si Min Wong
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Singapore General Hospital, Singapore, Singapore
| | - Khee Chee Soo
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Singapore General Hospital, Singapore, Singapore
| | - Claramae Shulyn Chia
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), National Cancer Centre Singapore, Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Nicholas Brian Shannon
- Department of Head and Neck Surgery, Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Chin-Ann Johnny Ong
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), National Cancer Centre Singapore, Singapore, Singapore.
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Singapore General Hospital, Singapore, Singapore.
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, Singapore.
| |
Collapse
|
3
|
Kim J, Maharjan R, Park J. Current Trends and Innovative Approaches in Cancer Immunotherapy. AAPS PharmSciTech 2024; 25:168. [PMID: 39044047 PMCID: PMC11573471 DOI: 10.1208/s12249-024-02883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Immunotherapy is one of the most promising therapeutic approaches in the field of cancer treatment. As a tumor progresses, tumor cells employ an array of immune-regulatory mechanisms to suppress immune responses within the tumor microenvironment. Using our understanding of these mechanisms, cancer immunotherapy has been developed to enhance the immune system's effectiveness in treating cancer. Numerous cancer immunotherapies are currently in clinical use, yet many others are either in different stages of development or undergoing clinical studies. In this paper, we briefly discuss the features and current status of cancer immunotherapies. This includes the application of monoclonal antibodies, immune checkpoint inhibitors, adoptive cell therapy, cytokine therapy, cancer vaccines, and gene therapy, all of which have gained significant recognition in clinical practice. Additionally, we discuss limitations that may hinder successful clinical utilization and promising strategies, such as combining immunotherapy with nanotechnology.
Collapse
Affiliation(s)
- Jaechang Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Ruby Maharjan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Jonghyuck Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA.
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
Pei B, Peng S, Huang C, Zhou F. Bifidobacterium modulation of tumor immunotherapy and its mechanism. Cancer Immunol Immunother 2024; 73:94. [PMID: 38564002 PMCID: PMC10987355 DOI: 10.1007/s00262-024-03665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
The advent of tumor immunotherapy in patients has revolutionized the treatment of tumors and significantly improved survival rates for a wide range of tumors. However, the full therapeutic potential of immune checkpoint inhibitors (ICIs) has yet to be realized, as not all patients have a lasting survival benefit from them, and a significant proportion of patients show primary or acquired resistance to immunotherapy. Bifidobacterium is one of the most common probiotics, and its antitumor and immunomodulatory effects have been demonstrated in recent years, but its immunomodulatory effects in tumors, especially on ICIs and in combination, have not been extensively studied in clinical practice, and its effects on the immune system and the mechanisms that modulate immunotherapy are largely unknown. Therefore, this review will focus on the immunomodulatory effects of Bifidobacteria in malignancies and the possible mechanisms of action of Bifidobacteria on immunotherapy in the hope of providing a basis for further research and better application of Bifidobacteria in clinical practice.
Collapse
Affiliation(s)
- Bo Pei
- Hubei Key Laboratory of Tumor Biological Behaviors, Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Wuhan, China
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, China
| | - Shixuan Peng
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, China
| | - Chuying Huang
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Provincial Key Laboratory of Selenium Resources and Bioapplications, Enshi, China
| | - Fuxiang Zhou
- Hubei Key Laboratory of Tumor Biological Behaviors, Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Wuhan, China.
| |
Collapse
|
5
|
Yglesias-Rivera A, Sánchez-Rodríguez H, Soto-Febles C, Monzote L. Heteroctenus junceus Scorpion Venom Modulates the Concentration of Pro-Inflammatory Cytokines in F3II Tumor Cells. Life (Basel) 2023; 13:2287. [PMID: 38137888 PMCID: PMC10871110 DOI: 10.3390/life13122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The ability of Heteroctenus junceus scorpion venom to modulate the concentration of cytokines related to its antitumoral effect is unknown. F3II cells were treated with ¼ IC50, ½ IC50 and the IC50 of H. junceus scorpion venom. Tumor growth kinetics in F3II-bearing mice were evaluated after 24 days of oral administration of venom doses. The effect of tumor lysates on F3II cell viability was evaluated by MTT assay, while cytokines present in each sample were determined by ELISA. In supernatant, H. junceus scorpion venom decreased the concentration of IL-6 (p < 0.001), IFN-γ (p < 0.001), IL-1β (p < 0.01); meanwhile IL-12 (p < 0.001) and TNF-α (p < 0.001) levels increased significantly, according to the concentration and the time of incubation. Heteroctenus junceus scorpion venom effectively inhibits in vivo tumor progression. In the sera, a significant decrease was observed in TNF-α levels (p < 0.05). In tumor lysates, IL-6 decreased significantly in the groups treated with 12.5 mg/kg (p < 0.001) and 25 mg/kg (p < 0.05). Heteroctenus junceus scorpion venom is capable of modulating other proinflammatory and protumoral cytokines involved in the inflammation associated with cancer.
Collapse
Affiliation(s)
- Arianna Yglesias-Rivera
- Research Department, Laboratories of Biopharmaceutical and Chemistry Productions (LABIOFAM), Ave. Independencia Km 16 1/2, Santiago de las Vegas, Boyeros, La Habana 10800, Cuba
| | - Hermis Sánchez-Rodríguez
- Microbiology Department, Institute of Tropical Medicine “Pedro Kouri”, Autopista Novia del Mediodía Km 6 1/2, La Lisa, La Habana 17100, Cuba;
| | - Carmen Soto-Febles
- Center for Protein Studies, Biology Faculty, University of Havana, Calle 25 Entre J e I, # 455, Plaza de la Revolución, La Habana 10400, Cuba;
| | - Lianet Monzote
- Microbiology Department, Institute of Tropical Medicine “Pedro Kouri”, Autopista Novia del Mediodía Km 6 1/2, La Lisa, La Habana 17100, Cuba;
| |
Collapse
|
6
|
Zhang J, Li M, Zhang L, Kuang T, Yu J, Wang W. Prognostic value of controlling nutritional status on clinical and survival outcomes in cancer patients treated with immunotherapy. Sci Rep 2023; 13:17715. [PMID: 37853186 PMCID: PMC10584918 DOI: 10.1038/s41598-023-45096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer is a leading cause of death globally. Immunotherapy has shown promise in treating various types of cancer, but its effectiveness varies among patients. The Controlling Nutritional Status (CONUT) score has been linked to the prognosis of different cancers. However, its predictive value for immunotherapy outcomes is not well understood. Our research represents the pioneering meta-study to examine the prognostic value of the CONUT score on cancer patients treated with an immune checkpoint inhibitor (ICI). A comprehensive literature search was conducted using various databases including PubMed, the Cochrane Library, EMBASE, and Google Scholar. The study was conducted until July 28, 2023. This analysis encompassed a comprehensive evaluation of various clinical outcomes, namely overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and disease control rate (DCR). 663 patients from 8 studies were included in this study. It showed that cancer patients with high CONUT score had poorer OS (HR: 1.94, 95% CI, 1.52-2.47, p < 0.001) and PFS (HR: 2.22, 95% CI, 1.48-3.31, p < 0.001), as well as worse ORR (OR: 0.46, 95% CI, 0.25-0.85, p = 0.013) and DCR (HR: 0.29, 95% CI, 0.14-0.59, p = 0.001). The CONUT score can predict the prognosis of tumor patients treated with ICIs.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Man Li
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Lilong Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Tianrui Kuang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jia Yu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.
| |
Collapse
|
7
|
Gorodilova AV, Kitaeva KV, Filin IY, Mayasin YP, Kharisova CB, Issa SS, Solovyeva VV, Rizvanov AA. The Potential of Dendritic Cell Subsets in the Development of Personalized Immunotherapy for Cancer Treatment. Curr Issues Mol Biol 2023; 45:8053-8070. [PMID: 37886952 PMCID: PMC10605421 DOI: 10.3390/cimb45100509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Since the discovery of dendritic cells (DCs) in 1973 by Ralph Steinman, a tremendous amount of knowledge regarding these innate immunity cells has been accumulating. Their role in regulating both innate and adaptive immune processes is gradually being uncovered. DCs are proficient antigen-presenting cells capable of activating naive T-lymphocytes to initiate and generate effective anti-tumor responses. Although DC-based immunotherapy has not yielded significant results, the substantial number of ongoing clinical trials underscores the relevance of DC vaccines, particularly as adjunctive therapy or in combination with other treatment options. This review presents an overview of current knowledge regarding human DCs, their classification, and the functions of distinct DC populations. The stepwise process of developing therapeutic DC vaccines to treat oncological diseases is discussed, along with speculation on the potential of combined therapy approaches and the role of DC vaccines in modern immunotherapy.
Collapse
Affiliation(s)
- Anna Valerevna Gorodilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| | - Kristina Viktorovna Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| | - Ivan Yurevich Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| | - Yuri Pavlovich Mayasin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| | - Chulpan Bulatovna Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| | - Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Valeriya Vladimirovna Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| | - Albert Anatolyevich Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| |
Collapse
|
8
|
Mohammadzadeh V, Rahiman N, Cabral H, Quader S, Zirak MR, Taghavizadeh Yazdi ME, Jaafari MR, Alavizadeh SH. Poly-γ-glutamic acid nanoparticles as adjuvant and antigen carrier system for cancer vaccination. J Control Release 2023; 362:278-296. [PMID: 37640110 DOI: 10.1016/j.jconrel.2023.08.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Vaccination is an innovative strategy for cancer treatment by leveraging various components of the patients' immunity to boost an anti-tumor immune response. Rationally designed nanoparticles are well suited to maximize cancer vaccination by the inclusion of immune stimulatory adjuvants. Also, nanoparticles might control the pharmacokinetics and destination of the immune potentiating compounds. Poly-γ-glutamic acid (γ-PGA) based nanoparticles (NPs), which have a natural origin, can be easily taken up by dendritic cells (DCs), which leads to the secretion of cytokines which ameliorates the stimulation capacity of T cells. The intrinsic adjuvant properties and antigen carrier properties of γ-PGA NPs have been the focus of recent investigations as they can modulate the tumor microenvironment, can contribute to systemic anti-tumor immunity and subsequently inhibit tumor growth. This review provides a comprehensive overview on the potential of γ-PGA NPs as antigen carriers and/or adjuvants for anti-cancer vaccination.
Collapse
Affiliation(s)
- Vahideh Mohammadzadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sabina Quader
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan
| | - Mohammad Reza Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Namiot ED, Smirnovová D, Sokolov AV, Chubarev VN, Tarasov VV, Schiöth HB. The international clinical trials registry platform (ICTRP): data integrity and the trends in clinical trials, diseases, and drugs. Front Pharmacol 2023; 14:1228148. [PMID: 37790806 PMCID: PMC10544909 DOI: 10.3389/fphar.2023.1228148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction: Clinical trials are the gold standard for testing new therapies. Databases like ClinicalTrials.gov provide access to trial information, mainly covering the US and Europe. In 2006, WHO introduced the global ICTRP, aggregating data from ClinicalTrials.gov and 17 other national registers, making it the largest clinical trial platform by June 2019. This study conducts a comprehensive global analysis of the ICTRP database and provides framework for large-scale data analysis, data preparation, curation, and filtering. Materials and methods: The trends in 689,793 records from the ICTRP database (covering trials registered from 1990 to 2020) were analyzed. Records were adjusted for duplicates and mapping of agents to drug classes was performed. Several databases, including DrugBank, MESH, and the NIH Drug Information Portal were used to investigate trends in agent classes. Results: Our novel approach unveiled that 0.5% of the trials we identified were hidden duplicates, primarily originating from the EUCTR database, which accounted for 82.9% of these duplicates. However, the overall number of hidden duplicates within the ICTRP seems to be decreasing. In total, 689 793 trials (478 345 interventional) were registered in the ICTRP between 1990 and 2020, surpassing the count of trials in ClinicalTrials.gov (362 500 trials by the end of 2020). We identified 4 865 unique agents in trials with DrugBank, whereas 2 633 agents were identified with NIH Drug Information Portal data. After the ClinicalTrials.gov, EUCTR had the most trials in the ICTRP, followed by CTRI, IRCT, CHiCTR, and ISRCTN. CHiCTR displayed a significant surge in trial registration around 2015, while CTRI experienced rapid growth starting in 2016. Conclusion: This study highlights both the strengths and weaknesses of using the ICTRP as a data source for analyzing trends in clinical trials, and emphasizes the value of utilizing multiple registries for a comprehensive analysis.
Collapse
Affiliation(s)
- Eugenia D. Namiot
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Diana Smirnovová
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Aleksandr V. Sokolov
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Vadim V. Tarasov
- Advanced Molecular Technology, Limited Liable Company (LLC), Moscow, Russia
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Schaft N, Dörrie J, Schuler G, Schuler-Thurner B, Sallam H, Klein S, Eisenberg G, Frankenburg S, Lotem M, Khatib A. The future of affordable cancer immunotherapy. Front Immunol 2023; 14:1248867. [PMID: 37736099 PMCID: PMC10509759 DOI: 10.3389/fimmu.2023.1248867] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023] Open
Abstract
The treatment of cancer was revolutionized within the last two decades by utilizing the mechanism of the immune system against malignant tissue in so-called cancer immunotherapy. Two main developments boosted cancer immunotherapy: 1) the use of checkpoint inhibitors, which are characterized by a relatively high response rate mainly in solid tumors; however, at the cost of serious side effects, and 2) the use of chimeric antigen receptor (CAR)-T cells, which were shown to be very efficient in the treatment of hematologic malignancies, but failed to show high clinical effectiveness in solid tumors until now. In addition, active immunization against individual tumors is emerging, and the first products have reached clinical approval. These new treatment options are very cost-intensive and are not financially compensated by health insurance in many countries. Hence, strategies must be developed to make cancer immunotherapy affordable and to improve the cost-benefit ratio. In this review, we discuss the following strategies: 1) to leverage the antigenicity of "cold tumors" with affordable reagents, 2) to use microbiome-based products as markers or therapeutics, 3) to apply measures that make adoptive cell therapy (ACT) cheaper, e.g., the use of off-the-shelf products, 4) to use immunotherapies that offer cheaper platforms, such as RNA- or peptide-based vaccines and vaccines that use shared or common antigens instead of highly personal antigens, 5) to use a small set of predictive biomarkers instead of the "sequence everything" approach, and 6) to explore affordable immunohistochemistry markers that may direct individual therapies.
Collapse
Affiliation(s)
- Niels Schaft
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Gerold Schuler
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Beatrice Schuler-Thurner
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Husam Sallam
- Molecular Genetics and Genetic Toxicology, Health Science Department, American Arab University, Ramallah, Palestine
| | - Shiri Klein
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Galit Eisenberg
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Shoshana Frankenburg
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem, Israel
- Hadassah Cancer Research Institute, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Areej Khatib
- Women's Health Research Unit, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
11
|
Liang H, Zhang L, Liu Z, Hoden B, DeRubei D, Zhang Y, Wang F, Zhang D. Upregulation of TLR5 indicates a favorable prognosis in prostate cancer. Prostate 2023; 83:1035-1045. [PMID: 37118933 PMCID: PMC10330358 DOI: 10.1002/pros.24545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/03/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Toll-like receptors (TLRs) are the key sensors of innate immunity for triggering immune responses against infections. TLRs are well known to be expressed and activated in innate immune cells, such as macrophage and dendritic cells, but we and others have found that some TLRs are also functional in epithelial cells. However, the role of an epithelial TLR in prostate cancer remains elusive. METHODS TLR5 expression in messenger RNA and protein level in prostate cancer was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). The activation of TLR5 signaling in epithelial cells was detected upon nuclear factor-κB activation by luciferase assay and western blot analysis, and proinflammatory cytokine activation by RT-qPCR. Distinguishing between the TLR5 and NLRC4 pathways, both recognizing flagellin, is determined by small interfering RNA and proinflammatory cytokine activation. The role of TLR5 in prostate cancer was analyzed by IHC and bioinformatics using a general and single-cell database. RESULTS In the present study, we show that TLR5, among other TLRs, is exceedingly expressed in human prostate cancer cells. This cancer epithelial cell TLR5 functions to activate the TLR5 signaling pathway in human prostate cancer cells, as it does with innate immune cell TLR5. The bacterial protein flagellin induces a robust immune response in prostate cancer cells in a TLR5-dependent but NLRC4-independent manner. TLR5 is highly expressed in prostate cancer patient specimens, and high TLR5 expression in prostate cancer patients indicates a favorable prognosis. CONCLUSIONS TLR5, as an innate immunity receptor, is a functional TLR in human prostate cancer epithelial cells. TLR5 plays an important role in prostate cancer development and is a new potential prognosis biomarker. TLR5 may represent a novel immunotherapy target against prostate cancer.
Collapse
Affiliation(s)
- Hongbin Liang
- Center for Infectious and Inflammatory Diseases, Institute of Bioscience and Technology, Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| | - Lin Zhang
- Center for Infectious and Inflammatory Diseases, Institute of Bioscience and Technology, Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| | - Ziying Liu
- Center for Translational Cancer Research, Institute of Bioscience and Technology, Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| | - Bettina Hoden
- Center for Infectious and Inflammatory Diseases, Institute of Bioscience and Technology, Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| | - David DeRubei
- Center for Infectious and Inflammatory Diseases, Institute of Bioscience and Technology, Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| | - Yifan Zhang
- Center for Infectious and Inflammatory Diseases, Institute of Bioscience and Technology, Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| | - Fen Wang
- Center for Translational Cancer Research, Institute of Bioscience and Technology, Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| | - Dekai Zhang
- Center for Infectious and Inflammatory Diseases, Institute of Bioscience and Technology, Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| |
Collapse
|
12
|
Zhu L, Zhang X, Chen X, Yang D, Nie Y, Pan R, Li L, Wang C, Gui H, Chen S, Jing Q, Wang M, Nie Y. Anti-TNFR2 enhanced the antitumor activity of a new HMGN1/3M-052 stimulated dendritic cell vaccine in a mouse model of colon cancer. Biochem Biophys Res Commun 2023; 653:106-114. [PMID: 36868074 DOI: 10.1016/j.bbrc.2023.02.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Immunotherapy is the new approach for cancer treatment that can be achieved through several strategies, one of which is dendritic cells (DCs) vaccine therapy. However, traditional DC vaccination lacks accurate targeting, so DC vaccine preparation needs to be optimized. Immunosuppressive CD4+Foxp3+ regulatory T cells (Tregs) in the tumor microenvironment can promote tumor immune escape. Therefore, targeting Tregs has become a strategy for tumor immunotherapy. In this study, we found that HMGN1 (N1, a dendritic cell-activating TLR4 agonist) and 3M-052 (a newly synthesized TLR7/8 agonist) synergistically stimulate DCs maturation and increase the production of proinflammatory cytokines TNFα and IL-12. In a colon cancer mice model, vaccination with N1 and 3M-052 stimulated and tumor antigen-loaded DCs combined with anti-TNFR2 inhibited tumor growth in mice, and the antitumor effect was mainly achieved through stimulation of cytotoxic CD8 T cell activation and depletion of Tregs. Overall, the combinating of DC activation by N1 and 3M-052 with inhibition of Tregs by antagonizing TNFR2 as a therapeutic strategy may represent a more effective strategy for cancer treatment.
Collapse
Affiliation(s)
- Lan Zhu
- School of Medicine, Guizhou University, Guiyang, 550025, China.
| | - Xiangyan Zhang
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China.
| | - De Yang
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD, USA.
| | - Yujie Nie
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| | - Runsang Pan
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China.
| | - Linzhao Li
- School of Medicine, Guizhou University, Guiyang, 550025, China.
| | - Chenglv Wang
- School of Medicine, Guizhou University, Guiyang, 550025, China.
| | - Huan Gui
- School of Medicine, Guizhou University, Guiyang, 550025, China.
| | - Shuanghui Chen
- School of Medicine, Guizhou University, Guiyang, 550025, China.
| | - Qianyu Jing
- School of Preclinical Medicine of Zunyi Medical University, Zunyi, 563000, China.
| | - Mengjiao Wang
- School of Medicine, Guizhou University, Guiyang, 550025, China.
| | - Yingjie Nie
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China; School of Medicine, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
13
|
Miller MS, Mohammed A. Emerging Trends in Cancer Prevention Agent Development. J Cancer Prev 2023; 28:24-28. [PMID: 37033328 PMCID: PMC10080017 DOI: 10.15430/jcp.2023.28.1.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Advances in omics and immunology over the past 20 years have revolutionized the approach to cancer prevention, with the goal now focused on identifying populations at higher risk for developing cancer in their lifetime as a result of either extensive exposure to environmental carcinogens or harboring precancer lesions or inherited genetic mutations that predispose them to specific types of cancer(s). Thus, the naïve idea that cancer could be "prevented" in the general population has evolved to a more practical approach based on the understanding that the target population for preventive agents will be individuals who already have alterations, in gene pathways, whether inherited or environmentally caused, and the goal will be to "intercept" these lesions at the earliest stages in the path from an initial genetic lesion to full-blown cancer. The Division of Cancer Prevention of the National Cancer Institute and the Office of Disease Prevention at the National Institutes of Health recently sponsored the second biennial "Translational Advances in Cancer Preventive Agent Development Meeting," held virtually from September 7-9th. In this Meeting Report, we highlight the scientific sessions of this meeting that covered the most recent advances in preventive agent development that also highlighted these rapidly emerging trends in this research area.
Collapse
Affiliation(s)
- Mark Steven Miller
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
- Correspondence to Mark Steven Miller, E-mail: , https://orcid.org/0000-0003-1191-0977 Altaf Mohammed, E-mail: , https://orcid.org/0000-0003-1058-6909
| | - Altaf Mohammed
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
- Correspondence to Mark Steven Miller, E-mail: , https://orcid.org/0000-0003-1191-0977 Altaf Mohammed, E-mail: , https://orcid.org/0000-0003-1058-6909
| |
Collapse
|
14
|
Kuang G, Zhang Q, Jia J, Yu Y. Freezing biological organisms for biomedical applications. SMART MEDICINE 2022; 1:e20220034. [PMID: 39188743 PMCID: PMC11235656 DOI: 10.1002/smmd.20220034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 08/28/2024]
Abstract
Biological organisms play important roles in human health, either in a commensal or pathogenic manner. Harnessing inactivated organisms or living organisms is a promising way to treat diseases. As two types of freezing, cryoablation makes it simple to inactivate organisms that must be in a non-pathogenic state when needed, while cryopreservation is a facile way to address the problem of long-term storage challenged by living organism-based therapy. In this review, we present the latest studies of freezing biological organisms for biomedical applications. To begin with, the freezing strategies of cryoablation and cryopreservation, as well as their corresponding technical essentials, are illustrated. Besides, biomedical applications of freezing biological organisms are presented, including transplantation, tissue regeneration, anti-infection therapy, and anti-tumor therapy. The challenges and prospects of freezing living organisms for biomedical applications are well discussed. We believe that the freezing method will provide a potential direction for the standardization and commercialization of inactivated or living organism-based therapeutic systems, and promote the clinical application of organism-based therapy.
Collapse
Affiliation(s)
- Gaizhen Kuang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Qingfei Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Jinxuan Jia
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Yunru Yu
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| |
Collapse
|
15
|
Highly efficient hybridoma generation and screening strategy for anti-PD-1 monoclonal antibody development. Sci Rep 2022; 12:17792. [PMID: 36273231 PMCID: PMC9588028 DOI: 10.1038/s41598-022-20560-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/14/2022] [Indexed: 01/19/2023] Open
Abstract
Programmed cell death protein 1 (PD-1) plays a significant role in suppressing antitumor immune responses. Cancer treatment with immune checkpoint inhibitors (ICIs) targeting PD-1 has been approved to treat numerous cancers and is the backbone of cancer immunotherapy. Anti-PD-1 molecule is necessary for next-generation cancer immunotherapy to further improve clinical efficacy and safety as well as integrate into novel treatment combinations or platforms. We developed a highly efficient hybridoma generation and screening strategy to generate high-potency chimeric anti-PD-1 molecules. Using this strategy, we successfully generated several mouse hybridoma and mouse/human chimeric clones that produced high-affinity antibodies against human PD-1 with high-quality in vitro PD-1/PD-L1 binding blockade and T cell activation activities. The lead chimeric prototypes exhibited overall in vitro performance comparable to commercially available anti-PD-1 antibodies and could be qualified as promising therapeutic candidates for further development toward immuno-oncology applications.
Collapse
|
16
|
Plasma-Based microRNA Expression Analysis in Advanced Stage NSCLC Patients Treated with Nivolumab. Cancers (Basel) 2022; 14:cancers14194739. [PMID: 36230658 PMCID: PMC9564103 DOI: 10.3390/cancers14194739] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Nivolumab (anti-PD-1 inhibitor) is the first monoclonal antibody approved for the treatment of NSCLC, with research results showing that patients who had received previous lines of therapy had a better response to this treatment and better overall survival. Tissue-level analyses fail to capture the dynamic tumor-host relationship, in contrast to circulating biomarkers, which can reflect the systemic response of the tumor, allowing for repeated sampling and monitoring. In the context of liquid biopsy, microRNAs are studied as biomarkers of immunotherapy efficacy based on their role in regulating antitumor immunity. The present study suggests that miR-200c and miR-34a plasma expression levels have a prognostic role in patients with advanced NSCLC receiving Nivolumab. It further supports that the expression profile of circulating immunomodulatory microRNAs provides information on the survival of patients with advanced NSCLC receiving Nivolumab and could represent promising circulating biomarkers that may provide information about patients’ responses to immunotherapy. Abstract Since circulating microRNAs (miRNAs) are involved in the modulation of the immune response, they are tested as liquid biopsy-based biomarkers in patients with NSCLC treated with immunotherapy. We analyzed the expression levels and examined the clinical significance of immunoregulatory miRNAs involved in immune checkpoint regulation (miR-34a, miR-200b, miR-200c), T-cell activity (miR-155), and the function of myeloid-derived suppressive cells (MDSCs) (miR-223) or regulatory T lymphocytes (Tregs) (miR-146a), in patients with advanced NSCLC (N = 69) treated with anti-PD-1 (Nivolumab) immunotherapy as 2nd or 3rd line of treatment therapy. Plasma levels of circulating miRNAs were analyzed by RT-qPCR before the initiation of immunotherapy. Expression of miR-34a, miR-146a, mir-200c, and miR-223 was found to be associated with response to immunotherapy. High miR-200c expression emerged as an independent prognostic factor for inferior overall survival in all patients with NSCLC (OS, HR: 2.243, 95% CI: 1.208–4.163; p = 0.010) and in patients with non-Squamous (non-SqCC) subtype (N = 38) (HR: 2.809, 95% CI: 1.116–7.074; p = 0.028). Low miR-34a expression independently predicted for shorter OS (HR: 3.189, 95% CI: 1.193–8.527; p = 0.021) in the non-SqCC subgroup. Our findings suggest that alterations in circulating miR-200c and miR-34a expression levels are associated with the response and outcome in patients with advanced NSCLC treated with anti-PD1 immunotherapy.
Collapse
|
17
|
Barchi JJ. Glycoconjugate Nanoparticle-Based Systems in Cancer Immunotherapy: Novel Designs and Recent Updates. Front Immunol 2022; 13:852147. [PMID: 35432351 PMCID: PMC9006936 DOI: 10.3389/fimmu.2022.852147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
For many years, cell-surface glycans (in particular, Tumor-Associated Carbohydrate Antigens, TACAs) have been the target of both passive and active anticancer immunotherapeutic design. Recent advances in immunotherapy as a treatment for a variety of malignancies has revolutionized anti-tumor treatment regimens. Checkpoint inhibitors, Chimeric Antigen Receptor T-cells, Oncolytic virus therapy, monoclonal antibodies and vaccines have been developed and many approvals have led to remarkable outcomes in a subset of patients. However, many of these therapies are very selective for specific patient populations and hence the search for improved therapeutics and refinement of techniques for delivery are ongoing and fervent research areas. Most of these agents are directed at protein/peptide epitopes, but glycans-based targets are gaining in popularity, and a handful of approved immunotherapies owe their activity to oligosaccharide targets. In addition, nanotechnology and nanoparticle-derived systems can help improve the delivery of these agents to specific organs and cell types based on tumor-selective approaches. This review will first outline some of the historical beginnings of this research area and subsequently concentrate on the last 5 years of work. Based on the progress in therapeutic design, predictions can be made as to what the future holds for increasing the percentage of positive patient outcomes for optimized systems.
Collapse
Affiliation(s)
- Joseph J. Barchi
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
18
|
Assessing the Future of Solid Tumor Immunotherapy. Biomedicines 2022; 10:biomedicines10030655. [PMID: 35327456 PMCID: PMC8945484 DOI: 10.3390/biomedicines10030655] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
With the advent of cancer immunotherapy, there has been a major improvement in patient’s quality of life and survival. The growth of cancer immunotherapy has dramatically changed our understanding of the basics of cancer biology and has altered the standards of care (surgery, radiotherapy, and chemotherapy) for patients. Cancer immunotherapy has generated significant excitement with the success of chimeric antigen receptor (CAR) T cell therapy in particular. Clinical results using CAR-T for hematological malignancies have led to the approval of four CD19-targeted and one B-cell maturation antigen (BCMA)-targeted cell therapy products by the US Food and Drug Administration (FDA). Also, immune checkpoint inhibitors such as antibodies against Programmed Cell Death-1 (PD-1), Programmed Cell Death Ligand-1 (PD-L1), and Cytotoxic T-Lymphocyte-Associated Antigen 4 (CTLA-4) have shown promising therapeutic outcomes and long-lasting clinical effect in several tumor types and patients who are refractory to other treatments. Despite these promising results, the success of cancer immunotherapy in solid tumors has been limited due to several barriers, which include immunosuppressive tumor microenvironment (TME), inefficient trafficking, and heterogeneity of tumor antigens. This is further compounded by the high intra-tumoral pressure of solid tumors, which presents an additional challenge to successfully delivering treatments to solid tumors. In this review, we will outline and propose specific approaches that may overcome these immunological and physical barriers to improve the outcomes in solid tumor patients receiving immunotherapies.
Collapse
|
19
|
Orzetti S, Tommasi F, Bertola A, Bortolin G, Caccin E, Cecco S, Ferrarin E, Giacomin E, Baldo P. Genetic Therapy and Molecular Targeted Therapy in Oncology: Safety, Pharmacovigilance, and Perspectives for Research and Clinical Practice. Int J Mol Sci 2022; 23:ijms23063012. [PMID: 35328435 PMCID: PMC8951339 DOI: 10.3390/ijms23063012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
The impressive advances in the knowledge of biomarkers and molecular targets has enabled significant progress in drug therapy for crucial diseases such as cancer. Specific areas of pharmacology have contributed to these therapeutic outcomes—mainly targeted therapy, immunomodulatory therapy, and gene therapy. This review focuses on the pharmacological profiles of these therapeutic classes and intends, on the one hand, to provide a systematic definition and, on the other, to highlight some aspects related to pharmacovigilance, namely the monitoring of safety and the identification of potential toxicities and adverse drug reactions. Although clinicians often consider pharmacovigilance a non-priority area, it highlights the risk/benefit ratio, an essential factor, especially for these advanced therapies, which represent the most innovative and promising horizon in oncology.
Collapse
Affiliation(s)
- Sabrina Orzetti
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
- Department of Hospital Pharmacy, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy
| | - Federica Tommasi
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Antonella Bertola
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Giorgia Bortolin
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Elisabetta Caccin
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Sara Cecco
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Emanuela Ferrarin
- Scientific and Patients Library of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy;
| | - Elisa Giacomin
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Paolo Baldo
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
- Correspondence: ; Tel.: +39-0434-659221
| |
Collapse
|
20
|
Yadav D, Kwak M, Chauhan PS, Puranik N, Lee PCW, Jin JO. Cancer immunotherapy by immune checkpoint blockade and its advanced application using bio-nanomaterials. Semin Cancer Biol 2022; 86:909-922. [PMID: 35181474 DOI: 10.1016/j.semcancer.2022.02.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death worldwide. Traditional approaches, such as surgery, chemotherapy, and radiotherapy have been the main cancer therapeutic modalities in recent years. Cancer immunotherapy is a novel therapeutic modality that potentiates the immune responses of patients against malignancy. Immune checkpoint proteins expressed on T cells or tumor cells serve as a target for inhibiting T cell overactivation, maintaining the balance between self-reactivity and autoimmunity. Tumors essentially hijack the immune checkpoint pathway in order to survive and spread. Immune checkpoint inhibitors (ICIs) are being developed as a result to reactivate the anti-tumor immune response. Recent advances in nanotechnology have contributed to the development of successful, safe, and efficient anticancer drug systems based on nanoparticles. Nanoparticle-based cancer immunotherapy overcomes numerous challenges and offers novel strategies for improving conventional immunotherapies. The fundamental and physiochemical properties of nanoparticles depend on various cancer therapeutic strategies, such as chemotherapeutics, nucleic acid-based treatments, photothermal therapy, and photodynamic agents. The review discusses the use of nanoparticles as carriers for delivering immune checkpoint inhibitors and their efficacy in cancer combination therapy.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, South Korea
| | | | - Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Peter C W Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, South Korea.
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
21
|
Campos-Silva C, López-Borrego S, Felgueres MJ, Esteso G, Vales-Gomez M. NKG2D Ligands in Liquid Biopsy: The Importance of Soluble and Vesicle-Bound Proteins for Immune Modulation. Crit Rev Immunol 2022; 42:21-40. [PMID: 36374819 DOI: 10.1615/critrevimmunol.2022045263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The identification of biomarkers allowing diagnostics, prognostics and patient classification is still a challenge in oncological research for patient management. Improvements in patient survival achieved with immunotherapies substantiate that biomarker studies rely not only on cellular pathways contributing to the pathology, but also on the immune competence of the patient. If these immune molecules can be studied in a non-invasive manner, the benefit for patients and clinicians is obvious. The immune receptor Natural Killer Group 2 Member D (NKG2D) represents one of the main systems involved in direct recognition of tumor cells by effector lymphocytes (T and Natural Killer cells), and in immune evasion. The biology of NKG2D and its ligands comprises a complex network of cellular pathways leading to the expression of these tumor-associated ligands on the cell surface or to their release either as soluble proteins, or in extracellular vesicles that potently inhibit NKG2D-mediated responses. Increased levels of NKG2D-ligands in patient serum correlate with tumor progression and poor prognosis; however, most studies did not test the biochemical form of these molecules. Here we review the biology of the NKG2D receptor and ligands, their role in cancer and in patient response to immunotherapies, as well as the changes provoked in this system by non-immune cancer therapies. Further, we discuss the use of NKG2D-L in liquid biopsy, including methods to analyse vesicle-associated proteins. We propose that the evaluation in cancer patients of the whole NKG2D system can provide crucial information about patient immune competence and risk of tumor progression.
Collapse
Affiliation(s)
- Carmen Campos-Silva
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Silvia López-Borrego
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - María José Felgueres
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Gloria Esteso
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Mar Vales-Gomez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| |
Collapse
|
22
|
Emerging Therapeutic Agents for Colorectal Cancer. Molecules 2021; 26:molecules26247463. [PMID: 34946546 PMCID: PMC8707340 DOI: 10.3390/molecules26247463] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
There are promising new therapeutic agents for CRC patients, including novel small-molecule inhibitors and immune checkpoint blockers. We focused on emerging CRC’s therapeutic agents that have shown the potential for progress in clinical practice. This review provides an overview of tyrosine kinase inhibitors targeting VEGF and KIT, BRAF and MEK inhibitors, TLR9 agonist, STAT3 inhibitors, and immune checkpoint blockers (PD1/PDL-1 inhibitors), for which recent advances have been reported. These new agents have the potential to provide benefits to CRC patients with unmet medical needs.
Collapse
|
23
|
Zafar A, Hasan M, Tariq T, Dai Z. Enhancing Cancer Immunotherapeutic Efficacy with Sonotheranostic Strategies. Bioconjug Chem 2021; 33:1011-1034. [PMID: 34793138 DOI: 10.1021/acs.bioconjchem.1c00437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immunotherapy has revolutionized the modality for establishing a firm immune response and immunological memory. However, intrinsic limitations of conventional low responsive poor T cell infiltration and immune related adverse effects urge the coupling of cancer nanomedicines with immunotherapy for boosting antitumor response under ultrasound (US) sensitization to mimic dose-limiting toxicities for safe and effective therapy against advanced cancer. US is composed of high-frequency sound waves that mediate targeted spatiotemporal control over release and internalization of the drug. The unconventional US triggered immunogenic nanoengineered arena assists the limited immunogenic dose, limiting toxicities and efficacies. In this Review, we discuss current prospects of enhanced immunotherapy using nanomedicine under US. We highlight how nanotechnology designs and incorporates nanomedicines for the reprogramming of systematic immunity in the tumor microenvironment. We also emphasize the mechanical and biological potential of US, encompassing sonosensitizer activation for enhanced immunotherapeutic efficacies. Finally, the smartly converging combinational platform of US stimulated cancer nanomedicines for amending immunotherapy is summarized. This Review will widen scientists' ability to explore and understand the limiting factors for combating cancer in a precisely customized way.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Murtaza Hasan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Tuba Tariq
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Zhang X, Wang X, Wu T, Yin W, Yan J, Sun Y, Zhao D. Therapeutic potential of targeting LSD1/ KDM1A in cancers. Pharmacol Res 2021; 175:105958. [PMID: 34718134 DOI: 10.1016/j.phrs.2021.105958] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/21/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
LSD1 was the first histone demethylase identified by Professor Shi Yang and his team members in 2004. LSD1 employs FAD as its cofactor, which catalyzes the demethylation of H3K4 and H3K9. It is aberrantly overexpressed in different types of cancers and is associated with the growth, invasion, and metastasis of cancer cells. The knockout or inhibition of LSD1 could effectively suppress tumor development, and thus, it has become an attractive molecular target for cancer therapy. Moreover, many LSD1 inhibitors have been developed in preclinical and clinical trials to treat solid tumors and hematological malignancy. This study made an extensive review of the research obtained from the literature retrieval of electronic databases, such as PubMed, Web of Science, RCSB PDB, ClinicalTrials.gov, and EU clinical trials register. This review summarizes recent studies on the advances of LSD1 inhibitors in the literature, covering January 2015 to June 2021. It focuses on the function of LSD1 in tumor cells, summarizes the crystal structures of homo sapiens LSD1, reviews the structural characteristics of LSD1 inhibitors, compares the screening methods of LSD1 inhibitors, and proposes guidelines for the future exploitation of LSD1 inhibitors.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, P. R. China
| | - Xinran Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing 102488, China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, P. R. China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, P. R. China
| | - Jiangkun Yan
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, P. R. China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, P. R. China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, P. R. China.
| |
Collapse
|
25
|
Filin IY, Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV. Recent Advances in Experimental Dendritic Cell Vaccines for Cancer. Front Oncol 2021; 11:730824. [PMID: 34631558 PMCID: PMC8495208 DOI: 10.3389/fonc.2021.730824] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/07/2021] [Indexed: 01/21/2023] Open
Abstract
The development of immunotherapeutic methods for the treatment of oncological diseases have made it possible to improve the effectiveness of standard therapies. There was no breakthrough after first using of personalized therapeutic vaccines based on dendritic cells in clinical practice. A deeper study of the biology of dendritic cells, as well as the use of new approaches and agents for antigenic work, have made it possible to expand the field of application of dendritic cell (DC) vaccines and improve the indicators of cancer patients. In addition, the low toxicity of DC vaccines in clinical trials makes it possible to use promising predictions of their applicability in wider clinical practice. This review examines new approaches and recent advances of the DC vaccine in clinical trials.
Collapse
Affiliation(s)
- Ivan Y Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Catrin S Rutland
- Faculty of Medicine and Health Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
26
|
Magnetic Nanoparticles Used in Oncology. MATERIALS 2021; 14:ma14205948. [PMID: 34683540 PMCID: PMC8539633 DOI: 10.3390/ma14205948] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022]
Abstract
Recently, magnetic nanoparticles (MNPs) have more and more often been used in experimental studies on cancer treatments, which have become one of the biggest challenges in medical research. The main goal of this research is to treat and to cure advanced or metastatic cancer with minimal side effects through nanotechnology. Drug delivery approaches take into account the fact that MNPs can be bonded to chemotherapeutical drugs, nucleic acids, synthetized antibodies or radionuclide substances. MNPs can be guided, and different treatment therapies can be applied, under the influence of an external magnetic field. This paper reviews the main MNPs’ synthesis methods, functionalization with different materials and highlight the applications in cancer therapy. In this review, we describe cancer cell monitorization based on different types of magnetic nanoparticles, chemotherapy, immunotherapy, magnetic hyperthermia, gene therapy and ferroptosis. Examples of applied treatments on murine models or humans are analyzed, and glioblastoma cancer therapy is detailed in the review. MNPs have an important contribution to diagnostics, investigation, and therapy in the so called theranostics domain. The main conclusion of this paper is that MNPs are very useful in different cancer therapies, with limited side effects, and they can increase the life expectancy of patients with cancer drug resistance.
Collapse
|
27
|
Xue S, Ma M, Bei S, Li F, Wu C, Li H, Hu Y, Zhang X, Qian Y, Qin Z, Jiang J, Feng L. Identification and Validation of the Immune Regulator CXCR4 as a Novel Promising Target for Gastric Cancer. Front Immunol 2021; 12:702615. [PMID: 34322132 PMCID: PMC8311657 DOI: 10.3389/fimmu.2021.702615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint blockade has attracted a lot of attention in the treatment of human malignant tumors. We are trying to establish a prognostic model of gastric cancer (GC) based on the expression profile of immunoregulatory factor-related genes. Based on the TCGA database, we identified 234 differentially expressed immunoregulatory factors. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) conducted enrichment analysis to clarify the biological functions of differential expression of immunoregulatory factors. STRING database predicted the interaction network between 234 differently expressed immune regulatory factors. The expression of 11 immunoregulatory factors was significantly related to the overall survival of gastric cancer patients. Univariate Cox regression analysis, Kaplan–Meier analysis and multivariate Cox regression analysis found that immunomodulatory factors were involved in the progression of gastric cancer and promising biomarkers for predicting prognosis. Among them, CXCR4 was related to the low survival of GC patients and a key immunomodulatory factor in GC. Based on TCGA data, the high expression of CXCR4 in GC was positively correlated with the advanced stage and grade of gastric cancer and related to poor prognosis. Univariate analysis and multivariate analysis indicated that CXCR4 was an independent prognostic indicator for TCGA gastric cancer patients. In vitro functional studies had shown that CXCR4 promoted the proliferation, migration, and invasion of gastric cancer cells. In summary, this study has determined the prognostic value of 11 immunomodulatory factors in gastric cancer. CXCR4 is an independent prognostic indicator for gastric cancer patients, which may help to improve the individualized prognostic prediction of GC and provide candidates for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Shuai Xue
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Ming Ma
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai, China
| | - Songhua Bei
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Fan Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Chenqu Wu
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Huanqing Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Yanling Hu
- Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaohong Zhang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - YanQing Qian
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhe Qin
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Jun Jiang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Li Feng
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Yoon SJ, Lee CB, Chae SU, Jo SJ, Bae SK. The Comprehensive "Omics" Approach from Metabolomics to Advanced Omics for Development of Immune Checkpoint Inhibitors: Potential Strategies for Next Generation of Cancer Immunotherapy. Int J Mol Sci 2021; 22:6932. [PMID: 34203237 PMCID: PMC8268114 DOI: 10.3390/ijms22136932] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
In the past decade, immunotherapies have been emerging as an effective way to treat cancer. Among several categories of immunotherapies, immune checkpoint inhibitors (ICIs) are the most well-known and widely used options for cancer treatment. Although several studies continue, this treatment option has yet to be developed into a precise application in the clinical setting. Recently, omics as a high-throughput technique for understanding the genome, transcriptome, proteome, and metabolome has revolutionized medical research and led to integrative interpretation to advance our understanding of biological systems. Advanced omics techniques, such as multi-omics, single-cell omics, and typical omics approaches, have been adopted to investigate various cancer immunotherapies. In this review, we highlight metabolomic studies regarding the development of ICIs involved in the discovery of targets or mechanisms of action and assessment of clinical outcomes, including drug response and resistance and propose biomarkers. Furthermore, we also discuss the genomics, proteomics, and advanced omics studies providing insights and comprehensive or novel approaches for ICI development. The overview of ICI studies suggests potential strategies for the development of other cancer immunotherapies using omics techniques in future studies.
Collapse
Affiliation(s)
| | | | | | | | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon 14662, Korea; (S.J.Y.); (C.B.L.); (S.U.C.); (S.J.J.)
| |
Collapse
|
29
|
Nie D, Fang Q, Li B, Cheng J, Li C, Gui S, Zhang Y, Zhao P. Research advances on the immune research and prospect of immunotherapy in pituitary adenomas. World J Surg Oncol 2021; 19:162. [PMID: 34090476 PMCID: PMC8180072 DOI: 10.1186/s12957-021-02272-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Background Pituitary adenomas are one type of intracranial tumor, which can be divided into microadenoma (≤ 1 cm), macroadenoma (> 1 cm), and giant adenoma (≥ 4 cm) according to their diametral sizes. They are benign, typically slow-progressing, whereas the biological behavior of some of them is invasive, which presents a major clinical challenge. Treatment of some pituitary adenomas is still difficult due to drug resistance or multiple relapses, usually after surgery, medication, and radiation. At present, no clear prediction and treatment biomarkers have been found in pituitary adenomas and some of them do not cause clinical symptoms, so patients are often found to be ill through physical examination, and some are even found through autopsy. With the development of research on pituitary adenomas, the immune response has become a hot spot and may serve as a novel disease marker and therapeutic target. The distribution and function of immune cells and their secreted molecules in pituitary adenomas are extremely complex. Researchers found that infiltration of immune cells may have a positive effect on the treatment and prognosis of pituitary adenomas. In this review, we summarized the advance of tumor immunity in pituitary adenomas, revealing the immunity molecules as potential biomarkers as well as therapeutic agents for pituitary adenomas. Conclusion The immune studies related to pituitary adenomas may help us find relevant immune markers. At the same time, the exploration of immunotherapy also provides new options for the treatment of pituitary adenomas.
Collapse
Affiliation(s)
- Ding Nie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiuyue Fang
- Beijing Neurosurgical Institute, Beijing, China
| | - Bin Li
- Beijing Neurosurgical Institute, Beijing, China
| | - Jianhua Cheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Beijing, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | - Peng Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
30
|
Kim D, Kim KI, Baek SH. Roles of lysine-specific demethylase 1 (LSD1) in homeostasis and diseases. J Biomed Sci 2021; 28:41. [PMID: 34082769 PMCID: PMC8175190 DOI: 10.1186/s12929-021-00737-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1) targets mono- or di-methylated histone H3K4 and H3K9 as well as non-histone substrates and functions in the regulation of gene expression as a transcriptional repressor or activator. This enzyme plays a pivotal role in various physiological processes, including development, differentiation, inflammation, thermogenesis, neuronal and cerebral physiology, and the maintenance of stemness in stem cells. LSD1 also participates in pathological processes, including cancer as the most representative disease. It promotes oncogenesis by facilitating the survival of cancer cells and by generating a pro-cancer microenvironment. In this review, we discuss the role of LSD1 in several aspects of cancer, such as hypoxia, epithelial-to-mesenchymal transition, stemness versus differentiation of cancer stem cells, as well as anti-tumor immunity. Additionally, the current understanding of the involvement of LSD1 in various other pathological processes is discussed.
Collapse
Affiliation(s)
- Dongha Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
31
|
Burns EA, Gentille C, Trachtenberg B, Pingali SR, Anand K. Cardiotoxicity Associated with Anti-CD19 Chimeric Antigen Receptor T-Cell (CAR-T) Therapy: Recognition, Risk Factors, and Management. Diseases 2021; 9:20. [PMID: 33802788 PMCID: PMC8006027 DOI: 10.3390/diseases9010020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Chimeric antigen receptor T-cells (CAR-T) are improving outcomes in pediatric and adult patients with relapsed or refractory B-cell acute lymphoblastic leukemias and subtypes of non-Hodgkin Lymphoma. As this treatment is being increasingly utilized, a better understanding of the unique toxicities associated with this therapy is warranted. While there is growing knowledge on the diagnosis and treatment of cytokine release syndrome (CRS), relatively little is known about the associated cardiac events that occur with CRS that may result in prolonged length of hospital stay, admission to the intensive care unit for pressor support, or cardiac death. This review focuses on the various manifestations of cardiotoxicity, potential risk factors, real world and clinical trial data on prevalence of reported cardiotoxicity events, and treatment recommendations.
Collapse
Affiliation(s)
- Ethan A. Burns
- Houston Methodist Cancer Center, Houston Methodist Hospital, 6445 Main Street, Outpatient Center, 24th Floor, Houston, TX 77030, USA; (C.G.); (S.R.P.)
| | - Cesar Gentille
- Houston Methodist Cancer Center, Houston Methodist Hospital, 6445 Main Street, Outpatient Center, 24th Floor, Houston, TX 77030, USA; (C.G.); (S.R.P.)
| | - Barry Trachtenberg
- Houston Methodist DeBakey Heart and Vascular Center, 6565 Fannin St, Houston, TX 77030, USA;
| | - Sai Ravi Pingali
- Houston Methodist Cancer Center, Houston Methodist Hospital, 6445 Main Street, Outpatient Center, 24th Floor, Houston, TX 77030, USA; (C.G.); (S.R.P.)
| | - Kartik Anand
- Callahan Cancer Center, Great Plains Health, 601 W Leota St, North Platte, NE 69101, USA
| |
Collapse
|