1
|
Panganiban J, Kehar M, Ibrahim SH, Hartmann P, Sood S, Hassan S, Ramirez CM, Kohli R, Censani M, Mauney E, Cuda S, Karjoo S. Metabolic dysfunction-associated steatotic liver disease (MASLD) in children with obesity: An Obesity Medicine Association (OMA) and expert joint perspective 2025. OBESITY PILLARS 2025; 14:100164. [PMID: 40230708 PMCID: PMC11995806 DOI: 10.1016/j.obpill.2025.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 04/16/2025]
Abstract
Introduction This Obesity Medicine Association (OMA) Expert Joint Perspective examines steatotic liver disease (SLD), which is composed of metabolic dysfunction-associated steatotic liver disease (MASLD), and metabolic dysfunction-associated steatohepatitis (MASH) in children with obesity. The prevalence of obesity is increasing, rates have tripled since 1963 from 5 % to now 19 % of US children affected in 2018. MASLD, is the most common liver disease seen in children, can be a precursor to the development of Type 2 Diabetes (T2DM) and is the primary reason for liver transplant listing in young adults. We must be vigilant in prevention and treatment of MASLD in childhood to prevent further progression. Methods This joint clinical perspective is based upon scientific evidence, peer and clinical expertise. The medical literature was reviewed via PubMed search and appropriate articles were included in this review. This work was formulated from the collaboration of eight hepatologists/gastroenterologists with MASLD expertise and two physicians from the OMA. Results The authors who are experts in the field, determined sentinel questions often asked by clinicians regarding MASLD in children with obesity. They created a consensus and clinical guideline for clinicians on the screening, diagnosis, and treatment of MASLD associated with obesity in children. Conclusions Obesity and the comorbidity of MASLD is increasing in children, and this is a medical problem that needs to be addressed urgently. It is well known that children with metabolic associated chronic disease often continue to have these chronic diseases as adults, which leads to reduced life expectancy, quality of life, and increasing healthcare needs and financial burden. The authors of this paper recommend healthy weight reduction not only through lifestyle modification but through obesity pharmacotherapy and bariatric surgery. Therefore, this guidance reviews available therapies to achieve healthy weight reduction and reverse MASLD to prevent progressive liver fibrosis, and metabolic disease.
Collapse
Affiliation(s)
| | - Mohit Kehar
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Samar H. Ibrahim
- Division of Pediatric Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Division of Gastroenterology, Hepatology & Nutrition, Rady Children’s Hospital San Diego, San Diego, CA, USA
| | - Shilpa Sood
- Division of Pediatric Gastroenterology, Boston Children's Health Physicians, New York Medical College, Valhalla, NY, USA
| | - Sara Hassan
- University of Texas Southwestern, Dallas, TX, United States
| | | | - Rohit Kohli
- Children's Hospital Los Angeles, CA, United States
| | - Marisa Censani
- Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, United States
| | - Erin Mauney
- Tufts Medical Center, Boston, MA, United States
| | - Suzanne Cuda
- Alamo City Healthy Kids and Families, San Antonio, TX, United States
| | - Sara Karjoo
- Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
- University of South Florida, Tampa, FL, United States
- Florida State University, Tallahassee, FL, United States
| |
Collapse
|
2
|
Vosough M, Shokouhian B, Sharbaf MA, Solhi R, Heidari Z, Seydi H, Hassan M, Devaraj E, Najimi M. Role of mitogens in normal and pathological liver regeneration. Hepatol Commun 2025; 9:e0692. [PMID: 40304568 PMCID: PMC12045551 DOI: 10.1097/hc9.0000000000000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/31/2025] [Indexed: 05/02/2025] Open
Abstract
The liver has a unique ability to regenerate to meet the body's metabolic needs, even following acute or chronic injuries. The cellular and molecular mechanisms underlying normal liver regeneration have been well investigated to improve organ transplantation outcomes. Once liver regeneration is impaired, pathological regeneration occurs, and the underlying cellular and molecular mechanisms require further investigations. Nevertheless, a plethora of cytokines and growth factor-mediated pathways have been reported to modulate physiological and pathological liver regeneration. Regenerative mitogens play an essential role in hepatocyte proliferation. Accelerator mitogens in synergism with regenerative ones promote liver regeneration following hepatectomy. Finally, terminator mitogens restore the proliferating status of hepatocytes to a differentiated and quiescent state upon completion of regeneration. Chronic loss of hepatocytes, which can manifest in chronic liver disorders of any etiology, often has undesired structural consequences, including fibrosis, cirrhosis, and liver neoplasia due to the unregulated proliferation of remaining hepatocytes. In fact, any impairment in the physiological function of the terminator mitogens results in the progression of pathological liver regeneration. In the current review, we intend to highlight the updated cellular and molecular mechanisms involved in liver regeneration and discuss the impairments in central regulating mechanisms responsible for pathological liver regeneration.
Collapse
Affiliation(s)
- Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bahare Shokouhian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Amin Sharbaf
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Roya Solhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Heidari
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ezhilarasan Devaraj
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
3
|
Zou ZY, Ma Y, Xie C, Fan JG. Diabetes-Driven Pathophysiological Remodeling of Mesenteric Adipose Tissue: Transcriptomic Insights into Macrophage Infiltration and Adipokine Dyshomeostasis. J Hepatol 2025:S0168-8278(25)00171-0. [PMID: 40147787 DOI: 10.1016/j.jhep.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Affiliation(s)
- Zi-Yuan Zou
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuandi Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
4
|
Mo H, Yue P, Li Q, Tan Y, Yan X, Liu X, Xu Y, Luo Y, Palihati S, Yi C, Zhang H, Yuan M, Yang B. The role of liver sinusoidal endothelial cells in metabolic dysfunction-associated steatotic liver diseases and liver cancer: mechanisms and potential therapies. Angiogenesis 2025; 28:14. [PMID: 39899173 DOI: 10.1007/s10456-025-09969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Liver sinusoidal endothelial cells (LSECs), with their unique morphology and function, have garnered increasing attention in chronic liver disease research. This review summarizes the critical roles of LSECs under physiological conditions and in two representative chronic liver diseases: metabolic dysfunction-associated steatotic liver disease (MASLD) and liver cancer. Under physiological conditions, LSECs act as selective barriers, regulating substance exchange and hepatic blood flow. Interestingly, LSECs exhibit contrasting roles at different stages of disease progression: in the early stages, they actively resist disease advancement and help restore sinusoidal homeostasis; whereas in later stages, they contribute to disease worsening. During this transition, LSECs undergo capillarization, lose their characteristic markers, and become dysfunctional. As the disease progresses, LSECs closely interact with hepatocytes, hepatic stellate cells, various immune cells, and tumor cells, driving processes such as steatosis, inflammation, fibrosis, angiogenesis, and carcinogenesis. Consequently, targeting LSECs represents a promising therapeutic strategy for chronic liver diseases. Relevant therapeutic targets and potential drugs are summarized in this review.
Collapse
Affiliation(s)
- Hanjun Mo
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Pengfei Yue
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Qiaoqi Li
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yinxi Tan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Xinran Yan
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyue Liu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuanwei Xu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Medical Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Chengdu, 610075, Sichuan, China
| | - Suruiya Palihati
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Cheng Yi
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, China.
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, 610041, China.
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China.
| | - Biao Yang
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Zhao K, Zhang H, Ding W, Yu X, Hou Y, Liu X, Li X, Wang X. Adipokines regulate the development and progression of MASLD through organellar oxidative stress. Hepatol Commun 2025; 9:e0639. [PMID: 39878681 PMCID: PMC11781772 DOI: 10.1097/hc9.0000000000000639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), which is increasingly being recognized as a leading cause of chronic liver pathology globally, is increasing. The pathophysiological underpinnings of its progression, which is currently under active investigation, involve oxidative stress. Human adipose tissue, an integral endocrine organ, secretes an array of adipokines that are modulated by dietary patterns and lifestyle choices. These adipokines intricately orchestrate regulatory pathways that impact glucose and lipid metabolism, oxidative stress, and mitochondrial function, thereby influencing the evolution of hepatic steatosis and progression to metabolic dysfunction-associated steatohepatitis (MASH). This review examines recent data, underscoring the critical interplay of oxidative stress, reactive oxygen species, and redox signaling in adipokine-mediated mechanisms. The role of various adipokines in regulating the onset and progression of MASLD/MASH through mitochondrial dysfunction and endoplasmic reticulum stress and the underlying mechanisms are discussed. Due to the emerging correlation between adipokines and the development of MASLD positions, these adipokines are potential targets for the development of innovative therapeutic interventions for MASLD management. A comprehensive understanding of the pathogenesis of MASLD/MASH is instrumental for identifying therapies for MASH.
Collapse
Affiliation(s)
- Ke Zhao
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
| | - Heng Zhang
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
- Central laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenyu Ding
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
| | - Xiaoshuai Yu
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
- Central laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yanli Hou
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
| | - Xihong Liu
- Department of Pathology, The Fourth People’s Hospital of Jinan, Jinan, Shandong, China
| | - Xinhua Li
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
| | - Xiaolei Wang
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
- First school of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
6
|
Su C, Liao Z, Li H, Pei Y, Wang Z, Li J, Liu J. Metabolic dysfunction-associated steatotic liver disease and gastroesophageal reflux disease: a mendelian randomization study in European and East Asian populations. Front Genet 2024; 15:1428334. [PMID: 39703225 PMCID: PMC11655479 DOI: 10.3389/fgene.2024.1428334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Background Numerous observational studies have shown a potential association between metabolic dysfunction-associated steatotic liver disease (MASLD) and gastroesophageal reflux disease (GERD). However, causality is unclear. This study utilized genome-wide association study (GWAS) genetic data to explore the causal relationship between MASLD and GERD in European and East Asian populations. Methods This study utilized a bidirectional, two-sample Mendelian randomization (MR) approach. All disease data were obtained from the GWAS database, and single nucleotide polymorphisms strongly associated with exposure were selected as instrumental variables. The inverse variance weighted (IVW) method is primarily utilized to evaluate the causal relationship between exposure and outcome. Finally, sensitivity analyses were performed to ensure the robustness of the results. Results The IVW estimates indicated that non-alcoholic fatty liver disease (NAFLD) (odds ratio (OR) = 1.054, 95% confidence interval (CI), 0.966-1.150, p = 0.236) and percent liver fat (OR = 0.977, 95% CI, 0.937-1.018, p = 0.258) in European population were not linked to a higher risk of GERD. However, GERD in European population was associated with an increased risk of NAFLD (OR = 1.485, 95% CI, 1.274-1.729, p < 0.001) and percent liver fat (OR = 1.244, 95% CI, 1.171-1.321, p < 0.001). In addition, the IVW analysis in East Asian population showed that alanine aminotransferase (ALT) was associated with an increased risk of GERD (OR = 2.305, 95% CI, 1.241-4.281, p = 0.008), whereas aspartate aminotransferase (AST) had no causal effects on GERD risk (OR = 0.973, 95% CI, 0.541-1.749, p = 0.926). Furthermore, the associations between GERD and ALT (OR = 1.007, 95% CI, 0.998-1.015, p = 0.123) or AST (OR = 1.004, 95% CI, 0.997-1.012, p = 0.246) were not significant. After removing outliers, a significant correlation between GERD and ALT was observed (OR = 1.009, 95% CI, 1.001-1.016, p = 0.020). Conclusion There was reverse causality between MASLD and GERD in European population, while there was bidirectional causality between a proxie for MASLD (ALT) and GERD in East Asian population. This study can provide novel insights into cross-ethnic genetic research on MASLD and GERD.
Collapse
Affiliation(s)
- Chen’guang Su
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Zheng Liao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Hewen Li
- Department of Minimally Invasive Spine Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Yinxuan Pei
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Zixiang Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Jian Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Jinlong Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
- Hebei Key Laboratory of Panvascular Diseases, Chengde, Hebei, China
| |
Collapse
|
7
|
Gancheva S, Roden M, Castera L. Diabetes as a risk factor for MASH progression. Diabetes Res Clin Pract 2024; 217:111846. [PMID: 39245423 DOI: 10.1016/j.diabres.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Non-alcoholic (now: metabolic) steatohepatitis (MASH) is the progressive inflammatory form of metabolic dysfunction-associated steatotic liver disease (MASLD), which often coexists and mutually interacts with type 2 diabetes (T2D), resulting in worse hepatic and cardiovascular outcomes. Understanding the intricate mechanisms of diabetes-related MASH progression is crucial for effective therapeutic strategies. This review delineates the multifaceted pathways involved in this interplay and explores potential therapeutic implications. The synergy between adipose tissue, gut microbiota, and hepatic alterations plays a pivotal role in disease progression. Adipose tissue dysfunction, particularly in the visceral depot, coupled with dysbiosis in the gut microbiota, exacerbates hepatic injury and insulin resistance. Hepatic lipid accumulation, oxidative stress, and endoplasmic reticulum stress further potentiate inflammation and fibrosis, contributing to disease severity. Dietary modification with weight reduction and exercise prove crucial in managing T2D-related MASH. Additionally, various well-known but also novel anti-hyperglycemic medications exhibit potential in reducing liver lipid content and, in some cases, improving MASH histology. Therapies targeting incretin receptors show promise in managing T2D-related MASH, while thyroid hormone receptor-β agonism has proven effective as a treatment of MASH and fibrosis.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany.
| | - Laurent Castera
- Department of Hepatology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France; Université Paris-Cité, INSERM UMR 1149, Centre de Recherche sur l'Inflammation Paris, Montmartre, Paris, France.
| |
Collapse
|
8
|
de Celis Alonso B, Shumbayawonda E, Beyer C, Hidalgo-Tobon S, López-Martínez B, Dies-Suarez P, Klunder-Klunder M, Miranda-Lora AL, Pérez EB, Thomaides-Brears H, Banerjee R, Thomas EL, Bell JD, So PW. Liver magnetic resonance imaging, non-alcoholic fatty liver disease and metabolic syndrome risk in pre-pubertal Mexican boys. Sci Rep 2024; 14:26104. [PMID: 39478096 PMCID: PMC11526175 DOI: 10.1038/s41598-024-77307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Rising global pediatric obesity rates, increase non-alcoholic fatty liver disease (NAFLD) and metabolic syndrome (MetS) prevalence, with MetS being a NAFLD risk factor. NAFLD can be asymptomatic, with liver function tests insensitive to mild disease, and liver biopsy, risking complications. Thus, we investigated multiparametric MRI (mpMRI) metrics of liver fat (proton density fat fraction, PDFF) and disease activity (fibro-inflammation; iron-corrected T1, cT1), in a Hispanic pre-pubertal pediatric cohort, with increased risk of NAFLD. Pre-pubertal boys (n = 81) of varying Body-Mass Index (BMI) were recruited in Mexico City. Most children (81%) had normal liver transaminase levels, 38% had high BMI, and 14% had ≥ 3 MetS risk factors. Applying mpMRI thresholds, 12%, 7% and 4% of the cohort had NAFLD, NASH and high-risk NASH respectively. Participants with ≥ 3 MetS risk factors had higher cT1 (834 ms vs. 737 ms, p = 0.004) and PDFF (8.7% vs. 2.2%, p < 0.001) compared to those without risk factors. Those with elevated cT1 tended to have high BMI and high insulin (p = 0.005), HOMA-IR (p = 0.005) and leptin (p < 0.001). The significant association of increased risk of MetS with abnormal mpMRI, particularly cT1, proposes the potential of using mpMRI for routine pediatric NAFLD screening of high-risk (high BMI, high MetS risk score) populations.
Collapse
Affiliation(s)
- Benito de Celis Alonso
- Faculty of Physical and Mathematical Sciences, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | | | - Silvia Hidalgo-Tobon
- Imaging Department, Children's Hospital of Mexico Federico Gómez, Mexico City, Mexico
- Physics Department, UAM Iztapalapa, Mexico City, Mexico
| | | | - Pilar Dies-Suarez
- Imaging Department, Children's Hospital of Mexico Federico Gómez, Mexico City, Mexico
| | - Miguel Klunder-Klunder
- Epidemiological Research Unit in Endocrinology and Nutrition, Children's Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - América Liliana Miranda-Lora
- Epidemiological Research Unit in Endocrinology and Nutrition, Children's Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | | | | | | | - E Louise Thomas
- Research Centre for Optimal Health, University of Westminster, London, UK
| | - Jimmy D Bell
- Research Centre for Optimal Health, University of Westminster, London, UK
| | - Po-Wah So
- Department of Neuroimaging, King's College London, London, UK.
| |
Collapse
|
9
|
Krolevets TS, Livzan MA, Syrovenko MI. Liver Fibrosis in Some Patients with Non-Alcoholic Fatty Liver Disease: from Diagnosis to Prognosis. ANNALS OF THE RUSSIAN ACADEMY OF MEDICAL SCIENCES 2024; 79:293-300. [DOI: 10.15690/vramn15829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The purpose of this publication was to update knowledge about non-alcoholic fatty liver disease (NAFLD) and fibrogenesis, as well as factors that have a positive or negative prognostic value in relation to the formation and progression of liver fibrosis. This review article contains the current literature dates about pathogenetic factors of the development of liver fibrosis in NAFLD and conceptual ideas about its diagnosis at this moment. Obviously, along with genetic and epigenetic factors, hyper- and disproduction of organokines affect to the progression of the disease. Evaluation of the quantitative and qualitative composition of the microbiota, the integrity of the epithelial intestinal barrier are perceptual fields for research this problem. Non-invasive proprietary and non-proprietary scales for assessing the risk of steatosis and fibrosis, transient elastometry are suitable for routine assessment of individual risk of disease development and progression. This scientific review demonstrates proofs of necessity to develop individual strategies for the management of patients with NAFLD in relation to its metabolic activity and the stage of liver fibrosis.
Collapse
|
10
|
Motamedi A, Alizadeh S, Osati S, Raeisi T, Homayounfar R. Dietary insulin index and dietary insulin load in relation to non-alcoholic fatty liver disease: a cross-sectional study. Public Health Nutr 2024; 27:e182. [PMID: 39324343 PMCID: PMC11504692 DOI: 10.1017/s1368980024001149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE Postprandial hyperinsulinaemia plays a key role in the development of non-alcoholic fatty liver disease (NAFLD). Diet is a potential factor affecting serum insulin levels. This study aimed to examine the relations of dietary insulin index (DII) and dietary insulin load (DIL) to the risk of NAFLD. DESIGN This study was a cross-sectional study. DII and DIL were calculated using the dietary data obtained from the FFQ. Fatty liver index ≥ 60 and the confirmation of a gastroenterologist were required to diagnose NAFLD. SETTING Community-based study. PARTICIPANTS A total of 3158 people (46·7 % male), aged 40·57 ± 8·25 years, participated in this study in Tehran, Iran from April 2016 to December 2019. RESULTS The prevalence of NAFLD was 29·9 % (21·59 % in males and 33·74 % in females). In the fully adjusted model controlled for sex, age, energy intake, BMI, smoking, physical activity and education, DII was significantly associated with the increased risk of NAFLD in males (OR: 2·74, 95 % CI = 1·75, 4·31; P-trend = ≤0·001) and females (OR: 2·26, 95 % CI = 1·39, 3·69; P-trend = 0·005). A significant relationship was also detected between DIL and NAFLD in females (OR: 2·90, 95 % CI = 1·70, 4·93; P-trend ≤0·001) but not in males (OR: 1·33, 95 % CI = 0·84, 2·10; P-trend = 0·13). CONCLUSIONS Adherence to a diet with a high DII and DIL may be related to the increased risk of NAFLD. These results may be useful for healthcare providers to design appropriate preventive measures for people at risk of NAFLD.
Collapse
Affiliation(s)
- Amir Motamedi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahab Alizadeh
- Development and clinical research center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Saeed Osati
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Raeisi
- Department of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reza Homayounfar
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Amini MR, Salavatizadeh M, Kazeminejad S, Javadi F, Hajiaqaei M, Askari G, Hekmatdoost A. The effects of Garcinia cambogia (hydroxycitric acid) on serum leptin concentrations: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med 2024; 84:103060. [PMID: 38876392 DOI: 10.1016/j.ctim.2024.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
OBJECTIVE The observed impacts of Garcinia cambogia (GC) on serum leptin indicate inconsistency. We performed a systematic review and meta-analysis on randomized controlled trials (RCTs) to evaluate the effectiveness of GC on leptin levels. METHODS A thorough literature search was carried out using different online databases, including Scopus, Web of Science, PubMed, and Google Scholar, until May 25, 2024. Using random effects, weighted mean differences (WMDs) and corresponding 95 % confidence intervals (CIs) were computed. Standard procedures were followed to account for publication bias, study quality, and statistical heterogeneity. RESULTS In this meta-analysis, a total of eight eligible trials with 330 participants were ultimately included. Quality assessment showed that half of the included trials were considered to have fair quality, while the other half were deemed to have poor quality. Our analysis, with no indication of publication bias, showed a significantly decreased effect of GC on leptin compared with the placebo (WMD: -5.01 ng/ml; 95 % CI: -9.22 to -0.80, p = 0.02). However, significant heterogeneity was detected between studies (I2 =93.5 %, p < 0.001). The Hartung-Knapp adjustment did not affect our results. Subgroup analysis revealed that GC consumption represents the most effects in trials with sample size ≥ 50 (WMD: -3.63 ng/ml; 95 % CI [-5.51, -1.76], p < 0.001), and mean age of participants ≥ 30 years (WMD: -7.43 ng/ml; 95 % CI [-9.31, -5.56], p < 0.001). CONCLUSIONS The findings of the present study showed that leptin levels might decline following GC administration. REGISTRATION NUMBER CRD42023486370.
Collapse
Affiliation(s)
- Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marieh Salavatizadeh
- Department of Clinical Nutrition & Dietetics, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shervin Kazeminejad
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fozhan Javadi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahdi Hajiaqaei
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition & Dietetics, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Liu L, Li M, Qin Y, Liu L, Xiao Y. Serum follistatin like 1 in children with obesity and metabolic-associated fatty liver disease. BMC Endocr Disord 2024; 24:165. [PMID: 39210310 PMCID: PMC11360849 DOI: 10.1186/s12902-024-01702-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Follistatin-like protein 1 (FSTL1) has been identified as a secreted glycoprotein that plays an important role in obesity. However, its role in children with metabolic-associated fatty liver disease (MAFLD) has not been investigated. This study aimed at characterizing the relationship between serum FSTL1 concentration and MAFLD in children with obesity. METHODS A total of 121 subjects were recruited from the Second Affiliated Hospital of Xi'an Jiaotong University, including 45 obese children with MAFLD, 31 obese children without MAFLD, and 45 healthy controls. Anthropometric parameters, biochemical data were measured and circulating FSTL1 levels were detected by ELISA. RESULTS The levels of FSTL1 in obese children with MAFLD were higher than that in obese children without MAFLD: 1.31 (0.35-2.29) ng/mL vs. 0.55 (0.36-1.38) ng/mL. Correlation analysis illustrated that FSTL1 was associated with nonesterified free fatty acid and leptin (r = 0.278, P < 0.05 and r = 0.572, P < 0.05, respectively). Binary logistic regression suggested that increased FSTL1 was a risk factor for MAFLD in children (OR = 1.105, 95% CI: 1.066-1.269, P < 0.05). CONCLUSIONS Serum FSTL1 concentrations increase in obese children with MAFLD and may have the potential to be a risk factor for MAFLD in children with obesity.
Collapse
Affiliation(s)
- Lujie Liu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710061, Shaanxi, China
| | - Meng Li
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710061, Shaanxi, China
| | - Yujie Qin
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710061, Shaanxi, China
| | - Luyang Liu
- School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - Yanfeng Xiao
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
13
|
Habib S. Team players in the pathogenesis of metabolic dysfunctions-associated steatotic liver disease: The basis of development of pharmacotherapy. World J Gastrointest Pathophysiol 2024; 15:93606. [PMID: 39220834 PMCID: PMC11362842 DOI: 10.4291/wjgp.v15.i4.93606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Nutrient metabolism is regulated by several factors. Social determinants of health with or without genetics are the primary regulator of metabolism, and an unhealthy lifestyle affects all modulators and mediators, leading to the adaptation and finally to the exhaustion of cellular functions. Hepatic steatosis is defined by presence of fat in more than 5% of hepatocytes. In hepatocytes, fat is stored as triglycerides in lipid droplet. Hepatic steatosis results from a combination of multiple intracellular processes. In a healthy individual nutrient metabolism is regulated at several steps. It ranges from the selection of nutrients in a grocery store to the last step of consumption of ATP as an energy or as a building block of a cell as structural component. Several hormones, peptides, and genes have been described that participate in nutrient metabolism. Several enzymes participate in each nutrient metabolism as described above from ingestion to generation of ATP. As of now several publications have revealed very intricate regulation of nutrient metabolism, where most of the regulatory factors are tied to each other bidirectionally, making it difficult to comprehend chronological sequence of events. Insulin hormone is the primary regulator of all nutrients' metabolism both in prandial and fasting states. Insulin exerts its effects directly and indirectly on enzymes involved in the three main cellular function processes; metabolic, inflammation and repair, and cell growth and regeneration. Final regulators that control the enzymatic functions through stimulation or suppression of a cell are nuclear receptors in especially farnesoid X receptor and peroxisome proliferator-activated receptor/RXR ligands, adiponectin, leptin, and adiponutrin. Insulin hormone has direct effect on these final modulators. Whereas blood glucose level, serum lipids, incretin hormones, bile acids in conjunction with microbiota are intermediary modulators which are controlled by lifestyle. The purpose of this review is to overview the key players in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) that help us understand the disease natural course, risk stratification, role of lifestyle and pharmacotherapy in each individual patient with MASLD to achieve personalized care and target the practice of precision medicine. PubMed and Google Scholar databases were used to identify publication related to metabolism of carbohydrate and fat in states of health and disease states; MASLD, cardiovascular disease and cancer. More than 1000 publications including original research and review papers were reviewed.
Collapse
Affiliation(s)
- Shahid Habib
- Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85712, United States
| |
Collapse
|
14
|
Taguchi D, Shirakami Y, Sakai H, Maeda T, Miwa T, Kubota M, Imai K, Ibuka T, Shimizu M. High-Fat Diet Delays Liver Fibrosis Recovery and Promotes Hepatocarcinogenesis in Rat Liver Cirrhosis Model. Nutrients 2024; 16:2506. [PMID: 39125385 PMCID: PMC11314319 DOI: 10.3390/nu16152506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
More effective treatments for hepatitis viral infections have led to a reduction in the incidence of liver cirrhosis. A high-fat diet can lead to chronic hepatitis and liver fibrosis, but the effects of lipid intake on liver disease status, including hepatitis C virus and alcohol, after elimination of the cause are unclear. To investigate the effects, we used a rat cirrhosis model and a high-fat diet in this study. Male Wistar rats were administered carbon tetrachloride for 5 weeks. At 12 weeks of age, one group was sacrificed. The remaining rats were divided into four groups according to whether or not they were administered carbon tetrachloride for 5 weeks, and whether they were fed a high-fat diet or control diet. At 12 weeks of age, liver fibrosis became apparent and then improved in the groups where carbon tetrachloride was discontinued, while it worsened in the groups where carbon tetrachloride was continued. Liver fibrosis was notable in both the carbon tetrachloride discontinuation and continuation groups due to the administration of a high-fat diet. In addition, liver precancerous lesions were observed in all groups, and tumor size and multiplicity were higher in the high-fat diet-fed groups. The expression of genes related to inflammation and lipogenesis were upregulated in rats fed a high-fat diet compared to their controls. The results suggest that a high-fat diet worsens liver fibrosis and promotes liver carcinogenesis, presumably through enhanced inflammation and lipogenesis, even after eliminating the underlying cause of liver cirrhosis.
Collapse
Affiliation(s)
| | - Yohei Shirakami
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lonardo A, Weiskirchen R. From Hypothalamic Obesity to Metabolic Dysfunction-Associated Steatotic Liver Disease: Physiology Meets the Clinics via Metabolomics. Metabolites 2024; 14:408. [PMID: 39195504 PMCID: PMC11356647 DOI: 10.3390/metabo14080408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic health is tightly regulated by neuro-hormonal control, and systemic metabolic dysfunction may arise from altered function of the hypothalamic-anterior pituitary axis (HAPA). Ancient experimental observations of hypothalamic obesity (HO) and liver cirrhosis occurring among animals subjected to hypothalamic injury can now be explained using the more recent concepts of lipotoxicity and metabolic dysfunction-associated steatotic liver disease (MASLD). Lipotoxicity, the range of abnormalities resulting from the harmful effects of fatty acids accumulated in organs outside of adipose tissue, is the common pathogenic factor underlying closely related conditions like hypothalamic syndrome, HO, and MASLD. The hormonal deficits and the array of metabolic and metabolomic disturbances that occur in cases of HO are discussed, along with the cellular and molecular mechanisms that lead, within the MASLD spectrum, from uncomplicated steatotic liver disease to steatohepatitis and cirrhosis. Emphasis is placed on knowledge gaps and how they can be addressed through novel studies. Future investigations should adopt precision medicine approaches by precisely defining the hormonal imbalances and metabolic dysfunctions involved in each individual patient with HO, thus paving the way for tailored management of MASLD that develops in the context of altered HAPA.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria of Modena (-2023), 41126 Modena, Italy
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH), University Hospital Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
16
|
Wang J, Li H, Wang X, Shi R, Hu J, Zeng X, Luo H, Yang P, Luo H, Cao Y, Cai X, Chen S, Wang D. Association between triglyceride to high-density lipoprotein cholesterol ratio and nonalcoholic fatty liver disease and liver fibrosis in American adults: an observational study from the National Health and Nutrition Examination Survey 2017-2020. Front Endocrinol (Lausanne) 2024; 15:1362396. [PMID: 39081791 PMCID: PMC11286417 DOI: 10.3389/fendo.2024.1362396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Objective This study investigated the link between triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio and nonalcoholic fatty liver disease (NAFLD) and liver fibrosis in American adults. Methods Information for 6495 participants from the National Health and Nutrition Examination Survey (NHANES) 2017-2020.03 was used for this cross-sectional study. The link between TG/HDL-C ratios and NAFLD and liver fibrosis was assessed by multiple linear regression before evaluating nonlinear correlations based on smoothed curve fitting models. Stratification analysis was then applied to confirm whether the dependent and independent variables displayed a stable association across populations. Results TG/HDL-C ratios were positively correlated with NAFLD, with higher ratios being linked to increased prevalence of NAFLD. After adjusting for potential confounders, the odds ratios (OR) for NAFLD patients in the fourth TG/HDL-C quartile were 3.61 (95% confidence interval [CI], 2.94-4.38) (P for trend < 0.001) in comparison with those in the first quartile after adjusting for clinical variables. However, no statistical significance was noted for the ratio for liver fibrosis after adjusting for potential confounders (P for trend = 0.07). A nonlinear correlation between TG/HDL-C ratios and NAFLD was observed based on smoothed curve fitting models. However, a nonlinear relationship between the ratios and liver fibrosis was not established. In subgroup analyses, there was an interaction between smoking status and TG/HDL-C ratio in relation to the prevalence of liver fibrosis (P for interaction < 0.001). Conclusions Among American adults, the TG/HDL-C ratio was noted to be nonlinearly positively associated with the prevalence of NAFLD; however, this relationship was not present in liver fibrosis.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Han Li
- Department of Cardiology, The Fifth Hospital of Wuhan, Wuhan, China
| | - Xiaoyi Wang
- Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Ruizi Shi
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Junchao Hu
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xintao Zeng
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Hua Luo
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Pei Yang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Huiwen Luo
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yuan Cao
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xianfu Cai
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Sirui Chen
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Decai Wang
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
17
|
Leca BM, Lagojda L, Kite C, Karteris E, Kassi E, Randeva HS, Kyrou I. Maternal obesity and metabolic (dysfunction) associated fatty liver disease in pregnancy: a comprehensive narrative review. Expert Rev Endocrinol Metab 2024; 19:335-348. [PMID: 38860684 DOI: 10.1080/17446651.2024.2365791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Obesity and metabolic-associated fatty liver disease (MAFLD) during pregnancy constitute significant problems for routine antenatal care, with increasing prevalence globally. Similar to obesity, MAFLD is associated with a higher risk for maternal complications (e.g. pre-eclampsia and gestational diabetes) and long-term adverse health outcomes for the offspring. However, MAFLD during pregnancy is often under-recognized, with limited management/treatment options. AREAS COVERED PubMed/MEDLINE, EMBASE, and Scopus were searched based on a search strategy for obesity and/or MAFLD in pregnancy to identify relevant papers up to 2024. This review summarizes the pertinent evidence on the relationship between maternal obesity and MAFLD during pregnancy. Key mechanisms implicated in the underlying pathophysiology linking obesity and MAFLD during pregnancy (e.g. insulin resistance and dysregulated adipokine secretion) are highlighted. Moreover, a diagnostic approach for MAFLD diagnosis during pregnancy and its complications are presented. Finally, promising relevant areas for future research are covered. EXPERT OPINION Research progress regarding maternal obesity, MAFLD, and their impact on maternal and fetal/offspring health is expected to improve the relevant diagnostic methods and lead to novel treatments. Thus, routine practice could apply more personalized management strategies, incorporating individualized algorithms with genetic and/or multi-biomarker profiling to guide prevention, early diagnosis, and treatment.
Collapse
Affiliation(s)
- Bianca M Leca
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Lukasz Lagojda
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Clinical Evidence-Based Information Service (CEBIS), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Chris Kite
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- School of Health and Society, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, UK
- Chester Medical School, University of Chester, Shrewsbury, UK
| | - Emmanouil Karteris
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UK
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Harpal S Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, UK
- Institute of Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, UK
- Institute of Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
- College of Health, Psychology and Social Care, University of Derby, Derby, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
18
|
De la Cruz-Color L, Dominguez-Rosales JA, Maldonado-González M, Ruíz-Madrigal B, Sánchez Muñoz MP, Zaragoza-Guerra VA, Espinoza-Padilla VH, Ruelas-Cinco EDC, Ramírez-Meza SM, Torres Baranda JR, González-Gutiérrez MDR, Hernandez Nazara ZH. Evidence That Peripheral Leptin Resistance in Omental Adipose Tissue and Liver Correlates with MASLD in Humans. Int J Mol Sci 2024; 25:6420. [PMID: 38928125 PMCID: PMC11203746 DOI: 10.3390/ijms25126420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Leptin regulates lipid metabolism, maximizing insulin sensitivity; however, peripheral leptin resistance is not fully understood, and its contribution to metabolic dysfunction-associated steatotic liver disease (MASLD) is unclear. This study evaluated the contribution of the leptin axis to MASLD in humans. Forty-three participants, mostly female (86.04%), who underwent cholecystectomy were biopsied. Of the participants, 24 were healthy controls, 8 had MASLD, and 11 had metabolic dysfunction-associated steatohepatitis (MASH). Clinical and biochemical data and the gene expression of leptin, leptin receptor (LEPR), suppressor of cytokine signaling 3 (SOCS3), sterol regulatory element-binding transcription factor 1 (SREBF1), stearoyl-CoA desaturase-1 (SCD1), and patatin-like phospholipase domain-containing protein 2 (PNPLA2), were determined from liver and adipose tissue. Higher serum leptin and LEPR levels in the omental adipose tissue (OAT) and liver with MASH were found. In the liver, LEPR was positively correlated with leptin expression in adipose tissue, and SOCS3 was correlated with SREBF1-SCD1. In OAT, SOCS3 was correlated with insulin resistance and transaminase enzymes (p < 0.05 for all. In conclusion, we evidenced the correlation between the peripheral leptin resistance axis in OAT-liver crosstalk and the complications of MASLD in humans.
Collapse
Affiliation(s)
- Lucia De la Cruz-Color
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47820, C.P., Mexico;
- Instituto de Investigación en Enfermedades Crónicas Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico (V.H.E.-P.)
| | - Jose Alfredo Dominguez-Rosales
- Instituto de Investigación en Enfermedades Crónicas Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico (V.H.E.-P.)
| | - Montserrat Maldonado-González
- Laboratorio de Investigación en Microbiología, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico; (M.M.-G.); (B.R.-M.); (J.R.T.B.)
| | - Bertha Ruíz-Madrigal
- Laboratorio de Investigación en Microbiología, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico; (M.M.-G.); (B.R.-M.); (J.R.T.B.)
| | - Martha P. Sánchez Muñoz
- Nuevo Hospital Civil de Guadalajara Dr. Juan I. Menchaca, Unidad de Cirugía Bariátrica y Metabólica, Guadalajara 44340, C.P., Mexico;
| | - Vianney Alejandrina Zaragoza-Guerra
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Guadalajara, Escuela de Medicina y Ciencias de la Salud, Zapopan 45201, C.P., Mexico; (V.A.Z.-G.); (M.d.R.G.-G.)
| | - Victor H. Espinoza-Padilla
- Instituto de Investigación en Enfermedades Crónicas Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico (V.H.E.-P.)
| | | | - Sandra M. Ramírez-Meza
- Coordinación de la Licenciatura en Nutrición, División de Estudios de la Salud Centro Universitario de los Valles, Universidad de Guadalajara, Ameca Km. 45.5, Ameca 46600, C.P., Mexico;
| | - José R. Torres Baranda
- Laboratorio de Investigación en Microbiología, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico; (M.M.-G.); (B.R.-M.); (J.R.T.B.)
| | - María del R. González-Gutiérrez
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Guadalajara, Escuela de Medicina y Ciencias de la Salud, Zapopan 45201, C.P., Mexico; (V.A.Z.-G.); (M.d.R.G.-G.)
| | - Zamira Helena Hernandez Nazara
- Instituto de Investigación en Enfermedades Crónicas Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico (V.H.E.-P.)
| |
Collapse
|
19
|
Toledano E, Gómez-Lechón L, Chacón CC, Hidalgo C, Ibáñez M, Márquez A, Queiro R, Montilla C. Clinical Features and Disease Activity in Psoriatic Arthritis: A Sex-Related Perspective on Leptin and Comorbidity. J Clin Med 2024; 13:2959. [PMID: 38792501 PMCID: PMC11121807 DOI: 10.3390/jcm13102959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Background/Objectives: Many studies have addressed the sex differences in patients with psoriatic arthritis, although these are aimed more at describing the phenotype than at investigating the causes underlying these differences. The aims of our study were to assess the presence of clinical features in relation to sex, and to measure the effect on disease activity of different comorbidities in each sex. Methods: This was a cross-sectional study in which the following factors were measured: the clinical features of the disease, disease activity, the physical function and the disease impact. We measured serum leptin levels, to eliminate the effect of obesity on leptin levels, and a leptin/BMI ratio was calculated. The comorbid conditions evaluated included anxiety and depression, and sleep quality. Results: A total of 203 patients participated in this study. The mean age was 54.6 ± 11.3, and 46.8% of the patients were women. Women less frequently presented axial involvement (8% vs. 28%; p < 0.001) and more commonly had enthesitis (2 vs. 0.3; p < 0.001). They also had higher DAPSA (16.4 vs. 13.4; p < 0.001) and PsAID12 scores (4.1 vs. 2.9; p < 0.001), worse HAQ results (0.8 vs. 0.5; p < 0.001), and greater FACIT-F scores (32.7 vs. 38.1; p < 0.001). As for the comorbid conditions, women presented a higher leptin/BMI ratio (0.8 vs. 0.2; p < 0.001), higher levels of HADS-A (6.9 vs. 4.7; p < 0.001) and HADS-D (4.9 vs. 3.4; p < 0.001), and poorer ISI (9.3 vs. 7.0; p < 0.001). By sex, pain affecting women was associated with the leptin/BMI ratio (β: 0.29; p < 0.004; 95%CI: 0.3-1.6) and sleep quality (β: 0.31; p < 0.004; 95%CI: 0.04-0.25; R2: 0.26). The leptin/BMI ratio was not associated with pain in men (p = 0.46). Conclusions: Sex was associated with several clinical manifestations. Leptin/BMI ratio levels were associated with pain in women, but not in men.
Collapse
Affiliation(s)
- Esther Toledano
- Department of Rheumatology, San Carlos Clinical Hospital, 28040 Madrid, Spain;
| | - Luis Gómez-Lechón
- Department of Rheumatology, Francesc de Borja Hospital, 46702 Gandía, Spain;
| | - Carolina Cristina Chacón
- Department of Rheumatology, Clinical University Hospital of Salamanca, 37007 Salamanca, Spain; (C.C.C.); (C.H.); (M.I.)
| | - Cristina Hidalgo
- Department of Rheumatology, Clinical University Hospital of Salamanca, 37007 Salamanca, Spain; (C.C.C.); (C.H.); (M.I.)
| | - Marta Ibáñez
- Department of Rheumatology, Clinical University Hospital of Salamanca, 37007 Salamanca, Spain; (C.C.C.); (C.H.); (M.I.)
| | - Antonio Márquez
- Department of Physiotherapy, Clinical University Hospital of Salamanca, 37007 Salamanca, Spain;
| | - Rubén Queiro
- Department of Rheumatology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain;
| | - Carlos Montilla
- Department of Rheumatology, Clinical University Hospital of Salamanca, 37007 Salamanca, Spain; (C.C.C.); (C.H.); (M.I.)
| |
Collapse
|
20
|
Qamar M, Fatima A, Tauseef A, Yousufzai MI, Liaqat I, Naqvi Q. Comparative and Predictive Significance of Serum Leptin Levels in Non-alcoholic Fatty Liver Disease. Cureus 2024; 16:e57943. [PMID: 38738048 PMCID: PMC11084851 DOI: 10.7759/cureus.57943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2024] [Indexed: 05/14/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) has emerged as the single most common chronic non-viral liver disease. The burden of the disease on healthcare-providing services has increased tremendously. Although a liver biopsy is the most authentic laboratory investigation for scoring the disease progression, it is an invasive technique. Researchers are vigorously working to find alternate markers for the scoring purpose. Despite the importance and association of leptin with metabolic syndrome and its related disorders, there have been relatively fewer studies on serum leptin and its association with NAFLD. Objective This study aimed to investigate variations in serum leptin levels between subjects with and without fibrosis in NAFLD and to assess the predictive value of serum leptin levels in NAFLD subjects. Materials and methods The study comprised 130 NAFLD subjects from two tertiary care hospitals in Lahore along with 86 healthy controls that were age, gender, and BMI matched with the subjects. Based on the NAFLD fibrosis score (NFS), the subjects were divided into two sub-groups, subjects with simple steatosis and those with fibrosis. Fasting serum leptin, glucose, and insulin levels were measured using enzyme-linked immunosorbent assay (ELISA). The Kruskal-Wallis test was applied to find differences between the three groups and Fisher's exact test for categorical comparison. To assess the predictive value of serum leptin for steatosis and fibrosis in NAFLD subjects, receiver operation characteristic (ROC) curve analysis was implemented. Results The difference in serum leptin level was statistically highly significant (p-value <0.001), with leptin levels of 10 (17.1) ng/mL among controls, 20.5 (21) ng/mL in simple steatosis, and 21 (28.6) ng/mL in fibrosis. The area under the ROC curve was 0.67 and 0.52 for steatosis and fibrosis, respectively. The cut-off value of 12.2 ng/mL showed 70% sensitivity and 50% specificity for steatosis, while at a threshold of 18 ng/mL, leptin demonstrated 40% sensitivity and specificity for fibrosis. Conclusion In conclusion, this study found that serum leptin levels are higher in NAFLD subjects compared to healthy controls, and it is a good independent predictor for the detection of liver steatosis.
Collapse
Affiliation(s)
- Mehwish Qamar
- Physiology, Islam Medical and Dental College, Sialkot, PAK
| | - Abeer Fatima
- Physiology, Services Institute of Medical Sciences, Lahore, PAK
| | - Ambreen Tauseef
- Physiology, Combined Military Hospital Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | | | - Ibrahim Liaqat
- Physiology, Islam Medical and Dental College, Sialkot, PAK
| | | |
Collapse
|
21
|
Xie L, Wang H, Hu J, Liu Z, Hu F. The role of novel adipokines and adipose-derived extracellular vesicles (ADEVs): Connections and interactions in liver diseases. Biochem Pharmacol 2024; 222:116104. [PMID: 38428826 DOI: 10.1016/j.bcp.2024.116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Adipose tissues (AT) are an important endocrine organ that secretes various functional adipokines, peptides, non-coding RNAs, and acts on AT themselves or other distant tissues or organs through autocrine, paracrine, or endocrine manners. An accumulating body of evidence has suggested that many adipokines play an important role in liver metabolism. Besides the traditional adipokines such as adiponectin and leptin, many novel adipokines have recently been identified to have regulatory effects on the liver. Additionally, AT can produce extracellular vesicles (EVs) that act on peripheral tissues. However, under pathological conditions, such as obesity and diabetes, dysregulation of adipokines is associated with functional changes in AT, which may cause liver diseases. In this review, we focus on the newly discovered adipokines and EVs secreted by AT and highlight their actions on the liver under the context of obesity, nonalcoholic fatty liver diseases (NAFLD), and some other liver diseases. Clarifying the action of adipokines and adipose tissue-derived EVs on the liver would help to identify novel therapeutic targets or biomarkers for metabolic diseases.
Collapse
Affiliation(s)
- Lijun Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huiying Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jinying Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhuoying Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Health Law Research Center, School of Law, Central South University, Changsha, China.
| | - Fang Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
22
|
Choudhary D, Andreani GA, Mahmood S, Wen X, Patel MS, Rideout TC. Postnatal Consumption of Black Bean Powder Protects against Obesity and Dyslipidemia in Male Adult Rat Offspring from Obese Pregnancies. Nutrients 2024; 16:1029. [PMID: 38613062 PMCID: PMC11013182 DOI: 10.3390/nu16071029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The adverse influence of maternal obesity on offspring metabolic health throughout the life-course is a significant public health challenge with few effective interventions. We examined if black bean powder (BBP) supplementation to a high-calorie maternal pregnancy diet or a postnatal offspring diet could offer protection against the metabolic programming of metabolic disease risk in adult offspring. Female Sprague Dawley rats were randomly assigned to one of three diets (n = 10/group) for a 3-week pre-pregnancy period and throughout gestation and lactation: (i) a low-caloric control diet (CON); (ii) a high-caloric obesity-inducing diet (HC); or (iii) the HC diet with 20% black bean powder (HC-BBP). At weaning [postnatal day (PND) 21], one male pup from each dam was weaned onto the CON diet throughout the postnatal period until adulthood (PND120). In addition, a second male from the HC group only was weaned onto the CON diet supplemented with BBP (CON-BBP). Thus, based on the maternal diet exposure and offspring postnatal diet, four experimental adult offspring groups were compared: CON/CON, HC/CON, HC-BPP/CON, and HC/CON-BBP. On PND120, blood was collected for biochemical analysis (e.g., lipids, glycemic control endpoints, etc.), and livers were excised for lipid analysis (triglycerides [TG] and cholesterol) and the mRNA/protein expression of lipid-regulatory targets. Compared with the CON/CON group, adult offspring from the HC/CON group exhibited a higher (p < 0.05) body weight (BW) (682.88 ± 10.67 vs. 628.02 ± 16.61 g) and hepatic TG (29.55 ± 1.31 vs. 22.86 ± 1.85 mmol/g). Although maternal BBP supplementation (HC-BBP/CON) had little influence on metabolic outcomes, the consumption of BBP in the postnatal period (HC/CON-BBP) lowered hepatic TG and cholesterol compared with the other treatment groups. Reduced hepatic TG in the HC/CON-BBP was likely associated with lower postnatal BW gain (vs. HC/CON), lower mRNA and protein expression of hepatic Fasn (vs. HC/CON), and lower serum leptin concentration (vs. CON/CON and HC groups). Our results suggest that the postnatal consumption of a black-bean-powder-supplemented diet may protect male rat offspring against the programming of obesity and dyslipidemia associated with maternal obesity. Future work should investigate the bioactive fraction of BBP responsible for the observed effect.
Collapse
Affiliation(s)
- Divya Choudhary
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY 14214, USA; (D.C.); (G.A.A.); (S.M.)
- Department of Pediatrics, Division of Behavioral Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA;
| | - Gabriella A. Andreani
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY 14214, USA; (D.C.); (G.A.A.); (S.M.)
| | - Saleh Mahmood
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY 14214, USA; (D.C.); (G.A.A.); (S.M.)
| | - Xiaozhong Wen
- Department of Pediatrics, Division of Behavioral Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA;
| | - Mulchand S. Patel
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA;
| | - Todd C. Rideout
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY 14214, USA; (D.C.); (G.A.A.); (S.M.)
| |
Collapse
|
23
|
Livzan MA, Krolevets TS, Syrovenko MI. Role of adipokines in the formation of metabolic disorders in conditions of metabolic-associated fatty liver disease (MAFLD). EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2024:168-174. [DOI: 10.31146/1682-8658-ecg-218-10-168-174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The aim of this review is to summarise the current knowledge on the role of adipokines on the development and progression of MAFLD. Discussion: diagnostic criteria for metabolic-associated liver disease (MAFLD) versus non-alcoholic fatty liver disease (NAFLD) are presented. The pathogenetic aspects of metabolic disorders in MAFLD are discussed. The potential role of various adipokines such as leptin, resistin, vasfastin, ghrelin, adiponectin and others is considered. Data from our own studies and foreign studies are presented. Conclusion: given the pandemic growth of MAFLD and its association with cardiovascular risk and obesity, the question of how to properly curate patients with comorbid to reduce risks is timely and highly relevant. Adipokines contribute significantly to the pathogenesis of MAFLD. Among all, leptin and adiponectin are the most promising and well studied. That is why strategies aimed at restoring leptin and adiponectin balance may have an impact on the course of MAFLD.
Collapse
|
24
|
Leciejewska N, Jędrejko K, Gómez-Renaud VM, Manríquez-Núñez J, Muszyńska B, Pokrywka A. Selective androgen receptor modulator use and related adverse events including drug-induced liver injury: Analysis of suspected cases. Eur J Clin Pharmacol 2024; 80:185-202. [PMID: 38059982 PMCID: PMC10847181 DOI: 10.1007/s00228-023-03592-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Selective androgen receptor modulators (SARMs) have demonstrated agonist activity on the androgen receptor in various tissues, stimulating muscle mass growth and improving bone reconstruction. Despite being in clinical trials, none has been approved by the Food and Drug Administration (FDA) or European Medicines Agency for pharmacotherapy. Still, SARMs are very popular as performance-enhancing drugs. The FDA has issued warnings about the health risks associated with SARMs, but the long-term exposure and possible adverse events still need to be fully understood. This review aims to evaluate the adverse events associated with using SARMs by humans. METHODS PubMed database was searched from September 16, 2022, to October 2, 2023. In total, 20 records were included in the final review. Data from preclinical and clinical studies supported the review. RESULTS Since 2020, 20 reports of adverse events, most described as drug-induced liver injury associated with the use of SARM agonists, have been published. The main symptoms mentioned were cholestatic or hepatocellular liver injury and jaundice. Limited data are related to the dosages and purity of SARM supplements. CONCLUSION Promoting SARMs as an anabolic agent in combination with other performance-enhancing drugs poses a risk to users not only due to doping controls but also to health safety. The lack of quality control of consumed supplements makes it very difficult to assess the direct impact of SARMs on the liver and their potential hepatotoxic effects. Therefore, more detailed analyses are needed to determine the safety of using SARMs.
Collapse
Affiliation(s)
- Natalia Leciejewska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637, Poznan, Poland
| | - Karol Jędrejko
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Kraków, Poland.
| | - Víctor M Gómez-Renaud
- Human Performance Laboratory, School of Physical Education, Autonomous University of Nuevo Leon, San Nicolas de los Garza, Mexico
| | - Josué Manríquez-Núñez
- Department of Research and Graduate Studies in Food Sciences, School of Chemistry, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Kraków, Poland
| | - Andrzej Pokrywka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Barazesh M, Jalili S, Akhzari M, Faraji F, Khorramdin E. Recent Progresses on Pathophysiology, Diagnosis, Therapeutic Modalities,
and Management of Non-alcoholic Fatty Liver Disorder. CURRENT DRUG THERAPY 2024; 19:20-48. [DOI: 10.2174/1574885518666230417111247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 01/03/2025]
Abstract
Abstract:
Non-alcoholic fatty liver disease (NAFLD) is currently the utmost common chronic liver
disorder that happens through all age groups and is identified to occur in 14%-30% of the general
population, demonstrating a critical and grossing clinical issue because of the growing incidence of
obesity and overweight. From the histological aspect, it looks like alcoholic liver damage, but it happens in patients who avoid remarkable alcohol usage. NAFLD comprises a broad spectrum, ranging
from benign hepatocellular steatosis to inflammatory nonalcoholic steatohepatitis (NASH), different
levels of fibrosis, and cirrhosis. Patients with NASH are more susceptible to more rapid progression to
cirrhosis and hepatocellular carcinoma. There is no single factor that drives proceeding from simple
steatosis to NASH. However, a combination of multi parameters such as genetic background, gut microflora, intake of high fat/ fructose dietary contents or methionine/choline-deficient diet, and consequently accumulated hepatocellular lipids mainly including triglycerides and also other bio-analytes,
such as free fatty acids, cholesterol, and phospholipids display a crucial role in disease promotion.
NAFLD is related to overweight and insulin resistance (IR) and is regarded as the hepatic presentation
of the metabolic syndrome, an amalgamation of medical statuses such as hyperlipidemia, hypertension, type 2 diabetes, and visceral obesity. Despite the increasing prevalence of this disease, which
imposes a remarkable clinical burden, most affected patients remain undiagnosed in a timely manner,
largely related to the asymptomatic entity of NAFLD patients and the unavailability of accurate and
efficient noninvasive diagnostic tests. However, liver biopsy is considered a gold standard for NAFLD
diagnosis, but due to being expensive and invasiveness is inappropriate for periodic disease screening.
Some noninvasive monitoring approaches have been established recently for NAFLD assessment. In
addition to the problem of correct disease course prediction, no effective therapeutic modalities are
approved for disease treatment. Imaging techniques can commonly validate the screening and discrimination of NAFLD; nevertheless, staging the disease needs a liver biopsy. The present therapeutic approaches depend on weight loss, sports activities, and dietary modifications, although different insulin-sensitizing drugs, antioxidants, and therapeutic agents seem hopeful. This review aims to focus on
the current knowledge concerning epidemiology, pathogenesis, and different biochemical experiments
and imaging modalities applied to diagnose the different grades of NAFLD and its management, as
well as new data about pharmacological therapies for this disorder.
Collapse
Affiliation(s)
- Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Sajad Jalili
- Department of Orthopedics, School of
Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of
Medical Sciences, Larestan, Iran
| | - Fouzieyeh Faraji
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Ebrahim Khorramdin
- Department of Orthopedics, School of
Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
26
|
Liu M, Gao X, Tian Y, Li H, Yin Z, Han L, Zhang L. Serum Metrnl is Decreased in Metabolic Dysfunction-Associated Fatty Liver Disease: A Case-Control Study. Diabetes Metab Syndr Obes 2024; 17:533-543. [PMID: 38318446 PMCID: PMC10840552 DOI: 10.2147/dmso.s447127] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Context Metrnl is a novel adipokine mainly produced by white adipose tissue, which plays important roles in insulin sensitization, and energy homeostasis. However, information about the function of Metrnl in Metabolic dysfunction-associated fatty liver disease (MAFLD) remains unclear. Methods This is a control study, which enrolled 176 adults with MAFLD and 176 normal controls. They were matched in body mass index (BMI), age, and sex. Serum Metrnl was determined by ELISA. Other biochemical data were also collected. Results Compared to the controls, circulating Metrnl was prominently decreased in the MAFLD adults (P<0.001). Next, binary logistic regression model indicated that sex, waist circumference (WC), triglyceride, γ-gamma glutamyl transferase(γ-GGT), and Metrnl was independently associated with MAFLD. Further, as Metrnl levels elevated across its tertiles, the rate of MAFLD decreased (67.52, 66.95, and 15.38%; P value for trend<0.001). Data from multivariate logistic regression models evidenced that compared with the lowest tertile of Metrnl, the odds ratio of MAFLD was 0.023(95% CI 0.006-0.086, P<0.001) for the highest tertile after adjusting for potential confounders. Besides, area under ROC curve of Metrnl for diagnosis MAFLD was 0.755(95% CI 0.705-0.805). Metrnl was positively correlated with diastolic blood pressure, WC, BMI, systolic blood pressure, γ-GGT, and Creatinine in MAFLD. Finally, we found systolic blood pressure and Creatinine were independently related to serum Metrnl in MAFLD. Conclusion Serum Metrnl is reduced in adult with MAFLD. The results suggest that Metrnl may be a protective factor associated with the pathogenesis of MAFLD.
Collapse
Affiliation(s)
- Mei Liu
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Xiangqian Gao
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Yang Tian
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Huiwei Li
- Department of Intensive Care Unit, the Fifth People’s Hospital of Jinan, Jinan, Shandong, People’s Republic of China
| | - Ziqi Yin
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Lei Han
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Lei Zhang
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| |
Collapse
|
27
|
Pezzino S, Luca T, Castorina M, Puleo S, Latteri S, Castorina S. Role of Perturbated Hemostasis in MASLD and Its Correlation with Adipokines. Life (Basel) 2024; 14:93. [PMID: 38255708 PMCID: PMC10820028 DOI: 10.3390/life14010093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise, making it one of the most prevalent chronic liver disorders. MASLD encompasses a range of liver pathologies, from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH) with inflammation, hepatocyte damage, and fibrosis. Interestingly, the liver exhibits close intercommunication with fatty tissue. In fact, adipose tissue could contribute to the etiology and advancement of MASLD, acting as an endocrine organ that releases several hormones and cytokines, with the adipokines assuming a pivotal role. The levels of adipokines in the blood are altered in people with MASLD, and recent research has shed light on the crucial role played by adipokines in regulating energy expenditure, inflammation, and fibrosis in MASLD. However, MASLD disease is a multifaceted condition that affects various aspects of health beyond liver function, including its impact on hemostasis. The alterations in coagulation mechanisms and endothelial and platelet functions may play a role in the increased vulnerability and severity of MASLD. Therefore, more attention is being given to imbalanced adipokines as causative agents in causing disturbances in hemostasis in MASLD. Metabolic inflammation and hepatic injury are fundamental components of MASLD, and the interrelation between these biological components and the hemostasis pathway is delineated by reciprocal influences, as well as the induction of alterations. Adipokines have the potential to serve as the shared elements within this complex interrelationship. The objective of this review is to thoroughly examine the existing scientific knowledge on the impairment of hemostasis in MASLD and its connection with adipokines, with the aim of enhancing our comprehension of the disease.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
| | - Tonia Luca
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | | | - Stefano Puleo
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
| | - Saverio Latteri
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Sergio Castorina
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
28
|
Mohamed AA, Al Dweik R, Abdelghafour RA, Ramadan A, Abbas AM, Samir HH, Muharram NM, Ahmed Elshiha RI, El-Salawy N, Ghaith D, Darwish MK, Abd El Salam SM, Sultan EA, Soliman AS, Ezz AL Arab M, Elamir AY, Mohamed AA, Hassanin ASA, Abouaggour AAM, Hafez W, Omran MM. Anthropometry, laboratory, and PNPLA3 polymorphisms in a novel model for early identification and evaluation of nonalcoholic fatty liver disease. INFORMATICS IN MEDICINE UNLOCKED 2024; 48:101513. [DOI: 10.1016/j.imu.2024.101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
29
|
Colaci C, Gambardella ML, Maria Scarlata GG, Boccuto L, Colica C, Luzza F, Scarpellini E, Mendez-Sanchez N, Abenavoli L. Dysmetabolic comorbidities and non-alcoholic fatty liver disease: a stairway to metabolic dysfunction-associated steatotic liver disease. HEPATOMA RESEARCH 2024; 10:16. [DOI: 10.20517/2394-5079.2023.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. This term does not describe the pathogenetic mechanisms and complications associated with NAFLD. The new definition, Metabolic Dysfunction-associated Steatotic Liver disease (MASLD), emphasizes the relationship between NAFLD and cardiometabolic comorbidities. Cardiovascular disease features, such as arterial hypertension and atherosclerosis, are frequently associated with patients with MASLD. Furthermore, these patients have a high risk of developing neoplastic diseases, primarily hepatocellular carcinoma, but also extrahepatic tumors, such as esophageal, gastric, and pancreatic cancers. Moreover, several studies showed the correlation between MASLD and endocrine disease. The imbalance of the gut microbiota, systemic inflammation, obesity, and insulin resistance play a key role in the development of these complications. This narrative review aims to clarify the evolution from NAFLD to the new nomenclature MASLD and evaluate its complications.
Collapse
|
30
|
Chiș A, Noubissi PA, Pop OL, Mureșan CI, Fokam Tagne MA, Kamgang R, Fodor A, Sitar-Tăut AV, Cozma A, Orășan OH, Hegheș SC, Vulturar R, Suharoschi R. Bioactive Compounds in Moringa oleifera: Mechanisms of Action, Focus on Their Anti-Inflammatory Properties. PLANTS (BASEL, SWITZERLAND) 2023; 13:20. [PMID: 38202328 PMCID: PMC10780634 DOI: 10.3390/plants13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Moringa oleifera (M. oleifera) is a tropical tree native to Pakistan, India, Bangladesh, and Afghanistan; it is cultivated for its nutritious leaves, pods, and seeds. This scientific study was conducted to outline the anti-inflammatory properties and mechanisms of action of bioactive compounds from M. oleifera. The existing research has found that the plant is used in traditional medicine due to its bioactive compounds, including phytochemicals: flavonoids and polyphenols. The compounds are thought to exert their anti-inflammatory effects due to: (1) inhibition of pro-inflammatory enzymes: quercetin and kaempferol inhibit the pro-inflammatory enzymes (cyclooxygenase and lipoxygenase); (2) regulation of cytokine production: isothiocyanates modulate signaling pathways involved in inflammation, such as the nuclear factor-kappa B (NF-kappa B) pathway; isothiocyanates inhibit the production of pro-inflammatory cytokines such as TNF-α (tumor necrosis factor α) and IL-1β (interleukin-1β); and (3) antioxidant activity: M. oleifera contains flavonoids, polyphenols, known to reduce oxidative stress and inflammation. The review includes M. oleifera's effects on cardiovascular protection, anti-hypertensive activities, type 2 diabetes, inflammatory bowel disease, and non-alcoholic fatty liver disease (NAFLD). This research could prove valuable for exploring the pharmacological potential of M. oleifera and contributing to the prospects of developing effective medicines for the benefit of human health.
Collapse
Affiliation(s)
- Adina Chiș
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur St, 400349 Cluj-Napoca, Romania; (A.C.); (R.V.)
| | - Paul Aimé Noubissi
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (P.A.N.); (R.K.)
| | - Oana-Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| | - Carmen Ioana Mureșan
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| | - Michel Archange Fokam Tagne
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, Ngaoundéré P.O. Box 454, Cameroon;
| | - René Kamgang
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (P.A.N.); (R.K.)
| | - Adriana Fodor
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Iuliu Hațieganu” University of Medicine and Pharmacy, 2-4 Clinicilor St., 400012 Cluj-Napoca, Romania;
| | - Adela-Viviana Sitar-Tăut
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Angela Cozma
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Olga Hilda Orășan
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Simona Codruța Hegheș
- Department of Drug Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur St, 400349 Cluj-Napoca, Romania; (A.C.); (R.V.)
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| |
Collapse
|
31
|
Gabbia D, De Martin S. Targeting the Adipose Tissue-Liver-Gut Microbiota Crosstalk to Cure MASLD. BIOLOGY 2023; 12:1471. [PMID: 38132297 PMCID: PMC10741127 DOI: 10.3390/biology12121471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
The gut microbiota is a complex system, playing a peculiar role in regulating innate and systemic immunity. Increasing evidence links dysfunctional gut microbiota to metabolic dysfunction-associated steatotic liver disease (MASLD) due to the activation of multiple pathways in the gut and in the liver, including those mediated by Toll-like receptors (TLRs), that sustain hepatic inflammation. Thus, many efforts have been made to unravel the role of microbiota-associated dysfunction in MASLD, with the final aim of finding novel strategies to improve liver steatosis and function. Moreover, recent evidence underlines the role of adipose tissue in sustaining hepatic inflammation during MASLD development. In this review, we focus on the recently discovered strategies proposed to improve the alteration of gut microbiota observed in MASLD patients, with a particular insight into those known to modulate gut microbiota-associated dysfunction and to affect the complex crosstalk between the gut, the adipose tissue, and the liver.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 351131 Padova, Italy;
| | | |
Collapse
|
32
|
Zanin-Zhorov A, Chen W, Moretti J, Nyuydzefe MS, Zhorov I, Munshi R, Ghosh M, Serdjebi C, MacDonald K, Blazar BR, Palmer M, Waksal SD. Selectivity matters: selective ROCK2 inhibitor ameliorates established liver fibrosis via targeting inflammation, fibrosis, and metabolism. Commun Biol 2023; 6:1176. [PMID: 37980369 PMCID: PMC10657369 DOI: 10.1038/s42003-023-05552-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
The pathogenesis of hepatic fibrosis is driven by dysregulated metabolism precipitated by chronic inflammation. Rho-associated coiled-coil-containing protein kinases (ROCKs) have been implicated in these processes, however the ability of selective ROCK2 inhibition to target simultaneously profibrotic, pro-inflammatory and metabolic pathways remains undocumented. Here we show that therapeutic administration of GV101, a selective ROCK2 inhibitor with more than 1000-fold selectivity over ROCK1, attenuates established liver fibrosis induced by thioacetamide (TAA) in combination with high-fat diet in mice. GV101 treatment significantly reduces collagen levels in liver, associated with downregulation of pCofilin, pSTAT3, pAkt, while pSTAT5 and pAMPK levels are increased in tissues of treated mice. In vitro, GV101 inhibits profibrogenic markers expression in fibroblasts, adipogenesis in primary adipocytes and TLR-induced cytokine secretion in innate immune cells via targeting of Akt-mTOR-S6K signaling axis, further uncovering the ROCK2-specific complex mechanism of action and therapeutic potential of highly selective ROCK2 inhibitors in liver fibrosis.
Collapse
Affiliation(s)
| | - Wei Chen
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | - Julien Moretti
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | | | - Iris Zhorov
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | | | | | | | - Kelli MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Bruce R Blazar
- Division of Blood & Marrow Transplant & Cellular Therapies, University of MN, Masonic Cancer Center and Department of Pediatrics, Minneapolis, MN, 55455, USA
| | | | | |
Collapse
|
33
|
Vesković M, Šutulović N, Hrnčić D, Stanojlović O, Macut D, Mladenović D. The Interconnection between Hepatic Insulin Resistance and Metabolic Dysfunction-Associated Steatotic Liver Disease-The Transition from an Adipocentric to Liver-Centric Approach. Curr Issues Mol Biol 2023; 45:9084-9102. [PMID: 37998747 PMCID: PMC10670061 DOI: 10.3390/cimb45110570] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The central mechanism involved in the pathogenesis of MAFLD is insulin resistance with hyperinsulinemia, which stimulates triglyceride synthesis and accumulation in the liver. On the other side, triglyceride and free fatty acid accumulation in hepatocytes promotes insulin resistance via oxidative stress, endoplasmic reticulum stress, lipotoxicity, and the increased secretion of hepatokines. Cytokines and adipokines cause insulin resistance, thus promoting lipolysis in adipose tissue and ectopic fat deposition in the muscles and liver. Free fatty acids along with cytokines and adipokines contribute to insulin resistance in the liver via the activation of numerous signaling pathways. The secretion of hepatokines, hormone-like proteins, primarily by hepatocytes is disturbed and impairs signaling pathways, causing metabolic dysregulation in the liver. ER stress and unfolded protein response play significant roles in insulin resistance aggravation through the activation of apoptosis, inflammatory response, and insulin signaling impairment mediated via IRE1/PERK/ATF6 signaling pathways and the upregulation of SREBP 1c. Circadian rhythm derangement and biological clock desynchronization are related to metabolic disorders, insulin resistance, and NAFLD, suggesting clock genes as a potential target for new therapeutic strategies. This review aims to summarize the mechanisms of hepatic insulin resistance involved in NAFLD development and progression.
Collapse
Affiliation(s)
- Milena Vesković
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nikola Šutulović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Dragan Hrnčić
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Olivera Stanojlović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dušan Mladenović
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
34
|
Ding Z, Wei Y, Peng J, Wang S, Chen G, Sun J. The Potential Role of C-Reactive Protein in Metabolic-Dysfunction-Associated Fatty Liver Disease and Aging. Biomedicines 2023; 11:2711. [PMID: 37893085 PMCID: PMC10603830 DOI: 10.3390/biomedicines11102711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently redefined as metabolic-dysfunction-associated fatty liver disease (MASLD), is liver-metabolism-associated steatohepatitis caused by nonalcoholic factors. NAFLD/MASLD is currently the most prevalent liver disease in the world, affecting one-fourth of the global population, and its prevalence increases with age. Current treatments are limited; one important reason hindering drug development is the insufficient understanding of the onset and pathogenesis of NAFLD/MASLD. C-reactive protein (CRP), a marker of inflammation, has been linked to NAFLD and aging in recent studies. As a conserved acute-phase protein, CRP is widely characterized for its host defense functions, but the link between CRP and NAFLD/MASLD remains unclear. Herein, we discuss the currently available evidence for the involvement of CRP in MASLD to identify areas where further research is needed. We hope this review can provide new insights into the development of aging-associated NAFLD biomarkers and suggest that modulation of CRP signaling is a potential therapeutic target.
Collapse
Affiliation(s)
- Zheng Ding
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yuqiu Wei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Jing Peng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Siyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Guixi Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Jiazeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| |
Collapse
|
35
|
López-Méndez I, Maldonado-Rojas ADC, Uribe M, Juárez-Hernández E. Hunger & satiety signals: another key mechanism involved in the NAFLD pathway. Front Endocrinol (Lausanne) 2023; 14:1213372. [PMID: 37753211 PMCID: PMC10518611 DOI: 10.3389/fendo.2023.1213372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent metabolic disease, although prevalence could change according to region, nowadays is considered a public health problem whose real impact on the health system is unknown. NAFLD has a multifactorial and complex pathophysiology, due to this, developing a unique and effective pharmacological treatment has not been successful in reverting or avoiding the progression of this liver disease. Even though NAFLD pathophysiology is known, all actual treatments are focused on modifying or regulating the metabolic pathways, some of which interplay with obesity. It has been known that impairments in hunger and satiety signals are associated with obesity, however, abnormalities in these signals in patients with NAFLD and obesity are not fully elucidated. To describe these mechanisms opens an additional option as a therapeutic target sharing metabolic pathways with NAFLD, therefore, this review aims to describe the hormones and peptides implicated in both hunger-satiety in NAFLD. It has been established that NAFLD pharmacological treatment cannot be focused on a single purpose; hence, identifying interplays that lead to adding or modifying current treatment options could also have an impact on another related outcome such as hunger or satiety signals.
Collapse
Affiliation(s)
- Iván López-Méndez
- Hepatology and Transplants Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - Misael Uribe
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
36
|
Jia X, Xu F, Lu S, Jie H, Guan W, Zhou Y. An unusual signal transducer GIV/Girdin engages in the roles of adipocyte-derived hormone leptin in liver fibrosis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166797. [PMID: 37478565 DOI: 10.1016/j.bbadis.2023.166797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/23/2023]
Abstract
Obese patients usually have hyperleptinemia and are prone to develop liver fibrosis. Leptin is intimately linked to liver fibrogenesis, a multi-receptor-driven disease. Gα-Interacting Vesicle-associated protein (GIV) functions as a multimodular signal transducer and a guanine nucleotide exchange factor for Gi controling key signalings downstream of diverse receptors. This study aimed to examine the roles of GIV in leptin-caused liver fibrosis and employed the culture-activated hepatic stellate cells (HSCs) and leptin-deficient mice, respectively. Results indicated that leptin upregulated GIV expression in HSCs. GIV was involved in leptin-induced HSC activation and liver fibrosis. GIV mediated leptin regulation of TIMP1, MMP9, PDGFβ receptor and TGFβ receptor and was required for leptin stimulating the pathways of Erk1/2, Akt1, and Smad3. GIV was also a mediator for leptin-regulation of Cyclin D1 and Caspase-3 activity but GIV reduced Caspase-3 level independently of leptin in vivo. Erk1/2 signaling, Egr1 and c-Jun were associated with the effect of leptin on GIV expression in HSCs. Leptin-induced Erk1/2 signaling increased Egr1 and p-c-Jun levels and promoted their binding to GIV promoter at the sites between -190 bp and -180 bp and between -382 bp and - 376 bp, respectively. Egr1 knockdown lessened leptin-upregulation of GIV in vitro and in vivo. In human cirrhotic livers, the increase in GIV protein level parallelled with the elevated p-Erk1/2 and Egr1 levels in HSCs. In summary, the unusual signal transducer GIV was identified as an important mediator in leptin-induced liver fibrosis. GIV may have significant implications in liver fibrosis progression of obese patients with hyperleptinaemia.
Collapse
Affiliation(s)
- Xin Jia
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China
| | - Feifan Xu
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), 500 Yonghe Road, Nantong 226011, Jiangsu, China
| | - Sidan Lu
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China
| | - Huang Jie
- Department of Pharmacology, School of Pharmacy, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China.
| | - Yajun Zhou
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China.
| |
Collapse
|
37
|
Guo Z, Du H, Guo Y, Jin Q, Liu R, Yun Z, Zhang J, Li X, Ye Y. Association between leptin and NAFLD: a two-sample Mendelian randomization study. Eur J Med Res 2023; 28:215. [PMID: 37400922 DOI: 10.1186/s40001-023-01147-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/24/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The etiology of nonalcoholic fatty liver disease (NAFLD) involves a complex interaction of genetic and environmental factors. Previous observational studies have revealed that higher leptin levels are related to a lower risk of developing NAFLD, but the causative association remains unknown. We intended to study the causal effect between leptin and NAFLD using the Mendelian randomization (MR) study. METHODS We performed a two-sample Mendelian randomization (TSMR) analysis using summary GWAS data from leptin (up to 50,321 individuals) and NAFLD (8,434 cases and 770,180 controls) in a European population. Instrumental variables (IVs) that satisfied the three core assumptions of Mendelian randomization were selected. The TSMR analysis was conducted using the inverse variance weighted (IVW) method, MR-Egger regression method, and weighted median (WM) method. To ensure the accuracy and stability of the study results, heterogeneity tests, multiple validity tests, and sensitivity analyses were conducted. RESULTS The findings of the TSMR correlation analysis between NAFLD and leptin were as follows: IVW method (odds ratio (OR) 0.6729; 95% confidence interval (95% CI) 0.4907-0.9235; P = 0.0142), WM method (OR 0.6549; 95% CI 0.4373-0.9806; P = 0.0399), and MR-Egger regression method (P = 0.6920). Additionally, the findings of the TSMR correlation analysis between NAFLD and circulating leptin levels adjusted for body mass index (BMI) were as follows: IVW method (OR 0.5876; 95% CI 0.3781-0.9134; P = 0.0181), WM method (OR 0.6074; 95% CI 0.4231-0.8721; P = 0.0069), and MR-Egger regression method (P = 0.8870). It has also been shown that higher levels of leptin are causally linked to a lower risk of developing NAFLD, suggesting that leptin may serve as a protective factor for NAFLD. CONCLUSIONS Using TSMR analysis and the GWAS database, we investigated the genetic relationship between elevated leptin levels and lowered risk of NAFLD in this study. However, further research is required to understand the underlying mechanisms.
Collapse
Affiliation(s)
- Ziwei Guo
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Hongbo Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Guo
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Jin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Ruijia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Zhangjun Yun
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Jiaxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China.
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China.
| | - Yong'an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
38
|
Lathigara D, Kaushal D, Wilson RB. Molecular Mechanisms of Western Diet-Induced Obesity and Obesity-Related Carcinogenesis-A Narrative Review. Metabolites 2023; 13:metabo13050675. [PMID: 37233716 DOI: 10.3390/metabo13050675] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
The present study aims to provide a narrative review of the molecular mechanisms of Western diet-induced obesity and obesity-related carcinogenesis. A literature search of the Cochrane Library, Embase and Pubmed databases, Google Scholar and the grey literature was conducted. Most of the molecular mechanisms that induce obesity are also involved in the twelve Hallmarks of Cancer, with the fundamental process being the consumption of a highly processed, energy-dense diet and the deposition of fat in white adipose tissue and the liver. The generation of crown-like structures, with macrophages surrounding senescent or necrotic adipocytes or hepatocytes, leads to a perpetual state of chronic inflammation, oxidative stress, hyperinsulinaemia, aromatase activity, activation of oncogenic pathways and loss of normal homeostasis. Metabolic reprogramming, epithelial mesenchymal transition, HIF-1α signalling, angiogenesis and loss of normal host immune-surveillance are particularly important. Obesity-associated carcinogenesis is closely related to metabolic syndrome, hypoxia, visceral adipose tissue dysfunction, oestrogen synthesis and detrimental cytokine, adipokine and exosomal miRNA release. This is particularly important in the pathogenesis of oestrogen-sensitive cancers, including breast, endometrial, ovarian and thyroid cancer, but also 'non-hormonal' obesity-associated cancers such as cardio-oesophageal, colorectal, renal, pancreatic, gallbladder and hepatocellular adenocarcinoma. Effective weight loss interventions may improve the future incidence of overall and obesity-associated cancer.
Collapse
Affiliation(s)
- Dhruvi Lathigara
- Department General Surgery, UWS, Campbelltown Hospital, Campbelltown, NSW 2560, Australia
| | - Devesh Kaushal
- Department General Surgery, UWS, Campbelltown Hospital, Campbelltown, NSW 2560, Australia
| | - Robert Beaumont Wilson
- Department Upper Gastrointestinal Surgery, UNSW, Liverpool Hospital, Liverpool, NSW 2170, Australia
| |
Collapse
|
39
|
Torosian K, Lal E, Kavanaugh A, Loomba R, Ajmera V, Guma M. Psoriatic disease and non-alcoholic fatty liver disease shared pathogenesis review. Semin Arthritis Rheum 2023; 59:152165. [PMID: 36716599 PMCID: PMC9992353 DOI: 10.1016/j.semarthrit.2023.152165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/03/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023]
Abstract
Psoriatic disease (PD) and non-alcoholic fatty liver disease (NAFLD) potentially share disease pathways given the numerous inflammatory pathways involved in both diseases and a higher prevalence of NAFLD in PD patients. Metabolic syndrome and obesity are a key link between the two diseases, but even when controlling for this, associations between both diseases are still seen. Therapeutics that impact metabolic or inflammatory pathways may be impactful in both PD and NAFLD. In this review, we describe common inflammatory pathways contributing to both PD and NAFLD and critically review the potential impact of treatments for and on both diseases.
Collapse
Affiliation(s)
- Kelly Torosian
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Esha Lal
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Arthur Kavanaugh
- Department of Rheumatology, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; NAFLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, USA; Division of Epidemiology, Department of Family and Preventative Medicine, University of California at San Diego, La Jolla, USA
| | - Veeral Ajmera
- Division of Gastroenterology and Hepatology, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; NAFLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, USA.
| | - Monica Guma
- Department of Rheumatology, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain; San Diego VA Healthcare Service, San Diego, CA, 92161, USA.
| |
Collapse
|
40
|
Song C, Long X, He J, Huang Y. Recent evaluation about inflammatory mechanisms in nonalcoholic fatty liver disease. Front Pharmacol 2023; 14:1081334. [PMID: 37007030 PMCID: PMC10061077 DOI: 10.3389/fphar.2023.1081334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is common chronic metabolic liver disorder which is associated with fat accumulation in the liver. It causes a wide range of pathological effects such as insulin resistance, obesity, hypertension, diabetes, non-alcoholic steatohepatitis (NASH) and cirrhosis, cardiovascular diseases. The molecular mechanisms that cause the initiation and progression of NAFLD remain fully unclear. Inflammation is regarded as a significant mechanism which could result in cell death and tissue injury. Accumulation of leukocytes and hepatic inflammation are important contributors in NAFLD. Excessive inflammatory response can deteriorate the tissue injury in NAFLD. Thus, inhibition of inflammation improves NAFLD by reducing intrahepatic fat content, increasing β-oxidation of fatty acids, inducing hepato-protective autophagy, overexpressing peroxisome proliferator-activated receptor- γ (PPAR-γ), as well as attenuating hepatocyte apoptosis and increasing insulin sensitivity. Therefore, understanding the molecules and signaling pathways suggests us valuable information about NAFLD progression. This review aimed to evaluate the inflammation in NAFLD and the molecular mechanism on NAFLD.
Collapse
Affiliation(s)
- Chong Song
- Medicine School, Changsha Social Work College, Changsha, Hunan, China
| | - Xian Long
- Medicine School, Changsha Social Work College, Changsha, Hunan, China
| | - Jianbin He
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Huaihua, Affiliated to University of South China, Huaihua, Hunan, China
- *Correspondence: Yongpan Huang, ; Jianbin He,
| | - Yongpan Huang
- Medicine School, Changsha Social Work College, Changsha, Hunan, China
- *Correspondence: Yongpan Huang, ; Jianbin He,
| |
Collapse
|
41
|
Monirujjaman M, Renani LB, Isesele P, Dunichand-Hoedl AR, Mazurak VC. Increased Expression of Hepatic Stearoyl-CoA Desaturase (SCD)-1 and Depletion of Eicosapentaenoic Acid (EPA) Content following Cytotoxic Cancer Therapy Are Reversed by Dietary Fish Oil. Int J Mol Sci 2023; 24:ijms24043547. [PMID: 36834959 PMCID: PMC9962117 DOI: 10.3390/ijms24043547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Cancer treatment evokes impediments to liver metabolism that culminate in fatty liver. This study determined hepatic fatty acid composition and expression of genes and mediators involved in lipid metabolism following chemotherapy treatment. Female rats bearing the Ward colon tumor were administered Irinotecan (CPT-11) +5-fluorouracil (5-FU) and maintained on a control diet or a diet containing eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) (2.3 g/100 g fish oil). Healthy animals provided with a control diet served as a reference group. Livers were collected one week after chemotherapy. Triacylglycerol (TG), phospholipid (PL), ten lipid metabolism genes, leptin, and IL-4 were measured. Chemotherapy increased TG content and reduced EPA content in the liver. Expression of SCD1 was upregulated by chemotherapy, while dietary fish oil downregulated its expression. Dietary fish oil down-regulated expression of the fatty acid synthesis gene FASN, while restoring the long chain fatty acid converting genes FADS2 and ELOVL2, and genes involved in mitochondrial β-oxidation (CPT1α) and lipid transport (MTTP1), to values similar to reference animals. Neither leptin nor IL-4 were affected by chemotherapy or diet. Depletion of EPA is associated with pathways evoking enhanced TG accumulation in the liver. Restoring EPA through diet may pose a dietary strategy to attenuate chemotherapy-associated impediments in liver fatty acid metabolism.
Collapse
|
42
|
Lee E, Korf H, Vidal-Puig A. An adipocentric perspective on the development and progression of non-alcoholic fatty liver disease. J Hepatol 2023; 78:1048-1062. [PMID: 36740049 DOI: 10.1016/j.jhep.2023.01.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Alongside the liver, white adipose tissue (WAT) is critical in regulating systemic energy homeostasis. Although each organ has its specialised functions, they must work coordinately to regulate whole-body metabolism. Adipose tissues and the liver are relatively resilient and can adapt to an energy surplus by facilitating triglyceride (TG) storage up to a certain threshold level without significant metabolic disturbances. However, lipid storage in WAT beyond a "personalised" adiposity threshold becomes dysfunctional, leading to metabolic inflexibility, progressive inflammation, and aberrant adipokine secretion. Moreover, the failure of adipose tissue to store and mobilise lipids results in systemic knock-on lipid overload, particularly in the liver. Factors contributing to hepatic lipid overload include lipids released from WAT, dietary fat intake, and enhanced de novo lipogenesis. In contrast, extrahepatic mechanisms counteracting toxic hepatic lipid overload entail coordinated compensation through oxidation of surplus fatty acids in brown adipose tissue and storage of fatty acids as TGs in WAT. Failure of these integrated homeostatic mechanisms leads to quantitative increases and qualitative alterations to the lipidome of the liver. Initially, hepatocytes preferentially accumulate TG species leading to a relatively "benign" non-alcoholic fatty liver. However, with time, inflammatory responses ensue, progressing into more severe conditions such as non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma, in some individuals (often without an early prognostic clue). Herein, we highlight the pathogenic importance of obesity-induced "adipose tissue failure", resulting in decreased adipose tissue functionality (i.e. fat storage capacity and metabolic flexibility), in the development and progression of NAFL/NASH.
Collapse
Affiliation(s)
- Eunyoung Lee
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK; Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Hannelie Korf
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium.
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK; Centro de Innvestigacion Principe Felipe, Valencia, Spain; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China.
| |
Collapse
|
43
|
Sánchez-Ortega H, Jiménez-Cortegana C, Novalbos-Ruiz JP, Gómez-Bastero A, Soto-Campos JG, Sánchez-Margalet V. Role of Leptin as a Link between Asthma and Obesity: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 24:ijms24010546. [PMID: 36613991 PMCID: PMC9820321 DOI: 10.3390/ijms24010546] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
Asthma and obesity are considered as highly prevalent diseases with a great impact on public health. Obesity has been demonstrated to be an aggravating factor in the pathogenesis of asthma. Adipose tissue secretes proinflammatory cytokines and mediators, including leptin, which may promote the development and severity of asthma in obese patients. This study is a systematic review and a meta-analysis based on the relationship between leptin and asthma during obesity. MEDLINE, Cochrane, EMBASE and CINAHL databases were used. Data heterogeneity was analyzed using Cochran’s Q and treatment effect with the DerSimonian and Laird method. Random effect analyses were carried out to test data sensitivity. Asymmetry was estimated using Begg’s and Egger’s tests. All studies showed significant differences in leptin levels. The effect of the measures (p < 0.001), data sensitivity (p < 0.05) and data asymmetry were statistically significant, as well as tBegg’s test (p = 0.010) and Egge’s test (p < 0.001). Despite the existing limiting factors, the results of this study support the relevant role of leptin in the pathophysiology of asthma in obese subjects. Nevertheless, further studies are needed to obtain better insight in the relationship between leptin and asthma in obesity.
Collapse
Affiliation(s)
- Helena Sánchez-Ortega
- Medicine Laboratory Service, Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Av. Dr. Fedriani 3, 41009 Seville, Spain
| | - Carlos Jiménez-Cortegana
- Medicine Laboratory Service, Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Av. Dr. Fedriani 3, 41009 Seville, Spain
| | - José P. Novalbos-Ruiz
- Department of Biomedicine, Biotechnology and Public Health, Medical School, University of Cadiz, 11003 Cádiz, Spain
| | - Ana Gómez-Bastero
- Pneumology Service, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - José G. Soto-Campos
- Pneumology Service, Jerez University Hospital, University of Cadiz, 11003 Cádiz, Spain
| | - Víctor Sánchez-Margalet
- Medicine Laboratory Service, Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Av. Dr. Fedriani 3, 41009 Seville, Spain
- Correspondence:
| |
Collapse
|
44
|
Jiménez-Cortegana C, Hontecillas-Prieto L, García-Domínguez DJ, Zapata F, Palazón-Carrión N, Sánchez-León ML, Tami M, Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, de la Cruz-Merino L, Sánchez-Margalet V. Obesity and Risk for Lymphoma: Possible Role of Leptin. Int J Mol Sci 2022; 23:15530. [PMID: 36555171 PMCID: PMC9779026 DOI: 10.3390/ijms232415530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity, which is considered a pandemic due to its high prevalence, is a risk factor for many types of cancers, including lymphoma, through a variety of mechanisms by promoting an inflammatory state. Specifically, over the last few decades, obesity has been suggested not only to increase the risk of lymphoma but also to be associated with poor clinical outcomes and worse responses to different treatments for those diseases. Within the extensive range of proinflammatory mediators that adipose tissue releases, leptin has been demonstrated to be a key adipokine due to its pleotropic effects in many physiological systems and diseases. In this sense, different studies have analyzed leptin levels and leptin/leptin receptor expressions as a probable bridge between obesity and lymphomas. Since both obesity and lymphomas are prevalent pathophysiological conditions worldwide and their incidences have increased over the last few years, here we review the possible role of leptin as a promising proinflammatory mediator promoting lymphomas.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Daniel J. García-Domínguez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Fernando Zapata
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Natalia Palazón-Carrión
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - María L. Sánchez-León
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Malika Tami
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
45
|
Werlinger P, Nguyen HT, Gu M, Cho JH, Cheng J, Suh JW. Lactobacillus reuteri MJM60668 Prevent Progression of Non-Alcoholic Fatty Liver Disease through Anti-Adipogenesis and Anti-inflammatory Pathway. Microorganisms 2022; 10:2203. [PMID: 36363795 PMCID: PMC9696116 DOI: 10.3390/microorganisms10112203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NALFD) is a disease characterized by liver steatosis. The liver is a key organ involved in the metabolism of fat, protein, and carbohydrate, enzyme activation, and storage of glycogen, which is closely related to the intestine by the bidirectional relation of the gut-liver axis. Abnormal intestinal microbiota composition can affect energy metabolism and lipogenesis. In this experiment, we investigated the beneficial effect of Lactobacillus reuteri MJM60668 on lipid metabolism and lipogenesis. C57BL/6 mice were fed a high-fat diet (HFD) and orally administrated with MJM60668. Our results showed that mice treated with MJM60668 significantly decreased liver weight and liver/body weight ratio, without affecting food intake. Serum levels of ALT, AST, TG, TCHO, and IL-1β in mice fed with MJM60668 were decreased compared to the HFD group. Investigation of gene and protein expression on the lipogenesis and lipid metabolism showed that the expression of ACC, FAS, and SREBP was decreased, and PPARα and CPT was increased. Furthermore, an increase of adiponectin in serum was shown in our experiment. Moreover, serum IL-1β level was also significantly decreased in the treated mice. These results suggested that MJM60668 can strongly inhibit lipogenesis, enhance fatty acid oxidation, and suppress inflammation. Additionally, supplementation of MJM60668 increased the proportion of Akkermansiaceae and Lachnospiracea, confirming a potential improvement of gut microbiota, which is related to mucus barrier and decrease of triglycerides levels.
Collapse
Affiliation(s)
- Pia Werlinger
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Korea
| | - Huong Thi Nguyen
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Korea
| | - Mingkun Gu
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Korea
| | - Joo-Hyung Cho
- Myongji Bioefficacy Research Center, Myongji University, Yongin 17058, Korea
| | - Jinhua Cheng
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Korea
- Myongji Bioefficacy Research Center, Myongji University, Yongin 17058, Korea
| | - Joo-Won Suh
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Korea
- Myongji Bioefficacy Research Center, Myongji University, Yongin 17058, Korea
| |
Collapse
|
46
|
Theofilis P, Vordoni A, Kalaitzidis RG. Interplay between metabolic dysfunction-associated fatty liver disease and chronic kidney disease: Epidemiology, pathophysiologic mechanisms, and treatment considerations. World J Gastroenterol 2022; 28:5691-5706. [PMID: 36338895 PMCID: PMC9627426 DOI: 10.3748/wjg.v28.i39.5691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 02/06/2023] Open
Abstract
The recently proposed nomenclature change from non-alcoholic fatty liver disease to metabolic dysfunction-associated fatty liver disease (MAFLD) has resulted in the reappraisal of epidemiological trends and associations with other chronic diseases. In this context, MAFLD appears to be tightly linked to incident chronic kidney disease (CKD). This association may be attributed to multiple shared risk factors including type 2 diabetes mellitus, arterial hypertension, obesity, dyslipidemia, and insulin resistance. Moreover, similarities in their molecular pathophysiologic mechanisms can be detected, since inflammation, oxidative stress, fibrosis, and gut dysbiosis are highly prevalent in these pathologic states. At the same time, lines of evidence suggest a genetic predisposition to MAFLD due to gene polymorphisms, such as the PNPLA3 rs738409 G allele polymorphism, which may also propagate renal dysfunction. Concerning their management, available treatment considerations for obesity (bariatric surgery) and novel antidiabetic agents (glucagon-like peptide 1 receptor agonists, sodium-glucose co-transporter 2 inhibitors) appear beneficial in preclinical and clinical studies of MAFLD and CKD modeling. Moreover, alternative approaches such as melatonin supplementation, farnesoid X receptor agonists, and gut microbiota modulation may represent attractive options in the future. With a look to the future, additional adequately sized studies are required, focusing on preventing renal complications in patients with MAFLD and the appropriate management of individuals with concomitant MAFLD and CKD.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- Center for Nephrology “G. Papadakis,” General Hospital of Nikaia-Piraeus “Agios Panteleimon,” Nikaia 18454, Greece
| | - Aikaterini Vordoni
- Center for Nephrology “G. Papadakis,” General Hospital of Nikaia-Piraeus “Agios Panteleimon,” Nikaia 18454, Greece
| | - Rigas G Kalaitzidis
- Center for Nephrology “G. Papadakis,” General Hospital of Nikaia-Piraeus “Agios Panteleimon,” Nikaia 18454, Greece
| |
Collapse
|
47
|
Patel O, Muller CJF, Joubert E, Rosenkranz B, Louw J, Awortwe C. Aspalathin-rich green rooibos tea in combination with glyburide and atorvastatin enhances lipid metabolism in a db/db mouse model. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:963489. [PMID: 36992750 PMCID: PMC10012079 DOI: 10.3389/fcdhc.2022.963489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/24/2022] [Indexed: 11/06/2022]
Abstract
Rooibos (Aspalathus linearis), an indigenous South African plant and its major flavonoid, aspalathin, exhibited positive effects on glycemia and dyslipidemia in animal studies. Limited evidence exists on the effects of rooibos extract taken in combination with oral hypoglycemic and lipid-lowering medications. This study investigated the combined effects of a pharmaceutical grade aspalathin-rich green rooibos extract (GRT) with the sulfonylurea, glyburide, and atorvastatin in a type 2 diabetic (db/db) mouse model. Six-week-old male db/db mice and their nondiabetic lean db+ littermates were divided into 8 experimental groups (n=6/group). Db/db mice were treated orally with glyburide (5 mg/kg bodyweight), atorvastatin (80 mg/kg bodyweight) and GRT (100 mg/kg bodyweight) as mono- and combination therapies respectively, for 5 weeks. An intraperitoneal glucose tolerance test was conducted at 3 weeks of treatment. Serum was collected for lipid analyses and liver tissues for histological examination and gene expression. A significant increase in the fasting plasma glucose (FPG) of the db/db mice compared to their lean counterparts (from 7.98 ± 0.83 to 26.44 ± 1.84, p < 0.0001) was observed. Atorvastatin reduced cholesterol (from 4.00 ± 0.12 to 2.93 ± 0.13, p < 0.05) and triglyceride levels (from 2.77 ± 0.50 to 1.48 ± 0.23, p < 0.05). In db/db mice, the hypotriglyceridemic effect of atorvastatin was enhanced when combined with both GRT and glyburide (from 2.77 ± 0.50 to 1.73 ± 0.35, p = 0.0002). Glyburide reduced the severity and pattern of steatotic lipid droplet accumulation from a mediovesicular type across all lobular areas, whilst combining GRT with glyburide reduced the abundance and severity of lipid droplet accumulation in the centri- and mediolobular areas. The combination of GRT, glyburide and atorvastatin reduced the abundance and severity of lipid accumulation and the intensity score compared to the administered drugs alone. The addition of either GRT or glyburide in combination with atorvastatin had no effect on blood glucose or lipid profiles, but significantly reduced lipid droplet accumulation.
Collapse
Affiliation(s)
- Oelfah Patel
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (MRC), Tygerberg, South Africa
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Christo J. F. Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (MRC), Tygerberg, South Africa
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
- *Correspondence: Christo J. F. Muller,
| | - Elizabeth Joubert
- Department of Food Science, Stellenbosch University, Matieland, South Africa
- Post-Harvest and Agro-Processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Bernd Rosenkranz
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (MRC), Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Charles Awortwe
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (MRC), Tygerberg, South Africa
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| |
Collapse
|
48
|
The development of the Metabolic-associated Fatty Liver Disease during pharmacotherapy of mental disorders - a review. CURRENT PROBLEMS OF PSYCHIATRY 2022. [DOI: 10.2478/cpp-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction: Metabolic-associated Fatty Liver Disease (MAFLD) is a term for Non-alcoholic Fatty Liver Disease (NAFLD) that highlights its association with components of the Metabolic Syndrome (MetS). MAFLD is becoming a clinically significant problem due to its increasing role in the pathogenesis of cryptogenic cirrhosis of the liver.
Material and methods: The resulting work is a review of the most important information on the risk of MAFLD development in the context of the use of particular groups of psychotropic drugs. The study presents the epidemiology, with particular emphasis on the population of psychiatric patients, pathophysiology and scientific reports analyzing the effect of the psychotropic medications on MAFLD development.
Results: The drugs that can have the greatest impact on the development of MAFLD are atypical antipsychotics, especially olanzapine, and mood stabilizers (MS) - valproic acid (VPA). Their effect is indirect, mainly through dysregulation of organism’s carbohydrate and lipid metabolism.
Conclusions: The population of psychiatric patients is particularly vulnerable to the development of MAFLD. At the root of this disorder lies the specificity of mental disorders, improper dietary habits, low level of physical activity and tendency to addictions. Also, the negative impact of the psychotropic drugs on the systemic metabolism indirectly contributes to the development of MAFLD. In order to prevent fatty liver disease, it is necessary to monitor metabolic and liver parameters regularly, and patients should be screened by ultrasound examination of the liver. There are also important preventive actions from the medical professionals, including education of patients and sensitizing to healthy lifestyle.
Collapse
|
49
|
Adipokines in Non-Alcoholic Fatty Liver Disease: Are We on the Road toward New Biomarkers and Therapeutic Targets? BIOLOGY 2022; 11:biology11081237. [PMID: 36009862 PMCID: PMC9405285 DOI: 10.3390/biology11081237] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Non-alcoholic fatty liver disease (NAFLD) is an unmet medical need due to its increasingly high incidence, severe clinical consequences, and the absence of feasible diagnostic tools and effective drugs. This review summarizes the preclinical and clinical data on adipokines, cytokine-like hormones secreted by adipose tissue, and NAFLD. The aim is to establish the potential of adipokines as diagnostic and prognostic biomarkers, as well as their potential as therapeutic targets for NAFLD. The limitations of current research are also discussed, and future perspectives are outlined. Abstract Non-alcoholic fatty liver disease (NAFLD) has become the major cause of chronic hepatic illness and the leading indication for liver transplantation in the future decades. NAFLD is also commonly associated with other high-incident non-communicable diseases, such as cardiovascular complications, type 2 diabetes, and chronic kidney disease. Aggravating the socio-economic impact of this complex pathology, routinely feasible diagnostic methodologies and effective drugs for NAFLD management are unavailable. The pathophysiology of NAFLD, recently defined as metabolic associated fatty liver disease (MAFLD), is correlated with abnormal adipose tissue–liver axis communication because obesity-associated white adipose tissue (WAT) inflammation and metabolic dysfunction prompt hepatic insulin resistance (IR), lipid accumulation (steatosis), non-alcoholic steatohepatitis (NASH), and fibrosis. Accumulating evidence links adipokines, cytokine-like hormones secreted by adipose tissue that have immunometabolic activity, with NAFLD pathogenesis and progression; however, much uncertainty still exists. Here, the current knowledge on the roles of leptin, adiponectin, ghrelin, resistin, retinol-binding protein 4 (RBP4), visfatin, chemerin, and adipocyte fatty-acid-binding protein (AFABP) in NAFLD, taken from preclinical to clinical studies, is overviewed. The effect of therapeutic interventions on adipokines’ circulating levels are also covered. Finally, future directions to address the potential of adipokines as therapeutic targets and disease biomarkers for NAFLD are discussed.
Collapse
|
50
|
Vachher M, Bansal S, Kumar B, Yadav S, Arora T, Wali NM, Burman A. Contribution of organokines in the development of NAFLD/NASH associated hepatocellular carcinoma. J Cell Biochem 2022; 123:1553-1584. [PMID: 35818831 DOI: 10.1002/jcb.30252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022]
Abstract
Globally the incidence of hepatocellular carcinoma (HCC) is on an upsurge. Evidence is accumulating that liver disorders like nonalcoholic fatty liver disease (NAFLD) and its more progressive form nonalcoholic steatohepatitis (NASH) are associated with increased risk of developing HCC. NAFLD has a prevalence of about 25% and 50%-90% in obese population. With the growing burden of obesity epidemic worldwide, HCC presents a major healthcare burden. While cirrhosis is one of the major risk factors of HCC, available literature suggests that NAFLD/NASH associated HCC also develops in minimum or noncirrhotic livers. Therefore, there is an urgent need to understand the pathogenesis and risk factors associated with NAFLD and NASH related HCC that would help in early diagnosis and favorable prognosis of HCC secondary to NAFLD. Adipokines, hepatokines and myokines are factors secreted by adipocytes, hepatocytes and myocytes, respectively, playing essential roles in cellular homeostasis, energy balance and metabolism with autocrine, paracrine and endocrine effects. In this review, we endeavor to focus on the role of these organokines in the pathogenesis of NAFLD/NASH and its progression to HCC to augment the understanding of the factors stimulating hepatocytes to acquire a malignant phenotype. This shall aid in the development of novel therapeutic strategies and tools for early diagnosis of NAFLD/NASH and HCC.
Collapse
Affiliation(s)
- Meenakshi Vachher
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Savita Bansal
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Bhupender Kumar
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Sandeep Yadav
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Taruna Arora
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Nalini Moza Wali
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Archana Burman
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| |
Collapse
|