1
|
Liu X, Zhang Y, Zhang P, Ge K, Zhang R, Sun Y, Sheng Y, Bradley M, Zhang R. Preparation of targeting nanogels for controlled delivery of 5-aminolevulinic acid triggered by matrix metalloproteinases as photodynamic therapy. Biointerphases 2025; 20:021001. [PMID: 40183451 DOI: 10.1116/6.0004203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
5-Aminolevulinic acid (5-ALA) is a prodrug of the photodynamic therapy (PDT) for the treatment of certain skin diseases and neuronal cancers in the clinic. However, it is difficult for 5-ALA to target specific cells and, therefore, to accumulate within deeper lesions, leading to poor conversion of protoporphyrin IX, the active photodynamic agent. To solve this problem, targeted nanogels were developed for controlled 5-ALA delivery. Here, nanogels with folic acid as a targeting ligand were prepared by inverse microemulsion polymerization using the peptide cross-linker acryl-PLGLAGK(Alloc)-NH2, a generic substrate for matrix metalloproteinases, enzymes associated with many tumors. The stability, entrapment efficiency, drug loading, and drug release ability of the nanogels were studied with skin cancer cells (A2058) and showed that the targeting nanogels enhanced the concentration of 5-ALA in tumor cells and improved the efficiency of PDT in vitro. In vivo experiments showed that the targeting nanogels loaded with 5-ALA dramatically inhibited the development of skin cancer.
Collapse
Affiliation(s)
- Xiao Liu
- School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
- Advanced Functional Materials of Jiangsu Joint Laboratory for International Cooperation, Changzhou University, Changzhou 213164, China
| | - Yuan Zhang
- School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
- Advanced Functional Materials of Jiangsu Joint Laboratory for International Cooperation, Changzhou University, Changzhou 213164, China
| | - Peng Zhang
- School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
- Advanced Functional Materials of Jiangsu Joint Laboratory for International Cooperation, Changzhou University, Changzhou 213164, China
| | - Kang Ge
- Department of Dermatology and Venereology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, China
| | - Ruzhi Zhang
- Department of Dermatology and Venereology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, China
| | - Yixin Sun
- School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
- Advanced Functional Materials of Jiangsu Joint Laboratory for International Cooperation, Changzhou University, Changzhou 213164, China
| | - Yang Sheng
- School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
- Advanced Functional Materials of Jiangsu Joint Laboratory for International Cooperation, Changzhou University, Changzhou 213164, China
| | - Mark Bradley
- Advanced Functional Materials of Jiangsu Joint Laboratory for International Cooperation, Changzhou University, Changzhou 213164, China
- Precision Healthcare University Research Institute, Queen Mary University of London, 67-75 New Road, London E1 1HH, United Kingdom
| | - Rong Zhang
- School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
- Advanced Functional Materials of Jiangsu Joint Laboratory for International Cooperation, Changzhou University, Changzhou 213164, China
| |
Collapse
|
2
|
McCoubrey LE, Shen C, Mwasambu S, Favaron A, Sangfuang N, Thomaidou S, Orlu M, Globisch D, Basit AW. Characterising and preventing the gut microbiota's inactivation of trifluridine, a colorectal cancer drug. Eur J Pharm Sci 2024; 203:106922. [PMID: 39368784 DOI: 10.1016/j.ejps.2024.106922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
The gut microbiome can metabolise hundreds of drugs, potentially affecting their bioavailability and pharmacological effect. As most gut bacteria reside in the colon, drugs that reach the colon in significant proportions may be most impacted by microbiome metabolism. In this study the anti-colorectal cancer drug trifluridine was used as a model drug for characterising metabolism by the colonic microbiota, identifying correlations between bacterial species and individuals' rates of microbiome drug inactivation, and developing strategies to prevent drug inactivation following targeted colonic delivery. High performance liquid chromatography and ultra-high performance liquid chromatography coupled with high resolution tandem mass spectrometry demonstrated trifluridine's variable and multi-route metabolism by the faecal microbiota sourced from six healthy humans. Here, four drug metabolites were linked to the microbiome for the first time. Metagenomic sequencing of the human microbiota samples revealed their composition, which facilitated prediction of individual donors' microbial trifluridine inactivation. Notably, the abundance of Clostridium perfringens strongly correlated with the extent of trifluridine inactivation by microbiota samples after 2 hours (R2 = 0.8966). Finally, several strategies were trialled for the prevention of microbial trifluridine metabolism. It was shown that uridine, a safe and well-tolerated molecule, significantly reduced the microbiota's metabolism of trifluridine by acting as a competitive enzyme inhibitor. Further, uridine was found to provide prebiotic effects. The findings in this study greatly expand knowledge on trifluridine's interactions with the gut microbiome and provide valuable insights for investigating the microbiome metabolism of other drugs. The results demonstrate how protection strategies could enhance the colonic stability of microbiome-sensitive drugs.
Collapse
Affiliation(s)
- Laura E McCoubrey
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Chenghao Shen
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Sydney Mwasambu
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Alessia Favaron
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Nannapat Sangfuang
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Stavrina Thomaidou
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Mine Orlu
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Daniel Globisch
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Abdul W Basit
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom.
| |
Collapse
|
3
|
Seegobin N, McCoubrey LE, Vignal C, Waxin C, Abdalla Y, Fan Y, Awad A, Murdan S, Basit AW. Dual action tofacitinib-loaded PLGA nanoparticles alleviate colitis in an IBD mouse model. Drug Deliv Transl Res 2024:10.1007/s13346-024-01736-1. [PMID: 39527394 DOI: 10.1007/s13346-024-01736-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Inflammatory bowel disease (IBD) affects over 7 million people worldwide and significant side effects are associated with current therapies such as tofacitinib citrate (TFC), which is linked to increased risks of malignancy and congestive heart issues. To mitigate these systemic adverse effects, localised drug delivery via nano-sized carriers to inflamed gut tissues represents a promising approach. Herein, we aimed to optimise the synthesis of nanoparticles (NPs) using a low molecular weight grade of Poly(lactic-co-glycolic acid) (PLGA) 50:50 loaded with TFC. This approach leverages the dual anti-inflammatory action of TFC and the local production of anti-inflammatory short-chain fatty acids from the degradation of PLGA by colonic gut microbiota. NPs were produced by nanoprecipitation and characterised for their drug release profile in vitro. The efficacy of the enhanced PLGA-TFC NPs was then tested in a C57BL/6 DSS colitis mouse model. The release profile of TFC from the enhanced PLGA NPs showed a 40% burst release within the first hour, followed by up to 80% drug release in the colonic environment. Notably, the degradation of PLGA by colonic gut microbiota did not significantly influence TFC release. In the mouse model, neither PLGA NPs alone nor TFC alone showed significant effects on weight loss compared to the TFC-loaded PLGA NPs, emphasising the enhanced efficacy potential of the combined formulation. Altogether, these results suggest a promising role of NP delivery systems in enhancing TFC efficacy, marking a significant step towards reducing dosage and associated side effects in IBD treatment. This study underscores the potential of PLGA-TFC NPs in providing targeted and effective therapy for IBD.
Collapse
Affiliation(s)
- Nidhi Seegobin
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
| | - Laura E McCoubrey
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
- Drug Product Development, GSK R&D, Ware, SG12 0GX, UK
| | - Cécile Vignal
- Univ. Lille, Inserm, CHU Lille, UMR1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Christophe Waxin
- Univ. Lille, Inserm, CHU Lille, UMR1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Youssef Abdalla
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
| | - Yue Fan
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
| | - Atheer Awad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
| | - Sudaxshina Murdan
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK.
| |
Collapse
|
4
|
Maryam, Rehman MU, Hussain I, Tayara H, Chong KT. A graph neural network approach for predicting drug susceptibility in the human microbiome. Comput Biol Med 2024; 179:108729. [PMID: 38955124 DOI: 10.1016/j.compbiomed.2024.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 07/04/2024]
Abstract
Recent studies have illuminated the critical role of the human microbiome in maintaining health and influencing the pharmacological responses of drugs. Clinical trials, encompassing approximately 150 drugs, have unveiled interactions with the gastrointestinal microbiome, resulting in the conversion of these drugs into inactive metabolites. It is imperative to explore the field of pharmacomicrobiomics during the early stages of drug discovery, prior to clinical trials. To achieve this, the utilization of machine learning and deep learning models is highly desirable. In this study, we have proposed graph-based neural network models, namely GCN, GAT, and GINCOV models, utilizing the SMILES dataset of drug microbiome. Our primary objective was to classify the susceptibility of drugs to depletion by gut microbiota. Our results indicate that the GINCOV surpassed the other models, achieving impressive performance metrics, with an accuracy of 93% on the test dataset. This proposed Graph Neural Network (GNN) model offers a rapid and efficient method for screening drugs susceptible to gut microbiota depletion and also encourages the improvement of patient-specific dosage responses and formulations.
Collapse
Affiliation(s)
- Maryam
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Mobeen Ur Rehman
- Khalifa University Center for Autonomous Robotic Systems (KUCARS), Khalifa University, United Arab Emirates
| | - Irfan Hussain
- Khalifa University Center for Autonomous Robotic Systems (KUCARS), Khalifa University, United Arab Emirates
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea; Advances Electronics and Information Research Centre, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
5
|
Isaiah S, Westerhuis JA, Loots DT, Solomons R, van Furth MT, van Elsland S, van der Kuip M, Mason S. The diagnostic potential of urine in paediatric patients undergoing initial treatment for tuberculous meningitis. Sci Rep 2024; 14:19471. [PMID: 39174657 PMCID: PMC11341861 DOI: 10.1038/s41598-024-70419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
Tuberculous meningitis (TBM)-the extrapulmonary form of tuberculosis, is the most severe complication associated with tuberculosis, particularly in infants and children. The gold standard for the diagnosis of TBM requires cerebrospinal fluid (CSF) through lumbar puncture-an invasive sample collection method, and currently available CSF assays are often not sufficient for a definitive TBM diagnosis. Urine is metabolite-rich and relatively unexplored in terms of its potential to diagnose neuroinfectious diseases. We used an untargeted proton magnetic resonance (1H-NMR) metabolomics approach to compare the urine from 32 patients with TBM (stratified into stages 1, 2 and 3) against that from 39 controls in a South African paediatric cohort. Significant spectral bins had to satisfy three of our four strict cut-off quantitative statistical criteria. Five significant biological metabolites were identified-1-methylnicotinamide, 3-hydroxyisovaleric acid, 5-aminolevulinic acid, N-acetylglutamine and methanol-which had no correlation with medication metabolites. ROC analysis revealed that methanol lacked diagnostic sensitivity, but the other four metabolites showed good diagnostic potential. Furthermore, we compared mild (stage 1) TBM and severe (stages 2 and 3) TBM, and our multivariate metabolic model could successfully classify severe but not mild TBM. Our results show that urine can potentially be used to diagnose severe TBM.
Collapse
Affiliation(s)
- Simon Isaiah
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North‒West University, Potchefstroom, South Africa
| | - Johan A Westerhuis
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Du Toit Loots
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North‒West University, Potchefstroom, South Africa
| | - Regan Solomons
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marceline Tutu van Furth
- Pediatric Infectious Diseases and Immunology, Vrije Universiteit, Amsterdam University Medical Centers, Emma Children's Hospital, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Sabine van Elsland
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Martijn van der Kuip
- Pediatric Infectious Diseases and Immunology, Vrije Universiteit, Amsterdam University Medical Centers, Emma Children's Hospital, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North‒West University, Potchefstroom, South Africa.
| |
Collapse
|
6
|
McCoubrey LE, Seegobin N, Sangfuang N, Moens F, Duyvejonck H, Declerck E, Dierick A, Marzorati M, Basit AW. The colon targeting efficacies of mesalazine medications and their impacts on the gut microbiome. J Control Release 2024; 369:630-641. [PMID: 38599548 DOI: 10.1016/j.jconrel.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Successful treatment of ulcerative colitis (UC) is highly dependent on several parameters, including dosing regimen and the ability to deliver drugs to the disease site. In this study two strategies for delivering mesalazine (5-aminosalicylic acid, 5-ASA) to the colon were compared in an advanced in vitro model of the human gastrointestinal (GI) tract, the SHIME® system. Herein, a prodrug strategy employing bacteria-mediated drug release (sulfasalazine, Azulfidine®) was evaluated alongside a formulation strategy that utilised pH and bacteria-mediated release (5-ASA, Octasa® 1600 mg). SHIME® experiments were performed simulating both the GI physiology and colonic microbiota under healthy and inflammatory bowel disease (IBD) conditions, to study the impact of the disease state and ileal pH variability on colonic 5-ASA delivery. In addition, the effects of the products on the colonic microbiome were investigated by monitoring bacterial growth and metabolites. Results demonstrated that both the prodrug and formulation approaches resulted in a similar percentage of 5-ASA recovery under healthy conditions. On the contrary, during experiments simulating the GI physiology and microbiome of IBD patients (the target population) the formulation strategy resulted in a higher proportion of 5-ASA delivery to the colonic region as compared to the prodrug approach (P < 0.0001). Interestingly, the two products had distinct effects on the synthesis of key bacterial metabolites, such as lactate and short chain fatty acids, which varied according to disease state and ileal pH variability. Further, both 5-ASA and sulfasalazine significantly reduced the growth of the faecal microbiota sourced from six healthy humans. The findings support that the approach selected for colonic drug delivery could significantly influence the effectiveness of UC treatment, and highlight that drugs licensed for UC may differentially impact the growth and functioning of the colonic microbiota.
Collapse
Affiliation(s)
| | - Nidhi Seegobin
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | - Frédéric Moens
- ProDigest BV, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | - Hans Duyvejonck
- ProDigest BV, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | - Eline Declerck
- ProDigest BV, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | - Arno Dierick
- ProDigest BV, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | - Massimo Marzorati
- ProDigest BV, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; CMET (University of Ghent), Coupure Links 653, 9000 Ghent, Belgium
| | - Abdul W Basit
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
7
|
Taherali F, Chouhan N, Wang F, Lavielle S, Baran M, McCoubrey LE, Basit AW, Yadav V. Impact of Peptide Structure on Colonic Stability and Tissue Permeability. Pharmaceutics 2023; 15:1956. [PMID: 37514143 PMCID: PMC10384666 DOI: 10.3390/pharmaceutics15071956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Most marketed peptide drugs are administered parenterally due to their inherent gastrointestinal (GI) instability and poor permeability across the GI epithelium. Several molecular design techniques, such as cyclisation and D-amino acid (D-AA) substitution, have been proposed to improve oral peptide drug bioavailability. However, very few of these techniques have been translated to the clinic. In addition, little is known about how synthetic peptide design may improve stability and permeability in the colon, a key site for the treatment of inflammatory bowel disease and colorectal cancer. In this study, we investigated the impact of various cyclisation modifications and D-AA substitutions on the enzymatic stability and colonic tissue permeability of native oxytocin and 11 oxytocin-based peptides. Results showed that the disulfide bond cyclisation present in native oxytocin provided an improved stability in a human colon model compared to a linear oxytocin derivative. Chloroacetyl cyclisation increased native oxytocin stability in the colonic model at 1.5 h by 30.0%, whereas thioether and N-terminal acetylated cyclisations offered no additional protection at 1.5 h. The site and number of D-AA substitutions were found to be critical for stability, with three D-AAs at Tyr, Ile and Leu, improving native oxytocin stability at 1.5 h in both linear and cyclic structures by 58.2% and 79.1%, respectively. Substitution of three D-AAs into native cyclic oxytocin significantly increased peptide permeability across rat colonic tissue; this may be because D-AA substitution favourably altered the peptide's secondary structure. This study is the first to show how the strategic design of peptide therapeutics could enable their delivery to the colon via the oral route.
Collapse
Affiliation(s)
- Farhan Taherali
- Intract Pharma Ltd., London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK
- Sygnature Discovery, Bio City, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Nerisha Chouhan
- Intract Pharma Ltd., London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK
| | - Fanjin Wang
- Intract Pharma Ltd., London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK
| | | | - Maryana Baran
- Orbit Discovery, Schrodinger Building, Heatley Rd, Oxford OX4 4GE, UK
| | - Laura E McCoubrey
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Vipul Yadav
- Intract Pharma Ltd., London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK
| |
Collapse
|
8
|
Renner TM, Agbayani G, Dudani R, McCluskie MJ, Akache B. Blood-Based Immune Protein Markers of Disease Progression in Murine Models of Acute and Chronic Inflammatory Bowel Disease. Biomedicines 2023; 11:biomedicines11010140. [PMID: 36672648 PMCID: PMC9855888 DOI: 10.3390/biomedicines11010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/09/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic ailment afflicting millions of people worldwide, with the majority of recognized cases within industrialized countries. The impacts of IBD at the individual level are long-lasting with few effective treatments available, resulting in a large burden on the health care system. A number of existing animal models are utilized to evaluate novel treatment strategies. Two commonly used models are (1) acute colitis mediated by dextran sulphate sodium (DSS) treatment of wild-type mice and (2) chronic colitis mediated by the transfer of proinflammatory T cells into immunodeficient mice. Despite the wide use of these particular systems to evaluate IBD therapeutics, the typical readouts of clinical disease progression vary depending on the model used, which may be reflective of mechanistic differences of disease induction. The most reliable indicator of disease in both models remains intestinal damage which is typically evaluated upon experimental endpoint. Herein, we evaluated the expression profile of a panel of cytokines and chemokines in both DSS and T cell transfer models in an effort to identify a number of inflammatory markers in the blood that could serve as reliable indicators of the relative disease state. Out of the panel of 25 markers tested, 6 showed statistically significant shifts with the DSS model, compared to 11 in the T cell transfer model with IL-6, IL-13, IL-22, TNF-α and IFN-γ being common markers of disease in both models. Our data highlights biological differences between animal models of IBD and helps to guide future studies when selecting efficacy readouts during the evaluation of experimental IBD therapeutics.
Collapse
|
9
|
McCoubrey LE, Favaron A, Awad A, Orlu M, Gaisford S, Basit AW. Colonic drug delivery: Formulating the next generation of colon-targeted therapeutics. J Control Release 2023; 353:1107-1126. [PMID: 36528195 DOI: 10.1016/j.jconrel.2022.12.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/26/2022]
Abstract
Colonic drug delivery can facilitate access to unique therapeutic targets and has the potential to enhance drug bioavailability whilst reducing off-target effects. Delivering drugs to the colon requires considered formulation development, as both oral and rectal dosage forms can encounter challenges if the colon's distinct physiological environment is not appreciated. As the therapeutic opportunities surrounding colonic drug delivery multiply, the success of novel pharmaceuticals lies in their design. This review provides a modern insight into the key parameters determining the effective design and development of colon-targeted medicines. Influential physiological features governing the release, dissolution, stability, and absorption of drugs in the colon are first discussed, followed by an overview of the most reliable colon-targeted formulation strategies. Finally, the most appropriate in vitro, in vivo, and in silico preclinical investigations are presented, with the goal of inspiring strategic development of new colon-targeted therapeutics.
Collapse
Affiliation(s)
- Laura E McCoubrey
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alessia Favaron
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Atheer Awad
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Mine Orlu
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Simon Gaisford
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Abdul W Basit
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK.
| |
Collapse
|
10
|
Vieujean S, D’Amico F, Netter P, Danese S, Peyrin‐Biroulet L. Landscape of new drugs and targets in inflammatory bowel disease. United European Gastroenterol J 2022; 10:1129-1166. [PMID: 36112543 PMCID: PMC9752289 DOI: 10.1002/ueg2.12305] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/22/2022] [Indexed: 01/13/2023] Open
Abstract
Although the therapeutic armamentarium of Inflammatory bowel diseases (IBD) physicians has expanded rapidly in recent years, a proportion of patients remain with a suboptimal response to medical treatment due to primary no response, loss of response or intolerance to currently available drugs. Our growing knowledges of IBD pathophysiology has led to the development of a multitude of new therapies over time, which may, 1 day, be able to address this unmet medical need. This review aims to provide physicians an update of emerging therapies in IBD by focusing on drugs currently in phase 3 clinical trials. Among the most promising molecules are anti-IL-23, JAK-inhibitors, anti-integrins and S1P modulators. While the results in terms of efficacy and safety are fairly clear for some classes, the question of safety remains more uncertain for other classes. Molecules at a more preliminary stage of development (phase 1 and 2), one of which may 1 day offer an optimal benefit-risk ratio, will also be presented as well as their respective mechanisms of action.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato‐Gastroenterology and Digestive OncologyUniversity Hospital CHU of LiègeLiègeBelgium
| | - Ferdinando D’Amico
- Department of Gastroenterology and EndoscopyIRCCS San Raffaele Hospital and Vita‐Salute San Raffaele UniversityMilanItaly
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleMilanItaly
| | | | - Silvio Danese
- Department of Gastroenterology and EndoscopyIRCCS San Raffaele Hospital and Vita‐Salute San Raffaele UniversityMilanItaly
| | - Laurent Peyrin‐Biroulet
- Department of GastroenterologyUniversity of LorraineCHRU‐NancyNancyFrance
- University of LorraineInserm, NGERENancyFrance
| |
Collapse
|
11
|
Yadav V, House A, Matiz S, McCoubrey LE, Bettano KA, Bhave L, Wang M, Fan P, Zhou S, Woodhouse JD, Poimenidou E, Dou L, Basit AW, Moy LY, Saklatvala R, Hegde LG, Yu H. Ileocolonic-Targeted JAK Inhibitor: A Safer and More Effective Treatment for Inflammatory Bowel Disease. Pharmaceutics 2022; 14:2385. [PMID: 36365202 PMCID: PMC9698010 DOI: 10.3390/pharmaceutics14112385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 07/30/2023] Open
Abstract
Janus kinase (JAK) inhibitors, such as tofacitinib (Xeljanz) and filgotinib (Jyseleca), have been approved for treatment of ulcerative colitis with several other JAK inhibitors in late-stage clinical trials for inflammatory bowel disease (IBD). Despite their impressive efficacy, the risk of adverse effects accompanying the use of JAK inhibitors has brought the entire class under scrutiny, leading to them receiving an FDA black box warning. In this study we investigated whether ileocolonic-targeted delivery of a pan-JAK inhibitor, tofacitinib, can lead to increased tissue exposure and reduced systemic exposure compared to untargeted formulations. The stability of tofacitinib in the presence of rat colonic microbiota was first confirmed. Next, in vivo computed tomography imaging was performed in rats to determine the transit time and disintegration site of ileocolonic-targeted capsules compared to gastric release capsules. Pharmacokinetic studies demonstrated that systemic drug exposure was significantly decreased, and colonic tissue exposure increased at 10 mg/kg tofacitinib dosed in ileocolonic-targeted capsules compared to gastric release capsules and an oral solution. Finally, in a rat model of LPS-induced colonic inflammation, targeted tofacitinib capsules significantly reduced concentrations of proinflammatory interleukin 6 in colonic tissue compared to a vehicle-treated control (p = 0.0408), unlike gastric release tofacitinib capsules and orally administered dexamethasone. Overall, these results support further development of ileocolonic-targeted tofacitinib, and potentially other specific JAK inhibitors in pre-clinical and clinical development, for the treatment of IBD.
Collapse
Affiliation(s)
- Vipul Yadav
- Intract Pharma Ltd., London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK
| | - Aileen House
- Merck & Co., Inc., 126 East Lincoln Avenue, P.O. Box 2000, Rahway, NJ 07065, USA
| | - Silvia Matiz
- Intract Pharma Ltd., London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK
| | - Laura E. McCoubrey
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Kimberly A. Bettano
- Merck & Co., Inc., 126 East Lincoln Avenue, P.O. Box 2000, Rahway, NJ 07065, USA
| | - Leena Bhave
- Merck & Co., Inc., 126 East Lincoln Avenue, P.O. Box 2000, Rahway, NJ 07065, USA
| | - Meiyao Wang
- Merck & Co., Inc., 126 East Lincoln Avenue, P.O. Box 2000, Rahway, NJ 07065, USA
- Karuna Therapeutics, Inc., 99 High St Floor 26, Boston, MA 02110, USA
| | - Peter Fan
- Merck & Co., Inc., 126 East Lincoln Avenue, P.O. Box 2000, Rahway, NJ 07065, USA
- Treeline Biosciences, 500 Arsenal Street, Suite 201, Watertown, MA 02472, USA
| | - Siqun Zhou
- Merck & Co., Inc., 126 East Lincoln Avenue, P.O. Box 2000, Rahway, NJ 07065, USA
| | - Janice D. Woodhouse
- Merck & Co., Inc., 126 East Lincoln Avenue, P.O. Box 2000, Rahway, NJ 07065, USA
| | | | - Liu Dou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou 510275, China
| | - Abdul W. Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Lily Y. Moy
- Merck & Co., Inc., 126 East Lincoln Avenue, P.O. Box 2000, Rahway, NJ 07065, USA
| | - Robert Saklatvala
- Merck & Co., Inc., 126 East Lincoln Avenue, P.O. Box 2000, Rahway, NJ 07065, USA
- Kallyope, 430 East 29th Street, 10th Floor, New York, NY 10016, USA
| | | | - Hongshi Yu
- Merck & Co., Inc., 126 East Lincoln Avenue, P.O. Box 2000, Rahway, NJ 07065, USA
| |
Collapse
|
12
|
Awad A, Madla CM, McCoubrey LE, Ferraro F, Gavins FK, Buanz A, Gaisford S, Orlu M, Siepmann F, Siepmann J, Basit AW. Clinical translation of advanced colonic drug delivery technologies. Adv Drug Deliv Rev 2022; 181:114076. [PMID: 34890739 DOI: 10.1016/j.addr.2021.114076] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Targeted drug delivery to the colon offers a myriad of benefits, including treatment of local diseases, direct access to unique therapeutic targets and the potential for increasing systemic drug bioavailability and efficacy. Although a range of traditional colonic delivery technologies are available, these systems exhibit inconsistent drug release due to physiological variability between and within individuals, which may be further exacerbated by underlying disease states. In recent years, significant translational and commercial advances have been made with the introduction of new technologies that incorporate independent multi-stimuli release mechanisms (pH and/or microbiota-dependent release). Harnessing these advanced technologies offers new possibilities for drug delivery via the colon, including the delivery of biopharmaceuticals, vaccines, nutrients, and microbiome therapeutics for the treatment of both local and systemic diseases. This review details the latest advances in colonic drug delivery, with an emphasis on emerging therapeutic opportunities and clinical technology translation.
Collapse
|
13
|
Machine Learning Predicts Drug Metabolism and Bioaccumulation by Intestinal Microbiota. Pharmaceutics 2021; 13:pharmaceutics13122001. [PMID: 34959282 PMCID: PMC8707855 DOI: 10.3390/pharmaceutics13122001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/09/2023] Open
Abstract
Over 150 drugs are currently recognised as being susceptible to metabolism or bioaccumulation (together described as depletion) by gastrointestinal microorganisms; however, the true number is likely higher. Microbial drug depletion is often variable between and within individuals, depending on their unique composition of gut microbiota. Such variability can lead to significant differences in pharmacokinetics, which may be associated with dosing difficulties and lack of medication response. In this study, literature mining and unsupervised learning were used to curate a dataset of 455 drug-microbiota interactions. From this, 11 supervised learning models were developed that could predict drugs' susceptibility to depletion by gut microbiota. The best model, a tuned extremely randomised trees classifier, achieved performance metrics of AUROC: 75.1% ± 6.8; weighted recall: 79.2% ± 3.9; balanced accuracy: 69.0% ± 4.6; and weighted precision: 80.2% ± 3.7 when validated on 91 drugs. This machine learning model is the first of its kind and provides a rapid, reliable, and resource-friendly tool for researchers and industry professionals to screen drugs for susceptibility to depletion by gut microbiota. The recognition of drug-microbiome interactions can support successful drug development and promote better formulations and dosage regimens for patients.
Collapse
|
14
|
pH-Responsive Alginate-Based Microparticles for Colon-Targeted Delivery of Pure Cyclosporine A Crystals to Treat Ulcerative Colitis. Pharmaceutics 2021; 13:pharmaceutics13091412. [PMID: 34575488 PMCID: PMC8469027 DOI: 10.3390/pharmaceutics13091412] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
Cyclosporine A (CsA) is a potent immunosuppressant for treating ulcerative colitis (UC). However, owing to severe systemic side effects, CsA application in UC therapy remains limited. Herein, a colon-targeted drug delivery system consisting of CsA crystals (CsAc)-loaded, Eudragit S 100 (ES)-coated alginate microparticles (CsAc-EAMPs) was established to minimize systemic side effects and enhance the therapeutic efficacy of CsA. Homogeneously-sized CsAs (3.1 ± 0.9 μm) were prepared by anti-solvent precipitation, followed by the fabrication of 47.1 ± 6.5 μm-sized CsAc-EAMPs via ionic gelation and ES coating. CsAc-EAMPs exhibited a high drug loading capacity (48 ± 5%) and a CsA encapsulation efficacy of 77 ± 9%. The in vitro drug release study revealed that CsA release from CsAc-EAMPs was suppressed under conditions simulating the stomach and small intestine, resulting in minimized systemic absorption and side effects. Following exposure to the simulated colon conditions, along with ES dissolution and disintegration of alginate microparticles, CsA was released from CsAc-EAMPs, exhibiting a sustained-release profile for up to 24 h after administration. Given the effective colonic delivery of CsA molecules, CsAc-EAMPs conferred enhanced anti-inflammatory activity in mouse model of dextran sulfate sodium (DSS)-induced colitis. These findings suggest that CsAc-EAMPs is a promising drug delivery system for treating UC.
Collapse
|