1
|
Sah A, Singewald N. The (neuro)inflammatory system in anxiety disorders and PTSD: Potential treatment targets. Pharmacol Ther 2025; 269:108825. [PMID: 39983845 DOI: 10.1016/j.pharmthera.2025.108825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/06/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Targeting the immune system has recently garnered attention in the treatment of stress- associated psychiatric disorders resistant to existing pharmacotherapeutics. While such approaches have been studied in considerable detail in depression, the role of (neuro)inflammation in anxiety-related disorders, or in anxiety as an important transdiagnostic symptom, is much less clear. In this review we first critically review clinical and in part preclinical evidence of central and peripheral immune dysregulation in anxiety disorders and post-traumatic stress disorder (PTSD) and briefly discuss proposed mechanisms of how inflammation can affect anxiety-related symptoms. We then give an overview of existing and potential future targets in inflammation-associated signal transduction pathways and discuss effects of different immune-modulatory drugs in anxiety-related disorders. Finally, we discuss key gaps in current clinical trials such as the lack of prospective studies involving anxiety patient stratification strategies based on inflammatory biomarkers. Overall, although evidence is rather limited so far, there is data to indicate that increased (neuro)inflammation is present in subgroups of anxiety disorder patients. Although exact identification of such immune subtypes of anxiety disorders and PTSD is still challenging, these patients will likely particularly benefit from therapeutic targeting of aspects of the inflammatory system. Different anti-inflammatory treatment approaches (microglia-directed treatments, pro-inflammatory cytokine inhibitors, COX-inhibitors, phytochemicals and a number of novel anti-inflammatory agents) have indeed shown some efficacy even in non-stratified anxiety patient groups and appear promising as novel alternative or complimentary therapeutic options in specific ("inflammatory") subtypes of anxiety disorder and PTSD patients.
Collapse
Affiliation(s)
- Anupam Sah
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, Leopold Franzens University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
2
|
Liu F, Qin Y, Luo W, Ruan X, Lu L, Feng B, Yu J. Construction of a risk model associated with tryptophan metabolism and identification of related molecular subtypes in laryngeal squamous cell carcinoma. Front Genet 2025; 16:1530334. [PMID: 40196225 PMCID: PMC11973366 DOI: 10.3389/fgene.2025.1530334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Catabolic metabolites of tryptophan (Trp) are considered to be important microenvironmental factors by suppressing anti-tumor immune responses in cancers. Nevertheless, the effect of Trp metabolism (Trp metabolism)-related genes Trp metabolism-related genes on laryngeal squamous cell carcinoma (LSCC) progression is not yet clear. So, in this study, the TCGA-LSCC, GSE27020, and 40 TMRGs were extracted via public databases to explore the effects of TMRGs on laryngeal squamous cell carcinoma. Firstly, Weighted Gene Co-expression Network Analysis (WGCNA) was adopted with LSCC samples in TCGA-LSCC to acquire key module, and differentially expressed genes between LSCC and normal samples from TCGA-LSCC were yielded via differential expression analysis. Next, differentially expressed TMRGs (DE-TMRGs) was obtained in key model and DEGs, and prognostic genes were identifde through multiple algorithms. Five prognostic genes, namely SERPINA1, TMC8, RENBP, SDS and FAM107A were finally identified. A risk model was established based on the expressions of prognostic genes and survival information of LSCC samples while that were divided into high and low risk groups. Obviously, the LSCC immune dysfunction and exclusion score of high-risk patients was dramatically higher than that in low-risk patients, indicating that patients in the high-risk subgroup exhibited reduced responsiveness to immunotherapy. Besides, the drug sensitivity analysis showed that the low -risk subgroup was notably sensitive to Salubrinal, Lenalidomide, Metformin, while high -risk subgroup was more responsive to Docetaxel, AUY922, Embelin. Eventually, two clusters of LSCC samples had notable correlations with LSCC prognosis. The above results indicated that the risk model consisted of TMRGs (SERPINA1, TMC8, RENBP, SDS and FAM107A) was constructed in LSCC, contributing to studies related to the prognosis and treatment of LSCC.
Collapse
Affiliation(s)
- Feng Liu
- Department of Head and Neck Surgery, Shanxi Cancer Hospital, Taiyuan, China
| | - Yanchao Qin
- Department of Head and Neck Surgery, Shanxi Cancer Hospital, Taiyuan, China
| | - Wei Luo
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - XianHui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Lifang Lu
- Department of Head and Neck Surgery, Shanxi Cancer Hospital, Taiyuan, China
| | - Bowei Feng
- School of Stomatology,Shanxi Medical University, Taiyuan, China
| | - Jianfei Yu
- Department of Head and neck radiotherapy, Shanxi Cancer Hospital, Taiyuan, China
| |
Collapse
|
3
|
Sun P, Wang M, Chai X, Liu YX, Li L, Zheng W, Chen S, Zhu X, Zhao S. Disruption of tryptophan metabolism by high-fat diet-triggered maternal immune activation promotes social behavioral deficits in male mice. Nat Commun 2025; 16:2105. [PMID: 40025041 PMCID: PMC11873046 DOI: 10.1038/s41467-025-57414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
Diet-related maternal obesity has been implicated in neurodevelopmental disorders in progeny. Although the precise mechanisms and effective interventions remain uncertain, our research elucidates some of these complexities. We established that a prenatal high-fat diet triggered maternal immune activation (MIA), marked by elevated serum lipopolysaccharide levels and inflammatory-cytokine overproduction, which dysregulated the maternal tryptophan metabolism promoting the accumulation of neurotoxic kynurenine metabolites in the embryonic brain. Interventions aimed at mitigating MIA or blocking the kynurenine pathway effectively rescued the male mice social performance. Furthermore, excessive kynurenine metabolites initiated oxidative stress response causing neuronal migration deficits in the fetal neocortex, an effect that was mitigated by administering the glutathione synthesis precursor N-Acetylcysteine, underscoring the central role of maternal immune-metabolic homeostasis in male mice behavioral outcomes. Collectively, our study accentuated the profound influence of maternal diet-induced immuno-metabolic dysregulation on fetal brain development and provided the preventive strategies for addressing neurodevelopmental disorders.
Collapse
Affiliation(s)
- Penghao Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengli Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuejun Chai
- College of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi, China.
| | - Yong-Xin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Luqi Li
- Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Zheng
- College of Resources and Environment Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
4
|
Bertollo AG, Mingoti MED, Ignácio ZM. Neurobiological mechanisms in the kynurenine pathway and major depressive disorder. Rev Neurosci 2025; 36:169-187. [PMID: 39245854 DOI: 10.1515/revneuro-2024-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Major depressive disorder (MDD) is a prevalent psychiatric disorder that has damage to people's quality of life. Tryptophan is the precursor to serotonin, a critical neurotransmitter in mood modulation. In mammals, most free tryptophan is degraded by the kynurenine pathway (KP), resulting in a range of metabolites involved in inflammation, immune response, and neurotransmission. The imbalance between quinolinic acid (QA), a toxic metabolite, and kynurenic acid (KynA), a protective metabolite, is a relevant phenomenon involved in the pathophysiology of MDD. Proinflammatory cytokines increase the activity of the enzyme indoleamine 2,3-dioxygenase (IDO), leading to the degradation of tryptophan in the KP and an increase in the release of QA. IDO activates proinflammatory genes, potentiating neuroinflammation and deregulating other physiological mechanisms related to chronic stress and MDD. This review highlights the physiological mechanisms involved with stress and MDD, which are underlying an imbalance of the KP and discuss potential therapeutic targets.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Maiqueli Eduarda Dama Mingoti
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
5
|
Guo K, Ma P, Yang Q, Xu L, Zhang B, Zhang H, Zheng Z, Zhuo Z. Activation of RHO-GTPase gene pattern correlates with adverse clinical outcome and immune microenvironment in clear cell renal cell carcinoma. Clin Exp Med 2025; 25:67. [PMID: 39998699 PMCID: PMC11861022 DOI: 10.1007/s10238-025-01593-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC), the most prevalent renal cancer subtype, is frequently associated with poor prognosis. RHO-GTPase signaling genes have been implicated in tumor aggressiveness and unfavorable survival, but their potential in risk stratification and therapeutic guidance for ccRCC patients remains unexplored. Univariate regression identified prognostically relevant RHO-GTPase signaling genes, followed by consensus clustering for ccRCC subtype classification. LASSO regression selected key genes to construct a six-gene risk model. The model was evaluated for prognostic stratification, immune status, immunotherapy response, and chemotherapy sensitivity. Key genes were analyzed at the genomic, single-cell, and protein levels to explore underlying mechanisms. Among 62 prognostically relevant RHO-GTPase signaling genes, six (ARHGAP11B, NUF2, PLK1, CYFIP2, IQGAP2, and VAV3) were identified to form a robust prognostic signature. This model stratified patients into high- and low-risk groups, with high-risk patients demonstrating significantly worse outcomes. The model exhibited excellent predictive accuracy (AUC > 0.7 in training and validation cohorts). High-risk patients were characterized by an immunosuppressive microenvironment and reduced sensitivity to immunotherapy. Drug sensitivity analysis revealed 107 agents correlated with the risk score, underscoring therapeutic relevance. Mechanistically, the six key genes showed distinct expression patterns, cellular distribution, and positive correlation with VHL mutations, highlighting their potential as actionable drug targets. This study established a novel six-gene RHO-GTPase signaling model for predicting prognosis, immune status, and therapeutic responses in ccRCC, which offers potential for improving patient stratification and guiding personalized treatment strategies.
Collapse
Affiliation(s)
- Kehang Guo
- Department of Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Pengyue Ma
- Department of Nephrology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Yang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Lingli Xu
- Dadong Street Community Health Service Center, Guangzhou, 510080, China
| | - Biixiong Zhang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Hong Zhang
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China.
| | - Zhongwen Zheng
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Heyuan People's Hospital, Heyuan, 517001, Guangdong, China.
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Wang L, Qin N, Gao S, Zhu T. Ginsenoside Rb3 Promotes Opa1-Mediated Regenerative Neurogenesis via Activating the Ido1 Pathway in Ischemic Stroke. Phytother Res 2025; 39:564-580. [PMID: 39568396 DOI: 10.1002/ptr.8392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/10/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024]
Abstract
The activation of neural stem cells (NSCs) residing in the subventricular zone (SVZ) and dentate gyrus (DG) has been shown to promote the restoration of damaged brain tissues. Ginsenoside Rb3 (Rb3) is a bioactive substance known for its pharmacological properties in treating neurological disorders. This study investigated the effects of Rb3 on neural regeneration following ischaemic stroke (IS) and the underlying mechanisms involved. Male C57BL/6 mice were utilized and were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). Post-ischemia, Rb3 was administered through intraperitoneal (i.p.) injection for either 7 or 28 days. The promotion of Rb3 on regenerative neurogenesis was detected by immunofluorescence staining. NSCs were pretreated with different concentrations of Rb3 for 24 h before oxygen-glucose deprivation/reoxygenation (OGD/R) exposure. Afterward, immunofluorescence staining and flow cytometry were used to detect the migration and proliferation of Rb3 in OGD/R-induced NSCs. Furthermore, Adeno-associated virus (AAV) transduction experiments, siRNA transfection experiments, gene knockout experiments, targeted metabolomics analysis, molecular dynamics simulation, cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) assays were used to explore the promotion and mechanism of Rb3 on regenerative neurogenesis following IS. Rb3 promoted Opa1-mediated NSCs migration and proliferation. Knockdown of Opa1 blunted the above-promoting effects of Rb3 in both the brains of ischemia-reperfusion (I/R)-treated mice and OGD/R-treated NSCs. Mechanistically, targeted metabolomics, molecular dynamics, molecular docking, CETAS, and DARTS experiments showed that Rb3 promoted Opa1-mediated neural regeneration required the activation of Ido1 and that Ido1 served as a direct target of Rb3 to repair I/R injury. Moreover, studies in siRNA-mediated knockdown and KO mice revealed that inhibition of Ido1 attenuated the enhancing effect of Rb3 on mitochondrial fusion. Our study provides novel evidence that Rb3 promotes neurogenesis through an Ido1/Opa1-mediated pathway involving the interaction between Rb3 and Ido1, leading to improved long-term neurological function. These results indicate that Rb3 or other mitochondrial fusion promoters could be a potential neurorestorative strategy for regenerative neurogenesis following IS.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Na Qin
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shiman Gao
- Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Ting Zhu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Polyák H, Galla Z, Rajda C, Monostori P, Klivényi P, Vécsei L. Plasma and Visceral Organ Kynurenine Metabolites Correlate in the Multiple Sclerosis Cuprizone Animal Model. Int J Mol Sci 2025; 26:976. [PMID: 39940744 PMCID: PMC11817772 DOI: 10.3390/ijms26030976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The cuprizone (CPZ) model of multiple sclerosis (MS) is excellent for studying the molecular differences behind the damage caused by poisoning. Metabolic differences in the kynurenine pathway (KP) of tryptophan (TRP) degradation are observed in both MS and a CPZ mouse model. Our goal was to analyze the kynurenine, serotonin, and indole pathways of TRP degradation on the periphery, in the neurodegenerative processes of inflammation. In our study, mice were fed with 0.2% CPZ toxin for 5 weeks. We examined the metabolites in the three pathways of TRP breakdown in urine, plasma, and relevant visceral organs with bioanalytical measurements. In our analyses, we found a significant increase in plasma TRP, 5-hydroxytryptophan (5-HTP), and indole-3-acetic acid (IAA) levels, while a decrease in the concentrations of 3-hydroxy-L-kynurenine (3-HK), xanthurenic acid (XA), kynurenic acid (KYNA), and quinaldic acid in the plasma of toxin-treated group was found. A marked decrease in the levels of 3-HK, XA, KYNA, quinaldic acid, and indole-3-lactic acid was also observed in the visceral organs by the end of the poisoning. Furthermore, we noticed a decrease in the urinary levels of the TRP, KYNA, and XA metabolites, while an increase in serotonin and 5-hydroxyindoleacetic acid in the CPZ group was noticed. The toxin treatment resulted in elevated tryptamine and indoxyl sulfate levels and reduced IAA concentration. Moreover, the urinary para-cresyl sulfate concentration also increased in the treated group. In the present study, we showed the differences in the three main metabolic pathways of TRP degradation in the CPZ model. We confirmed the relationship and correlation between the content of the kynurenine metabolites in the plasma and the tissues of the visceral organs. We emphasized the suppression of the KP and the activity of the serotonin and indole pathways with a particular regard to the involvement of the microbiome by the indole pathway. Consequently, this is the first study to analyze in detail the distribution of the kynurenine, serotonin, and indole pathways of TRP degradation in the periphery.
Collapse
Affiliation(s)
- Helga Polyák
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (H.P.); (C.R.); (P.K.)
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| | - Zsolt Galla
- Department of Pediatrics, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.G.); (P.M.)
| | - Cecilia Rajda
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (H.P.); (C.R.); (P.K.)
| | - Péter Monostori
- Department of Pediatrics, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.G.); (P.M.)
| | - Péter Klivényi
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (H.P.); (C.R.); (P.K.)
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (H.P.); (C.R.); (P.K.)
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
8
|
Szabó Á, Galla Z, Spekker E, Szűcs M, Martos D, Takeda K, Ozaki K, Inoue H, Yamamoto S, Toldi J, Ono E, Vécsei L, Tanaka M. Oxidative and Excitatory Neurotoxic Stresses in CRISPR/Cas9-Induced Kynurenine Aminotransferase Knockout Mice: A Novel Model for Despair-Based Depression and Post-Traumatic Stress Disorder. FRONT BIOSCI-LANDMRK 2025; 30:25706. [PMID: 39862084 DOI: 10.31083/fbl25706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/24/2024] [Accepted: 11/18/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUNDS Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders. The majority of KYNA is produced by the aadat (kat2) gene-encoded mitochondrial kynurenine aminotransferase (KAT) isotype 2. Little is known about the consequences of deleting the KYN enzyme gene. METHODS In CRISPR/Cas9-induced aadat knockout (kat2-/-) mice, we examined the effects on emotion, memory, motor function, Trp and its metabolite levels, enzyme activities in the plasma and urine of 8-week-old males compared to wild-type mice. RESULTS Transgenic mice showed more depressive-like behaviors in the forced swim test, but not in the tail suspension, anxiety, or memory tests. They also had fewer center field and corner entries, shorter walking distances, and fewer jumping counts in the open field test. Plasma metabolite levels are generally consistent with those of urine: antioxidant KYNs, 5-hydroxyindoleacetic acid, and indole-3-acetic acid levels were lower; enzyme activities in KATs, kynureninase, and monoamine oxidase/aldehyde dehydrogenase were lower, but kynurenine 3-monooxygenase was higher; and oxidative stress and excitotoxicity indices were higher. Transgenic mice displayed depression-like behavior in a learned helplessness model, emotional indifference, and motor deficits, coupled with a decrease in KYNA, a shift of Trp metabolism toward the KYN-3-hydroxykynurenine pathway, and a partial decrease in the gut microbial Trp-indole pathway metabolite. CONCLUSIONS This is the first evidence that deleting the aadat gene induces depression-like behaviors uniquely linked to experiences of despair, which appear to be associated with excitatory neurotoxic and oxidative stresses. This may lead to the development of a double-hit preclinical model in despair-based depression, a better understanding of these complex conditions, and more effective therapeutic strategies by elucidating the relationship between Trp metabolism and PTSD pathogenesis.
Collapse
Affiliation(s)
- Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Zsolt Galla
- Department of Pediatrics, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Eleonóra Spekker
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary
| | - Mónika Szűcs
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
| | - Diána Martos
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary
| | - Keiko Takeda
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Kinuyo Ozaki
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Hiromi Inoue
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Sayo Yamamoto
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Etsuro Ono
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary
| |
Collapse
|
9
|
Du J, Fang L, Dong K, Zhou Z. Exploring the complex relationship between attention deficit hyperactivity disorder and the immune system: A bidirectional Mendelian randomization analysis. J Affect Disord 2025; 369:854-860. [PMID: 39426507 DOI: 10.1016/j.jad.2024.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental condition that can be accompanied by alterations in immune markers. However, the intricate nature of the association between ADHD and immune markers remains insufficiently elucidated. To explore the currently ambiguous causal relationship between ADHD and the immune system, we performed a bidirectional Mendelian randomization (MR) analysis of immune cell traits and ADHD under the randomized inverse variance weighting (IVW) method based on genome-wide association study (GWAS) summary data. We found ADHD increased the level of 3 immune cell traits including myeloid dendritic cells (β = 0.28, P = 0.008), monocyte (β = 0.25, P = 0.024) and granulocyte (β = 0.2, P = 0.042). We also identified 1 trait which belongs to B cell panel was a risk factor (odds ratio (OR) = 1.07, P = 0.001) for ADHD onset. Other 5 traits including CD14+ monocyte (OR = 0.98, P = 0.002), immature myeloid-derived suppressor cells (MDSC) (OR = 0.98, P = 0.003), monocyte MDSC (OR = 0.95, P = 0.005), CD33br HLA DR+ (OR = 0.97, P = 0.021) and basophil (OR = 0.96, P = 0.022) were protective factors for ADHD. Here we identified a range of causal relationships extending from ADHD to immune cell traits, underscoring the complex interaction patterns between ADHD and the immune system. Enhanced interventions for protective and risk factors may be beneficial in the prevention and treatment of ADHD.
Collapse
Affiliation(s)
- Jianbin Du
- Department of Geriatric Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China.
| | - Lin Fang
- Department of Clinical Psychology, Affiliated Children's Hospital of Jiangnan University, Wuxi, Jiangsu 214023, China
| | - Kunlun Dong
- Department of Clinical Psychology, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Zhenhe Zhou
- Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China.
| |
Collapse
|
10
|
Tanaka M, Vécsei L. Revolutionizing our understanding of Parkinson's disease: Dr. Heinz Reichmann's pioneering research and future research direction. J Neural Transm (Vienna) 2024; 131:1367-1387. [PMID: 39110245 PMCID: PMC11608389 DOI: 10.1007/s00702-024-02812-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 11/17/2024]
Abstract
Millions of individuals around the world are afflicted with Parkinson's disease (PD), a prevalent and incapacitating neurodegenerative disorder. Dr. Reichmann, a distinguished professor and neurologist, has made substantial advancements in the domain of PD research, encompassing both fundamental scientific investigations and practical applications. His research has illuminated the etiology and treatment of PD, as well as the function of energy metabolism and premotor symptoms. As a precursor to a number of neurotransmitters and neuromodulators that are implicated in the pathophysiology of PD, he has also investigated the application of tryptophan (Trp) derivatives in the disease. His principal findings and insights are summarized and synthesized in this narrative review article, which also emphasizes the challenges and implications for future PD research. This narrative review aims to identify and analyze the key contributions of Reichmann to the field of PD research, with the ultimate goal of informing future research directions in the domain. By examining Reichmann's work, the study seeks to provide a comprehensive understanding of his major contributions and how they can be applied to advance the diagnosis and treatment of PD. This paper also explores the potential intersection of Reichmann's findings with emerging avenues, such as the investigation of Trp and its metabolites, particularly kynurenines, which could lead to new insights and potential therapeutic strategies for managing neurodegenerative disorders like PD.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, Szeged, H-6725, Hungary.
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, Szeged, H-6725, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| |
Collapse
|
11
|
Brzezińska P, Mieszkowski J, Stankiewicz B, Kowalik T, Reczkowicz J, Niespodziński B, Durzyńska A, Kowalski K, Borkowska A, Antosiewicz J, Kochanowicz A. Direct effects of remote ischemic preconditioning on post-exercise-induced changes in kynurenine metabolism. Front Physiol 2024; 15:1462289. [PMID: 39659803 PMCID: PMC11628380 DOI: 10.3389/fphys.2024.1462289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Purpose Tryptophan (TRP) degradation through the kynurenine pathway is responsible for converting 95% of free TRP into kynurenines, which modulate skeletal muscle bioenergetics, immune and central nervous system activity. Therefore, changes in the kynurenines during exercise have been widely studied but not in the context of the effects of remote ischemic preconditioning (RIPC). In this study, we analyzed the effect of 14-day RIPC training on kynurenines and TRP in runners after running intervals of 20 × 400 m. Methods In this study, 27 semi-professional long-distance runners were assigned to two groups: a RIPC group performing 14 days of RIPC training (n = 12), and a placebo group, SHAM (n = 15). Blood was collected for analysis before, immediately after, and at 6 h and 24 h after the run. Results After the 14-day RIPC/SHAM intervention, post hoc analysis showed a significantly lower concentration of XANA and kynurenic acid to kynurenine ratio (KYNA/KYN) in the RIPC group than in the SHAM group immediately after the running test. Conversely, the decrease in serum TRP levels was higher in the RIPC population. Conclusion RIPC modulates post-exercise changes in XANA and TRP levels, which can affect brain health, yet further research is needed.
Collapse
Affiliation(s)
- Paulina Brzezińska
- Department of Gymnastics and Dance, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Jan Mieszkowski
- Department of Gymnastics and Dance, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
- Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Błażej Stankiewicz
- Department of Theory and Methodology of Physical Education and Sport, Faculty of Health Sciences and Physical Education, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Tomasz Kowalik
- Department of Theory and Methodology of Physical Education and Sport, Faculty of Health Sciences and Physical Education, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Joanna Reczkowicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Bartłomiej Niespodziński
- Department of Biological Foundations of Physical Education, Faculty of Health Sciences and Physical Education, Kazimierz Wielki University, Bydgoszcz, Poland
| | | | - Konrad Kowalski
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Andżelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Jędrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej Kochanowicz
- Department of Gymnastics and Dance, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| |
Collapse
|
12
|
Adamu MJ, Kawuwa HB, Qiang L, Nyatega CO, Younis A, Fahad M, Dauya SS. Efficient and Accurate Brain Tumor Classification Using Hybrid MobileNetV2-Support Vector Machine for Magnetic Resonance Imaging Diagnostics in Neoplasms. Brain Sci 2024; 14:1178. [PMID: 39766377 PMCID: PMC11674380 DOI: 10.3390/brainsci14121178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Magnetic Resonance Imaging (MRI) plays a vital role in brain tumor diagnosis by providing clear visualization of soft tissues without the use of ionizing radiation. Given the increasing incidence of brain tumors, there is an urgent need for reliable diagnostic tools, as misdiagnoses can lead to harmful treatment decisions and poor outcomes. While machine learning has significantly advanced medical diagnostics, achieving both high accuracy and computational efficiency remains a critical challenge. METHODS This study proposes a hybrid model that integrates MobileNetV2 for feature extraction with a Support Vector Machine (SVM) classifier for the classification of brain tumors. The model was trained and validated using the Kaggle MRI brain tumor dataset, which includes 7023 images categorized into four types: glioma, meningioma, pituitary tumor, and no tumor. MobileNetV2's efficient architecture was leveraged for feature extraction, and SVM was used to enhance classification accuracy. RESULTS The proposed hybrid model showed excellent results, achieving Area Under the Curve (AUC) scores of 0.99 for glioma, 0.97 for meningioma, and 1.0 for both pituitary tumors and the no tumor class. These findings highlight that the MobileNetV2-SVM hybrid not only improves classification accuracy but also reduces computational overhead, making it suitable for broader clinical use. CONCLUSIONS The MobileNetV2-SVM hybrid model demonstrates substantial potential for enhancing brain tumor diagnostics by offering a balance of precision and computational efficiency. Its ability to maintain high accuracy while operating efficiently could lead to better outcomes in medical practice, particularly in resource limited settings.
Collapse
Affiliation(s)
- Mohammed Jajere Adamu
- Department of Electronic Science and Technology, School of Microelectronics, Tianjin University, Tianjin 300072, China; (L.Q.); (C.O.N.); (A.Y.)
- Department of Computer Science, Yobe State University, Damaturu 600213, Nigeria;
- Center for Distance and Online Education, Lovely Professional University, Phagwara 144411, India
| | - Halima Bello Kawuwa
- Department of Biomedical Engineering, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China;
| | - Li Qiang
- Department of Electronic Science and Technology, School of Microelectronics, Tianjin University, Tianjin 300072, China; (L.Q.); (C.O.N.); (A.Y.)
| | - Charles Okanda Nyatega
- Department of Electronic Science and Technology, School of Microelectronics, Tianjin University, Tianjin 300072, China; (L.Q.); (C.O.N.); (A.Y.)
- Department of Electronics and Telecommunication Engineering, Mbeya University of Science and Technology, Mbeya P.O. Box 131, Tanzania
| | - Ayesha Younis
- Department of Electronic Science and Technology, School of Microelectronics, Tianjin University, Tianjin 300072, China; (L.Q.); (C.O.N.); (A.Y.)
| | - Muhammad Fahad
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China;
| | - Salisu Samaila Dauya
- Department of Computer Science, Yobe State University, Damaturu 600213, Nigeria;
| |
Collapse
|
13
|
Vuralli D, Ceren Akgor M, Dagidir HG, Onat P, Yalinay M, Sezerman U, Bolay H. Microbiota alterations are related to migraine food triggers and inflammatory markers in chronic migraine patients with medication overuse headache. J Headache Pain 2024; 25:192. [PMID: 39516813 PMCID: PMC11546420 DOI: 10.1186/s10194-024-01891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE Chronic migraine (CM) patients with medication overuse headache (MOH) were recently shown to be associated with leaky gut and inflammation. We aimed to investigate gut microbiota profiles of CM patients with MOH, and their correlations with inflammatory serum parameters, migraine food triggers, and comorbid anxiety and depression. MATERIALS AND METHODS The study included women participants (32 CM patients with NSAID overuse headache, and 16 healthy non-headache sufferers). Migraine duration, monthly migraine headache days, presence of irritable bowel syndrome symptoms, and HADS-D and HADS-A scores were recorded. Serum samples were collected to measure circulating LPS, HMGB1, HIF-1α, and IL-6. The gut microbiota profiles of the patients were evaluated using fecal samples. RESULTS Serum LPS, HMGB1, HIF-1α, and IL-6 levels were significantly higher in the CM + MOH group compared to the healthy controls. HADS-A and HADS-D scores were considerably higher in the CM + MOH group compared to the healthy controls. In the microbiota analysis, alpha and beta diversities were similar between the two groups. The class Clostridia, the order Eubacteriales, and the genus Ruminococcus were less abundant in the CM + NSAID overuse headache group compared to the control group. At the genus level Desulfovibrio, Gemmiger, and Dialister and at the species level, Clostridium fessum, Blautia luti, Dorea longicatena, Eubacterium coprostanoligenes, and Gemmiger formicilis were more abundant in the CM + NSAID overuse headache group compared to the control group. Desulfovibrio, Gemmiger, Dialister, Ethanoligenens harbinense, Eubacterium coprostanoligenes, Dorea longicatena, and Thermoclostridium stercorarium showed positive correlations and Clostridia bacteria showed negative correlations with migraine food triggers. Positive correlations were found between LPS and Hapalosiphonaceae, HMGB1 and Melghirimyces, HIF1-α and Rouxeilla and Blautia luti, IL-6 and Melghirimyces and Ruminococcus. CONCLUSION In CM patients with MOH, we have revealed the presence of dysbiosis towards an inflammatory state, and positive correlations were shown between altered gut microbiota and inflammatory serum parameters and migraine food triggers.
Collapse
Affiliation(s)
- Doga Vuralli
- Department of Neurology and Algology, Gazi University Faculty of Medicine, Ankara, Türkiye
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara, Türkiye
- Neuropsychiatry Center, Gazi University, Ankara, Türkiye
| | - Merve Ceren Akgor
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara, Türkiye
| | - Hale Gok Dagidir
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara, Türkiye
| | - Pınar Onat
- Epigenetiks Genetic Bioinformatics Software Inc., Istanbul, Türkiye
| | - Meltem Yalinay
- Department of Clinical Microbiology, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem University Faculty of Medicine, Istanbul, Türkiye
| | - Hayrunnisa Bolay
- Department of Neurology and Algology, Gazi University Faculty of Medicine, Ankara, Türkiye.
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara, Türkiye.
- Neuropsychiatry Center, Gazi University, Ankara, Türkiye.
| |
Collapse
|
14
|
Ma WW, Huang ZQ, Liu K, Li DZ, Mo TL, Liu Q. The role of intestinal microbiota and metabolites in intestinal inflammation. Microbiol Res 2024; 288:127838. [PMID: 39153466 DOI: 10.1016/j.micres.2024.127838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/11/2024] [Accepted: 07/13/2024] [Indexed: 08/19/2024]
Abstract
With the imbalance of intestinal microbiota, the body will then face an inflammatory response, which has serious implications for human health. Bodily allergies, injury or pathogens infections can trigger or promote inflammation and alter the intestinal environment. Meanwhile, excessive changes in the intestinal environment cause the imbalance of microbial homeostasis, which leads to the proliferation and colonization of opportunistic pathogens, invasion of the body's immune system, and the intensification of inflammation. Some natural compounds and gut microbiota and metabolites can reduce inflammation; however, the details of how they interact with the gut immune system and reduce the gut inflammatory response still need to be fully understood. The review focuses on inflammation and intestinal microbiota imbalance caused by pathogens. The body reacts differently to different types of pathogenic bacteria, and the ingestion of pathogens leads to inflamed gastrointestinal tract disorders or intestinal inflammation. In this paper, unraveling the interactions between the inflammation, pathogenic bacteria, and intestinal microbiota based on inflammation caused by several common pathogens. Finally, we summarize the effects of intestinal metabolites and natural anti-inflammatory substances on inflammation to provide help for related research of intestinal inflammation caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Wen-Wen Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zhi-Qiang Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Kun Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - De-Zhi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Tian-Lu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
15
|
Zhang D, Shi C, Wang Y, Guo J, Gong Z. Metabolic Dysregulation and Metabolite Imbalances in Acute-on-chronic Liver Failure: Impact on Immune Status. J Clin Transl Hepatol 2024; 12:865-877. [PMID: 39440217 PMCID: PMC11491507 DOI: 10.14218/jcth.2024.00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
Liver failure encompasses a range of severe clinical syndromes resulting from the deterioration of liver function, triggered by factors both within and outside the liver. While the definition of acute-on-chronic liver failure (ACLF) may vary by region, it is universally recognized for its association with multiorgan failure, a robust inflammatory response, and high short-term mortality rates. Recent advances in metabolomics have provided insights into energy metabolism and metabolite alterations specific to ACLF. Additionally, immunometabolism is increasingly acknowledged as a pivotal mechanism in regulating immune cell functions. Therefore, understanding the energy metabolism pathways involved in ACLF and investigating how metabolite imbalances affect immune cell functionality are crucial for developing effective treatment strategies for ACLF. This review methodically examined the immune and metabolic states of ACLF patients and elucidated how alterations in metabolites impact immune functions, offering novel perspectives for immune regulation and therapeutic management of liver failure.
Collapse
Affiliation(s)
- Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
16
|
Soveid N, Barkhidarian B, Samadi M, Hatami M, Gholami F, Yekaninejad MS, Saedisomeolia A, Karbasian M, Siadat SD, Mirzaei K. Animal and plant protein intake association with mental health, tryptophan metabolites pathways, and gut microbiota in healthy women: a cross-sectional study. BMC Microbiol 2024; 24:390. [PMID: 39375584 PMCID: PMC11457455 DOI: 10.1186/s12866-024-03534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024] Open
Abstract
Mental health is affected by tryptophane (TRP) metabolism regulation. Diet-influenced gut microbiome regulates TRP metabolism. Thus, the present study aimed to explore the relationship between type of dietary protein intake, gut microbiota, TRP metabolites homeostasis, and mental well-being in healthy women. 91 healthy females aged 18-50 were recruited based on the study protocol. Validate and reliable questionnaires assessed dietary intake and mental health. Biochemical tests and gut microbiota composition were analyzed following the manufacturer's instructions for each enzyme-linked immune sorbent assay (ELISA) kit and Real-time quantitative polymerase chain reaction (qPCR) methods respectively. Regression methods were used to estimate the considered associations. The results show that in the fully adjusted model, plant protein consumption was partially inversely associated with depression risk (OR = 0.27; 95% CI: 0.06, 1.09; P = 0.06). Higher dietary animal protein intake was marginally associated with psychological distress (OR = 2.59; 95% CI: 0.91, 7.34; P = 0.07). KYN to serotonin ratio was inversely associated with animal protein consumption (ß = 1.10; 95% CI: -0.13, 2.33; P = 0.07). Firmicutes/Bacteriodetes ratio (β = -1.27 × 103, SE = 5.99 × 102, P = 0.03) was lower in the top tertile of plant protein. A partially negative correlation was found between dietary animal protein and Prevotella abundance (β = -9.20 × 1018, SE = 5.04 × 1018, P = 0.06). Overall, significant inverse associations were found between a diet high in plant protein with mental disorders, KYN levels, and Firmicutes to Bacteroidetes ratio while adhering to higher animal protein could predispose women to psychological stress.
Collapse
Affiliation(s)
- Neda Soveid
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O Box 6446, Tehran, 14155, Iran
| | - Bahareh Barkhidarian
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O Box 6446, Tehran, 14155, Iran
| | - Mahsa Samadi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O Box 6446, Tehran, 14155, Iran
| | - Mahsa Hatami
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Gholami
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mir Saeid Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Ahmad Saedisomeolia
- College of Health Sciences, Education Centre of Australia, Parramatta, NSW, 2153, Australia
- School of Human Nutrition, McGill University, Montreal, Canada
| | - Maryam Karbasian
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, P.O Box 6446, Tehran, 14155, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, P.O Box 6446, Tehran, 14155, Iran.
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O Box 6446, Tehran, 14155, Iran.
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Chen X, Xu D, Yu J, Song XJ, Li X, Cui YL. Tryptophan Metabolism Disorder-Triggered Diseases, Mechanisms, and Therapeutic Strategies: A Scientometric Review. Nutrients 2024; 16:3380. [PMID: 39408347 PMCID: PMC11478743 DOI: 10.3390/nu16193380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Tryptophan is widely present in foods such as peanuts, milk, and bananas, playing a crucial role in maintaining metabolic homeostasis in health and disease. Tryptophan metabolism is involved in the development and progression of immune, nervous, and digestive system diseases. Although some excellent reviews on tryptophan metabolism exist, there has been no systematic scientometric study as of yet. METHODS This review provides and summarizes research hotspots and potential future directions by analyzing annual publications, topics, keywords, and highly cited papers sourced from Web of Science spanning 1964 to 2022. RESULTS This review provides a scientometric overview of tryptophan metabolism disorder-triggered diseases, mechanisms, and therapeutic strategies. CONCLUSIONS The gut microbiota regulates gut permeability, inflammation, and host immunity by directly converting tryptophan to indole and its derivatives. Gut microbial metabolites regulate tryptophan metabolism by activating specific receptors or enzymes. Additionally, the kynurenine (KYN) pathway, activated by indoleamine-2, 3-dioxygenase (IDO) and tryptophan 2, 3-dioxygenase, affects the migration and invasion of glioma cells and the development of COVID-19 and depression. The research and development of IDO inhibitors help to improve the effectiveness of immunotherapy. Tryptophan metabolites as potential markers are used for disease therapy, guiding clinical decision-making. Tryptophan metabolites serve as targets to provide a new promising strategy for neuroprotective/neurotoxic imbalance affecting brain structure and function. In summary, this review provides valuable guidance for the basic research and clinical application of tryptophan metabolism.
Collapse
Affiliation(s)
- Xue Chen
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dong Xu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Yu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xu-Jiao Song
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xue Li
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuan-Lu Cui
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
18
|
Klausing AD, Fukuwatari T, DeAngeli N, Bucci DJ, Schwarcz R. Adrenalectomy exacerbates stress-induced impairment in fear discrimination: A causal role for kynurenic acid? Biochem Pharmacol 2024; 228:116350. [PMID: 38852644 DOI: 10.1016/j.bcp.2024.116350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Impaired activity of the hypothalamic-pituitary axis and reduced blood levels of glucocorticoids (GCs) are signature features of stress-related maladies. Recent evidence suggests a possible role of the tryptophan metabolite kynurenic acid (KYNA) in this context. Here we investigated possible causal relationships in adult male rats, using stress-induced fear discrimination as a translationally relevant behavioral outcome measure. One week following adrenalectomy (ADX) or sham surgery, animals were for 2 h either physically restrained or exposed to a predator odor, which caused a much milder stress response. Extracellular KYNA levels were determined before, during and after stress by in vivo microdialysis in the prefrontal cortex. Separate cohorts underwent a fear discrimination procedure starting immediately after stress termination. Different auditory conditioned stimuli (CS) were either paired with a foot shock (CS+) or non-reinforced (CS-). One week later, fear was assessed by re-exposing the animals to each CS. Separate groups of rats were treated with the KYNA synthesis inhibitor BFF-816 prior to stress initiation to test a causal role of KYNA in fear discrimination. Restraint stress raised extracellular KYNA levels by ∼85 % in ADX rats for several hours, and these animals were unable to discriminate between CS+ and CS-. Both effects were prevented by BFF-816 and were not observed after exposure to predator odor or in sham-operated rats. These findings suggest that a causal connection exists between adrenal function, stress-induced KYNA increases, and behavioral deficits. Pharmacological inhibition of KYNA synthesis may therefore be an attractive, novel option for the treatment of stress-related disorders.
Collapse
Affiliation(s)
- Alex D Klausing
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tsutomu Fukuwatari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicole DeAngeli
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - David J Bucci
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
19
|
Yang S, Han J, Ye Z, Zhou H, Yan Y, Han D, Chen S, Wang L, Feng Q, Zhao X, Kang C. The correlation of inflammation, tryptophan-kynurenine pathway, and suicide risk in adolescent depression. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02579-4. [PMID: 39287643 DOI: 10.1007/s00787-024-02579-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Accumulating evidence suggests a role for the tryptophan-kynurenine pathway (TKP) in the psychopathology of major depressive disorder (MDD). Abnormal inflammatory profile and production of TKP neurotoxic metabolites appear more pronounced in MDD with suicidality. Progress in understanding the neurobiology of MDD in adolescents lags significantly behind that in adults due to limited empirical evidence. Aims of this study was to investigate the association between inflammation, TKP, and suicidality in adolescent depression. Seventy-three adolescents with MDD were assessed for serum levels of interleukin (IL)-1β, IL-6, IL-18, IL-10, tumor necrosis factor-α (TNF-α), tryptophan (TRP), kynurenine (KYN), 3-hydroxykynurenine (3-HK), and kynurenine acid (KA). Correlations between cytokines and TKP measures were examined. Patients were divided into high- (n = 42) and non-high-suicide-risk groups (n = 31), and serum levels of cytokines and TKP metabolites were compared. Significant negative correlations were found between TRP and IL-8 (r = - 0.27, P < 0.05) and IL-10 (r = - 0.23, P < 0.05), while a significant positive correlation was observed between 3-HK and IL-8 (r = 0.39, P < 0.01) in depressed adolescents. The KYN/TPR (index of indoleamine 2,3-dioxygenase, IDO) was positively correlated with IL-1β (r = 0.34), IL-6 (r = 0.32), IL-10 (r = 0.38) and TNF-α (r = 0.35) levels (P < 0.01); and 3-HK/KYN (index of kynurenine3-monooxidase, KMO) was positively correlated with IL-8 level (r = 0.31, P < 0.01). Depressed adolescents at high suicide risk exhibited significantly higher levels of IL-1β (Z = 2.726, P < 0.05), IL-10 (Z = 2.444, P < 0.05), and TNF-α (Z = 2.167, P < 0.05) and lower levels of 3-HK (Z = 2.126, P < 0.05) compared to their non-high suicide risk counterparts. Our findings indicated that serum inflammatory cytokines were robustly associated with IDO and KMO activity, along with significantly decreased serum level of TRP, increased level of 3-HK, and higher suicide risk in adolescent depression.
Collapse
Affiliation(s)
- Shuran Yang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Jingjing Han
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Zhihan Ye
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Huizhi Zhou
- 920th Hospital of Joint Logistics Support Force, PLA, Yunnan, 650000, Kunming, China
| | - Yangye Yan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Han
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Shi Chen
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Lu Wang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Qiang Feng
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xudong Zhao
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Clinical Research Center for Mental Disorders, School of Medicine, Chinese-German Institute of Mental Health, Shanghai Pudong New Area Mental Health Center, Tongji University, Shanghai, 200124, China
| | - Chuanyuan Kang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
20
|
Liloia D, Zamfira DA, Tanaka M, Manuello J, Crocetta A, Keller R, Cozzolino M, Duca S, Cauda F, Costa T. Disentangling the role of gray matter volume and concentration in autism spectrum disorder: A meta-analytic investigation of 25 years of voxel-based morphometry research. Neurosci Biobehav Rev 2024; 164:105791. [PMID: 38960075 DOI: 10.1016/j.neubiorev.2024.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Despite over two decades of neuroimaging research, a unanimous definition of the pattern of structural variation associated with autism spectrum disorder (ASD) has yet to be found. One potential impeding issue could be the sometimes ambiguous use of measurements of variations in gray matter volume (GMV) or gray matter concentration (GMC). In fact, while both can be calculated using voxel-based morphometry analysis, these may reflect different underlying pathological mechanisms. We conducted a coordinate-based meta-analysis, keeping apart GMV and GMC studies of subjects with ASD. Results showed distinct and non-overlapping patterns for the two measures. GMV decreases were evident in the cerebellum, while GMC decreases were mainly found in the temporal and frontal regions. GMV increases were found in the parietal, temporal, and frontal brain regions, while GMC increases were observed in the anterior cingulate cortex and middle frontal gyrus. Age-stratified analyses suggested that such variations are dynamic across the ASD lifespan. The present findings emphasize the importance of considering GMV and GMC as distinct yet synergistic indices in autism research.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Denisa Adina Zamfira
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Szeged, Hungary
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Annachiara Crocetta
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Mauro Cozzolino
- Department of Humanities, Philosophical and Educational Sciences, University of Salerno, Fisciano, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
21
|
Yin Y, Ju T, Zeng D, Duan F, Zhu Y, Liu J, Li Y, Lu W. "Inflamed" depression: A review of the interactions between depression and inflammation and current anti-inflammatory strategies for depression. Pharmacol Res 2024; 207:107322. [PMID: 39038630 DOI: 10.1016/j.phrs.2024.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Depression is a common mental disorder, the effective treatment of which remains a challenging issue worldwide. The clinical pathogenesis of depression has been deeply explored, leading to the formulation of various pathogenic hypotheses. Among these, the monoamine neurotransmitter hypothesis holds a prominent position, yet it has significant limitations as more than one-third of patients do not respond to conventional treatments targeting monoamine transmission disturbances. Over the past few decades, a growing body of research has highlighted the link between inflammation and depression as a potential key factor in the pathophysiology of depression. In this review, we first summarize the relationship between inflammation and depression, with a focus on the pathophysiological changes mediated by inflammation in depression. The mechanisms linking inflammation to depression as well as multiple anti-inflammatory strategies are also discussed, and their efficacy and safety are assessed. This review broadens the perspective on specific aspects of using anti-inflammatory strategies for treating depression, laying the groundwork for advancing precision medicine for individuals suffering from "inflamed" depression.
Collapse
Affiliation(s)
- Yishu Yin
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Ting Ju
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Deyong Zeng
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Fangyuan Duan
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Yuanbing Zhu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Junlian Liu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Beijing 100094, China.
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| |
Collapse
|
22
|
Saengmearnuparp T, Pintana H, Apaijai N, Chunchai T, Thonusin C, Kongkaew A, Lojanapiwat B, Chattipakorn N, Chattipakorn SC. Long-term Treatment with a 5-Alpha-Reductase Inhibitor Alleviates Depression-like Behavior in Obese Male Rats. Behav Brain Res 2024; 472:115155. [PMID: 39032869 DOI: 10.1016/j.bbr.2024.115155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Several studies have reported side effects of finasteride (FIN), such as anxiety/depression in young men. Obesity is also positively associated with anxiety/depression symptoms; however, the impacts of long-term FIN treatment and FIN withdrawal in young obese individuals are still elusive. The present study aimed to investigate the effect of long-term treatment and its withdrawal on anxiety/depression and brain pathologies in lean and obese adult male rats. Forty-eight male Wistar rats were equally divided into two groups and fed either a normal or high-fat diet. At age 13 weeks, rats in each dietary group were divided into three subgroups: 1) the control group receiving drinking water, 2) the long-term treatment group receiving FIN orally at 5 mg/kg/day for 6 weeks, and 3) the withdrawal group receiving FIN orally at 5 mg/kg/day for 2 weeks followed by a 4-week withdrawal period. Anxiety/depression-like behaviors, biochemical analysis, brain inflammation, oxidative stress, neuroactive steroids, brain metabolites, and microglial complexity were tested. The result showed that lean rats treated with long-term FIN and its withdrawal exhibited metabolic disturbances, depressive-like behavior, and both groups showed increased neurotoxic metabolites and reduced microglial complexity. Obesity itself led to metabolic disturbances and brain pathologies, including increased inflammation, oxidative stress, and quinolinic acid, as well as reduced microglial complexity, resulting in increased anxiety- and depression-like behaviors. Interestingly, the long-term FIN treatment group in obese rats showed attenuation of depressive-like behaviors, brain inflammation, and oxidative stress, along with increased brain antioxidants, suggesting the possible benefits of FIN in obese conditions.
Collapse
Affiliation(s)
- Thiraphat Saengmearnuparp
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Urology division, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hiranya Pintana
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titikorn Chunchai
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chanisa Thonusin
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bannakij Lojanapiwat
- Urology division, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
23
|
Chen Y, Yu H, Xue F, Bai J, Guo L, Peng Z. 16S rRNA gene sequencing reveals altered gut microbiota in young adults with schizophrenia and prominent negative symptoms. Brain Behav 2024; 14:e3579. [PMID: 38841824 PMCID: PMC11154826 DOI: 10.1002/brb3.3579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Gut dysbiosis has been established as a characteristic of schizophrenia (SCH). However, the signatures regarding SCH patients with prominent negative symptoms (SCH-N) in young adults have been poorly elucidated. METHODS Stool samples were obtained from 30 young adults with SCH-N, 32 SCH patients with prominent positive symptoms (SCH-P) along with 36 healthy controls (HCs). Microbial diversity and composition were analyzed by 16S rRNA gene sequencing. Meanwhile, psychiatric symptoms were assessed by the positive and negative syndrome scale (PANSS). RESULTS There is a significant difference in β-diversity but not α-diversity indexes among the three groups. Moreover, we found a higher abundance of Fusobacteria and Proteobacteria phyla and a lower abundance of Firmicutes phyla in SCH-N when compared with HC. Besides, we identified a diagnostic potential panel comprising six genera (Coprococcus, Monoglobus, Prevotellaceae_NK3B31_group, Escherichia-Shigella, Dorea, and Butyricicoccus) that can distinguish SCH-N from HC (area under the curve = 0.939). However, the difference in microbial composition between the SCH-N and SCH-P is much less than that between SCH-N and the HC, and SCH-N and SCH-P cannot be effectively distinguished by gut microbiota. CONCLUSION The composition of gut microbiota was changed in the patients with SCH-N, which may help in further understanding of pathogenesis in young adults with SCH-N.
Collapse
Affiliation(s)
- Yi‐Huan Chen
- Department of PsychiatryXijing HospitalAir Force Medical UniversityXi'anChina
| | - Huan Yu
- Department of PsychiatryXijing HospitalAir Force Medical UniversityXi'anChina
| | - Fen Xue
- Department of PsychiatryXijing HospitalAir Force Medical UniversityXi'anChina
| | - Jie Bai
- Department of PsychiatryXijing HospitalAir Force Medical UniversityXi'anChina
- Department of PsychiatryGaoxin HospitalXi'anChina
| | - Li Guo
- Department of PsychiatryXijing HospitalAir Force Medical UniversityXi'anChina
| | - Zheng‐Wu Peng
- Department of PsychiatryXijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
24
|
Yang C, Ma Y, Yao M, Jiang Q, Xue J. Causal relationships between blood metabolites and diabetic retinopathy: a two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1383035. [PMID: 38752182 PMCID: PMC11094203 DOI: 10.3389/fendo.2024.1383035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Background Diabetic retinopathy (DR) is a microvascular complication of diabetes, severely affecting patients' vision and even leading to blindness. The development of DR is influenced by metabolic disturbance and genetic factors, including gene polymorphisms. The research aimed to uncover the causal relationships between blood metabolites and DR. Methods The two-sample mendelian randomization (MR) analysis was employed to estimate the causality of blood metabolites on DR. The genetic variables for exposure were obtained from the genome-wide association study (GWAS) dataset of 486 blood metabolites, while the genetic predictors for outcomes including all-stage DR (All DR), non-proliferative DR (NPDR) and proliferative DR (PDR) were derived from the FinnGen database. The primary analysis employed inverse variance weighted (IVW) method, and supplementary analyses were performed using MR-Egger, weighted median (WM), simple mode and weighted mode methods. Additionally, MR-Egger intercept test, Cochran's Q test, and leave-one-out analysis were also conducted to guarantee the accuracy and robustness of the results. Subsequently, we replicated the MR analysis using three additional datasets from the FinnGen database and conducted a meta-analysis to determine blood metabolites associated with DR. Finally, reverse MR analysis and metabolic pathway analysis were performed. Results The study identified 13 blood metabolites associated with All DR, 9 blood metabolites associated with NPDR and 12 blood metabolites associated with PDR. In summary, a total of 21 blood metabolites were identified as having potential causal relationships with DR. Additionally, we identified 4 metabolic pathways that are related to DR. Conclusion The research revealed a number of blood metabolites and metabolic pathways that are causally associated with DR, which holds significant importance for screening and prevention of DR. However, it is noteworthy that these causal relationships should be validated in larger cohorts and experiments.
Collapse
Affiliation(s)
- Chongchao Yang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Ma
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mudi Yao
- Department of Ophthalmology, The First People's Hospital, Shanghai, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinsong Xue
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Li Y, Wang L, Huang J, Zhang P, Zhou Y, Tong J, Chen W, Gou M, Tian B, Li W, Luo X, Tian L, Hong LE, Li CSR, Tan Y. Serum neuroactive metabolites of the tryptophan pathway in patients with acute phase of affective disorders. Front Psychiatry 2024; 15:1357293. [PMID: 38680780 PMCID: PMC11046465 DOI: 10.3389/fpsyt.2024.1357293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Background Many studies showed disrupted tryptophan metabolism in patients with affective disorders. The aims of this study were to explore the differences in the metabolites of tryptophan pathway (TP) and the relationships between TP metabolites and clinical symptoms, therapeutic effect in patients with bipolar disorder with acute manic episode (BD-M), depressive episode (BD-D) and major depressive disorder (MDD). Methods Patients with BD-M (n=52) and BD-D (n=39), MDD (n=48) and healthy controls (HCs, n=49) were enrolled. The serum neuroactive metabolites levels of the TP were measured by liquid chromatography-tandem mass spectrometry. Hamilton Depression Scale-17 item (HAMD-17) and Young Mania Rating Scale (YMRS) were used to evaluate depressive and manic symptoms at baseline and after 8 weeks of antidepressants, mood stabilizers, some also received antipsychotic medication. Results The levels of tryptophan (TRP) and kynurenic acid (KYNA) were significantly lower and the ratios of tryptophan/kynurenine (TRP/KYN), 5-hydroxytryptamine/tryptophan (5-HT/TRP), quinolinic acid/kynurenic acid (QUIN/KYNA) were higher in BD-M, BD-D, MDD vs. HC. The levels of QUIN and the ratios of QUIN/KYNA were higher in BD-M than in BD-D, MDD, and HCs. The 5-hydroxyindoleacetic acid (5-HIAA) levels of patients with MDD were significantly higher than those in BD-M and BD-D. Binary logistic regression analysis showed the lower peripheral KYNA, the higher the QUIN level, and the higher the risk of BD-M; the lower peripheral KYNA and the higher KYN/TRP and 5-HT/TRP, the higher the risk of BD-D; and the lower the peripheral KYNA level and the higher the KYN/TRP and 5-HT/TRP, the higher the risk of MDD. Correlation analysis, showing a significant association between tryptophan metabolites and improvement of clinical symptoms, especially depression symptoms. Conclusions Patients with affective disorders had abnormal tryptophan metabolism, which involved in 5-HT and kynurenine pathway (KP) sub-pathway. Tryptophan metabolites might be potential biomarkers for affective disorders and some metabolites have been associated with remission of depressive symptoms.
Collapse
Affiliation(s)
- Yanli Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| | - Leilei Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| | - Junchao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| | - Ping Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| | - Yanfang Zhou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| | - Jinghui Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| | - Wenjin Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| | - Mengzhuang Gou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| | - Baopeng Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| | - Wei Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Li Tian
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - L. Elliot Hong
- Louis A. Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| |
Collapse
|
26
|
Martos D, Lőrinczi B, Szatmári I, Vécsei L, Tanaka M. The Impact of C-3 Side Chain Modifications on Kynurenic Acid: A Behavioral Analysis of Its Analogs in the Motor Domain. Int J Mol Sci 2024; 25:3394. [PMID: 38542368 PMCID: PMC10970565 DOI: 10.3390/ijms25063394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
The central nervous system (CNS) is the final frontier in drug delivery because of the blood-brain barrier (BBB), which poses significant barriers to the access of most drugs to their targets. Kynurenic acid (KYNA), a tryptophan (Trp) metabolite, plays an important role in behavioral functions, and abnormal KYNA levels have been observed in neuropsychiatric conditions. The current challenge lies in delivering KYNA to the CNS owing to its polar side chain. Recently, C-3 side chain-modified KYNA analogs have been shown to cross the BBB; however, it is unclear whether they retain the biological functions of the parent molecule. This study examined the impact of KYNA analogs, specifically, SZR-72, SZR-104, and the newly developed SZRG-21, on behavior. The analogs were administered intracerebroventricularly (i.c.v.), and their effects on the motor domain were compared with those of KYNA. Specifically, open-field (OF) and rotarod (RR) tests were employed to assess motor activity and skills. SZR-104 increased horizontal exploratory activity in the OF test at a dose of 0.04 μmol/4 μL, while SZR-72 decreased vertical activity at doses of 0.04 and 0.1 μmol/4 μL. In the RR test, however, neither KYNA nor its analogs showed any significant differences in motor skills at either dose. Side chain modification affects affective motor performance and exploratory behavior, as the results show for the first time. In this study, we showed that KYNA analogs alter emotional components such as motor-associated curiosity and emotions. Consequently, drug design necessitates the development of precise strategies to traverse the BBB while paying close attention to modifications in their effects on behavior.
Collapse
Affiliation(s)
- Diána Martos
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry and HUN-REN–SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.)
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and HUN-REN–SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.)
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| |
Collapse
|
27
|
Liang C, Li F, Gu C, Xie L, Yan W, Wang X, Shi R, Linghu S, Liu T. Metabolomic profiling of ocular tissues in rabbit myopia: Uncovering differential metabolites and pathways. Exp Eye Res 2024; 240:109796. [PMID: 38244883 DOI: 10.1016/j.exer.2024.109796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
To investigate the metabolic difference among tissue layers of the rabbits' eye during the development of myopia using metabolomic techniques and explore any metabolic links or cascades within the ocular wall. Ultra Performance Liquid Chromatography - Mass Spectrometry (UPLC-MS) was utilized for untargeted metabolite screening (UMS) to identify the significant differential metabolites produced between myopia (MY) and control (CT) (horizontal). Subsequently, we compared those key metabolites among tissues (Sclera, Choroid, Retina) of MY for distribution and variation (longitudinal). A total of 6285 metabolites were detected in the three tissues. The differential metabolites were screened and the metabolic pathways of these metabolites in each myopic tissue were labeled, including tryptophan and its metabolites, pyruvate, taurine, caffeine metabolites, as well as neurotransmitters like glutamate and dopamine. Our study suggests that multiple metabolic pathways or different metabolites under the same pathway, might act on different parts of the eyeball and contribute to the occurrence and development of myopia by affecting the energy supply to the ocular tissues, preventing antioxidant stress, affecting scleral collagen synthesis, and regulating various neurotransmitters mutually.
Collapse
Affiliation(s)
- Chengpeng Liang
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China.
| | - Fayuan Li
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Chengqi Gu
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Ling Xie
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Wen Yan
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Xiaoye Wang
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Rong Shi
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Shaorong Linghu
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Taixiang Liu
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China; Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China.
| |
Collapse
|
28
|
Mirzababaei A, Mahmoodi M, Keshtkar A, Ashraf H, Abaj F, Soveid N, Hajmir MM, Radmehr M, Khalili P, Mirzaei K. Serum levels of trimethylamine N-oxide and kynurenine novel biomarkers are associated with adult metabolic syndrome and its components: a case-control study from the TEC cohort. Front Nutr 2024; 11:1326782. [PMID: 38321994 PMCID: PMC10844432 DOI: 10.3389/fnut.2024.1326782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Background Epidemiologic research suggests that gut microbiota alteration (dysbiosis) may play a role in the pathogenesis of metabolic syndrome (MetS). Dysbiosis can influence Trimethylamine N-oxide (TMAO) a gut microbiota-derived metabolite, as well as kynurenine pathways (KP), which are known as a new marker for an early predictor of chronic diseases. Hence, the current study aimed to investigate the association between KYN and TMAO with MetS and its components. Methods This case-control study was conducted on 250 adults aged 18 years or over of Tehran University of Medical Sciences (TUMS) Employee's Cohort study (TEC) in the baseline phase. Data on the dietary intakes were collected using a validated dish-based food frequency questionnaire (FFQ) and dietary intakes of nitrite and nitrate were estimated using FFQ with 144 items. MetS was defined according to the NCEP ATP criteria. Serum profiles TMAO and KYN were measured by standard protocol. Result The mean level of TMAO and KYN in subjects with MetS was 51.49 pg/mL and 417.56 nmol/l. High levels of TMAO (≥30.39 pg/mL) with MetS were directly correlated, after adjusting for confounding factors, the odds of MetS in individuals 2.37 times increased (OR: 2.37, 95% CI: 1.31-4.28, P-value = 0.004), also, high levels of KYN (≥297.18 nmol/L) increased odds of Mets+ 1.48 times, which is statistically significant (OR: 1.48, 95% CI: 0.83-2.63, P-value = 0.04). High levels of TMAO compared with the reference group increased the odds of hypertriglyceridemia and low HDL in crude and adjusted models (P < 0.05). Additionally, there was a statistically significant high level of KYN increased odds of abdominal obesity (P < 0.05). Conclusion Our study revealed a positive association between serum TMAO and KYN levels and MetS and some of its components. For underlying mechanisms and possible clinical implications of the differences. Prospective studies in healthy individuals are necessary.
Collapse
Affiliation(s)
- Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahmoodi
- Department of Cellular and Molecular Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbasali Keshtkar
- Department of Disaster and Emergency Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Ashraf
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Abaj
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Neda Soveid
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahya Mehri Hajmir
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Radmehr
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pardis Khalili
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Luo P, Chen G, Shi Z, Yang J, Wang X, Pan J, Zhu L. Comprehensive multi-omics analysis of tryptophan metabolism-related gene expression signature to predict prognosis in gastric cancer. Front Pharmacol 2023; 14:1267186. [PMID: 37908977 PMCID: PMC10613981 DOI: 10.3389/fphar.2023.1267186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction: The 5-year survival of gastric cancer (GC) patients with advanced stage remains poor. Some evidence has indicated that tryptophan metabolism may induce cancer progression through immunosuppressive responses and promote the malignancy of cancer cells. The role of tryptophan and its metabolism should be explored for an in-depth understanding of molecular mechanisms during GC development. Material and methods: We utilized the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) dataset to screen tryptophan metabolism-associated genes via single sample gene set enrichment analysis (ssGSEA) and correlation analysis. Consensus clustering analysis was employed to construct different molecular subtypes. Most common differentially expressed genes (DEGs) were determined from the molecular subtypes. Univariate cox analysis as well as lasso were performed to establish a tryptophan metabolism-associated gene signature. Gene Set Enrichment Analysis (GSEA) was utilized to evaluate signaling pathways. ESTIMATE, ssGSEA, and TIDE were used for the evaluation of the gastric tumor microenvironment. Results: Two tryptophan metabolism-associated gene molecular subtypes were constructed. Compared to the C2 subtype, the C1 subtype showed better prognosis with increased CD4 positive memory T cells as well as activated dendritic cells (DCs) infiltration and suppressed M2-phenotype macrophages inside the tumor microenvironment. The immune checkpoint was downregulated in the C1 subtype. A total of eight key genes, EFNA3, GPX3, RGS2, CXCR4, SGCE, ADH4, CST2, and GPC3, were screened for the establishment of a prognostic risk model. Conclusion: This study concluded that the tryptophan metabolism-associated genes can be applied in GC prognostic prediction. The risk model established in the current study was highly accurate in GC survival prediction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Linghua Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
30
|
Wang J, Zhao T, Li B, Wei W. Tryptophan metabolism-related gene expression patterns: unveiling prognostic insights and immune landscapes in uveal melanoma. Aging (Albany NY) 2023; 15:11201-11216. [PMID: 37844995 PMCID: PMC10637787 DOI: 10.18632/aging.205122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
Uveal melanoma (UVM) remains the leading intraocular malignancy in adults, with a poor prognosis for those with metastatic disease. Tryptophan metabolism plays a pivotal role in influencing cancerous properties and modifying the tumor's immune microenvironment. In this study, we explore the relationship between tryptophan metabolism-related gene (TRMG) expression and the various features of UVM, including prognosis and tumor microenvironment. Our analysis included 143 patient samples sourced from public databases. Using K-means clustering, we categorized UVM patients into two distinct clusters. Further, we developed a prognostic model based on five essential genes, effectively distinguishing between low-risk and high-risk patients. This distinction underscores the importance of TRMGs in UVM prognostication. Combining TRMG data with gender to create nomograms demonstrated exceptional accuracy in predicting UVM patient outcomes. Moreover, our analysis reveals correlations between risk assessments and immune cell infiltrations. Notably, the low-risk group displayed a heightened potential response to immune checkpoint inhibitors. In conclusion, our findings underscore the dynamic relationship between TRMG expression and various UVM characteristics, presenting a novel prognostic framework centered on TRMGs. The deep connection between TRMGs and UVM's tumor immune microenvironment emphasizes the crucial role of tryptophan metabolism in shaping the immune landscape. Such understanding paves the way for designing targeted immunotherapy strategies for UVM patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tienan Zhao
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Bo Li
- College of Network and Continuing Education, China Medical University, Shenyang, Liaoning, China
| | - Wei Wei
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
31
|
Wang Y, Fang X, Wang G, Tang W, Liu S, Yang Y, Chen J, Ling Y, Zhou C, Zhang X, Zhang C, Su KP. The association between inflammation and kynurenine pathway metabolites in electroconvulsive therapy for schizophrenia: Implications for clinical efficacy. Brain Behav Immun 2023; 113:1-11. [PMID: 37353059 DOI: 10.1016/j.bbi.2023.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
The kynurenine pathway (KP) of tryptophan has been implicated in the pathogenesis of schizophrenia and its interaction with the immune system has been suggested to play a role. In this study, 28 schizophrenia patients and 25 healthy controls were recruited and divided into different inflammatory subgroups using a two-step recursive clustering analysis. Cytokine gene expression and plasma KP metabolites were measured before, during and after treatment. Our findings indicated that schizophrenia patients had lower levels of Tryptophan (TRP), N-formylkynurenine (NFK), xanthinic acid (XA), quinolinic acid (QA), kynurenic acid (KYNA), KYNA/KYN and QA/KYNA, but higher levels of IL-18 mRNA, KYN/TRP compared to healthy controls (all p < 0.05). After electroconvulsive therapy (ECT), patients with low inflammation achieved better clinical improvement (PANSS scores) compared to those with high inflammation (F = 5.672, P = 0.025), especially in negative symptoms (F = 6.382, P = 0.018, η2 = 0.197). While IL-18 mRNA (F = 32.910, P < 0.0001) was significantly decreased following ECT, the KYN/TRP (F = 3.455, p = 0.047) and KYNA/TRP (F = 4.264, P = 0.026) only significantly decreased in patients with low inflammation. Correlation analyses revealed that baseline IL-18 gene expression significantly correlated with pre- (r = 0.537, p = 0.008) and post-KYNA/TRP (r = 0.443, p = 0.034), post-KYN/TRP (r = 0.510, p = 0.013), and post-negative symptoms (r = 0.525, p = 0.010). Moreover, baseline TRP (r = -0.438, p = 0.037) and XA (r = -0.516, p = 0.012) were negatively correlated with baseline PANSS, while post-KYN (r = -0.475, p = 0.022), 2-AA (r = -0.447, p = 0.032) and KYN/TRP (r = -0.566, p = 0.005) were negatively correlated with Montreal Cognitive Assessment (MoCA) following ECT. Overall, these findings suggested that the association between inflammation and kynurenine pathway plays an essential role in mechanism of ECT for schizophrenia and that the regulation of ECT on KP is influenced by inflammatory characteristics, which may relate to clinical efficacy in schizophrenia.
Collapse
Affiliation(s)
- Yu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangfa Wang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Wei Tang
- The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, China
| | - Shasha Liu
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yujing Yang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jin Chen
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuru Ling
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Caiyi Zhang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Kuan-Pin Su
- College of Medicine, China Medical University, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan.
| |
Collapse
|
32
|
Karkala A, Tzinas A, Kotoulas S, Zacharias A, Sourla E, Pataka A. Neuropsychiatric Outcomes and Sleep Dysfunction in COVID-19 Patients: Risk Factors and Mechanisms. Neuroimmunomodulation 2023; 30:237-249. [PMID: 37757765 DOI: 10.1159/000533722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
The ongoing global health crisis due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has significantly impacted all aspects of life. While the majority of early research following the coronavirus disease caused by SARS-CoV-2 (COVID-19) has focused on the physiological effects of the virus, a substantial body of subsequent studies has shown that the psychological burden of the infection is also considerable. Patients, even without mental illness history, were at increased susceptibility to developing mental health and sleep disturbances during or after the COVID-19 infection. Viral neurotropism and inflammatory storm damaging the blood-brain barrier have been proposed as possible mechanisms for mental health manifestations, along with stressful psychological factors and indirect consequences such as thrombosis and hypoxia. The virus has been found to infect peripheral olfactory neurons and exploit axonal migration pathways, exhibiting metabolic changes in astrocytes that are detrimental to fueling neurons and building neurotransmitters. Patients with COVID-19 present dysregulated and overactive immune responses, resulting in impaired neuronal function and viability, adversely affecting sleep and emotion regulation. Additionally, several risk factors have been associated with the neuropsychiatric sequelae of the infection, such as female sex, age, preexisting neuropathologies, severity of initial disease and sociological status. This review aimed to provide an overview of mental health symptoms and sleep disturbances developed during COVID-19 and to analyze the underlying mechanisms and risk factors of psychological distress and sleep dysfunction.
Collapse
Affiliation(s)
- Aliki Karkala
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Asterios Tzinas
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Athanasios Zacharias
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evdokia Sourla
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasia Pataka
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
33
|
Brum M, Nieberler M, Kehrwald C, Knopf K, Brunkhorst-Kanaan N, Etyemez S, Allers KA, Bittner RA, Slattery DA, McNeill RV, Reif A, Kittel-Schneider S. Phase-and disorder-specific differences in peripheral metabolites of the kynurenine pathway in major depression, bipolar affective disorder and schizophrenia. World J Biol Psychiatry 2023; 24:564-577. [PMID: 36648064 DOI: 10.1080/15622975.2023.2169348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Kynurenine, kynurenic and quinolinic acid are important metabolites in tryptophan metabolism. Due to an involvement in glutamatergic neurotransmission and immune response, previous studies have investigated this pathway in mental disorders such as major depressive disorder (MDD), bipolar disorder (BD) or schizophrenia (SCZ). Tryptophan and kynurenine have been shown to be decreased across disorders, hinting at the missing link how inflammation causes neurotoxicity and psychiatric symptoms. The main aim of our study was to investigate if individual catabolites could serve as diagnostic biomarkers for MDD, BD and SCZ. METHODS We measured plasma levels of tryptophan, kynurenine, kynurenic acid, quinolinic acid and ratio of quinolinic acid/kynurenic acid using mass spectrometry in n = 175 participants with acute episodes and after remission, compared with controls. RESULTS Decreased levels of all tryptophan catabolites were found in the whole patient group, driven by the difference between BD and HC. Manic and mixed phase BD individuals displayed significantly lower kynurenine and kynurenic acid levels. We could not find significant differences between disorders. Upon reaching remission, changes in catabolite levels partially normalised. CONCLUSIONS Our data suggests an involvement of the kynurenine pathway in mental disorders, especially BD but disqualifying those metabolites as biomarkers for differential diagnosis.
Collapse
Affiliation(s)
- Murielle Brum
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University of Frankfurt, Frankfurt, Germany
| | - Matthias Nieberler
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Christopher Kehrwald
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University of Frankfurt, Frankfurt, Germany
| | - Katrin Knopf
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University of Frankfurt, Frankfurt, Germany
| | - Nathalie Brunkhorst-Kanaan
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University of Frankfurt, Frankfurt, Germany
| | - Semra Etyemez
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University of Frankfurt, Frankfurt, Germany
- Current: Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kelly A Allers
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Robert A Bittner
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University of Frankfurt, Frankfurt, Germany
- Ernst Struengmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University of Frankfurt, Frankfurt, Germany
| | - Rhiannon V McNeill
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University of Frankfurt, Frankfurt, Germany
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University of Frankfurt, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University of Frankfurt, Frankfurt, Germany
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
34
|
Battaglia MR, Di Fazio C, Battaglia S. Activated Tryptophan-Kynurenine metabolic system in the human brain is associated with learned fear. Front Mol Neurosci 2023; 16:1217090. [PMID: 37575966 PMCID: PMC10416643 DOI: 10.3389/fnmol.2023.1217090] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Affiliation(s)
- Maria Rita Battaglia
- Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola, Bologna, Italy
| | - Chiara Di Fazio
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
| | - Simone Battaglia
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
- Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
35
|
Zhou J, Cao Y, Deng G, Fang J, Qiu C. Transient splenial lesion syndrome in bipolar-II disorder: a case report highlighting reversible brain changes during hypomanic episodes. Front Psychiatry 2023; 14:1219592. [PMID: 37492064 PMCID: PMC10363742 DOI: 10.3389/fpsyt.2023.1219592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Background Reversible splenial lesion syndrome (RESLES) is a rare neurological condition characterized by temporary abnormalities in the splenium of the corpus callosum, which has been reported in mental disorders. Previous studies on bipolar disorder (BD) primarily focused on aspects such as brain structure and function, neurochemical changes, and genetics. However, there have been no studies reporting the occurrence of this syndrome during hypomanic episodes and its disappearance during the remission phase in bipolar disorder type 2 (BD-II). Case presentation We present a case report of a 30 years-old female patient with BD-II who exhibited symptoms of RESLES during a hypomanic episode. The patient, with a 12 years psychiatric history, has experienced recurrent depressive episodes initially, with the first hypomanic episode occurring 8 years ago. During this period, this patient made several visits to the outpatient clinic to have her medications adjusted due to repeated suicide attempts. This time, she was admitted to our hospital with a second hypomanic episode due to drug withdrawal during pregnancy. The RESLES was observed on her brain magnetic resonance image, and it was alleviated after treatment with lithium carbonate and quetiapine until achieving remission. Conclusion We present the first report of identifying RESLES in BD-II with hypomanic episodes, which subsequently disappears during the remission phase. Our case report highlights a potential association between BD and RESLES, emphasizing the need for future studies to explore the underlying mechanisms connecting these two conditions in greater depth.
Collapse
Affiliation(s)
- Jingyuan Zhou
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yuan Cao
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Gaoju Deng
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Jinbo Fang
- West China School of Nursing, West China Hospital of Sichuan University, Chengdu, China
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| |
Collapse
|
36
|
Li S. Modulation of immunity by tryptophan microbial metabolites. Front Nutr 2023; 10:1209613. [PMID: 37521424 PMCID: PMC10382180 DOI: 10.3389/fnut.2023.1209613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 08/01/2023] Open
Abstract
Tryptophan (Trp) is an essential amino acid that can be metabolized via endogenous and exogenous pathways, including the Kynurenine Pathway, the 5-Hydroxyindole Pathway (also the Serotonin pathway), and the Microbial pathway. Of these, the Microbial Trp metabolic pathways in the gut have recently been extensively studied for their production of bioactive molecules. The gut microbiota plays an important role in host metabolism and immunity, and microbial Trp metabolites can influence the development and progression of various diseases, including inflammatory, cardiovascular diseases, neurological diseases, metabolic diseases, and cancer, by mediating the body's immunity. This review briefly outlines the crosstalk between gut microorganisms and Trp metabolism in the body, starting from the three metabolic pathways of Trp. The mechanisms by which microbial Trp metabolites act on organism immunity are summarized, and the potential implications for disease prevention and treatment are highlighted.
Collapse
|
37
|
Khatoon S, Kalam N, Rashid S, Bano G. Effects of gut microbiota on neurodegenerative diseases. Front Aging Neurosci 2023; 15:1145241. [PMID: 37323141 PMCID: PMC10268008 DOI: 10.3389/fnagi.2023.1145241] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/12/2023] [Indexed: 06/17/2023] Open
Abstract
A progressive degradation of the brain's structure and function, which results in a reduction in cognitive and motor skills, characterizes neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The morbidity linked to NDs is growing, which poses a severe threat to human being's mental and physical ability to live well. The gut-brain axis (GBA) is now known to have a crucial role in the emergence of NDs. The gut microbiota is a conduit for the GBA, a two-way communication system between the gut and the brain. The myriad microorganisms that make up the gut microbiota can affect brain physiology by transmitting numerous microbial chemicals from the gut to the brain via the GBA or neurological system. The synthesis of neurotransmitters, the immunological response, and the metabolism of lipids and glucose have all been demonstrated to be impacted by alterations in the gut microbiota, such as an imbalance of helpful and harmful bacteria. In order to develop innovative interventions and clinical therapies for NDs, it is crucial to comprehend the participation of the gut microbiota in these conditions. In addition to using antibiotics and other drugs to target particular bacterial species that may be a factor in NDs, this also includes using probiotics and other fecal microbiota transplantation to maintain a healthy gut microbiota. In conclusion, the examination of the GBA can aid in understanding the etiology and development of NDs, which may benefit the improvement of clinical treatments for these disorders and ND interventions. This review indicates existing knowledge about the involvement of microbiota present in the gut in NDs and potential treatment options.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nida Kalam
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gulnaz Bano
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
38
|
Kim BH, Kim SH, Han C, Jeong HG, Lee MS, Kim J. Antidepressant-induced mania in panic disorder: a single-case study of clinical and functional connectivity characteristics. Front Psychiatry 2023; 14:1205126. [PMID: 37304446 PMCID: PMC10248065 DOI: 10.3389/fpsyt.2023.1205126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Background Mental health issues, including panic disorder (PD), are prevalent and often co-occur with anxiety and bipolar disorders. While panic disorder is characterized by unexpected panic attacks, and its treatment often involves antidepressants, there is a 20-40% risk of inducing mania (antidepressant-induced mania) during treatment, making it crucial to understand mania risk factors. However, research on clinical and neurological characteristics of patients with anxiety disorders who develop mania is limited. Methods In this single case study, we conducted a larger prospective study on panic disorder, comparing baseline data between one patient who developed mania (PD-manic) and others who did not (PD-NM group). We enrolled 27 patients with panic disorder and 30 healthy controls (HCs) and examined alterations in amygdala-based brain connectivity using a seed-based whole-brain approach. We also performed exploratory comparisons with healthy controls using ROI-to-ROI analyses and conducted statistical inferences at a threshold of cluster-level family-wise error-corrected p < 0.05, with the cluster-forming threshold at the voxel level of uncorrected p < 0.001. Results The patient with PD-mania showed lower connectivity in brain regions related to the default mode network (left precuneous cortex, maximum z-value within the cluster = -6.99) and frontoparietal network (right middle frontal gyrus, maximum z-value within the cluster = -7.38; two regions in left supramarginal gyrus, maximum z-value within the cluster = -5.02 and -5.86), and higher in brain regions associated with visual processing network (right lingual gyrus, maximum z-value within the cluster = 7.86; right lateral occipital cortex, maximum z-value within the cluster = 8.09; right medial temporal gyrus, maximum z-value within the cluster = 8.16) in the patient with PD-mania compared to the PD-NM group. One significantly identified cluster, the left medial temporal gyrus (maximum z-value within the cluster = 5.82), presented higher resting-state functional connectivity with the right amygdala. Additionally, ROI-to-ROI analysis revealed that significant clusters between PD-manic and PD-NM groups differed from HCs in the PD-manic group but not in the PD-NM group. Conclusion Here, we demonstrate altered amygdala-DMN and amygdala-FPN connectivity in the PD-manic patient, as reported in bipolar disorder (hypo) manic episodes. Our study suggests that amygdala-based resting-state functional connectivity could serve as a potential biomarker for antidepressant-induced mania in panic disorder patients. Our findings provide an advance in understanding the neurological basis of antidepressant-induced mania, but further research with larger cohorts and more cases is necessary for a broader perspective on this issue.
Collapse
Affiliation(s)
- Byung-Hoon Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Hyun Kim
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Changsu Han
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Ghang Jeong
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Moon-Soo Lee
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Junhyung Kim
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
39
|
Adamu MJ, Qiang L, Nyatega CO, Younis A, Kawuwa HB, Jabire AH, Saminu S. Unraveling the pathophysiology of schizophrenia: insights from structural magnetic resonance imaging studies. Front Psychiatry 2023; 14:1188603. [PMID: 37275974 PMCID: PMC10236951 DOI: 10.3389/fpsyt.2023.1188603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023] Open
Abstract
Background Schizophrenia affects about 1% of the global population. In addition to the complex etiology, linking this illness to genetic, environmental, and neurobiological factors, the dynamic experiences associated with this disease, such as experiences of delusions, hallucinations, disorganized thinking, and abnormal behaviors, limit neurological consensuses regarding mechanisms underlying this disease. Methods In this study, we recruited 72 patients with schizophrenia and 74 healthy individuals matched by age and sex to investigate the structural brain changes that may serve as prognostic biomarkers, indicating evidence of neural dysfunction underlying schizophrenia and subsequent cognitive and behavioral deficits. We used voxel-based morphometry (VBM) to determine these changes in the three tissue structures: the gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). For both image processing and statistical analysis, we used statistical parametric mapping (SPM). Results Our results show that patients with schizophrenia exhibited a significant volume reduction in both GM and WM. In particular, GM volume reductions were more evident in the frontal, temporal, limbic, and parietal lobe, similarly the WM volume reductions were predominantly in the frontal, temporal, and limbic lobe. In addition, patients with schizophrenia demonstrated a significant increase in the CSF volume in the left third and lateral ventricle regions. Conclusion This VBM study supports existing research showing that schizophrenia is associated with alterations in brain structure, including gray and white matter, and cerebrospinal fluid volume. These findings provide insights into the neurobiology of schizophrenia and may inform the development of more effective diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Mohammed Jajere Adamu
- Department of Electronic Science and Technology, School of Microelectronics, Tianjin University, Tianjin, China
- Department of Computer Science, Yobe State University, Damaturu, Nigeria
| | - Li Qiang
- Department of Electronic Science and Technology, School of Microelectronics, Tianjin University, Tianjin, China
| | - Charles Okanda Nyatega
- Department of Information and Communication Engineering, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
- Department of Electronics and Telecommunication Engineering, Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Ayesha Younis
- Department of Electronic Science and Technology, School of Microelectronics, Tianjin University, Tianjin, China
| | - Halima Bello Kawuwa
- Department of Biomedical Engineering and Scientific Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Adamu Halilu Jabire
- Department of Electrical and Electronics Engineering, Taraba State University, Jalingo, Nigeria
| | - Sani Saminu
- Department of Biomedical Engineering, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
40
|
Yan J, Kothur K, Mohammad S, Chung J, Patel S, Jones HF, Keating BA, Han VX, Webster R, Ardern-Holmes S, Antony J, Menezes MP, Tantsis E, Gill D, Gupta S, Kandula T, Sampaio H, Farrar MA, Troedson C, Andrews PI, Pillai SC, Heng B, Guillemin GJ, Guller A, Bandodkar S, Dale RC. CSF neopterin, quinolinic acid and kynurenine/tryptophan ratio are biomarkers of active neuroinflammation. EBioMedicine 2023; 91:104589. [PMID: 37119734 PMCID: PMC10165192 DOI: 10.1016/j.ebiom.2023.104589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Defining the presence of acute and chronic brain inflammation remains a challenge to clinicians due to the heterogeneity of clinical presentations and aetiologies. However, defining the presence of neuroinflammation, and monitoring the effects of therapy is important given its reversible and potentially damaging nature. We investigated the utility of CSF metabolites in the diagnosis of primary neuroinflammatory disorders such as encephalitis and explored the potential pathogenic role of inflammation in epilepsy. METHODS Cerebrospinal fluid (CSF) collected from 341 paediatric patients (169 males, median age 5.8 years, range 0.1-17.1) were examined. The patients were separated into a primary inflammatory disorder group (n = 90) and epilepsy group (n = 80), who were compared with three control groups including neurogenetic and structural (n = 76), neurodevelopmental disorders, psychiatric and functional neurological disorders (n = 63), and headache (n = 32). FINDINGS There were statistically significant increases of CSF neopterin, kynurenine, quinolinic acid and kynurenine/tryptophan ratio (KYN/TRP) in the inflammation group compared to all control groups (all p < 0.0003). As biomarkers, at thresholds with 95% specificity, CSF neopterin had the best sensitivity for defining neuroinflammation (82%, CI 73-89), then quinolinic acid (57%, CI 47-67), KYN/TRP ratio (47%, CI 36-56) and kynurenine (37%, CI 28-48). CSF pleocytosis had sensitivity of 53%, CI 42-64). The area under the receiver operating characteristic curve (ROC AUC) of CSF neopterin (94.4% CI 91.0-97.7%) was superior to that of CSF pleocytosis (84.9% CI 79.5-90.4%) (p = 0.005). CSF kynurenic acid/kynurenine ratio (KYNA/KYN) was statistically decreased in the epilepsy group compared to all control groups (all p ≤ 0.0003), which was evident in most epilepsy subgroups. INTERPRETATION Here we show that CSF neopterin, kynurenine, quinolinic acid and KYN/TRP are useful diagnostic and monitoring biomarkers of neuroinflammation. These findings provide biological insights into the role of inflammatory metabolism in neurological disorders and provide diagnostic and therapeutic opportunities for improved management of neurological diseases. FUNDING Financial support for the study was granted by Dale NHMRC Investigator grant APP1193648, University of Sydney, Petre Foundation, Cerebral Palsy Alliance and Department of Biochemistry at the Children's Hospital at Westmead. Prof Guillemin is funded by NHMRC Investigator grant APP 1176660 and Macquarie University.
Collapse
Affiliation(s)
- Jingya Yan
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Department of Biochemistry, The Children's Hospital at Westmead, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Kavitha Kothur
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Shekeeb Mohammad
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Jason Chung
- Department of Biochemistry, The Children's Hospital at Westmead, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Hannah F Jones
- Starship Hospital, Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Brooke A Keating
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Velda X Han
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Richard Webster
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Simone Ardern-Holmes
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Jayne Antony
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Manoj P Menezes
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Esther Tantsis
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Deepak Gill
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Sachin Gupta
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Tejaswi Kandula
- Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Hugo Sampaio
- Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Michelle A Farrar
- Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia; Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
| | - Christopher Troedson
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - P Ian Andrews
- Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Sekhar C Pillai
- Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Anna Guller
- Computational NeuroSurgery Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sushil Bandodkar
- Department of Biochemistry, The Children's Hospital at Westmead, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| |
Collapse
|
41
|
Shan D, You L, Wan X, Yang H, Zhao M, Chen S, Jiang W, Xu Q, Yuan Y. Serum metabolomic profiling revealed potential diagnostic biomarkers in patients with panic disorder. J Affect Disord 2023; 323:461-471. [PMID: 36493940 DOI: 10.1016/j.jad.2022.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Currently, specific metabolites and diagnostic biomarkers of panic disorder (PD) patients have not been identified in clinical practice. The aim of this study was to explore metabolites and metabolic pathways in serum through a metabolomics method. METHODS Fifty-five PD patients who completed 2 weeks of inpatient treatment and 55 healthy control subjects (HCs) matched for age, sex and BMI were recruited. Ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) was used to detect metabolites in serum. Multivariate Statistical Analysis was used to identify differential metabolites. The relevant biometabolic pathways were further identified by the online tool MetaboAnalyst 5.0. RESULTS 43 different metabolites in PD patients compared to HCs (P < 0.05) were screened. Pathway analysis showed that these small molecules were mainly associated with amino acid metabolism. 14 metabolites were significantly changed after 2 weeks of drug treatment (P < 0.05), which were mainly associated with tryptophan metabolism. CONCLUSION In conclusion, our analysis of metabolomics of PD patients at baseline and two weeks after treatment screened for differential metabolites that could be potential diagnostic biomarkers involved in PD pathogenesis and influence some biometabolic pathways such as phenylalanine metabolism and tryptophan metabolism. In the future, we can summarize and observe the dynamic changes of differential metabolites that appear more frequently in similar studies to further explore the underlying mechanisms of PD evolution.
Collapse
Affiliation(s)
- Dandan Shan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Linlin You
- Nanjing Medical University, Nanjing, China; Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuerui Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Huan Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | | | | | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Yonggui Yuan
- Nanjing Medical University, Nanjing, China; Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
42
|
Mahmoud AMA, Eissa MAE, Kolkaila EA, Amer RAR, Kotait MA. Mismatch negativity as an early biomarker of cognitive impairment in schizophrenia. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2023. [DOI: 10.1186/s41983-023-00627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Abstract
Background
Due to its disturbance in schizophrenic patients, mismatch negativity (MMN) generation is believed to be a potential biomarker for recognizing primary impairments in auditory sensory processing during the course of the disease. However, great controversy exists regarding the type and onset of MMN-related impairments, with the deficits to frequency deviants is more debatable. This cross-sectional, case–control study was conducted to assess the cognitive functions among 33 eligible Egyptian schizophrenics (15 early and 18 chronic), and 30 matched healthy controls by assessing their psychometric tests and correlating them to the coexisting frequency deviant MMN responses (using both tone and speech stimuli).
Results
Deficits in frequency MMN and neuropsychological tests were evident among early and chronic schizophrenics compared to their matched control counterparts, and also between early versus chronic schizophrenia in favor of the later. MMN deficits to speech stimuli were more elicited than tone stimuli among schizophrenics. Moreover, significant correlations were identified between MMN parameters and the results of psychiatric cognitive scales.
Conclusions
We demonstrated that frequency-deviant MMN deficits are evident feature among the enrolled Egyptian schizophrenics. The cognitive functions as indexed by MMN seem affected early, with the striking decrease of MMN amplitude and delay of latency point towards the progression of the illness. The normal lateralization of MMN was absent in chronic schizophrenia. These findings could be helpful in using the MMN as an additional objective tool for confirming cognitive impairments among schizophrenics and to differentiate between early- and chronic-schizophrenic patients for medico-legal purposes and clinical implication for medications.
Collapse
|
43
|
Zagubnaya OA, Nartsissov YR. MOLECULAR MECHANISMS UNDERLYING THERAPEUTIC ACTION OF VITAMIN B6. PHARMACY & PHARMACOLOGY 2023. [DOI: 10.19163/2307-9266-2022-10-6-500-514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The aim of the study was to analyze the molecular mechanisms that determine the possibility of using vitamin B6 in clinical practice for the correction of various pathological conditions.Materials and methods. Information retrieval (Scopus, PubMed) and library (eLibrary) databases were used as research tools. In some cases, the ResearchGate application was used for a semantic search. The analysis and generalization of the scientific literature on the topic of research, covering the period from 1989 to the present, has been carried out in the work.Results. It has been shown that all chemical forms of vitamin B6 are able to penetrate the membranes of most cells by free diffusion, while forming phosphorylated forms inside. Pyridoxal phosphate is a biologically important metabolite that is directly involved as a cofactor in a variety of intracellular reactions. Requirements for this cofactor depend on the age, sex and condition of the patient. Pregnancy and lactation play a special role in the consumption of vitamin B6. In most cases, a balanced diet will provide an acceptable level of this vitamin. At the same time, its deficiency leads to the development of a number of pathological conditions, including neurodegenerative diseases, inflammations and diabetes. Negative manifestations from the central nervous system are also possible with an excessive consumption of B6.Conclusion. Replenishment of the vitamin B6 level in case of its identified deficiency is a necessary condition for the successful treatment of the central nervous system diseases, diabetes and correction of patients’ immune status. At the same time, it is necessary to observe a balanced intake of this cofactor in order to avoid negative effects on metabolism in case of its excess.
Collapse
Affiliation(s)
- O. A. Zagubnaya
- Institute of Cytochemistry and Molecular Pharmacology;
Biomedical Research Group, BiDiPharma GmbH
| | - Y. R. Nartsissov
- Institute of Cytochemistry and Molecular Pharmacology;
Biomedical Research Group, BiDiPharma GmbH
| |
Collapse
|
44
|
Liu M, Xie X, Xie J, Tian S, Du X, Feng H, Zhang H. Early-onset Alzheimer's disease with depression as the first symptom: a case report with literature review. Front Psychiatry 2023; 14:1192562. [PMID: 37181906 PMCID: PMC10174310 DOI: 10.3389/fpsyt.2023.1192562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Background Alzheimer's disease is a common neurodegenerative disease, and patients with early-onset Alzheimer's disease (onset age < 65 years) often have atypical symptoms, which are easily misdiagnosed and missed. Multimodality neuroimaging has become an important diagnostic and follow-up method for AD with its non-invasive and quantitative advantages. Case presentation We report a case of a 59-year-old female with a diagnosis of depression at the age of 50 after a 46-year-old onset and a 9-year follow-up observation, who developed cognitive dysfunction manifested by memory loss and disorientation at the age of 53, and eventually developed dementia. Combined with neuropsychological scales (MMSE and MOCA scores decreased year by year and finally reached the dementia criteria) and the application of multimodal imaging. MRI showed that the hippocampus atrophied year by year and the cerebral cortex was extensively atrophied. 18F-FDG PET image showed hypometabolism in right parietal lobes, bilateral frontal lobes, bilateral joint parieto-temporal areas, and bilateral posterior cingulate glucose metabolism. The 18F-AV45 PET image showed the diagnosis of early-onset Alzheimer's disease was confirmed by the presence of Aβ deposits in the cerebral cortex. Conclusion Early-onset Alzheimer's disease, which starts with depression, often has atypical symptoms and is prone to misdiagnosis. The combination of neuropsychological scales and neuroimaging examinations are good screening tools that can better assist in the early diagnosis of Alzheimer's disease. Graphical Abstract.
Collapse
Affiliation(s)
- Meichen Liu
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xueting Xie
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jinghui Xie
- Department of Nuclear Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shiyun Tian
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xuemei Du
- Department of Nuclear Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hongbo Feng
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Huimin Zhang
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Huimin Zhang,
| |
Collapse
|
45
|
Aghdash SN, Foroughi G. Chemical Kindling as an Experimental Model to Assess the Conventional Drugs in the Treatment of Post-traumatic Epilepsy. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:1417-1428. [PMID: 36443981 DOI: 10.2174/1871527322666221128155813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality today, which will surpass many infectious diseases in the coming years/decades. Posttraumatic epilepsy (PTE) is one of the most common debilitating consequences of TBI. PTE is a secondary, acquired epilepsy that causes recurrent, spontaneous seizures more than a week after TBI. The extent of head injury in individuals who develop PTE is unknown; however, trauma is thought to account for 20% of symptomatic epilepsy worldwide. Understanding the mechanisms of epilepsy following TBI is crucial for the discovery of new anticonvulsant drugs for the treatment of PTE, as well as for improving the quality of life of patients with PTE. OBJECTIVE This review article explains the rationale for the usage of a chemical model to access new treatments for post-traumatic epilepsy. RESULTS There are multiple methods to control and manage PTE. The essential and available remedy for the management of epilepsy is the use of antiepileptic drugs. Antiepileptic drugs (AEDs) decrease the frequency of seizures without affecting the disease's causality. Antiepileptic drugs are administrated for the prevention and treatment of PTE; however, 30% of epilepsy patients are drug-resistant, and AED side effects are significant in PTE patients. There are different types of animal models, such as the liquid percussion model, intracortical ferric chloride injection, and cortical subincision model, to study PTE and neurophysiological mechanisms underlying the development of epilepsy after head injury. However, these animal models do not easily mimic the pathological events occurring in epilepsy. Therefore, animal models of PTE are an inappropriate tool for screening new and putatively effective AEDs. Chemical kindling is the most common animal model used to study epilepsy. There is a strong similarity between the kindling model and different types of human epilepsy. CONCLUSION Today, researchers use experimental animal models to evaluate new anticonvulsant drugs. The chemical kindling models, such as pentylenetetrazol, bicuculline, and picrotoxin-induced seizures, are important experimental models to analyze the impact of putative antiepileptic drugs.
Collapse
Affiliation(s)
- Simin Namvar Aghdash
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Golsa Foroughi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
46
|
Panov G, Panova P. Obsessive-compulsive symptoms in patient with schizophrenia: The influence of disorganized symptoms, duration of schizophrenia, and drug resistance. Front Psychiatry 2023; 14:1120974. [PMID: 36923524 PMCID: PMC10008879 DOI: 10.3389/fpsyt.2023.1120974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Schizophrenia is a chronic mental disorder with a many-faced clinical presentation. Obsessive-compulsive symptoms are often part of it. The characteristics of the clinical picture and the course of schizophrenia are factors related to both the resistance and the manifestation of obsessive-compulsive symptoms. Our study aims to establish the relationship between the peculiarities of the schizophrenia process and the influence of resistance on the expression of obsessive-compulsive symptoms. METHODS A study was conducted on 105 patients with schizophrenia. Of them, 39 are men and 66 are women. The evaluation of the effectiveness of the treatment showed that 45 were resistant to the applied therapy, while the remaining 60 responded. Clinical assessment of patients was performed using the Positive and Negative Syndrome Scale (PANSS) and Brief Psychiatric Rating Scale (BPRS). Assessment of obsessive-compulsive symptoms (OCS) was conducted with the Dimensional obsessive-compulsive symptoms scale (DOCS). RESULTS In 34% of all patients, we found clinically expressed obsessive-compulsive symptoms. In 40% of the patients with resistance, we found clinically expressed obsessive-compulsive symptoms, which are within the range of moderately expressed. In 30% of the patients in clinical remission, we found obsessive-compulsive symptoms, but mildly expressed. We found a statistically significant relationship between the severity of OCS and the disorganized symptoms and the duration of the schizophrenia process. No differences were found in the expression of OCS in patients of both sexes. CONCLUSION We registered both an increased frequency and an increased expression of obsessive-compulsive symptoms in patients with resistant schizophrenia. These symptoms were positively associated with disorganized symptoms and duration of schizophrenia. No relationship was established with the positive, negative symptoms, as well as with the gender distribution.
Collapse
Affiliation(s)
- Georgi Panov
- Psychiatric Clinic, University Hospital for Active Treatment "Prof. Dr. Stoyan Kirkovich", Trakia University, Stara Zagora, Bulgaria.,Department of Psychiatry and Psychology, University "Prof. Dr. Asen Zlatarov" Medical Faculty, Burgas, Bulgaria
| | | |
Collapse
|
47
|
Shehata GA, Ahmed GK, Hassan EA, Rehim ASEDA, Mahmoud SZ, Masoud NA, Seifeldein GS, Hassan WA, Aboshaera KO. Impact of direct-acting antivirals on neuropsychiatric and neurocognitive dysfunction in chronic hepatitis C patients. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Abstract
Background
Hepatitis C virus (HCV) infection is associated with psychiatric and cognitive dysfunctions. We aimed to investigate depression, anxiety, and cognitive function of chronic hepatitis C (CHC) patients before and after treatment with direct-acting antivirals (DAAs). Forty CHC patients (20 non-cirrhotic and 20 cirrhotic) who had undergone DAA treatment in our outpatient clinic and ten controls. We administered the Hospital Anxiety and Depression questionnaires to measure the anxiety and depression symptoms and the Cognitive Abilities Screening Instruments (CASI) to measure the cognitive function at the beginning and 3 months after the end of the treatment.
Results
Sustained virological response (SVR) was achieved in all patients. Post-treatment anxiety and depression scores showed a significant improvement than pre-treatment ones in CHC patients. Regarding CASI, before and after the treatment, a statistical significance was found in short-term memory (P = 0.001), concentration (P = 0.033), abstract thinking and judgment (P = 0.024), total (P = 0.001) in non-cirrhotic, Also, an improvement was seen in long-term memory (P = 0.015), short-term memory (P < 0.001), concentration (P = 0.024) and total (P = 0.01) in cirrhotic. However, these changes were still impaired in post-treated cirrhotic compared to controls.
Conclusions
CHC patients' anxiety, depression, and cognitive function partially improved after DAA therapy. Besides, improving the status of CHC, reversibility of cognitive dysfunction in non-cirrhotic patients may indicate the importance of treatment in early stages of liver disease.
Collapse
|
48
|
Abedi Kiasari B, Abbasi A, Ghasemi Darestani N, Adabi N, Moradian A, Yazdani Y, Sadat Hosseini G, Gholami N, Janati S. Combination therapy with nivolumab (anti-PD-1 monoclonal antibody): A new era in tumor immunotherapy. Int Immunopharmacol 2022; 113:109365. [PMID: 36332452 DOI: 10.1016/j.intimp.2022.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
49
|
Yilmaz NS, Sen B, Karadag RF, Aslan S, Ekmekci Ertek I, Bozkurt A, Cicek S, Bolu A, Ucar H, Kocak C, Cevik C, Bukan N. A kynurenine pathway enzyme aminocarboxymuconate-semialdehyde decarboxylase may be involved in treatment-resistant depression, and baseline inflammation status of patients predicts treatment response: a pilot study. J Neural Transm (Vienna) 2022; 129:1513-1526. [PMID: 36334154 DOI: 10.1007/s00702-022-02553-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
The kynurenine pathway (KP) and inflammation are substantial in depression pathogenesis. Although there is a crosstalk between the KP, inflammation, and neurotrophic factors, few studies examine these topics together. Novel medications may be developed by clarifying dysregulations related to inflammation, KP, and neurotrophic factors in treatment-resistant depression (TRD). We aimed to evaluate the serum levels of KP metabolites, proinflammatory biomarkers, and brain-derived neurotrophic factor (BDNF) in healthy controls (HC) and the patients with TRD whose followed up with three different treatments. Moreover, the effect of electroconvulsive therapy (ECT) and repetitive transcranial magnetic stimulation (rTMS) on biomarkers was investigated. Study groups comprised a total of 30 unipolar TRD patients consisting of three separate patient groups (ECT = 8, rTMS = 10, pharmacotherapy = 12), and 9 HC. The decision to administer only pharmacotherapy or ECT/rTMS besides pharmacotherapy was given independently of this research by psychiatrists. Blood samples and symptom scores were obtained three times for patients. At baseline, quinolinic acid (QUIN) was higher in the patients with TRD compared to HC, whereas picolinic acid (PIC), PIC/QUIN, and PIC/3-hydroxykynurenine were lower. Baseline interleukin-6 (IL-6), and high-sensitivity C-reactive protein (hsCRP) were higher in nonresponders and non-remitters. ECT had an acute effect on cytokines. In the rTMS group, tumor necrosis factor-α (TNF-α) decreased in time. PIC, QUIN, and aminocarboxymuconate-semialdehyde decarboxylase (ACMSD) enzyme may play a role in TRD pathogenesis, and have diagnostic potential. rTMS and ECT have modulatory effects on low-grade inflammation seen in TRD. Baseline inflammation severity is predictive in terms of response and remission in depression.
Collapse
Affiliation(s)
- Niyazi Samet Yilmaz
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey.
| | - Bayram Sen
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | | | - Selcuk Aslan
- Department of Psychiatry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Irem Ekmekci Ertek
- Department of Psychiatry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Aruz Bozkurt
- Department of Psychiatry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Saba Cicek
- Department of Psychiatry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Abdullah Bolu
- Department of Psychiatry, Health Sciences University Gulhane Training and Research Hospital, Ankara, Turkey
| | - Huseyin Ucar
- Department of Psychiatry, Health Sciences University Gulhane Training and Research Hospital, Ankara, Turkey
| | - Cemal Kocak
- Republic of Turkey Ministry of Health, General Directorate of Public Health, Ankara, Turkey
| | - Cemal Cevik
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Neslihan Bukan
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
50
|
Aarsland TIM, Instanes JT, Posserud MBR, Ulvik A, Kessler U, Haavik J. Changes in Tryptophan-Kynurenine Metabolism in Patients with Depression Undergoing ECT-A Systematic Review. Pharmaceuticals (Basel) 2022; 15:1439. [PMID: 36422569 PMCID: PMC9694349 DOI: 10.3390/ph15111439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 10/29/2023] Open
Abstract
The kynurenine pathway of tryptophan (Trp) metabolism generates multiple biologically active metabolites (kynurenines) that have been implicated in neuropsychiatric disorders. It has been suggested that modulation of kynurenine metabolism could be involved in the therapeutic effect of electroconvulsive therapy (ECT). We performed a systematic review with aims of summarizing changes in Trp and/or kynurenines after ECT and assessing methodological issues. The inclusion criterium was measures of Trp and/or kynurenines before and after ECT. Animal studies and studies using Trp administration or Trp depletion were excluded. Embase, MEDLINE, PsycInfo and PubMed were searched, most recently in July 2022. Outcomes were levels of Trp, kynurenines and ratios before and after ECT. Data on factors affecting Trp metabolism and ECT were collected for interpretation and discussion of the reported changes. We included 17 studies with repeated measures for a total of 386 patients and 27 controls. Synthesis using vote counting based on the direction of effect found no evidence of effect of ECT on any outcome variable. There were considerable variations in design, patient characteristics and reported items. We suggest that future studies should include larger samples, assess important covariates and determine between- and within-subject variability. PROSPERO (CRD42020187003).
Collapse
Affiliation(s)
| | | | - Maj-Britt Rocio Posserud
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
| | - Arve Ulvik
- Bevital A/S, Laboratoriebygget, 5020 Bergen, Norway
| | - Ute Kessler
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|