1
|
Pongkulapa T, Yum JH, McLoughlin CD, Conklin B, Kumagai T, Goldston LL, Sugiyama H, Park S, Lee KB. NIR-Induced Photoswitching Hybrid DNA Nanoconstruct-Based Drug Delivery System for Spatiotemporal Control of Stem Cell Fate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409530. [PMID: 40007062 DOI: 10.1002/smll.202409530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/20/2025] [Indexed: 02/27/2025]
Abstract
Precise spatiotemporal control of drug delivery is extremely valuable for regulating stem cell fate, particularly in stem cell differentiation. A novel near-infrared (NIR)-mediated spatiotemporal delivery system is reported combining photo-switchable arylazopyrazole (AAP)-containing DNA strands and upconversion nanoparticles (UCNPs). This nano-drug delivery system (NDDS) enables precise modulation of DNA duplex structures in response to NIR stimuli, overcoming the limitations of traditional UV-responsive systems. AAP derivatives with enhanced photoswitching efficiency (≈98%) and significantly improved cis-form stability are engineered. The successful delivery of curcumin, a neurogenic compound with an affinity for the minor groove of DNA, to human neural stem cells (NSCs) is achieved using UCNP-DNA-AAP constructs. Upon 980 nm NIR light exposure, UCNPs efficiently up-converted NIR to UV light, triggering AAP photoisomerization and DNA dissociation, thus releasing curcumin. This approach enabled efficient spatiotemporal control over NSC differentiation while facilitating neuroprotection. Immunofluorescence and gene expression analyses demonstrated enhanced neuronal mRNA levels and neurite outgrowth in treated cells. In short, the NIR-mediated photo-switchable NDDS offers a precise and innovative approach to control stem cell fate, enabling spatiotemporal regulation of cellular processes. This technology has significant potential applications in nanomedicine and neuroscience, where precise drug delivery is crucial for targeted neural interventions.
Collapse
Affiliation(s)
- Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Callan D McLoughlin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Tomotaka Kumagai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Li Ling Goldston
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| |
Collapse
|
2
|
Ifijen IH, Christopher AT, Lekan OK, Aworinde OR, Faderin E, Obembe O, Abdulsalam Akanji TF, Igboanugo JC, Udogu U, Ogidi GO, Iorkula TH, Osayawe OJK. Advancements in tantalum based nanoparticles for integrated imaging and photothermal therapy in cancer management. RSC Adv 2024; 14:33681-33740. [PMID: 39450067 PMCID: PMC11498270 DOI: 10.1039/d4ra05732e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Tantalum-based nanoparticles (TaNPs) have emerged as promising tools in cancer management, owing to their unique properties that facilitate innovative imaging and photothermal therapy applications. This review provides a comprehensive overview of recent advancements in TaNPs, emphasizing their potential in oncology. Key features include excellent biocompatibility, efficient photothermal conversion, and the ability to integrate multifunctional capabilities, such as targeted drug delivery and enhanced imaging. Despite these advantages, challenges remain in establishing long-term biocompatibility, optimizing therapeutic efficacy through surface modifications, and advancing imaging techniques for real-time monitoring. Strategic approaches to address these challenges include surface modifications like PEGylation to improve biocompatibility, precise control over size and shape for effective photothermal therapy, and the development of biodegradable TaNPs for safe elimination from the body. Furthermore, integrating advanced imaging modalities-such as photoacoustic imaging, magnetic resonance imaging (MRI), and computed tomography (CT)-enable real-time tracking of TaNPs in vivo, which is crucial for clinical applications. Personalized medicine strategies that leverage biomarkers and genetic profiling also hold promise for tailoring TaNP-based therapies to individual patient profiles, thereby enhancing treatment efficacy and minimizing side effects. In conclusion, TaNPs represent a significant advancement in nanomedicine, poised to transform cancer treatment paradigms while expanding into various biomedical applications.
Collapse
Affiliation(s)
- Ikhazuagbe H Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria
| | - Awoyemi Taiwo Christopher
- Laboratory Department, Covenant University Medical Centre Canaan land, KM 10, Idiroko Road Ota Ogun State Nigeria
| | - Ogunnaike Korede Lekan
- Department of Chemistry, Wichita State University 1845 Fairmount, Box 150 Wichita KS 67260-0150 USA
| | | | - Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, 1 Hairpin Drive Edwardsville IL 62026-001 USA
| | | | | | - Juliet C Igboanugo
- Department of Health, Human Performance, and Recreation 155 Stadium Drive Arkansas 72701 USA
| | - Uzochukwu Udogu
- Department of Chemistry, Federal University of Technology Owerri Nigeria
| | | | - Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | |
Collapse
|
3
|
Wang QL, Meng LC, Zhao Z, Du JF, Li P, Jiang Y, Li HJ. Ultrasensitive upconverting nanoprobes for in situ imaging of drug-induced liver injury using miR-122 as the biomarker. Talanta 2024; 274:126108. [PMID: 38640602 DOI: 10.1016/j.talanta.2024.126108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/09/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Drug-induced liver injury (DILI) is a frequent adverse drug reaction. The current clinical diagnostic methods are inadequate for accurate and early detection of DILI due to the lack of effective diagnostic biomarkers. Hepatocyte-specific miR-122 is released from injured hepatocytes promptly and its efflux is significantly correlated with the progression of DILI. Therefore, achieving precise in situ detection of miR-122 with high sensitivity is vital for early visualization of DILI. Herein, a new nanoprobe, consisting of miR-122 aptamer, upconversion nanoparticles (UCNPs) and Prussian blue nanoparticles (PBNPs) was introduced for the early and sensitive detection of DILI in situ. As the nanoprobes reached in the liver, miR-122 aptamer-based entropy-driven strand displacement (ESDR) signal amplification reaction was triggered and luminescence resonance energy transfer (LRET) between UCNPs and PBNPs was responded to achieve the high-fidelity detection of DILI. A negative correlation was observed between the intensity of upconversion luminescence (UCL) and the concentration of miR-122. UCL imaging conducted both in vivo and ex vivo indicated that a reduction in miR-122 concentration led to an increase in UCL intensity, revealing a precise state of DILI. The detection technique demonstrated a positive correlation between signal intensity and severity, offering a more straightforward and intuitive method of visualizing DILI.
Collapse
Affiliation(s)
- Qiao-Lei Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ling-Chang Meng
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University, Nanjing, China
| | - Zhen Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jin-Fa Du
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Martincic M, Tobías-Rossell G. UV-Vis quantification of the iron content in iteratively steam and HCl purified single-walled carbon nanotubes. PLoS One 2024; 19:e0303359. [PMID: 38728321 PMCID: PMC11086872 DOI: 10.1371/journal.pone.0303359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
As-produced carbon nanotubes contain impurities which can dominate the properties of the material and are thus undesired. Herein we present a multi-step purification treatment that combines the use of steam and hydrochloric acid in an iterative manner. This allows the reduction of the iron content down to 0.2 wt. % in samples of single-walled carbon nanotubes (SWCNTs). Remarkably, Raman spectroscopy analysis reveals that this purification strategy does not introduce structural defects into the SWCNTs' backbone. To complete the study, we also report on a simplified approach for the quantitative assessment of iron using UV-Vis spectroscopy. The amount of metal in SWCNTs is assessed by dissolving in HCl the residue obtained after the complete combustion of the sample. This leads to the creation of hexaaquairon(III) chloride which allows the determination of the amount of iron, from the catalyst, by UV-Vis spectroscopy. The main advantage of the proposed strategy is that it does not require the use of additional complexing agents.
Collapse
Affiliation(s)
- Markus Martincic
- Institut de Ciència de Materiales de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, Barcelona, Spain
| | - Gerard Tobías-Rossell
- Institut de Ciència de Materiales de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
5
|
Tingyuan P, Xiaorui L, Jia L, Qi S, Junren L, Ling H, Wenying S, Xiaoshun J, Meimei Z. Highly sensitive and accurate detection of cholesterol based on a single red upconversion biosensor. RSC Adv 2024; 14:7858-7866. [PMID: 38449817 PMCID: PMC10915588 DOI: 10.1039/d3ra07354h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/02/2023] [Indexed: 03/08/2024] Open
Abstract
Cholesterol (CHOL) is an important clinical biochemical indicator that plays an important role in the regulation of the fluidity, permeability, and microstructure of cell membranes. Therefore, it is necessary to accurately monitor CHOL levels in biological samples for the early prevention and diagnosis of various diseases. The single-band red upconversion nanoparticle (UCNP) emits light within the optical transmission window of biological tissues, and can penetrate deeper biological tissues and cause less energy loss due to scattering and thus have higher sensitivity and accuracy. Here, using the nontoxic, sensitive, and photochemically stable 3,3',5,5'-tetramethylbenzidine (TMB) as the quenching agent and single red UCNP as the fluorescent donor, a dual-readout colorimetric and fluorescent sensor was developed to detect CHOL. The detection mechanism and feasibility were discussed in detail, and experimental conditions such as Fe2+ concentration, TMB concentration and reaction time were explored. Under optimal conditions, the limits of CHOL detection by colorimetry and fluorescence were 0.85 μM and 0.63 μM. The sensing system was used to measure CHOL in serum samples and the values obtained by these two modes were close, and the spiked recoveries were 97.2-102.2% and 97.1-103.7%, respectively, which holds great potential in clinical diagnosis and health management.
Collapse
Affiliation(s)
- Pang Tingyuan
- Department of Pharmacy, Affiliated Cancer Hospital, Institute of Guangzhou Medical University Guangzhou China
| | - Liu Xiaorui
- Department of Pharmacy, Affiliated Cancer Hospital, Institute of Guangzhou Medical University Guangzhou China
| | - Li Jia
- Department of Pharmacy, Affiliated Cancer Hospital, Institute of Guangzhou Medical University Guangzhou China
| | - Song Qi
- Department of Pharmacy, Affiliated Cancer Hospital, Institute of Guangzhou Medical University Guangzhou China
| | - Li Junren
- Department of Pharmacy, Affiliated Cancer Hospital, Institute of Guangzhou Medical University Guangzhou China
| | - Han Ling
- Integrated Traditional Chinese and Western Medicine Department (Internal Medicine Section 5), Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou China
| | - Shu Wenying
- Department of Pharmacy, Affiliated Cancer Hospital, Institute of Guangzhou Medical University Guangzhou China
| | - Jian Xiaoshun
- Department of Pharmacy, Affiliated Cancer Hospital, Institute of Guangzhou Medical University Guangzhou China
| | - Zhang Meimei
- Department of Pharmacy, Affiliated Cancer Hospital, Institute of Guangzhou Medical University Guangzhou China
| |
Collapse
|
6
|
Iglesias-Mejuto A, Lamy-Mendes A, Pina J, Costa BFO, García-González CA, Durães L. Synthesis of Highly Luminescent Silica-Coated Upconversion Nanoparticles from Lanthanide Oxides or Nitrates Using Co-Precipitation and Sol-Gel Methods. Gels 2023; 10:13. [PMID: 38247736 PMCID: PMC10815212 DOI: 10.3390/gels10010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Upconversion nanoparticles (UCNPs) are under consideration for their use as bioimaging probes with enhanced optical performance for real time follow-up under non-invasive conditions. Photostable and core-shell NaYF4:Yb3+, Er3+-SiO2 UCNPs obtained by a novel and simple co-precipitation method from lanthanide nitrates or oxides were herein synthesized for the first time. The sol-gel Stöber method followed by oven or supercritical gel drying was used to confer biocompatible surface properties to UCNPs by the formation of an ultrathin silica coating. Upconversion (UC) spectra were studied to evaluate the fluorescence of UCNPs upon red/near infrared (NIR) irradiation. ζ-potential measurements, TEM analyses, XRD patterns and long-term physicochemical stability were also assessed and confirmed that the UCNPs co-precipitation synthesis is a shape- and phase-controlling approach. The bio- and hemocompatibility of the UCNPs formulation with the highest fluorescence intensity was evaluated with murine fibroblasts and human blood, respectively, and provided excellent results that endorse the efficacy of the silica gel coating. The herein synthesized UCNPs can be regarded as efficient fluorescent probes for bioimaging purposes with the high luminescence, physicochemical stability and biocompatibility required for biomedical applications.
Collapse
Affiliation(s)
- Ana Iglesias-Mejuto
- AerogelsLab, I + D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Alyne Lamy-Mendes
- University of Coimbra, CIEPQPF—Centro de Investigação em Engenharia dos Processos Químicos e Produtos da Floresta, Department of Chemical Engineering, 3030-790 Coimbra, Portugal (L.D.)
| | - João Pina
- Coimbra Chemistry Centre—Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Benilde F. O. Costa
- University of Coimbra, CFisUC, Physics Department, 3004-516 Coimbra, Portugal;
| | - Carlos A. García-González
- AerogelsLab, I + D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Luisa Durães
- University of Coimbra, CIEPQPF—Centro de Investigação em Engenharia dos Processos Químicos e Produtos da Floresta, Department of Chemical Engineering, 3030-790 Coimbra, Portugal (L.D.)
| |
Collapse
|
7
|
Vasylyshyn T, Patsula V, Filipová M, Konefal RL, Horák D. Poly(glycerol monomethacrylate)-encapsulated upconverting nanoparticles prepared by miniemulsion polymerization: morphology, chemical stability, antifouling properties and toxicity evaluation. NANOSCALE ADVANCES 2023; 5:6979-6989. [PMID: 38059042 PMCID: PMC10697003 DOI: 10.1039/d3na00793f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
In this report, upconverting NaYF4:Yb3+,Er3+ nanoparticles (UCNPs) were synthesized by high-temperature coprecipitation of lanthanide chlorides and encapsulated in poly(glycerol monomethacrylate) (PGMMA). The UCNP surface was first treated with hydrophobic penta(propylene glycol) methacrylate phosphate (SIPO) to improve colloidal stability and enable encapsulation by reversible addition-fragmentation chain transfer miniemulsion polymerization (RAFT) of glycidyl methacrylate (GMA) in water, followed by its hydrolysis. The resulting UCNP-containing PGMMA particles (UCNP@PGMMA), hundreds of nanometers in diameter, were thoroughly characterized by transmission (TEM) and scanning electron microscopy (SEM), dynamic light scattering (DLS), infrared (FTIR) and fluorescence emission spectroscopy, and thermogravimetric analysis (TGA) in terms of particle morphology, size, polydispersity, luminescence, and composition. The morphology, typically raspberry-like, depended on the GMA/UCNP weight ratio. Coating of the UCNPs with hydrophilic PGMMA provided the UCNPs with antifouling properties while enhancing chemical stability and reducing the cytotoxicity of neat UCNPs to a non-toxic level. In addition, it will allow the binding of molecules such as photosensitizers, thus expanding the possibilities for use in various biomedical applications.
Collapse
Affiliation(s)
- Taras Vasylyshyn
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovského nám. 2 162 00 Prague 6 Czech Republic
| | - Vitalii Patsula
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovského nám. 2 162 00 Prague 6 Czech Republic
| | - Marcela Filipová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovského nám. 2 162 00 Prague 6 Czech Republic
| | - Rafal Lukasz Konefal
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovského nám. 2 162 00 Prague 6 Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovského nám. 2 162 00 Prague 6 Czech Republic
| |
Collapse
|
8
|
Song YH, De R, Lee KT. Emerging strategies to fabricate polymeric nanocarriers for enhanced drug delivery across blood-brain barrier: An overview. Adv Colloid Interface Sci 2023; 320:103008. [PMID: 37776736 DOI: 10.1016/j.cis.2023.103008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Blood-brain barrier (BBB) serves as an essential interface between central nervous system (CNS) and its periphery, allowing selective permeation of ions, gaseous molecules, and other nutrients to maintain metabolic functions of brain. Concurrently, it restricts passage of unsolicited materials from bloodstream to CNS which could otherwise lead to neurotoxicity. Nevertheless, in the treatment of neurodegenerative diseases such as Parkinson's, Alzheimer's, diffuse intrinsic pontine glioma, and other brain cancers, drugs must reach CNS. Among various materials developed for this purpose, a few judiciously selected polymeric nanocarriers are reported to be highly prospective to facilitate BBB permeation. However, the challenge of transporting drug-loaded nanomaterials across this barrier remains formidable. Herein a concise analysis of recently employed strategies for designing polymeric nanocarriers to deliver therapeutics across BBB is presented. Impacts of 3Ss, namely, size, shape, and surface charge of polymeric nanocarriers on BBB permeation along with different ligands used for nanoparticle surface modification to achieve targeted delivery have been scrutinized. Finally, we elucidated future research directions in the context of designing smart polymeric nanocarriers for BBB permeation. This work aims to guide researchers engaged in polymeric nanocarrier design, helping them navigate where to begin, what challenges to address, and how to proceed effectively.
Collapse
Affiliation(s)
- Yo Han Song
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea
| | - Ranjit De
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea; Department of Material Science and Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea.
| | - Kang Taek Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea.
| |
Collapse
|
9
|
Almasri RM, Ladouceur F, Mawad D, Esrafilzadeh D, Firth J, Lehmann T, Poole-Warren LA, Lovell NH, Al Abed A. Emerging trends in the development of flexible optrode arrays for electrophysiology. APL Bioeng 2023; 7:031503. [PMID: 37692375 PMCID: PMC10491464 DOI: 10.1063/5.0153753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Optical-electrode (optrode) arrays use light to modulate excitable biological tissues and/or transduce bioelectrical signals into the optical domain. Light offers several advantages over electrical wiring, including the ability to encode multiple data channels within a single beam. This approach is at the forefront of innovation aimed at increasing spatial resolution and channel count in multichannel electrophysiology systems. This review presents an overview of devices and material systems that utilize light for electrophysiology recording and stimulation. The work focuses on the current and emerging methods and their applications, and provides a detailed discussion of the design and fabrication of flexible arrayed devices. Optrode arrays feature components non-existent in conventional multi-electrode arrays, such as waveguides, optical circuitry, light-emitting diodes, and optoelectronic and light-sensitive functional materials, packaged in planar, penetrating, or endoscopic forms. Often these are combined with dielectric and conductive structures and, less frequently, with multi-functional sensors. While creating flexible optrode arrays is feasible and necessary to minimize tissue-device mechanical mismatch, key factors must be considered for regulatory approval and clinical use. These include the biocompatibility of optical and photonic components. Additionally, material selection should match the operating wavelength of the specific electrophysiology application, minimizing light scattering and optical losses under physiologically induced stresses and strains. Flexible and soft variants of traditionally rigid photonic circuitry for passive optical multiplexing should be developed to advance the field. We evaluate fabrication techniques against these requirements. We foresee a future whereby established telecommunications techniques are engineered into flexible optrode arrays to enable unprecedented large-scale high-resolution electrophysiology systems.
Collapse
Affiliation(s)
- Reem M. Almasri
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | | | - Damia Mawad
- School of Materials Science and Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Josiah Firth
- Australian National Fabrication Facility, UNSW, Sydney, NSW 2052, Australia
| | - Torsten Lehmann
- School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052, Australia
| | | | | | - Amr Al Abed
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Hu X, Liao J, Shan H, He H, Du Z, Guan M, Hu J, Li J, Gu B. A novel carboxyl polymer-modified upconversion luminescent nanoprobe for detection of prostate-specific antigen in the clinical gray zonebase by flow immunoassay strip. Methods 2023; 215:10-16. [PMID: 37169320 DOI: 10.1016/j.ymeth.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Prostate specific antigen (PSA) is a widely-used biomarker for the diagnosis, screening, and prognosis of prostate cancer (PCa). It is critical to develop a rapid and convenient method to accurately detect PSA levels, especially when the PSA levels are in the clinical gray area of 4-10 ng/mL. We developed a novel upconversion nanoparticle (UCNP)-based fluorescence lateral flow test strip for qualitatively and quantitatively detecting PSA. The carboxyl group-modified UCNPs (UCNP-COOH) were labeled with anti-PSA antibodies via 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as labeling probes to recognize PSA. The fluorescence intensity of the UCNP-probe was then measured with a laser fluorescence scanner. A total of 1397 serum and 20 fingertip blood samples were collected to validate the UCNP strip. A reliable correlation between the area ratio (TC), reflecting the fluorescence intensity of the test/control line, and the PSA concentration was observed (r = 0.9986). The dose-dependent luminescence enhancement showed good linearity in the PSA concentration range from 0.1 to 100.0 ng/mL with a detection limit of 0.1 ng/mL. Our UCNP POCT strip demonstrated excellent accuracy, anti-interference and stability in the gray zone (4-10 ng/mL) of PSA clinical application and outperformed other PSA test strips. The UCNP strip showed good consistency with the Roche chemiluminescence assay in 1397 serum samples. It also showed good performance for PSA detection using fingertip blood samples. This novel UCNP-based test strip could be a sensitive and reliable POCT assay to detect PSA, facilitating the diagnosis and surveillance of PCa.
Collapse
Affiliation(s)
- Xuejiao Hu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Jianfeng Liao
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Huizhuang Shan
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Hao He
- Shenzhen Light Life Technology Co., Ltd., Shenzhen 518107, China
| | - Zhongbo Du
- Shenzhen Light Life Technology Co., Ltd., Shenzhen 518107, China
| | - Ming Guan
- Shenzhen Light Life Technology Co., Ltd., Shenzhen 518107, China
| | - Jiwen Hu
- Central Medical Laboratory, Shenzhen Luohu Hospital, Shenzhen 518001, China
| | - Jing Li
- Laboratory Medicine, Panzhihua Central Hospital, Panzhihua 617026, China.
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
11
|
Aslan Y, Atabay M, Chowdhury HK, Göktürk I, Saylan Y, Inci F. Aptamer-Based Point-of-Care Devices: Emerging Technologies and Integration of Computational Methods. BIOSENSORS 2023; 13:bios13050569. [PMID: 37232930 DOI: 10.3390/bios13050569] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Recent innovations in point-of-care (POC) diagnostic technologies have paved a critical road for the improved application of biomedicine through the deployment of accurate and affordable programs into resource-scarce settings. The utilization of antibodies as a bio-recognition element in POC devices is currently limited due to obstacles associated with cost and production, impeding its widespread adoption. One promising alternative, on the other hand, is aptamer integration, i.e., short sequences of single-stranded DNA and RNA structures. The advantageous properties of these molecules are as follows: small molecular size, amenability to chemical modification, low- or nonimmunogenic characteristics, and their reproducibility within a short generation time. The utilization of these aforementioned features is critical in developing sensitive and portable POC systems. Furthermore, the deficiencies related to past experimental efforts to improve biosensor schematics, including the design of biorecognition elements, can be tackled with the integration of computational tools. These complementary tools enable the prediction of the reliability and functionality of the molecular structure of aptamers. In this review, we have overviewed the usage of aptamers in the development of novel and portable POC devices, in addition to highlighting the insights that simulations and other computational methods can provide into the use of aptamer modeling for POC integration.
Collapse
Affiliation(s)
- Yusuf Aslan
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Maryam Atabay
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Hussain Kawsar Chowdhury
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ilgım Göktürk
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
12
|
Nhu Van H, Dinh Tam P, Pham VH, Nguyen DH, Xuan Thang C, Quoc Minh L. Control of red upconversion emission in Er3+–Yb3+– Fe3+ tri–doped biphasic calcium phosphate. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
13
|
Llenas M, Cuenca L, Santos C, Bdikin I, Gonçalves G, Tobías-Rossell G. Sustainable Synthesis of Highly Biocompatible 2D Boron Nitride Nanosheets. Biomedicines 2022; 10:3238. [PMID: 36551994 PMCID: PMC9775030 DOI: 10.3390/biomedicines10123238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
2D ultrafine nanomaterials today represent an emerging class of materials with very promising properties for a wide variety of applications. Biomedical fields have experienced important new achievements with technological breakthroughs obtained from 2D materials with singular properties. Boron nitride nanosheets are a novel 2D layered material comprised of a hexagonal boron nitride network (BN) with interesting intrinsic properties, including resistance to oxidation, extreme mechanical hardness, good thermal conductivity, photoluminescence, and chemical inertness. Here, we investigated different methodologies for the exfoliation of BN nanosheets (BNNs), using ball milling and ultrasound processing, the latter using both an ultrasound bath and tip sonication. The best results are obtained using tip sonication, which leads to the formation of few-layered nanosheets with a narrow size distribution. Importantly, it was observed that with the addition of pluronic acid F127 to the medium, there was a significant improvement in the BN nanosheets (BNNs) production yield. Moreover, the resultant BNNs present improved stability in an aqueous solution. Cytotoxicity studies performed with HeLa cells showed the importance of taking into account the possible interferences of the nanomaterial with the selected assay. The prepared BNNs coated with pluronic presented improved cytotoxicity at concentrations up to 200 μg mL-1 with more than 90% viability after 24 h of incubation. Confocal microscopy also showed high cell internalization of the nanomaterials and their preferential biodistribution in the cell cytoplasm.
Collapse
Affiliation(s)
- Marina Llenas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain
| | - Lorenzo Cuenca
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain
| | - Carla Santos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- CQE—Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Igor Bdikin
- TEMA-Nanotechnology Research Group, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Intelligent Systems Associate Laboratory (LASI), 3810-193 Aveiro, Portugal
| | - Gil Gonçalves
- TEMA-Nanotechnology Research Group, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Intelligent Systems Associate Laboratory (LASI), 3810-193 Aveiro, Portugal
| | - Gerard Tobías-Rossell
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain
| |
Collapse
|
14
|
Billimoria K, Fernandez YAD, Andresen E, Sorzabal-Bellido I, Huelga-Suarez G, Bartczak D, Ortiz de Solórzano C, Resch-Genger U, Infante HG. The potential of bioprinting for preparation of nanoparticle-based calibration standards for LA-ICP-ToF-MS quantitative imaging. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6823718. [PMID: 36367500 DOI: 10.1093/mtomcs/mfac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
This paper discusses the feasibility of a novel strategy based on the combination of bioprinting nano-doping technology and laser ablation-inductively coupled plasma time-of-flight mass spectrometry analysis for the preparation and characterization of gelatin-based multi-element calibration standards suitable for quantitative imaging. To achieve this, lanthanide up-conversion nanoparticles were added to a gelatin matrix to produce the bioprinted calibration standards. The features of this bioprinting approach were compared with manual cryosectioning standard preparation, in terms of throughput, between batch repeatability and elemental signal homogeneity at 5 μm spatial resolution. By using bioprinting, the between batch variability for three independent standards of the same concentration of 89Y (range 0-600 mg/kg) was reduced to 5% compared to up to 27% for cryosectioning. On this basis, the relative standard deviation (RSD) obtained between three independent calibration slopes measured within 1 day also reduced from 16% (using cryosectioning) to 5% (using bioprinting), supporting the use of a single standard preparation replicate for each of the concentrations to achieve good calibration performance using bioprinting. This helped reduce the analysis time by approximately 3-fold. With cryosectioning each standard was prepared and sectioned individually, whereas using bio-printing it was possible to have up to six different standards printed simultaneously, reducing the preparation time from approximately 2 h to under 20 min (by approximately 6-fold). The bio-printed calibration standards were found stable for a period of 2 months when stored at ambient temperature and in the dark.
Collapse
Affiliation(s)
- Kharmen Billimoria
- National Measurement Laboratory, LGC, Queens Road, Teddington, TW11 0LY, UK
| | - Yuri A Diaz Fernandez
- National Measurement Laboratory, LGC, Queens Road, Teddington, TW11 0LY, UK.,Department of Chemistry, University of Pavia, Pavia, Italy
| | - Elina Andresen
- Bundesanstalt für Materialforschung und-prüfung (BAM), Berlin, Germany
| | | | | | - Dorota Bartczak
- National Measurement Laboratory, LGC, Queens Road, Teddington, TW11 0LY, UK
| | | | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und-prüfung (BAM), Berlin, Germany
| | | |
Collapse
|
15
|
Chintamaneni PK, Nagasen D, Babu KC, Mourya A, Madan J, Srinivasarao DA, Ramachandra RK, Santhoshi PM, Pindiprolu SKSS. Engineered upconversion nanocarriers for synergistic breast cancer imaging and therapy: Current state of art. J Control Release 2022; 352:652-672. [PMID: 36328078 DOI: 10.1016/j.jconrel.2022.10.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022]
Abstract
Breast cancer is the most common type of cancer in women and is the second leading cause of cancer-related deaths worldwide. Early diagnosis and effective therapeutic interventions are critical determinants that can improve survival and quality of life in breast cancer patients. Nanotheranostics are emerging interventions that offer the dual benefit of in vivo diagnosis and therapeutics through a single nano-sized carrier. Rare earth metal-doped upconversion nanoparticles (UCNPs) with their ability to convert near-infrared light to visible light or UV light in vivo settings have gained special attraction due to their unique luminescence and tumor-targeting properties. In this review, we have discussed applications of UCNPs in drug and gene delivery, photothermal therapy (PTT), photodynamic therapy (PDT) and tumor targeting in breast cancer. Further, present challenges and future opportunities for UCNPs in breast cancer treatment have also been mentioned.
Collapse
Affiliation(s)
- Pavan Kumar Chintamaneni
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM (Deemed to be University), Rudraram, 502329 Telangana, India.
| | - Dasari Nagasen
- Aditya Pharmacy College, Surampalem 533437, India; Jawaharlal Nehru Technological University Kakinada, Kakinada 533003, Andhra Pradesh, India.
| | - Katta Chanti Babu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Atul Mourya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India.
| | - R K Ramachandra
- Crystal Growth and Nanoscience Research Center, Department of Physics, Government College (A), Rajamahendravaram, Andhra Pradesh, India; Government Degree College, Chodavaram, Andhra Pradesh, India.
| | - P Madhuri Santhoshi
- Crystal Growth and Nanoscience Research Center, Department of Physics, Government College (A), Rajamahendravaram, Andhra Pradesh, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem 533437, India; Jawaharlal Nehru Technological University Kakinada, Kakinada 533003, Andhra Pradesh, India.
| |
Collapse
|
16
|
Gerelkhuu Z, Lee YI, Yoon TH. Upconversion Nanomaterials in Bioimaging and Biosensor Applications and Their Biological Response. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3470. [PMID: 36234598 PMCID: PMC9565472 DOI: 10.3390/nano12193470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In recent decades, upconversion nanomaterials (UCNMs) have attracted considerable research interest because of their unique optical properties, such as large anti-Stokes shifts, sharp emissions, non-photobleaching, and long lifetime. These unique properties make them ideal candidates for unified applications in biomedical fields, including drug delivery, bioimaging, biosensing, and photodynamic therapy for specific cancers. This review describes the general mechanisms of upconversion, synthesis methods, and potential applications in biology and their biological responses. Additionally, the biological toxicity of UCNMs is explained and summarized with the associated intracellular association mechanisms. Finally, the prospects and future challenges of UCNMs at the clinical level in biological applications are described, along with a summary of opportunity for biological as well as clinical applications of UCNMs.
Collapse
Affiliation(s)
- Zayakhuu Gerelkhuu
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Korea
| | - Yong-Ill Lee
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 71408, Vietnam
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
17
|
Zhang H, Fang H, Liu D, Zhang Y, Adu-Amankwaah J, Yuan J, Tan R, Zhu J. Applications and challenges of rhodopsin-based optogenetics in biomedicine. Front Neurosci 2022; 16:966772. [PMID: 36213746 PMCID: PMC9537737 DOI: 10.3389/fnins.2022.966772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Optogenetics is an emerging bioengineering technology that has been rapidly developed in recent years by cross-integrating optics, genetic engineering, electrophysiology, software control, and other disciplines. Since the first demonstration of the millisecond neuromodulation ability of the channelrhodopsin-2 (ChR2), the application of optogenetic technology in basic life science research has been rapidly progressed, especially in neurobiology, which has driven the development of the discipline. As the optogenetic tool protein, microbial rhodopsins have been continuously explored, modified, and optimized, with many variants becoming available, with structural characteristics and functions that are highly diversified. Their applicability has been broadened, encouraging more researchers and clinicians to utilize optogenetics technology in research. In this review, we summarize the species and variant types of the most important class of tool proteins in optogenetic techniques, the microbial rhodopsins, and review the current applications of optogenetics based on rhodopsin qualitative light in biology and other fields. We also review the challenges facing this technology, to ultimately provide an in-depth technical reference to support the application of optogenetics in translational and clinical research.
Collapse
Affiliation(s)
- Hanci Zhang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hui Fang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Deqiang Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yiming Zhang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| | - Jinxiang Yuan
- College of Life Sciences, Shandong Normal University, Jinan, China
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- *Correspondence: Jinxiang Yuan,
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
- Rubin Tan,
| | - Jianping Zhu
- College of Life Sciences, Shandong Normal University, Jinan, China
- Jianping Zhu,
| |
Collapse
|
18
|
Menilli L, Milani C, Reddi E, Moret F. Overview of Nanoparticle-Based Approaches for the Combination of Photodynamic Therapy (PDT) and Chemotherapy at the Preclinical Stage. Cancers (Basel) 2022; 14:cancers14184462. [PMID: 36139623 PMCID: PMC9496990 DOI: 10.3390/cancers14184462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The present review represents the outstanding and promising recent literature reports (2017–2022) on nanoparticle-based formulations developed for anticancer therapy with photodynamic therapy (PDT), photosensitizers, and chemotherapeutics. Besides brief descriptions of chemotherapeutics’ classification and of PDT mechanisms and limitations, several examples of nanosystems endowed with different responsiveness (e.g., acidic pH and reactive oxygen species) and peculiarity (e.g., tumor oxygenation capacity, active tumor targeting, and biomimetic features) are described, and for each drug combination, in vitro and in vivo results on preclinical cancer models are reported. Abstract The widespread diffusion of photodynamic therapy (PDT) as a clinical treatment for solid tumors is mainly limited by the patient’s adverse reaction (skin photosensivity), insufficient light penetration in deeply seated neoplastic lesions, unfavorable photosensitizers (PSs) biodistribution, and photokilling efficiency due to PS aggregation in biological environments. Despite this, recent preclinical studies reported on successful combinatorial regimes of PSs with chemotherapeutics obtained through the drugs encapsulation in multifunctional nanometric delivery systems. The aim of the present review deals with the punctual description of several nanosystems designed not only with the objective of co-transporting a PS and a chemodrug for combination therapy, but also with the goal of improving the therapeutic efficacy by facing the main critical issues of both therapies (side effects, scarce tumor oxygenation and light penetration, premature drug clearance, unspecific biodistribution, etc.). Therefore, particular attention is paid to the description of bio-responsive drugs and nanoparticles (NPs), targeted nanosystems, biomimetic approaches, and upconverting NPs, including analyzing the therapeutic efficacy of the proposed photo-chemotherapeutic regimens in in vitro and in vivo cancer models.
Collapse
Affiliation(s)
- Luca Menilli
- Department of Biology, University of Padova, 35100 Padova, Italy
| | - Celeste Milani
- Department of Biology, University of Padova, 35100 Padova, Italy
- Institute of Organic Synthesis and Photoreactivity, ISOF-CNR, 40129 Bologna, Italy
| | - Elena Reddi
- Department of Biology, University of Padova, 35100 Padova, Italy
- Correspondence: (E.R.); (F.M.)
| | - Francesca Moret
- Department of Biology, University of Padova, 35100 Padova, Italy
- Correspondence: (E.R.); (F.M.)
| |
Collapse
|
19
|
Zhang D, Zhang Y, Guo Y, Hou S, Wang B, Liu J, Fu G, Lü X. Construction of Cr(III)-Ln(III)-Salen (Ln = Nd, Yb, Er or Gd) hetero-binuclear complexes with high-purity near-infrared (NIR) luminescence. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Du K, Feng J, Gao X, Zhang H. Nanocomposites based on lanthanide-doped upconversion nanoparticles: diverse designs and applications. LIGHT, SCIENCE & APPLICATIONS 2022; 11:222. [PMID: 35831282 PMCID: PMC9279428 DOI: 10.1038/s41377-022-00871-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 06/10/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have aroused extraordinary interest due to the unique physical and chemical properties. Combining UCNPs with other functional materials to construct nanocomposites and achieve synergistic effect abound recently, and the resulting nanocomposites have shown great potentials in various fields based on the specific design and components. This review presents a summary of diverse designs and synthesis strategies of UCNPs-based nanocomposites, including self-assembly, in-situ growth and epitaxial growth, as well as the emerging applications in bioimaging, cancer treatments, anti-counterfeiting, and photocatalytic fields. We then discuss the challenges, opportunities, and development tendency for developing UCNPs-based nanocomposites.
Collapse
Affiliation(s)
- Kaimin Du
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023, Dalian, China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Xuan Gao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
21
|
Optogenetic technologies in translational cancer research. Biotechnol Adv 2022; 60:108005. [PMID: 35690273 DOI: 10.1016/j.biotechadv.2022.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/07/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022]
Abstract
Gene and cell therapies are widely recognized as future cancer therapeutics but poor controllability limits their clinical applications. Optogenetics, the use of light-controlled proteins to precisely spatiotemporally regulate the activity of genes and cells, opens up new possibilities for cancer treatment. Light of specific wavelength can activate the immune response, oncolytic activity and modulate cell signaling in tumor cells non-invasively, in dosed manner, with tissue confined action and without side effects of conventional therapies. Here, we review optogenetic approaches in cancer research, their clinical potential and challenges of incorporating optogenetics in cancer therapy. We critically discuss beneficial combinations of optogenetic technologies with therapeutic nanobodies, T-cell activation and CAR-T cell approaches, genome editors and oncolytic viruses. We consider viral vectors and nanoparticles for delivering optogenetic payloads and activating light to tumors. Finally, we highlight herein the prospects for integrating optogenetics into immunotherapy as a novel, fast, reversible and safe approach to cancer treatment.
Collapse
|
22
|
Yan Y, He J, Wang M, Yang L, Jiang Y. Microsphere Photonic Superlens for a Highly Emissive Flexible Upconversion-Nanoparticle-Embedded Film. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24636-24647. [PMID: 35580230 DOI: 10.1021/acsami.2c05144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Increasing upconversion luminescence (UCL) to overcome the intrinsically low conversion efficiency of upconversion nanoparticles (UCNPs) poses a fundamental challenge. Photonic nanostructures are the efficient approaches for UCL enhancement by tailoring the local electromagnetic fields. Unfortunately, such nanostructures are sensitive to environmental conditions, and the regulation strength is varied in flexible applications. Here, we report giant UCL enhancement from a flexible UCNP-embedded film coupled with a microsphere photonic superlens (MPS), by which the enhancement ratio of UCL is over 104-fold under 808 nm excitation down to 0.72 mW. The enhancement pathways of MPS-enhanced UCL are attributed to Mie-resonant nanofocusing for high excitation-photon density, optical whispering-gallery modes (WGMs) for fast radiative decay, and the directional antenna effect for far-field emission confinement. The contribution of optical resonance in the MPS to suppressing the phonon-induced nonradiative transition and thermal quenching is experimentally validated. The UCL quantum yield is therefore improved by 3-fold to 4.20% under 120 mW/cm2 near-infrared excitation, consistent with the enhancement ratio via the Purcell effect of WGMs. Furthermore, the MPS demonstrates the robust optical regulation capability toward flexible applications, opening up new opportunities for facilitating multiphoton upconversion in wearable optoelectrical devices for nanoimaging, biosensing, and energy conversion in the future.
Collapse
Affiliation(s)
- Yinzhou Yan
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing 100124, China
| | - Jing He
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Mengyuan Wang
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Lixue Yang
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yijian Jiang
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
23
|
Photodynamic Therapy of Up-Conversion Nanomaterial Doped with Gold Nanoparticles. Int J Mol Sci 2022; 23:ijms23084279. [PMID: 35457097 PMCID: PMC9031220 DOI: 10.3390/ijms23084279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Two key concerns exist in contemporary cancer chemotherapy: limited therapeutic efficiency and substantial side effects in patients. In recent years, researchers have been investigating the revolutionary cancer treatment techniques of photodynamic therapy (PDT) and photothermal therapy (PTT) proposed by many scholars. A photothermal treatment of cancer was synthesized using the hydrothermal method which has high photothermal conversion efficiency and can generate reactive oxygen species (ROS) in cells. Photothermal treatment of tumors has a good short-term effect and photodynamic therapy lasts longer. However, both PTT and PDT have their inevitable shortcomings and it is difficult to completely eradicate a tumor using a single mode of treatment. PTT and PDT synergistic treatment not only inherits the advantages of low toxicity and side effects of phototherapy but also enables the two treatment methods to complement each other. It is an effective strategy to improve curative effects and reduce toxic and side effects. Furthermore, gold doped UCNPs have an exceptionally high target recognition for tumor cells. The gold doped UCNPs, in particular, are non-toxic to normal tissues, endowing the as-prepared medications with outstanding therapeutic efficacy and exceptionally low side effects. These findings may encourage the creation of fresh, effective imaging-guided approaches to meet the goal of photothermal cancer therapy.
Collapse
|
24
|
De R, Mahata MK, Kim K. Structure-Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105373. [PMID: 35112798 PMCID: PMC8981462 DOI: 10.1002/advs.202105373] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/09/2022] [Indexed: 05/04/2023]
Abstract
Carriers are equally important as drugs. They can substantially improve bioavailability of cargos and safeguard healthy cells from toxic effects of certain therapeutics. Recently, polymeric nanocarriers (PNCs) have achieved significant success in delivering drugs not only to cells but also to subcellular organelles. Variety of natural sources, availability of different synthetic routes, versatile molecular architectures, exploitable physicochemical properties, biocompatibility, and biodegradability have presented polymers as one of the most desired materials for nanocarrier design. Recent innovative concepts and advances in PNC-associated nanotechnology are providing unprecedented opportunities to engineer nanocarriers and their functions. The efficiency of therapeutic loading has got considerably increased. Structural design-based varieties of PNCs are widely employed for the delivery of small therapeutic molecules to genes, and proteins. PNCs have gained ever-increasing attention and certainly paves the way to develop advanced nanomedicines. This article presents a comprehensive investigation of structural design-based varieties of PNCs and the influences of their physicochemical properties on drug delivery profiles with perspectives highlighting the inevitability of incorporating both the multi-stimuli-responsive and multi-drug delivery properties in a single carrier to design intelligent PNCs as new and emerging research directions in this rapidly developing area.
Collapse
Affiliation(s)
- Ranjit De
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| | - Manoj Kumar Mahata
- Drittes Physikalisches Institut ‐ BiophysikGeorg‐August‐Universität GöttingenFriedrich‐Hund‐Platz 1Göttingen37077Germany
| | - Kyong‐Tai Kim
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| |
Collapse
|
25
|
Bastos V, Oskoei P, Andresen E, Saleh MI, Rühle B, Resch-Genger U, Oliveira H. Stability, dissolution, and cytotoxicity of NaYF 4-upconversion nanoparticles with different coatings. Sci Rep 2022; 12:3770. [PMID: 35260656 PMCID: PMC8904531 DOI: 10.1038/s41598-022-07630-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Upconversion nanoparticles (UCNPs) have attracted considerable attention owing to their unique photophysical properties. Their utilization in biomedical applications depends on the understanding of their transformations under physiological conditions and their potential toxicity. In this study, NaYF4:Yb,Er UCNPs, widely used for luminescence and photophysical studies, were modified with a set of four different coordinatively bound surface ligands, i.e., citrate, alendronate (AA), ethylendiamine tetra(methylene phosphonate) (EDTMP), and poly(maleic anhydride-alt-1-octadecene) (PMAO), as well as silica coatings with two different thicknesses. Subsequently, the aging-induced release of fluoride ions in water and cell culture media and their cytotoxic profile to human keratinocytes were assessed in parallel to the cytotoxic evaluation of the ligands, sodium fluoride and the lanthanide ions. The cytotoxicity studies of UCNPs with different surface modifications demonstrated the good biocompatibility of EDTMP-UCNPs and PMAO-UCNPs, which is in line with the low amount of fluoride ions released from these samples. An efficient prevention of UCNP dissolution and release of cytotoxic ions, as well as low cytotoxicity was also observed for UCNPs with a sufficiently thick silica shell. Overall, our results provide new insights into the understanding of the contribution of surface chemistry to the stability, dissolution behavior, and cytotoxicity of UCNPs. Altogether, the results obtained are highly important for future applications of UCNPs in the life sciences and bioimaging studies.
Collapse
Affiliation(s)
- Verónica Bastos
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Párástu Oskoei
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Elina Andresen
- BAM Federal Institute of Materials Research and Testing, Division Biophotonics, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Maysoon I Saleh
- BAM Federal Institute of Materials Research and Testing, Division Biophotonics, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | - Bastian Rühle
- BAM Federal Institute of Materials Research and Testing, Division Biophotonics, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Ute Resch-Genger
- BAM Federal Institute of Materials Research and Testing, Division Biophotonics, Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
| | - Helena Oliveira
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
26
|
Dhamodharan D, Byun HS, Varsha Shree M, Veeman D, Natrayan L, Stalin B. Carbon Nanodots: Synthesis, Mechanisms for Bio-electrical Applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Zhang W, Zang Y, Lu Y, Han J, Xiong Q, Xiong J. Synthesis of Rare-Earth Nanomaterials Ag-Doped NaYF 4:Yb 3+/Er 3+@NaYF 4:Nd 3+@NaGdF 4 for In Vivo Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:728. [PMID: 35269216 PMCID: PMC8911788 DOI: 10.3390/nano12050728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
In this study. a novel near-infrared fluorescent-driven contrast agent (Ag-doped NaYF4:Yb3+/Er3+@NaYF4:Nd3+@NaGdF4) was synthesized using a coprecipitation-hydrothermal-solvothermal-solvothermal (CHSS) method. The results shows that hexagonal NaYF4:Yb3+/Er3+ with a diameter of 300 nm was successfully synthesized by the CHSS method. The new contrast agent was characterized using scanning electron microscopy, fluorescence spectrometry, transmission electron microscopy, energy-dispersive spectrometry and ultraviolet-visible light diffuse reflectance absorption spectroscopy. Even at low concentrations (0.2 M), this proposed contrast agent can be excited by near-infrared light with a wavelength of 980 nm and emits a dazzling green light with a wavelength of 540 nm, and the comparison of the luminescence intensity proves that doping with silver increases the luminescence intensity of the upconverted nanomaterial by nearly 13 times based on the calculated quantum yield. TEM images show the successful preparation of silver nanoparticles with a diameter of 30 nm, and the energy spectrum shows the successful doping of silver nanoparticles and the successful preparation of the core-shell structure of NaYF4:Yb3+/Er3+@NaYF4:Nd3+@NaGdF4. Furthermore, the mechanism of the increased luminous intensity has been studied using simulation calculations. Finally, cytotoxicity tests were used to test material which was modified by 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2K), and the biocompatibility was significantly improved, meeting the standard for biological applications.
Collapse
Affiliation(s)
- Wei Zhang
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing 100029, China; (W.Z.); (Y.Z.); (Y.L.); (Q.X.)
| | - Yang Zang
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing 100029, China; (W.Z.); (Y.Z.); (Y.L.); (Q.X.)
| | - Yanli Lu
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing 100029, China; (W.Z.); (Y.Z.); (Y.L.); (Q.X.)
| | - Jinghui Han
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Qingyun Xiong
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing 100029, China; (W.Z.); (Y.Z.); (Y.L.); (Q.X.)
| | - Jinping Xiong
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing 100029, China; (W.Z.); (Y.Z.); (Y.L.); (Q.X.)
- College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| |
Collapse
|
28
|
Zhang W, Zang Y, Lu Y, Han J, Xiong Q, Xiong J. Photothermal Effect and Multi-Modality Imaging of Up-Conversion Nanomaterial Doped with Gold Nanoparticles. Int J Mol Sci 2022; 23:1382. [PMID: 35163306 PMCID: PMC8835931 DOI: 10.3390/ijms23031382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Two key concerns exist in contemporary cancer chemotherapy in clinics: limited therapeutic efficiency and substantial side effects in patients. In recent years, researchers have been investigating revolutionary cancer treatment techniques and photo-thermal therapy (PTT) has been proposed by many scholars. A drug for photothermal cancer treatment was synthesized using the hydrothermal method, which has a high light-to-heat conversion efficiency. It may also be utilized as a clear multi-modality bioimaging platform for photoacoustic imaging (PAI), computed tomography (CT), and magnetic resonance imaging (MRI). When compared to single-modality imaging, multi-modality imaging delivers far more thorough and precise details for cancer diagnosis. Furthermore, gold-doped upconverting nanoparticles (UCNPs) have an exceptionally high target recognition for tumor cells. The gold-doped UCNPs, in particular, are non-toxic to normal tissues, endowing the as-prepared medications with outstanding therapeutic efficacy but exceptionally low side effects. These findings may encourage the creation of fresh effective imaging-guided approaches to meet the goal of photothermal cancer therapy.
Collapse
Affiliation(s)
- Wei Zhang
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing 100029, China; (W.Z.); (Y.Z.); (Y.L.); (Q.X.)
| | - Yang Zang
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing 100029, China; (W.Z.); (Y.Z.); (Y.L.); (Q.X.)
| | - Yanli Lu
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing 100029, China; (W.Z.); (Y.Z.); (Y.L.); (Q.X.)
| | - Jinhui Han
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Qingyun Xiong
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing 100029, China; (W.Z.); (Y.Z.); (Y.L.); (Q.X.)
| | - Jinping Xiong
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing 100029, China; (W.Z.); (Y.Z.); (Y.L.); (Q.X.)
- College of Ecology and Resources Engineering, Wuyi University, Jiangmen 354300, China
| |
Collapse
|
29
|
Zhang W, Lu Y, Zang Y, Han J, Xiong Q, Xiong J. Photodynamic Therapy and Multi-Modality Imaging of Up-Conversion Nanomaterial Doped with AuNPs. Int J Mol Sci 2022; 23:1227. [PMID: 35163150 PMCID: PMC8835744 DOI: 10.3390/ijms23031227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Two key concerns exist in contemporary cancer chemotherapy in clinic: limited therapeutic efficiency and substantial side effects in patients. In recent years, researchers have been investigating a revolutionary cancer treatment technique, and photodynamic therapy (PDT) has been proposed by many scholars. A drug for photodynamic cancer treatment was synthesized using the hydrothermal method, which has a high efficiency to release reactive oxygen species (ROS). It may also be utilized as a clear multi-modality bioimaging platform for photoacoustic imaging (PAI) due to its photothermal effect, computed tomography (CT), and magnetic resonance imaging (MRI). When compared to single-modality imaging, multi-modality imaging delivers far more thorough and precise details for cancer diagnosis. Furthermore, Au-doped up-conversion nanoparticles (UCNPs) have an exceptionally high luminous intensity. The Au-doped UCNPs, in particular, are non-toxic to tissues without laser at an 808 nm wavelength, endowing the as-prepared medications with outstanding therapeutic efficacy but exceptionally low side effects. These findings may encourage fresh effective imaging-guided approaches to meet the goal of photodynamic cancer therapy to be created.
Collapse
Affiliation(s)
- Wei Zhang
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (W.Z.); (Y.L.); (Y.Z.); (Q.X.)
| | - Yanli Lu
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (W.Z.); (Y.L.); (Y.Z.); (Q.X.)
| | - Yang Zang
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (W.Z.); (Y.L.); (Y.Z.); (Q.X.)
| | - Jinhui Han
- State Key Laboratory of Organic-Inorganic Composites, School of Chemical Engineering, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Qingyun Xiong
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (W.Z.); (Y.L.); (Y.Z.); (Q.X.)
| | - Jinping Xiong
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (W.Z.); (Y.L.); (Y.Z.); (Q.X.)
- College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| |
Collapse
|
30
|
Huang X, Sheng W, Chen H, Zhang B, Huang N, Wang S. Upconversion Nanoparticles-Based Fluorescence Immunoassay for the Sensitive Detection of 2-Amino-3-methylimidazo [4,5-f] Quinoline (IQ) in Heat Processed Meat. SENSORS (BASEL, SWITZERLAND) 2021; 22:8. [PMID: 35009550 PMCID: PMC8747629 DOI: 10.3390/s22010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
A competitive fluorescence immunoassay for the quantitative detection of 2-amino-3-methylimidazo [4,5-f] quinoline (IQ) in pan-fried meat patties was developed, using magnetic nanoparticles coupled with coating antigen as the capture probe and anti-IQ antibody coupled with NaYF4: Yb, Er upconversion nanoparticles as the signal probe. Under optimal conditionals, the wide detection range for IQ in phosphate buffer saline is from 0.01 to 100 μg·L-1 (R2 = 0.991) with a detection limit of 0.007 μg·L-1. This proposed method has been applied to detect IQ in two different types of pan-fried meat patties at varying frying times, and the IQ content in chicken patties and fish patties are 2.11-3.47 μg·kg-1 and 1.35-2.85 μg·kg-1, respectively. These results are consistent with that of the ultraperformance liquid chromatography-tandem mass spectrometry. In summary, this method can serve as a sensitive and specific test tool for the determination of IQ in processed meat.
Collapse
Affiliation(s)
- Xufang Huang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.C.); (B.Z.); (N.H.)
| | - Wei Sheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.C.); (B.Z.); (N.H.)
| | - Haonan Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.C.); (B.Z.); (N.H.)
| | - Biao Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.C.); (B.Z.); (N.H.)
| | - Na Huang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.C.); (B.Z.); (N.H.)
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
31
|
Zhang W, Lu Y, Zang Y, Han J, Xiong Q, Xiong J. SiO 2 Coated Up-Conversion Nanomaterial Doped with Ag Nanoparticles for Micro-CT Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3395. [PMID: 34947744 PMCID: PMC8707432 DOI: 10.3390/nano11123395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023]
Abstract
In this study, a new method for synthesizing Ag-NaYF4:Yb3+/Er3+ @ SiO2 nanocomposites was introduced. Using a hydrothermal method, the synthesized Yb3+- and Er3+-codoped NaYF4 up-conversion luminescent materials and Ag nanoparticles were doped into up-conversion nanomaterials and coated with SiO2 up-conversion nanomaterials. This material is known as Ag-UCNPs@SiO2, it improves both the luminous intensity because of the doped Ag nanoparticles and has low cytotoxicity because of the SiO2 coating. The morphology of UCNPs was observed using scanning electron microscopy (SEM), and the mapping confirmed the successful doping of Ag nanoparticles. Successful coating of SiO2 was confirmed using transmission electron microscopy (TEM). Fluorescence spectra were used to compare changes in luminescence intensity before and after doping Ag nanoparticles. The reason for the increase in luminescence intensity after doping with Ag nanoparticles was simulated using first-principles calculations. The cytotoxicity of Ag-UCNPs@SiO2 was tested via the cell counting kit-8 (CCK-8) method, and its imaging ability was characterized using the micro-CT method.
Collapse
Affiliation(s)
- Wei Zhang
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing 100029, China; (W.Z.); (Y.L.); (Y.Z.); (Q.X.)
| | - Yanli Lu
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing 100029, China; (W.Z.); (Y.L.); (Y.Z.); (Q.X.)
| | - Yang Zang
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing 100029, China; (W.Z.); (Y.L.); (Y.Z.); (Q.X.)
| | - Jinhui Han
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Qingyun Xiong
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing 100029, China; (W.Z.); (Y.L.); (Y.Z.); (Q.X.)
| | - Jinping Xiong
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing 100029, China; (W.Z.); (Y.L.); (Y.Z.); (Q.X.)
- College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| |
Collapse
|
32
|
Mena-Giraldo P, Orozco J. Polymeric Micro/Nanocarriers and Motors for Cargo Transport and Phototriggered Delivery. Polymers (Basel) 2021; 13:3920. [PMID: 34833219 PMCID: PMC8621231 DOI: 10.3390/polym13223920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Smart polymer-based micro/nanoassemblies have emerged as a promising alternative for transporting and delivering a myriad of cargo. Cargo encapsulation into (or linked to) polymeric micro/nanocarrier (PC) strategies may help to conserve cargo activity and functionality when interacting with its surroundings in its journey to the target. PCs for cargo phototriggering allow for excellent spatiotemporal control via irradiation as an external stimulus, thus regulating the delivery kinetics of cargo and potentially increasing its therapeutic effect. Micromotors based on PCs offer an accelerated cargo-medium interaction for biomedical, environmental, and many other applications. This review collects the recent achievements in PC development based on nanomicelles, nanospheres, and nanopolymersomes, among others, with enhanced properties to increase cargo protection and cargo release efficiency triggered by ultraviolet (UV) and near-infrared (NIR) irradiation, including light-stimulated polymeric micromotors for propulsion, cargo transport, biosensing, and photo-thermal therapy. We emphasize the challenges of positioning PCs as drug delivery systems, as well as the outstanding opportunities of light-stimulated polymeric micromotors for practical applications.
Collapse
Affiliation(s)
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 # 52-20, Medellin 050010, Colombia;
| |
Collapse
|