1
|
Borea R, Reduzzi C. The growing field of liquid biopsy and its Snowball effect on reshaping cancer management. THE JOURNAL OF LIQUID BIOPSY 2025; 8:100293. [PMID: 40255897 PMCID: PMC12008596 DOI: 10.1016/j.jlb.2025.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/22/2025]
Abstract
Liquid biopsy (LB) has emerged as a transformative tool in oncology, providing a minimally invasive approach for tumor detection, molecular characterization, and real-time treatment monitoring. By analyzing circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), extracellular vesicles (EVs), and microRNA (miRNA), LB enables comprehensive tumor profiling without the need for traditional tissue biopsies. Over the past decade, research in this field has expanded exponentially, leading to the integration of LB into clinical practice for specific cancer types, including lung and breast cancer. In 2024, the Journal of Liquid Biopsy (JLB) published innovative studies exploring the latest advancements in LB technologies, biomarkers, and their applications for cancer detection, minimal residual disease (MRD) monitoring, and therapy response assessment. This review synthesizes recent findings on the role of LB in cancer treatment and monitoring across different biomarkers, with a particular focus on newly published studies and their context within translational research. Additionally, it highlights emerging techniques such as fragmentomics, artificial intelligence, and multiomics, paving the way for more precise, personalized treatment decisions. Despite these advancements, challenges remain in standardizing methodologies, optimizing clinical validation, and integrating LB into routine oncological workflows. This mini-review highlights the evolving landscape of LB research and its potential to revolutionize cancer diagnosis, treatment monitoring, and therapeutic decision-making, ushering in a new era of precision oncology.
Collapse
Affiliation(s)
- Roberto Borea
- Department of Public Health, University Federico II of Naples, Naples, Italy
- Department of Internal Medicine and Medical Sciences (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Carolina Reduzzi
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY, 10021, USA
| |
Collapse
|
2
|
Nicoś M, Sroka-Bartnicka A, Kalinka E, Krawczyk P. Possibilities of Overcoming Resistance to Osimertinib in NSCLC Patients with Mutations in the EGFR Gene. Cancers (Basel) 2025; 17:563. [PMID: 40002158 PMCID: PMC11852969 DOI: 10.3390/cancers17040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The advancement of genetic research has changed the treatment management of non-small cell lung cancer (NSCLC) and opened the era of personalized medicine. Currently, three generations of EGFR tyrosine kinase inhibitors (TKIs) are used in the treatment of NSCLC patients with activating mutations in the EGFR gene, and ongoing clinical trials examine the safety and effectiveness of new third and fourth generations. Osimertinib, a third generation of TKIs that binds irreversibly to abnormal tyrosine kinase, may be applied in various indications in patients with NSCLC: (i) in the second and subsequent lines of therapy in patients with resistance to first-generation or second-generation EGFR TKIs, (ii) in the first line of treatment in monotherapy in NSCLC patients with frequent or rare EGFR mutations, (iii) in combination with chemotherapy in patients with locally advanced or metastatic NSCLC with frequent EGFR mutations, (iv) in consolidation therapy in patients with locally advanced NSCLC who had previously received chemoradiotherapy, (v) in adjuvant treatment of NSCLC patients with stage IB-IIIA undergoing radical surgical resection. Despite the high efficacy of osimertinib in NSCLC patients harboring EGFR mutations, resistance driven in EGFR-dependent or EGFR-independent mechanisms may occur. Since resistance to osimertinib is poorly understood, the following review presents the overview of resistance mechanisms to osimertinib, methodological approaches for the resistance diagnosis, and the up-to-date treatment possibilities for overcoming the resistance process.
Collapse
Affiliation(s)
- Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Anna Sroka-Bartnicka
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Ewa Kalinka
- Department of Oncology, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland;
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland;
| |
Collapse
|
3
|
Bergmann L, Afflerbach AK, Yuan T, Pantel K, Smit DJ. Lessons (to be) learned from liquid biopsies: assessment of circulating cells and cell-free DNA in cancer and pregnancy-acquired microchimerism. Semin Immunopathol 2025; 47:14. [PMID: 39893314 PMCID: PMC11787191 DOI: 10.1007/s00281-025-01042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Tumors constantly shed cancer cells that are considered the mediators of metastasis via the blood stream. Analysis of circulating cells and circulating cell-free DNA (cfDNA) in liquid biopsies, mostly taken from peripheral blood, have emerged as powerful biomarkers in oncology, as they enable the detection of genomic aberrations. Similarly, liquid biopsies taken from pregnant women serve as prenatal screening test for an abnormal number of chromosomes in the fetus, e.g., via the analysis of microchimeric fetal cells and cfDNA circulating in maternal blood. Liquid biopsies are minimally invasive and, consequently, associated with reduced risks for the patients. However, different challenges arise in oncology and pregnancy-acquired liquid biopsies with regard to the analyte concentration and biological (background) noise among other factors. In this review, we highlight the unique biological properties of circulating tumor cells (CTC), summarize the various techniques that have been developed for the enrichment, detection and analysis of CTCs as well as for analysis of genetic and epigenetic aberrations in cfDNA and highlight the range of possible clinical applications. Lastly, the potential, but also the challenges of liquid biopsies in oncology as well as their translational value for the analysis of pregnancy-acquired microchimerism are discussed.
Collapse
Affiliation(s)
- Lina Bergmann
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Ann-Kristin Afflerbach
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Tingjie Yuan
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| |
Collapse
|
4
|
Kocabey S, Cattin S, Gray I, Rüegg C. Ultrasensitive detection of cancer-associated nucleic acids and mutations by primer exchange reaction-based signal amplification and flow cytometry. Biosens Bioelectron 2025; 267:116839. [PMID: 39369516 DOI: 10.1016/j.bios.2024.116839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
The detection of cancer-associated nucleic acids and mutations through liquid biopsy has emerged as a highly promising non-invasive approach for early cancer detection and monitoring. In this study, we report the development of primer exchange reaction (PER) based signal amplification strategy that enables the rapid, sensitive and specific detection of nucleic acids bearing cancer specific single nucleotide mutations using flow cytometry. Using micrometer size beads as support for immobilizing oligonucleotides and programmable PER assembly for target oligonucleotide recognition and fluorescence signal amplification, we demonstrated the versatile detection of target nucleic acids including KRAS oligonucleotide, fragmented mRNAs, and miR-21. Moreover, our detection system can discriminate single base mutations frequently occurred in cancer-associated genes including KRAS, PIK3CA and P53 from cell extracts and circulating tumor DNAs (ctDNAs). The detection is highly sensitive, with a limit of detection down to 27 fM without pre-amplification. In view of a clinical application, we demonstrate the detection of single mutations after extraction and pre-amplification of ctDNAs from the plasma of breast cancer patients. Importantly, our detection strategy enabled the detection of single KRAS mutation even in the presence of 1000-fold excess of wild type (WT) DNA using multi-color flow cytometry detection approach. Overall, our strategy holds immense potential for clinical applications, offering significant improvements for early cancer detection and monitoring.
Collapse
Affiliation(s)
- Samet Kocabey
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin Du Musée 18, PER17, 1700, Fribourg, Switzerland; NCCR Bio-inspired Materials, University of Fribourg, 1700, Fribourg, Switzerland.
| | - Sarah Cattin
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin Du Musée 18, PER17, 1700, Fribourg, Switzerland; NCCR Bio-inspired Materials, University of Fribourg, 1700, Fribourg, Switzerland; Cell Analytics Facility, Faculty of Science and Medicine, University of Fribourg, Chemin Du Musée 18, PER17, 1700, Fribourg, Switzerland
| | - Isabelle Gray
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin Du Musée 18, PER17, 1700, Fribourg, Switzerland; NCCR Bio-inspired Materials, University of Fribourg, 1700, Fribourg, Switzerland
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin Du Musée 18, PER17, 1700, Fribourg, Switzerland; NCCR Bio-inspired Materials, University of Fribourg, 1700, Fribourg, Switzerland.
| |
Collapse
|
5
|
Kumar NM, Navaneeth N, Shettar A, Chelimeswamy A. Elements of liquid biopsies: isolation, analysis, and clinical application in cancer diagnosis to prognosis. Expert Rev Mol Diagn 2024:1-12. [PMID: 39695357 DOI: 10.1080/14737159.2024.2445111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION The liquid biopsy is a breakthrough in the field of medical diagnostics. It serves as a sentinel that can quietly detect even the subtlest aberrations that indicate the presence of disease. They make it possible to uncover relevant genetic factors of tumors with minimal to no risk to cancer patients. Liquid biopsies allow detailed diagnosis, dynamic treatment monitoring, and accurate prognosis. They are also invaluable in diagnosing other diseases such as infectious diseases and aberrant gene mutations. AREAS COVERED The present review undertakes an in-depth analysis of the existing status of liquid biopsy diagnostic tools, focusing on their principal components. Furthermore, the review highlights pertinent and recent research in this field to provide a comprehensive understanding of the current state of this technology and its prospects. EXPERT OPINION Despite new and upcoming research in liquid biopsies, multiple areas need to be further explored before the viable transition into the clinical arena. With the advancements in tools such as artificial intelligence and machine learning and the integration of these technologies with liquid biopsies, these challenges are being addressed and will eventually lead to the development of a highly evolved liquid biopsy diagnostic tools.
Collapse
Affiliation(s)
| | - Niyati Navaneeth
- Department of Biotechnology, M.S Ramaiah Institute of Technology, Bengaluru, India
| | - Abhijith Shettar
- Department of Biotechnology, M.S Ramaiah Institute of Technology, Bengaluru, India
| | - Anupama Chelimeswamy
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, India
| |
Collapse
|
6
|
Maulat C, Canivet C, Cabarrou B, Pradines A, Selves J, Casanova A, Doussine A, Hanoun N, Cuellar E, Boulard P, Carrère N, Buscail L, Bournet B, Muscari F, Cordelier P. Prognostic impact of circulating tumor DNA detection in portal and peripheral blood in resected pancreatic ductal adenocarcinoma patients. Sci Rep 2024; 14:27296. [PMID: 39516243 PMCID: PMC11549393 DOI: 10.1038/s41598-024-76903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
In PDAC patients, ctDNA detection's prognostic significance needs validation especially in resected patients. This study investigated ctDNA kinetics in portal and peripheral blood before and after resection, and whether tissue mobilization during surgery influences ctDNA detection. In this single-center prospective cohort, portal and peripheral blood were drawn during pancreaticoduodenectomy before and after tissue mobilization, during 12 postoperative months and were associated with overall survival (OS), recurrence-free survival (RFS) and CA19-9 (secondary endpoints). Tumor mutations were identified using next-generation-sequencing and ctDNA detected by digital droplet PCR. From 2018 to 2022, 34 patients were included. The 2-year RFS and OS were 47.6%(95%CI[29.5; 63.6]) and 65.7%(95%CI[46.5; 79.4]) respectively. Intraoperatively, ctDNA detection in portal or peripheral blood was associated with worse RFS (HR[95%CI]3.26[1.26; 8.45],p = 0.010) and OS (HR[95%CI]5.46[1.65;18.01],p = 0.002). Portal vein sampling did not improve ctDNA detection. CtDNA levels were increased by 2.5-fold (p = 0.031) in peripheral blood after tissue mobilization but not significantly linked to RFS or OS. Detecting ctDNA intraoperatively was correlated with poorer RFS (HR [95% CI] 3.26 [1.26;8.45], p = 0.010) and 0S (HR [95% CI] 5.46 [1.65;18.01], p = 0.002). Portal vein sampling did not improve ctDNA detection. Tissue mobilization increases ctDNA levels. Intraoperative detection of ctDNA is associated with a worse prognosis.
Collapse
Affiliation(s)
- Charlotte Maulat
- Digestive Surgery, Hepatobiliary and Pancreatic Surgery Department and Liver Transplantation Unit, Toulouse University Hospital, Toulouse, France.
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France.
- Service de Chirurgie Digestive et Transplantation , CHU Rangueil , 1, avenue Jean Poulhès, Toulouse, 31059, France.
| | - Cindy Canivet
- Gastroenterology and Pancreatology Department, Toulouse University Hospital, Toulouse, France
| | - Bastien Cabarrou
- Biostatistics and Health Data Science Unit, Institut Claudius-Regaud, IUCT-Oncopole, Toulouse, France
| | - Anne Pradines
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
- Prospective Biology Unit, Medicine Laboratory, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Janick Selves
- Pathology Department, IUCT-Oncopole, Toulouse University Hospital Center (CHU), Toulouse, France
| | - Anne Casanova
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
- Prospective Biology Unit, Medicine Laboratory, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Aurélia Doussine
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
- Prospective Biology Unit, Medicine Laboratory, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Naïma Hanoun
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
| | - Emmanuel Cuellar
- Digestive Surgery, Hepatobiliary and Pancreatic Surgery Department and Liver Transplantation Unit, Toulouse University Hospital, Toulouse, France
| | - Paul Boulard
- Digestive Surgery, Hepatobiliary and Pancreatic Surgery Department and Liver Transplantation Unit, Toulouse University Hospital, Toulouse, France
| | - Nicolas Carrère
- Digestive Surgery, Hepatobiliary and Pancreatic Surgery Department and Liver Transplantation Unit, Toulouse University Hospital, Toulouse, France
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
| | - Louis Buscail
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
- Gastroenterology and Pancreatology Department, Toulouse University Hospital, Toulouse, France
| | - Barbara Bournet
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
- Gastroenterology and Pancreatology Department, Toulouse University Hospital, Toulouse, France
| | - Fabrice Muscari
- Digestive Surgery, Hepatobiliary and Pancreatic Surgery Department and Liver Transplantation Unit, Toulouse University Hospital, Toulouse, France
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
| | - Pierre Cordelier
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France.
| |
Collapse
|
7
|
Palacín-Aliana I, García-Romero N, Carrión-Navarro J, Puig-Serra P, Torres-Ruiz R, Rodríguez-Perales S, Viñal D, González-Rumayor V, Ayuso-Sacido Á. ddPCR Overcomes the CRISPR-Cas13a-Based Technique for the Detection of the BRAF p.V600E Mutation in Liquid Biopsies. Int J Mol Sci 2024; 25:10902. [PMID: 39456686 PMCID: PMC11507125 DOI: 10.3390/ijms252010902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The isolation of circulating tumoral DNA (ctDNA) present in the bloodstream brings about the opportunity to detect genomic aberrations from the tumor of origin. However, the low amounts of ctDNA present in liquid biopsy samples makes the development of highly sensitive techniques necessary to detect targetable mutations for the diagnosis, prognosis, and monitoring of cancer patients. Here, we employ standard genomic DNA (gDNA) and eight liquid biopsy samples from different cancer patients to examine the newly described CRISPR-Cas13a-based technology in the detection of the BRAF p.V600E actionable point mutation and appraise its diagnostic capacity with two PCR-based techniques: quantitative Real-Time PCR (qPCR) and droplet digital PCR (ddPCR). Regardless of its lower specificity compared to the qPCR and ddPCR techniques, the CRISPR-Cas13a-guided complex was able to detect inputs as low as 10 pM. Even though the PCR-based techniques have similar target limits of detection (LoDs), only the ddPCR achieved a 0.1% variant allele frequency (VAF) detection with elevated reproducibility, thus standing out as the most powerful and suitable tool for clinical diagnosis purposes. Our results also demonstrate how the CRISPR-Cas13a can detect low amounts of the target of interest, but its base-pair specificity failed in the detection of actionable point mutations at a low VAF; therefore, the ddPCR is still the most powerful and suitable technique for these purposes.
Collapse
Affiliation(s)
- Irina Palacín-Aliana
- Atrys Health, 08025 Barcelona, Spain; (I.P.-A.); (V.G.-R.)
- Fundación de Investigación HM Hospitales, HM Hospitales, 28015 Madrid, Spain
- Faculty of Science, Universidad de Alcalá, 28801 Madrid, Spain
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | - Josefa Carrión-Navarro
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | - Pilar Puig-Serra
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (R.T.-R.); (S.R.-P.)
| | - Raul Torres-Ruiz
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (R.T.-R.); (S.R.-P.)
- Centro de Investigación Energéticas Medioambientales y Tecnológicas (CIEMAT), Advanced Therapies Unit, Hematopoietic Innovative Therapies Division, Instituto de Investigación Sanitaria Fundación Jimenez Diaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Sandra Rodríguez-Perales
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (R.T.-R.); (S.R.-P.)
| | - David Viñal
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | | | - Ángel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| |
Collapse
|
8
|
Ho HY, Chung KS(K, Kan CM, Wong SC(C. Liquid Biopsy in the Clinical Management of Cancers. Int J Mol Sci 2024; 25:8594. [PMID: 39201281 PMCID: PMC11354853 DOI: 10.3390/ijms25168594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Liquid biopsy, a noninvasive diagnosis that examines circulating tumor components in body fluids, is increasingly used in cancer management. An overview of relevant literature emphasizes the current state of liquid biopsy applications in cancer care. Biomarkers in liquid biopsy, particularly circulating tumor DNA (ctDNA), circulating tumor RNAs (ctRNA), circulating tumor cells (CTCs), extracellular vesicles (EVs), and other components, offer promising opportunities for early cancer diagnosis, treatment selection, monitoring, and disease assessment. The implementation of liquid biopsy in precision medicine has shown significant potential in various cancer types, including lung cancer, colorectal cancer, breast cancer, and prostate cancer. Advances in genomic and molecular technologies such as next-generation sequencing (NGS) and digital polymerase chain reaction (dPCR) have expanded the utility of liquid biopsy, enabling the detection of somatic variants and actionable genomic alterations in tumors. Liquid biopsy has also demonstrated utility in predicting treatment responses, monitoring minimal residual disease (MRD), and assessing tumor heterogeneity. Nevertheless, standardizing liquid biopsy techniques, interpreting results, and integrating them into the clinical routine remain as challenges. Despite these challenges, liquid biopsy has significant clinical implications in cancer management, offering a dynamic and noninvasive approach to understanding tumor biology and guiding personalized treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Sze-Chuen (Cesar) Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; (H.-Y.H.); (K.-S.C.); (C.-M.K.)
| |
Collapse
|
9
|
Turabi K, Klute K, Radhakrishnan P. Decoding the Dynamics of Circulating Tumor DNA in Liquid Biopsies. Cancers (Basel) 2024; 16:2432. [PMID: 39001494 PMCID: PMC11240538 DOI: 10.3390/cancers16132432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Circulating tumor DNA (ctDNA), a fragment of tumor DNA found in the bloodstream, has emerged as a revolutionary tool in cancer management. This review delves into the biology of ctDNA, examining release mechanisms, including necrosis, apoptosis, and active secretion, all of which offer information about the state and nature of the tumor. Comprehensive DNA profiling has been enabled by methods such as whole genome sequencing and methylation analysis. The low abundance of the ctDNA fraction makes alternative techniques, such as digital PCR and targeted next-generation exome sequencing, more valuable and accurate for mutation profiling and detection. There are numerous clinical applications for ctDNA analysis, including non-invasive liquid biopsies for minimal residual disease monitoring to detect cancer recurrence, personalized medicine by mutation profiling for targeted therapy identification, early cancer detection, and real-time evaluation of therapeutic response. Integrating ctDNA analysis into routine clinical practice creates promising avenues for successful and personalized cancer care, from diagnosis to treatment and follow-up.
Collapse
Affiliation(s)
- Khadija Turabi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kelsey Klute
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
10
|
Rolando JC, Melkonian AV, Walt DR. The Present and Future Landscapes of Molecular Diagnostics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:459-474. [PMID: 38360553 DOI: 10.1146/annurev-anchem-061622-015112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Nucleic acid testing is the cornerstone of modern molecular diagnostics. This review describes the current status and future directions of molecular diagnostics, focusing on four major techniques: polymerase chain reaction (PCR), next-generation sequencing (NGS), isothermal amplification methods such as recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR)-based detection methods. We explore the advantages and limitations of each technique, describe how each overlaps with or complements other techniques, and examine current clinical offerings. This review provides a broad perspective into the landscape of molecular diagnostics and highlights potential future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Justin C Rolando
- 1Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA;
- 2Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- 3Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Arek V Melkonian
- 1Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA;
- 2Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- 3Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - David R Walt
- 1Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA;
- 2Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- 3Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Baranová I, Samec M, Dvorská D, Šťastný I, Janíková K, Kašubová I, Hornáková A, Lukáčová E, Kapinová A, Biringer K, Halašová E, Danková Z. Droplet digital PCR analysis of CDH13 methylation status in Slovak women with invasive ductal breast cancer. Sci Rep 2024; 14:14700. [PMID: 38926485 PMCID: PMC11208553 DOI: 10.1038/s41598-024-65580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Identifying novel epigenetic biomarkers is a promising way to improve the clinical management of patients with breast cancer. Our study aimed to determine the methylation pattern of 25 tumor suppressor genes (TSG) and select the best methylation biomarker associated with clinicopathological features in the cohort of Slovak patients diagnosed with invasive ductal carcinoma (IDC). Overall, 166 formalin-fixed, paraffin-embedded (FFPE) tissues obtained from patients with IDC were included in the study. The methylation status of the promoter regions of 25 TSG was analyzed using semiquantitative methylation-specific MLPA (MS-MLPA). We identified CDH13 as the most frequently methylated gene in our cohort of patients. Further analysis by ddPCR confirmed an increased level of methylation in the promoter region of CDH13. A significant difference in CDH13 methylation levels was observed between IDC molecular subtypes LUM A versus HER2 (P = 0.0116) and HER2 versus TNBC (P = 0.0234). In addition, significantly higher methylation was detected in HER2+ versus HER2- tumors (P = 0.0004) and PR- versus PR+ tumors (P = 0.0421). Our results provide evidence that alteration in CDH13 methylation is associated with clinicopathological features in the cohort of Slovak patients with IDC. In addition, using ddPCR as a methylation-sensitive method represents a promising approach characterized by higher precision and technical simplicity to measure the methylation of target CpGs in CDH13 compared to other conventional methods such as MS-MLPA.
Collapse
Affiliation(s)
- Ivana Baranová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Biobank for Cancer and Rare Diseases, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Dana Dvorská
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Igor Šťastný
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin and Martin University Hospital, Comenius University in Bratislava, Martin, Slovakia
| | - Katarína Janíková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ivana Kašubová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Hornáková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Lukáčová
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Kapinová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin and Martin University Hospital, Comenius University in Bratislava, Martin, Slovakia
| | - Erika Halašová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Danková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Biobank for Cancer and Rare Diseases, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
12
|
Maansson CT, Thomsen LS, Stokkebro L, Dissing JG, Ulhoi MP, Nielsen AL, Meldgaard P, Sorensen BS. In vitro size-selection of short circulating tumor DNA fragments from late-stage lung cancer patients enhance the detection of mutations and aneuploidies. THE JOURNAL OF LIQUID BIOPSY 2024; 4:100141. [PMID: 40027141 PMCID: PMC11863712 DOI: 10.1016/j.jlb.2024.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 03/05/2025]
Abstract
Introduction Recent studies have demonstrated differences between the fragment length profiles of cell-free DNA (cfDNA) from cancer patients and healthy individuals. This has led to the development of in vitro size-selection procedures which can isolate the short fragments that are enriched with mutated circulating tumor DNA (ctDNA). This has yet to be investigated in a large cohort of lung cancer patients. Materials and methods We used plasma samples from 35 stage III and IV lung cancer patients and performed targeted next-generation sequencing (NGS) and variant calling from cfDNA with and without size-selection of short fragments. We identified clonal hematopoiesis (CH) and germline mutations using targeted NGS on paired buffy coat (BC) samples. In addition, we performed a genome-wide copy-number alteration analysis on the cfDNA samples with and without size-selection. Results ctDNA containing tumor mutations had a different fragment length profile compared to cfDNA fragments with CH or germline mutations. In vitro size-selection resulted in a median 1.36-fold (interquartile range (IQR): 0.63 to 2.48) mutational allele fraction (MAF) enrichment of tumor mutations whereas CH/germline mutations had a median 0.95-fold (IQR: 0.62 to 1.05) MAF enrichment. Key oncogenic drivers, including KRAS and EGFR were more likely to have a MAF increase with size-selection. Size-selection also increased the number plasma aneuploidy positive samples from 8 of 35 to 20 of 35. Conclusion This study expands the knowledge regarding ctDNA fragmentation in lung cancer patients and we demonstrate that in vitro size-selection can increase MAF of tumor mutations and plasma aneuploidy calls. Size-selection could lead to increased sensitivity of ctDNA detection, which is crucial for clinical implementation of liquid biopsies. This study is the largest of its kind studying cfDNA samples from 35 lung cancer patients containing 109 mutations in total.
Collapse
Affiliation(s)
- Christoffer Trier Maansson
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Louise Skov Thomsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Laura Stokkebro
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Julie Gabe Dissing
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Maiken Parm Ulhoi
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Peter Meldgaard
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Boe Sandahl Sorensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Wei Y, Abbasi SMT, Mehmood N, Li L, Qu F, Cheng G, Hu D, Ho YP, Yuan W, Ho HP. Deep-qGFP: A Generalist Deep Learning Assisted Pipeline for Accurate Quantification of Green Fluorescent Protein Labeled Biological Samples in Microreactors. SMALL METHODS 2024; 8:e2301293. [PMID: 38010980 DOI: 10.1002/smtd.202301293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Absolute quantification of biological samples provides precise numerical expression levels, enhancing accuracy, and performance for rare templates. Current methodologies, however, face challenges-flow cytometers are costly and complex, whereas fluorescence imaging, relying on software or manual counting, is time-consuming and error-prone. It is presented that Deep-qGFP, a deep learning-aided pipeline for the automated detection and classification of green fluorescent protein (GFP) labeled microreactors, enables real-time absolute quantification. This approach achieves an accuracy of 96.23% and accurately measures the sizes and occupancy status of microreactors using standard laboratory fluorescence microscopes, providing precise template concentrations. Deep-qGFP demonstrates remarkable speed, quantifying over 2000 microreactors across ten images in just 2.5 seconds, with a dynamic range of 56.52-1569.43 copies µL-1 . The method demonstrates impressive generalization capabilities, successfully applied to various GFP-labeling scenarios, including droplet-based, microwell-based, and agarose-based applications. Notably, Deep-qGFP is the first all-in-one image analysis algorithm successfully implemented in droplet digital polymerase chain reaction (PCR), microwell digital PCR, droplet single-cell sequencing, agarose digital PCR, and bacterial quantification, without requiring transfer learning, modifications, or retraining. This makes Deep-qGFP readily applicable in biomedical laboratories and holds potential for broader clinical applications.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
| | - Syed Muhammad Tariq Abbasi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
| | - Nawaz Mehmood
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
| | - Luoquan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
| | - Fuyang Qu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
| | - Guangyao Cheng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
| | - Dehua Hu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
- Centre for Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, Shatin, Hong Kong SAR, 999 077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
| | - Wu Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
| |
Collapse
|
14
|
Macchia E, Torricelli F, Caputo M, Sarcina L, Scandurra C, Bollella P, Catacchio M, Piscitelli M, Di Franco C, Scamarcio G, Torsi L. Point-Of-Care Ultra-Portable Single-Molecule Bioassays for One-Health. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309705. [PMID: 38108547 DOI: 10.1002/adma.202309705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Screening asymptomatic organisms (humans, animals, plants) with a high-diagnostic accuracy using point-of-care-testing (POCT) technologies, though still visionary holds great potential. Convenient surveillance requires easy-to-use, cost-effective, ultra-portable but highly reliable, in-vitro-diagnostic devices that are ready for use wherever they are needed. Currently, there are not yet such devices available on the market, but there are a couple more promising technologies developed at readiness-level 5: the Clustered-Regularly-Interspaced-Short-Palindromic-Repeats (CRISPR) lateral-flow-strip tests and the Single-Molecule-with-a-large-Transistor (SiMoT) bioelectronic palmar devices. They both hold key features delineated by the World-Health-Organization for POCT systems and an occurrence of false-positive and false-negative errors <1-5% resulting in diagnostic-selectivity and sensitivity >95-99%, while limit-of-detections are of few markers. CRISPR-strip is a molecular assay that, can detect down to few copies of DNA/RNA markers in blood while SiMoT immunometric and molecular test can detect down to a single oligonucleotide, protein marker, or pathogens in 0.1mL of blood, saliva, and olive-sap. These technologies can prospectively enable the systematic and reliable surveillance of asymptomatic ones prior to worsening/proliferation of illnesses allowing for timely diagnosis and swift prognosis. This could establish a proactive healthcare ecosystem that results in effective treatments for all living organisms generating diffuse and well-being at efficient costs.
Collapse
Affiliation(s)
- Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, 25123, Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Paolo Bollella
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Michele Catacchio
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Matteo Piscitelli
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
- CNR IFN, Bari, 70126, Italy
| | | | - Gaetano Scamarcio
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
- CNR IFN, Bari, 70126, Italy
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| |
Collapse
|
15
|
Cardoso GC, Ganzella FADO, Miniskiskosky G, da Cunha RS, Ramos EADS. Digital methylation-specific PCR: New applications for liquid biopsy. Biomol Concepts 2024; 15:bmc-2022-0041. [PMID: 38345545 DOI: 10.1515/bmc-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Epigenetic analysis is a fundamental part of understanding pathophysiological processes with potential applications in diagnosis, prognosis, and assessment of disease susceptibility. Epigenetic changes have been widely studied in chronic obstructive pulmonary disease (COPD), but currently, there is no molecular marker used to improve the treatment of patients. Furthermore, this progressive disease is a risk factor for the development of more severe COVID-19. Methylation-specific polymerase chain reaction (MSP-PCR) plays an important role in the analysis of DNA methylation profiles, and it is one of the most widely used techniques. In this context, the combination of MSP-PCR with emerging PCR technologies, such as digital PCR (dPCR), results in more accurate analyses of the DNA methylation profile of the genes under study. In this study, we propose the application of the MSP-dPCR technique to evaluate the methylation profile of the ADAM33 gene from saliva samples and lung tissue biopsies of patients with COPD and COVID-19. MSP-dPCR generated a measurable prediction of gene methylation rate, with the potential application of this combined technology for diagnostic and prognostic purposes. It has also proven to be a powerful tool for liquid biopsy applications.
Collapse
Affiliation(s)
- Gabriela Casani Cardoso
- Human Pathology Experimental Laboratory, Basic Pathology Department, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
- Post-Graduate Program of Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
| | | | - Guilherme Miniskiskosky
- Human Pathology Experimental Laboratory, Basic Pathology Department, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
| | - Regiane Stafim da Cunha
- Post-Graduate Program of Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
| | - Edneia Amancio de Souza Ramos
- Human Pathology Experimental Laboratory, Basic Pathology Department, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
- Post-Graduate Program of Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
| |
Collapse
|
16
|
Nel I, Münch C, Shamkeeva S, Heinemann ML, Isermann B, Aktas B. The Challenge to Stabilize, Extract and Analyze Urinary Cell-Free DNA (ucfDNA) during Clinical Routine. Diagnostics (Basel) 2023; 13:3670. [PMID: 38132253 PMCID: PMC10743081 DOI: 10.3390/diagnostics13243670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The "Liquid Biopsy" has become a powerful tool for cancer research during the last decade. Circulating cell-free DNA (cfDNA) that originates from tumors has emerged as one of the most promising analytes. In contrast to plasma-derived cfDNA, only a few studies have investigated urinary cfDNA. One reason might be rapid degradation and hence inadequate concentrations for downstream analysis. In this study, we examined the stability of cfDNA in urine using different methods of preservation under various storage conditions. METHODOLOGY To mimic patient samples, a pool of healthy male and female urine donors was spiked with a synthetic cfDNA reference standard (fragment size 170 bp) containing the T790M mutation in the EGFR gene. Spiked samples were preserved with three different buffers and with no buffer over four different storage periods (0 h; 4 h; 12 h; 24 h) at room temperature vs. 4 °C. The preservatives used were Urinary Analyte Stabilizer (UAS, Novosanis, Wijnegem, Belgium), Urine Conditioning Buffer (UCB, Zymo, Freiburg, Germany) and a self-prepared buffer called "AlloU". CfDNA was extracted using the QIAamp MinElute ccfDNA Mini Kit (Qiagen, Hilden, Germany). CfDNA concentration was measured using the Qubit™ 4 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). Droplet digital PCR (ddPCR) was used for detection and quantification of the T790M mutation. RESULTS Almost no spiked cfDNA was recoverable from samples with no preservation buffer and the T790M variant was not detectable in these samples. These findings indicate that cfDNA was degraded below the detection limit by urinary nucleases. Stabilizing buffers showed varying efficiency in preventing this degradation. The most effective stabilizing buffer under all storage conditions was the UAS, enabling adequate recovery of the T790M variant using ddPCR. CONCLUSION From a technical point of view, stabilizing buffers and adequate storage conditions are a prerequisite for translation of urinary cfDNA diagnostics into clinical routine.
Collapse
Affiliation(s)
- Ivonne Nel
- Department of Gynecology, Medical Center, University of Leipzig, 04103 Leipzig, Germany
| | - Carolin Münch
- Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Saikal Shamkeeva
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University Hospital, 04103 Leipzig, Germany
| | - Mitja L. Heinemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University Hospital, 04103 Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University Hospital, 04103 Leipzig, Germany
| | - Bahriye Aktas
- Department of Gynecology, Medical Center, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
17
|
Brokāne A, Bajo-Santos C, Zayakin P, Belovs A, Jansons J, Lietuvietis V, Martens-Uzunova ES, Jenster GW, Linē A. Validation of potential RNA biomarkers for prostate cancer diagnosis and monitoring in plasma and urinary extracellular vesicles. Front Mol Biosci 2023; 10:1279854. [PMID: 38099195 PMCID: PMC10720733 DOI: 10.3389/fmolb.2023.1279854] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction: Prostate cancer (PCa), one of the most prevalent malignancies affecting men worldwide, presents significant challenges in terms of early detection, risk stratification, and active surveillance. In recent years, liquid biopsies have emerged as a promising non-invasive approach to complement or even replace traditional tissue biopsies. Extracellular vesicles (EVs), nanosized membranous structures released by various cells into body fluids, have gained substantial attention as a source of cancer biomarkers due to their ability to encapsulate and transport a wide range of biological molecules, including RNA. In this study, we aimed to validate 15 potential RNA biomarkers, identified in a previous EV RNA sequencing study, using droplet digital PCR. Methods: The candidate biomarkers were tested in plasma and urinary EVs collected before and after radical prostatectomy from 30 PCa patients and their diagnostic potential was evaluated in a test cohort consisting of 20 benign prostate hyperplasia (BPH) and 20 PCa patients' plasma and urinary EVs. Next, the results were validated in an independent cohort of plasma EVs from 31 PCa and 31 BPH patients. Results: We found that the levels of NKX3-1 (p = 0.0008) in plasma EVs, and tRF-Phe-GAA-3b (p < 0.0001) tRF-Lys-CTT-5c (p < 0.0327), piR-28004 (p = 0.0081) and miR-375-3p (p < 0.0001) in urinary EVs significantly decreased after radical prostatectomy suggesting that the main tissue source of these RNAs is prostate and/or PCa. Two mRNA biomarkers-GLO1 and NKX3-1 showed promising diagnostic potential in distinguishing between PCa and BPH with AUC of 0.68 and 0.82, respectively, in the test cohort and AUC of 0.73 and 0.65, respectively, in the validation cohort, when tested in plasma EVs. Combining these markers in a biomarker model yielded AUC of 0.85 and 0.71 in the test and validation cohorts, respectively. Although the PSA levels in the blood could not distinguish PCa from BPH in our cohort, adding PSA to the mRNA biomarker model increased AUC from 0.71 to 0.76. Conclusion: This study identified two novel EV-enclosed RNA biomarkers-NKX3-1 and GLO1-for the detection of PCa, and highlights the complementary nature of GLO1, NKX3-1 and PSA as combined biomarkers in liquid biopsies of PCa.
Collapse
Affiliation(s)
- Agnese Brokāne
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | | | | | - Guido W. Jenster
- Department of Urology, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Aija Linē
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
18
|
Jafri HSMO, Mushtaq S, Baig S, Bhatty A, Siraj S. Comparison of KRAS gene in circulating tumor DNA levels vs histological grading of colorectal cancer patients through liquid biopsy. Saudi J Gastroenterol 2023; 29:371-375. [PMID: 37602638 PMCID: PMC10754382 DOI: 10.4103/sjg.sjg_85_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
Background To determine KRAS gene in circulating tumor DNA in comparison with histological grading through liquid biopsy in colorectal cancer patients. Methods This dual-centered cross-sectional study included 73 diagnosed patients of colorectal cancer at different grading levels [Grade I, well differentiated (n = 7, 9.5%); Grade II, moderately differentiated (n = 14,18.9%); and Grade III, poorly differentiated (n = 52, 70%)]. Blood was collected, and plasma was separated. ctDNA was extracted, using magnetic bead-based technique (MagMAX Cell-Free DNA kit). KRAS gene was quantified through qPCR. STRING database was used to find KRAS interactomes. Results Mean threshold cycle (CT value) of KRAS gene in Grade III samples showed significantly higher (P = 0.001) levels of ctDNA (2.7 ± 1.14) compared with Grade II and Grade I (3.1 ± 0.68, 2.3 ± 0.60), respectively. Grading characterization showed that rectal cancer (n = 22, 42.3%) with Grade III (68.8%) was more prevalent than colon and sigmoid cancer (n = 19, 36.5%, n = 11, 21%, respectively). STRING database showed 10 functional genes interacting with KRAS expressed as gene/proteins. Conclusion Liquid biopsy can be used to detect ctDNA in plasma of CRC patients and enabled to detect the KRAS gene by qPCR. The technique being less invasive and cost-effective is convenient for multiple biopsies in different cancers.
Collapse
Affiliation(s)
| | - Shamim Mushtaq
- Department of Biochemistry, Basic Health Sciences, Ziauddin University, Karachi, Pakistan
| | - Saeeda Baig
- Department of Biochemistry, Basic Health Sciences, Ziauddin University, Karachi, Pakistan
| | - Afreen Bhatty
- Department of Biochemistry, Basic Health Sciences, Ziauddin University, Karachi, Pakistan
| | - Sabra Siraj
- Department of Pharmacology, Basic Health Sciences, Ziauddin University, Karachi, Pakistan
| |
Collapse
|
19
|
Liu F, Hao X, Liu B, Liu S, Yuan Y. Bile liquid biopsy in biliary tract cancer. Clin Chim Acta 2023; 551:117593. [PMID: 37839517 DOI: 10.1016/j.cca.2023.117593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Biliary tract cancers are heterogeneous in etiology, morphology and molecular characteristics thus impacting disease management. Diagnosis is complex and prognosis poor. The advent of liquid biopsy has provided a unique approach to more thoroughly understand tumor biology in general and biliary tract cancers specifically. Due to their minimally invasive nature, liquid biopsy can be used to serially monitor disease progression and allow real-time monitoring of tumor genetic profiles as well as therapeutic response. Due to the unique anatomic location of biliary tract cancer, bile provides a promising biologic fluid for this purpose. This review focuses on the composition of bile and the use of these various components, ie, cells, extracellular vesicles, nucleic acids, proteins and metabolites as potential biomarkers. Based on the disease characteristics and research status of biliary tract cancer, considerable effort should be made to increase understanding of this disease, promote research and development into early diagnosis, develop efficient diagnostic, therapeutic and prognostic markers.
Collapse
Affiliation(s)
- Fusheng Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Xingyuan Hao
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Bin Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Songmei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, PR China.
| |
Collapse
|
20
|
Leenanitikul J, Chanchaem P, Mankhong S, Denariyakoon S, Fongchaiya V, Arayataweegool A, Angspatt P, Wongchanapai P, Prapanpoj V, Chatamra K, Pisitkun T, Sriswasdi S, Wongkongkathep P. Concordance between whole exome sequencing of circulating tumor DNA and tumor tissue. PLoS One 2023; 18:e0292879. [PMID: 37878600 PMCID: PMC10599540 DOI: 10.1371/journal.pone.0292879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
Next generation sequencing of circulating tumor DNA (ctDNA) has been used as a noninvasive alternative for cancer diagnosis and characterization of tumor mutational landscape. However, low ctDNA fraction and other factors can limit the ability of ctDNA analysis to capture tumor-specific and actionable variants. In this study, whole-exome sequencings (WES) were performed on paired ctDNA and tumor biopsy in 15 cancer patients to assess the extent of concordance between mutational profiles derived from the two source materials. We found that up to 16.4% ctDNA fraction can still be insufficient for detecting tumor-specific variants and that good concordance with tumor biopsy is consistently achieved at higher ctDNA fractions. Most importantly, ctDNA analysis can consistently capture tumor heterogeneity and detect key cancer-related genes even in a patient with both primary and metastatic tumors.
Collapse
Affiliation(s)
- Julanee Leenanitikul
- Bioinformatics and Computational Biology Program, Chulalongkorn University, Bangkok, Thailand
| | - Prangwalai Chanchaem
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suwanan Mankhong
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sikrit Denariyakoon
- The Queen Sirikit Center for Breast Cancer, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Valla Fongchaiya
- The Queen Sirikit Center for Breast Cancer, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Areeya Arayataweegool
- The Queen Sirikit Center for Breast Cancer, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Pattama Angspatt
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and the King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Ploytuangporn Wongchanapai
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and the King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | - Kris Chatamra
- The Queen Sirikit Center for Breast Cancer, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sira Sriswasdi
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piriya Wongkongkathep
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
Calabrese S, Markl AM, Neugebauer M, Krauth SJ, Borst N, von Stetten F, Lehnert M. Reporter emission multiplexing in digital PCRs (REM-dPCRs): direct quantification of multiple target sequences per detection channel by population specific reporters. Analyst 2023; 148:5243-5254. [PMID: 37727114 DOI: 10.1039/d3an00191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Digital PCRs (dPCRs) are widely used methods for the detection and quantification of rare abundant sequences relevant to fields such as liquid biopsy or oncology. In order to increase the information content and save valuable sample materials, there is a significant need for digital multiplexing methods that are easy to establish, analyse, and interpret, and ideally allow the usage of existing lab equipment. Herein, we present a novel reporter emission multiplexing approach for the digital PCR method (REM-dPCR), which meets these requirements. It further increases the multiplexing capacity of commercial dPCR devices. For example, we present a stepwise increase in multiplexing degrees from a monochrome two-plex assay in one detection channel to a six-plex REM-dPCR assay in a three-color dPCR device for KRAS/BRAF single nucleotide polymorphism (SNP) target sequences. The guidelines for the REM-dPCR design are presented, and the process from duplex to six-plex assay establishment, taking into account the target sequence-dependent effects on assay performance, is discussed. Furthermore, the assay-specific, sensitive and precise quantification of different fractions of KRAS mutant and wild-type DNA sequences in different ratios is demonstrated. To increase the device capacitance and the degree of multiplexing, the REM-dPCR uses the advantage of n target-independent reporter molecules in combination with target sequence-specific mediator probes. Different reporter types are labelled with fluorophores of different signal intensities but not necessarily different emission spectra. This leads to the generation of n independent single-positive populations in the dataspace, created by k detection channels, whereby n > k and n ≥ 2. By usage of target-independent but population-specific reporter types, a fixed set of six optimized signalling molecules could be defined. This reporter set enables the robust generation and precise differentiation of multiple fluorescence signals in dPCRs and can be transferred to new target panels. The set which enables stable signal generation and differentiation in a specified device would allow easy transfer to new target panels.
Collapse
Affiliation(s)
| | - Anja M Markl
- Hahn-Schickard, 79110 Freiburg, Germany.
- Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Maximilian Neugebauer
- Hahn-Schickard, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Stefanie J Krauth
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
- School of Health and Wellbeing, General Practice and Primary Care, University of Glasgow, Glasgow, UK
| | - Nadine Borst
- Hahn-Schickard, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Felix von Stetten
- Hahn-Schickard, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | | |
Collapse
|
22
|
Wang W, Zheng Z, Lei J. CTC, ctDNA, and Exosome in Thyroid Cancers: A Review. Int J Mol Sci 2023; 24:13767. [PMID: 37762070 PMCID: PMC10530859 DOI: 10.3390/ijms241813767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Thyroid cancer has become more common in recent years all around the world. Many issues still need to be urgently addressed in the diagnosis, treatment, and prognosis of thyroid cancer. Liquid biopsy (mainly circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and circulating exosomes) may provide a novel and ideal approach to solve these issues, allows us to assess the features of diseases more comprehensively, and has a function in a variety of malignancies. Recently, liquid biopsy has been shown to be critical in thyroid cancer diagnosis, treatment, and prognosis in numerous previous studies. In this review, by testing CTCs, ctDNA, and exosomes, we focus on the possible clinical role of liquid biopsy in thyroid cancer, including diagnostic and prognostic biomarkers and response to therapy. We briefly review how liquid biopsy components have progressed in thyroid cancer by consulting the existing public information. We also discuss the clinical potential of liquid biopsy in thyroid cancer and provide a reference for liquid biopsy research. Liquid biopsy has the potential to be a useful tool in the early detection, monitoring, or prediction of response to therapies and prognosis in thyroid cancer, with promising clinical applications.
Collapse
Affiliation(s)
- Wenwen Wang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyao Zheng
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Gelineau NU, van Barneveld A, Samim A, Van Zogchel L, Lak N, Tas ML, Matser Y, Mavinkurve-Groothuis AMC, van Grotel M, Zsiros J, van Eijkelenburg NKA, Knops RRG, van Ewijk R, Langenberg KPS, Krijger RD, Hiemcke-Jiwa LS, Van Paemel R, Cornelli L, De Preter K, De Wilde B, Van Der Schoot E, Tytgat G. Case series on clinical applications of liquid biopsy in pediatric solid tumors: towards improved diagnostics and disease monitoring. Front Oncol 2023; 13:1209150. [PMID: 37664065 PMCID: PMC10473251 DOI: 10.3389/fonc.2023.1209150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Background and aims Solid tumors account for about 30% of all pediatric cancers. The diagnosis is typically based on histological and molecular analysis of a primary tumor biopsy. Liquid biopsies carry several advantages over conventional tissue biopsy. However, their use for genomic analysis and response monitoring of pediatric solid tumors is still in experimental stages and mostly performed retrospectively without direct impact on patient management. In this case series we discuss six clinical cases of children with a solid tumor for whom a liquid biopsy assay was performed and demonstrate the potential of liquid biopsy for future clinical decision making. Methods We performed quantitative real-time PCR (RT-qPCR), droplet digital PCR (ddPCR) or reduced representation bisulphite sequencing of cell-free DNA (cfRRBS) on liquid biopsies collected from six pediatric patients with a solid tumor treated between 2017 and 2023 at the Princess Máxima Center for Pediatric Oncology in the Netherlands. Results were used to aid in clinical decision making by contribution to establish a diagnosis, by prognostication and response to therapy monitoring. Results In three patients cfRRBS helped to establish the diagnosis of a rhabdomyosarcoma, an Ewing sarcoma and a neuroblastoma (case 1-3). In two patients, liquid biopsies were used for prognostication, by MYCN ddPCR in a patient with neuroblastoma and by RT-qPCR testing rhabdomyosarcoma-specific mRNA in bone marrow of a patient with a rhabdomyosarcoma (case 4 and 5). In case 6, mRNA testing demonstrated disease progression and assisted clinical decision making. Conclusion This case series illustrates the value of liquid biopsy. We further demonstrate and recommend the use of liquid biopsies to be used in conjunction with conventional methods for the determination of metastatic status, prognostication and monitoring of treatment response in patients with pediatric solid tumors.
Collapse
Affiliation(s)
- Nina U. Gelineau
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | | | - Atia Samim
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | - Lieke Van Zogchel
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Nathalie Lak
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Michelle L. Tas
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | - Yvette Matser
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | | | - Martine van Grotel
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | - Jószef Zsiros
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | | | - Rutger R. G. Knops
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | - Roelof van Ewijk
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | | | - Ronald De Krijger
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Laura S. Hiemcke-Jiwa
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ruben Van Paemel
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University, Ghent, Belgium
- Research Institute, Ghent University, Ghent, East Flanders, Belgium
| | - Lotte Cornelli
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Research Institute, Ghent University, Ghent, East Flanders, Belgium
- VIB-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Bram De Wilde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University, Ghent, Belgium
- Research Institute, Ghent University, Ghent, East Flanders, Belgium
| | - Ellen Van Der Schoot
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Godelieve Tytgat
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| |
Collapse
|
24
|
Huang CT, Lin CA, Su TJ, Yang CY, Tsai TH, Hsu CL, Liao WY, Chen KY, Ho CC, Yu CJ. Monitoring of T790M in plasma ctDNA of advanced EGFR-mutant NSCLC patients on first- or second-generation tyrosine kinase inhibitors. BMC Cancer 2023; 23:234. [PMID: 36915101 PMCID: PMC10010021 DOI: 10.1186/s12885-023-10698-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND The T790M mutation is the major resistance mechanism to first- and second-generation TKIs in EGFR-mutant NSCLC. This study aimed to investigate the utility of droplet digital PCR (ddPCR) for detection of T790M in plasma circulating tumor DNA (ctDNA), and explore its impact on prognosis. METHODS This prospective study enrolled 80 advanced lung adenocarcinoma patients treated with gefitinib, erlotinib, or afatinib for TKI-sensitizing mutations between 2015 and 2019. Plasma samples were collected before TKI therapy and at tri-monthly intervals thereafter. Genotyping of ctDNA for T790M was performed using a ddPCR EGFR Mutation Assay. Patients were followed up until the date of death or to the end of 2021. RESULTS Seventy-five of 80 patients experienced progressive disease. Fifty-three (71%) of 75 patients underwent rebiopsy, and T790M mutation was identified in 53% (28/53) of samples. Meanwhile, plasma ddPCR detected T790M mutation in 23 (43%) of 53 patients. The concordance rate of T790M between ddPCR and rebiopsy was 76%, and ddPCR identified 4 additional T790M-positive patients. Ten (45%) of 22 patients who did not receive rebiopsy tested positive for T790M by ddPCR. Serial ddPCR analysis showed the time interval from detection of plasma T790M to objective progression was 1.1 (0-4.1) months. Compared to 28 patients with rebiopsy showing T790M, the overall survival of 14 patients with T790M detected solely by ddPCR was shorter(41.3 [95% CI, 36.6-46.0] vs. 26.6 months [95% CI, 9.9-43.3], respectively). CONCLUSION Plasma ddPCR-based genotyping is a useful technology for detection and monitoring of the key actionable genomic alteration, namely, T790M, in patients treated with gefitinib, erlotinib, or afatinib for activating mutations, to achieve better patient care and outcome.
Collapse
Affiliation(s)
- Chun-Ta Huang
- Department of Internal Medicine, National Taiwan University Hospital, No. 7 Chung-Shan South Rd, Taipei 100, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-An Lin
- Department of Internal Medicine, National Taiwan University Hospital, No. 7 Chung-Shan South Rd, Taipei 100, Taipei, Taiwan
| | - Te-Jen Su
- Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Yao Yang
- Department of Internal Medicine, National Taiwan University Hospital, No. 7 Chung-Shan South Rd, Taipei 100, Taipei, Taiwan
| | - Tzu-Hsiu Tsai
- Department of Internal Medicine, National Taiwan University Hospital, No. 7 Chung-Shan South Rd, Taipei 100, Taipei, Taiwan
| | - Chia-Lin Hsu
- Department of Internal Medicine, National Taiwan University Hospital, No. 7 Chung-Shan South Rd, Taipei 100, Taipei, Taiwan
| | - Wei-Yu Liao
- Department of Internal Medicine, National Taiwan University Hospital, No. 7 Chung-Shan South Rd, Taipei 100, Taipei, Taiwan
| | - Kuan-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital, No. 7 Chung-Shan South Rd, Taipei 100, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital, No. 7 Chung-Shan South Rd, Taipei 100, Taipei, Taiwan.
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, No. 7 Chung-Shan South Rd, Taipei 100, Taipei, Taiwan
| |
Collapse
|
25
|
Nitschke C, Markmann B, Walter P, Badbaran A, Tölle M, Kropidlowski J, Belloum Y, Goetz MR, Bardenhagen J, Stern L, Tintelnot J, Schönlein M, Sinn M, van der Leest P, Simon R, Heumann A, Izbicki JR, Pantel K, Wikman H, Uzunoglu FG. Peripheral and Portal Venous KRAS ctDNA Detection as Independent Prognostic Markers of Early Tumor Recurrence in Pancreatic Ductal Adenocarcinoma. Clin Chem 2023; 69:295-307. [PMID: 36644936 DOI: 10.1093/clinchem/hvac214] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/17/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND KRAS circulating tumor DNA (ctDNA) has shown biomarker potential for pancreatic ductal adenocarcinoma (PDAC) but has not been applied in clinical routine yet. We aim to improve clinical applicability of ctDNA detection in PDAC and to study the impact of blood-draw site and time point on the detectability and prognostic role of KRAS mutations. METHODS 221 blood samples from 108 PDAC patients (65 curative, 43 palliative) were analyzed. Baseline peripheral and tumor-draining portal venous (PV), postoperative, and follow-up blood were analyzed and correlated with prognosis. RESULTS Significantly higher KRAS mutant detection rates and copy numbers were observed in palliative compared to curative patients baseline blood (58.1% vs 24.6%; P = 0.002; and P < 0.001). Significantly higher KRAS mutant copies were found in PV blood compared to baseline (P < 0.05) samples. KRAS detection in pre- and postoperative and PV blood were significantly associated with shorter recurrence-free survival (all P < 0.015) and identified as independent prognostic markers. KRAS ctDNA status was also an independent unfavorable prognostic factor for shorter overall survival in both palliative and curative cohorts (hazard ratio [HR] 4.9, P = 0.011; HR 6.9, P = 0.008). CONCLUSIONS KRAS ctDNA detection is an independent adverse prognostic marker in curative and palliative PDAC patients-at all sites of blood draw and a strong follow-up marker. The most substantial prognostic impact was seen for PV blood, which could be an effective novel tool for identifying prognostic borderline patients-guiding future decision-making on neoadjuvant treatment despite anatomical resectability. In addition, higher PV mutant copy numbers contribute to an improved technical feasibility.
Collapse
Affiliation(s)
- Christine Nitschke
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
- Mildred Scheel Cancer Career Center, Hamburg 20246, Germany
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Benedikt Markmann
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Philipp Walter
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Anita Badbaran
- Clinic for Stem Cell Transplantation, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Marie Tölle
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jolanthe Kropidlowski
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Yassine Belloum
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Mara R Goetz
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jan Bardenhagen
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Louisa Stern
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Joseph Tintelnot
- II. Medical Clinic and Polyclinic (Oncology), University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Martin Schönlein
- II. Medical Clinic and Polyclinic (Oncology), University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Marianne Sinn
- II. Medical Clinic and Polyclinic (Oncology), University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Paul van der Leest
- Department of Pathology, University Medical Center, University of Groningen, Groningen 9700 RB, Netherlands
| | - Ronald Simon
- Institute of Pathology, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Asmus Heumann
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Harriet Wikman
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Faik G Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
26
|
Rubio-Mangas D, García-Arranz M, Torres-Rodriguez Y, León-Arellano M, Suela J, García-Olmo D. Differential presence of exons (DPE): sequencing liquid biopsy by NGS. A new method for clustering colorectal Cancer patients. BMC Cancer 2023; 23:2. [PMID: 36593457 PMCID: PMC9808981 DOI: 10.1186/s12885-022-10459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Differential presence of exons (DPE) by next generation sequencing (NGS) is a method of interpretation of whole exome sequencing. This method has been proposed to design a predictive and diagnostic algorithm with clinical value in plasma from patients bearing colorectal cancer (CRC). The aim of the present study was to determine a common exonic signature to discriminate between different clinical pictures, such as non-metastatic, metastatic and non-disease (healthy), using a sustainable and novel technology in liquid biopsy.Through DPE analysis, we determined the differences in DNA exon levels circulating in plasma between patients bearing CRC vs. healthy, patients bearing CRC metastasis vs. non-metastatic and patients bearing CRC metastasis vs. healthy comparisons. We identified a set of 510 exons (469 up and 41 down) whose differential presence in plasma allowed us to group and classify between the three cohorts. Random forest classification (machine learning) was performed and an estimated out-of-bag (OOB) error rate of 35.9% was obtained and the predictive model had an accuracy of 75% with a confidence interval (CI) of 56.6-88.5.In conclusion, the DPE analysis allowed us to discriminate between different patho-physiological status such as metastatic, non-metastatic and healthy donors. In addition, this analysis allowed us to obtain very significant values with respect to previous published results, since we increased the number of samples in our study. These results suggest that circulating DNA in patient's plasma may be actively released by cells and may be involved in intercellular communication and, therefore, may play a pivotal role in malignant transformation (genometastasis).
Collapse
Affiliation(s)
- David Rubio-Mangas
- Genómica y Medicina, NIMGenetics, Madrid, Spain. S. L, 28108 Madrid, Spain
| | - Mariano García-Arranz
- grid.419651.e0000 0000 9538 1950New Therapy Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, 28040 Madrid, Spain ,grid.5515.40000000119578126Department of Surgery, School of Medicine, Universidad Autónoma de Madrid, C. Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | | | - Miguel León-Arellano
- grid.419651.e0000 0000 9538 1950Department of Surgery, Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Javier Suela
- Genómica y Medicina, NIMGenetics, Madrid, Spain. S. L, 28108 Madrid, Spain
| | - Damián García-Olmo
- grid.419651.e0000 0000 9538 1950New Therapy Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, 28040 Madrid, Spain ,grid.5515.40000000119578126Department of Surgery, School of Medicine, Universidad Autónoma de Madrid, C. Arzobispo Morcillo, 4, 28029 Madrid, Spain ,grid.419651.e0000 0000 9538 1950Department of Surgery, Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain ,grid.5515.40000000119578126Department of Surgery, New Therapies Laboratory, Foundation Health Research Institute-Fundación Jiménez Díaz University Hospital (FIIS-FJD), Universidad Autónoma de Madrid (UAM), Avda. Reyes Católicos, 2, 28040 Madrid, Spain
| |
Collapse
|
27
|
Gianni C, Palleschi M, Merloni F, Bleve S, Casadei C, Sirico M, Di Menna G, Sarti S, Cecconetto L, Mariotti M, De Giorgi U. Potential Impact of Preoperative Circulating Biomarkers on Individual Escalating/de-Escalating Strategies in Early Breast Cancer. Cancers (Basel) 2022; 15:96. [PMID: 36612091 PMCID: PMC9817806 DOI: 10.3390/cancers15010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The research on non-invasive circulating biomarkers to guide clinical decision is in wide expansion, including the earliest disease settings. Several new intensification/de-intensification strategies are approaching clinical practice, personalizing the treatment for each patient. Moreover, liquid biopsy is revealing its potential with multiple techniques and studies available on circulating biomarkers in the preoperative phase. Inflammatory circulating cells, circulating tumor cells (CTCs), cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), and other biological biomarkers are improving the armamentarium for treatment selection. Defining the escalation and de-escalation of treatments is a mainstay of personalized medicine in early breast cancer. In this review, we delineate the studies investigating the possible application of these non-invasive tools to give a more enlightened approach to escalating/de-escalating strategies in early breast cancer.
Collapse
Affiliation(s)
- Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jain N, Nagaich U, Pandey M, Chellappan DK, Dua K. Predictive genomic tools in disease stratification and targeted prevention: a recent update in personalized therapy advancements. EPMA J 2022; 13:561-580. [PMID: 36505888 PMCID: PMC9727029 DOI: 10.1007/s13167-022-00304-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2022]
Abstract
In the current era of medical revolution, genomic testing has guided the healthcare fraternity to develop predictive, preventive, and personalized medicine. Predictive screening involves sequencing a whole genome to comprehensively deliver patient care via enhanced diagnostic sensitivity and specific therapeutic targeting. The best example is the application of whole-exome sequencing when identifying aberrant fetuses with healthy karyotypes and chromosomal microarray analysis in complicated pregnancies. To fit into today's clinical practice needs, experimental system biology like genomic technologies, and system biology viz., the use of artificial intelligence and machine learning is required to be attuned to the development of preventive and personalized medicine. As diagnostic techniques are advancing, the selection of medical intervention can gradually be influenced by a person's genetic composition or the cellular profiling of the affected tissue. Clinical genetic practitioners can learn a lot about several conditions from their distinct facial traits. Current research indicates that in terms of diagnosing syndromes, facial analysis techniques are on par with those of qualified therapists. Employing deep learning and computer vision techniques, the face image assessment software DeepGestalt measures resemblances to numerous of disorders. Biomarkers are essential for diagnostic, prognostic, and selection systems for developing personalized medicine viz. DNA from chromosome 21 is counted in prenatal blood as part of the Down's syndrome biomarker screening. This review is based on a detailed analysis of the scientific literature via a vigilant approach to highlight the applicability of predictive diagnostics for the development of preventive, targeted, personalized medicine for clinical application in the framework of predictive, preventive, and personalized medicine (PPPM/3 PM). Additionally, targeted prevention has also been elaborated in terms of gene-environment interactions and next-generation DNA sequencing. The application of 3 PM has been highlighted by an in-depth analysis of cancer and cardiovascular diseases. The real-time challenges of genome sequencing and personalized medicine have also been discussed.
Collapse
Affiliation(s)
- Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, 201303 UP India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, 201303 UP India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031 India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007 Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007 Australia
| |
Collapse
|
29
|
Balla A, Bhak J, Biró O. The application of circulating tumor cell and cell-free DNA liquid biopsies in ovarian cancer. Mol Cell Probes 2022; 66:101871. [PMID: 36283501 DOI: 10.1016/j.mcp.2022.101871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Ovarian cancer is the deadliest gynecological cancer. 70% of the cases are diagnosed at late stages with already developed metastases due to the absence of easily noticeable symptoms. Early-stage ovarian cancer has a good prognosis with a 5-year survival rate reaching 95%, hence the identification of effective biomarkers for early diagnosis is important. Advances in liquid biopsy-based methods can have a significant impact not just on the development of an efficient screening strategy, but also in clinical decision-making with additional molecular profiling and genetic alterations linked to therapy resistance. Despite the well-known advantages of liquid biopsy, there are still challenges that need to be addressed before its routine use in clinical practice. Various liquid biopsy-based biomarkers have been investigated in ovarian cancer; however, in this review, we are concentrating on the current use of cell-free DNA (cfDNA) and circulating tumor cells (CTCs) in disease management, focusing on their emerging importance in clinical practice. We also discuss the technical aspects of these workflows. The analysis of cfDNA is often chosen for the detection of mutations, copy number aberrations, and DNA methylation changes, whereas CTC analysis provides a unique opportunity to study whole cells, thus allowing DNA, RNA, and protein-based molecular profiling as well as in vivo studies. Combined solutions which merge the strengths of cfDNA and CTC approaches should be developed to maximize the potential of liquid biopsy technology.
Collapse
Affiliation(s)
- Abigél Balla
- Clinomics Europe Ltd., Budapest, Hungary; Semmelweis University, Károly Rácz Doctoral School of Clinical Medicine, Budapest, Hungary
| | - Jong Bhak
- Clinomics Inc. UNIST, Ulsan, 44916, Republic of Korea
| | | |
Collapse
|
30
|
Ulivi P, Indraccolo S. Liquid Biopsies in Cancer Diagnosis, Monitoring and Prognosis. Biomedicines 2022; 10:2748. [PMID: 36359268 PMCID: PMC9687655 DOI: 10.3390/biomedicines10112748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/25/2022] [Indexed: 12/18/2023] Open
Abstract
Liquid biopsy has emerged as new tool for detecting clinically relevant genetic alterations in cancer patients [...].
Collapse
Affiliation(s)
- Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Stefano Indraccolo
- Basic and Translational Oncology Unit, Istituto Oncologico Veneto, IOV-IRCCS, 35128 Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| |
Collapse
|
31
|
Zhu M, Shan Z, Ning W, Wu X. Image Segmentation and Quantification of Droplet dPCR Based on Thermal Bubble Printing Technology. SENSORS (BASEL, SWITZERLAND) 2022; 22:7222. [PMID: 36236321 PMCID: PMC9573249 DOI: 10.3390/s22197222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Thermal inkjet printing can generate more than 300,000 droplets of picoliter scale within one second stably, and the image analysis workflow is used to quantify the positive and negative values of the droplets. In this paper, the SimpleBlobDetector detection algorithm is used to identify and localize droplets with a volume of 24 pL in bright field images and suppress bright spots and scratches when performing droplet location identification. The polynomial surface fitting of the pixel grayscale value of the fluorescence channel image can effectively compensate and correct the image vignetting caused by the optical path, and the compensated fluorescence image can accurately classify positive and negative droplets by the k-means clustering algorithm. 20 µL of the sample solution in the result reading chip can produce more than 100,000 effective droplets. The effective droplet identification correct rate of 20 images of random statistical samples can reach more than 99% and the classification accuracy of positive and negative droplets can reach more than 98% on average. This paper overcomes the problem of effectively classifying positive and negative droplets caused by the poor image quality of photographed picolitre ddPCR droplets caused by optical hardware limitations.
Collapse
Affiliation(s)
- Mingjie Zhu
- School of Microelectronics, Shanghai University, Shanghai 200444, China
| | - Zilong Shan
- School of Microelectronics, Shanghai University, Shanghai 200444, China
| | - Wei Ning
- Shanghai Industrial µTechnology Research Institute, Shanghai 201800, China
| | - Xuanye Wu
- School of Microelectronics, Shanghai University, Shanghai 200444, China
- Shanghai Industrial µTechnology Research Institute, Shanghai 201800, China
| |
Collapse
|
32
|
Valenzuela G, Burotto M, Marcelain K, González-Montero J. Liquid biopsy to detect resistance mutations against anti-epidermal growth factor receptor therapy in metastatic colorectal cancer. World J Gastrointest Oncol 2022; 14:1654-1664. [PMID: 36187383 PMCID: PMC9516650 DOI: 10.4251/wjgo.v14.i9.1654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/19/2022] [Accepted: 08/10/2022] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is a major cause of mortality worldwide, associated with a steadily growing prevalence. Notably, the identification of KRAS, NRAS, and BRAF mutations has markedly improved targeted CRC therapy by affording treatments directed against the epidermal growth factor receptor (EGFR) and other anti-angiogenic therapies. However, the survival benefit conferred by these therapies remains variable and difficult to predict, owing to the high level of molecular heterogeneity among patients with CRC. Although classification into consensus molecular subtypes could optimize response prediction to targeted therapies, the acquisition of resistance mutations to targeted therapy is, in part, responsible for the lack of response in some patients. However, the acquisition of such mutations can induce challenges in clinical practice. The utility of liquid biopsy to detect resistance mutations against anti-EGFR therapy has recently been described. This approach may constitute a new standard in the decision algorithm for targeted CRC therapy.
Collapse
Affiliation(s)
- Guillermo Valenzuela
- Department of Basic and Clinical Oncology, University of Chile, Santiago 8380453, Chile
- Department of Internal Medicine, Hospital del Salvador, Santiago 7500922, Chile
| | - Mauricio Burotto
- Department of Oncology, Bradford-Hill Clinical Research Center, Santiago 8420383, Chile
| | - Katherine Marcelain
- Department of Basic and Clinical Oncology, University of Chile, Santiago 8380453, Chile
| | - Jaime González-Montero
- Department of Basic and Clinical Oncology, University of Chile, Santiago 8380453, Chile
- Department of Oncology, Bradford-Hill Clinical Research Center, Santiago 8420383, Chile
| |
Collapse
|
33
|
Liquid Biopsy and Circulating Biomarkers for the Diagnosis of Precancerous and Cancerous Oral Lesions. Noncoding RNA 2022; 8:ncrna8040060. [PMID: 36005828 PMCID: PMC9414906 DOI: 10.3390/ncrna8040060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Oral cancer is one of the most common malignancies worldwide, accounting for 2% of all cases annually and 1.8% of all cancer deaths. To date, tissue biopsy and histopathological analyses are the gold standard methods for the diagnosis of oral cancers. However, oral cancer is generally diagnosed at advanced stages with a consequent poor 5-year survival (~50%) due to limited screening programs and inefficient physical examination strategies. To address these limitations, liquid biopsy is recently emerging as a novel minimally invasive tool for the early identification of tumors as well as for the evaluation of tumor heterogeneity and prognosis of patients. Several studies have demonstrated that liquid biopsy in oral cancer could be useful for the detection of circulating biomarkers including circulating tumor DNA (ctDNA), microRNAs (miRNAs), proteins, and exosomes, thus improving diagnostic strategies and paving the way to personalized medicine. However, the application of liquid biopsy in oral cancer is still limited and further studies are needed to better clarify its clinical impact. The present manuscript aims to provide an updated overview of the potential use of liquid biopsy as an additional tool for the management of oral lesions by describing the available methodologies and the most promising biomarkers.
Collapse
|
34
|
Liu X, Papukashvili D, Wang Z, Liu Y, Chen X, Li J, Li Z, Hu L, Li Z, Rcheulishvili N, Lu X, Ma J. Potential utility of miRNAs for liquid biopsy in breast cancer. Front Oncol 2022; 12:940314. [PMID: 35992785 PMCID: PMC9386533 DOI: 10.3389/fonc.2022.940314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022] Open
Abstract
Breast cancer (BC) remains the most prevalent malignancy due to its incidence rate, recurrence, and metastasis in women. Conventional strategies of cancer detection– mammography and tissue biopsy lack the capacity to detect the complete cancer genomic landscape. Besides, they often give false- positive or negative results. The presence of this and other disadvantages such as invasiveness, high-cost, and side effects necessitates developing new strategies to overcome the BC burden. Liquid biopsy (LB) has been brought to the fore owing to its early detection, screening, prognosis, simplicity of the technique, and efficient monitoring. Remarkably, microRNAs (miRNAs)– gene expression regulators seem to play a major role as biomarkers detected in the samples of LB. Particularly, miR-21 and miR-155 among other possible candidates seem to serve as favorable biomarkers in the diagnosis and prognosis of BC. Hence, this review will assess the potential utility of miRNAs as biomarkers and will highlight certain promising candidates for the LB approach in the diagnosis and management of BC that may optimize the patient outcome.
Collapse
Affiliation(s)
- Xiangrong Liu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Dimitri Papukashvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhixiang Wang
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yan Liu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xiaoxia Chen
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jianrong Li
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zhiyuan Li
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Linjie Hu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zheng Li
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Nino Rcheulishvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoqing Lu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaoqing Lu, ; Jinfeng Ma,
| | - Jinfeng Ma
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaoqing Lu, ; Jinfeng Ma,
| |
Collapse
|
35
|
Hadjimichael AC, Pergaris A, Kaspiris A, Foukas AF, Theocharis SE. Liquid Biopsy: A New Translational Diagnostic and Monitoring Tool for Musculoskeletal Tumors. Int J Mol Sci 2021; 22:11526. [PMID: 34768955 PMCID: PMC8583711 DOI: 10.3390/ijms222111526] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022] Open
Abstract
Soft tissue and bone sarcomas represent a group of aggressive neoplasms often accompanied by dismal patient prognosis, especially when distant metastases are present. Moreover, effective treatment can pose a challenge, as recurrences are frequent and almost half of patients present with advanced disease. Researchers have unveiled the molecular abnormalities implicated in sarcomas' carcinogenesis, paving the way for novel treatment strategies based on each individual tumor's characteristics. Therefore, the development of new techniques aiding in early disease detection and tumor molecular profiling is imperative. Liquid biopsy refers to the sampling and analysis of patients' fluids, such as blood, to identify tumor biomarkers, through a variety of methods, including qRT-PCR, qPCR, droplet digital PCR, magnetic microbeads and digital PCR. Assessment of circulating tumor cells (CTCs), circulating free DNA (ctDNA), micro RNAs (miRs), long non-coding RNAs (lncRNAs), exosomes and exosome-associated proteins can yield a plethora of information on tumor molecular signature, histologic type and disease stage. In addition, the minimal invasiveness of the procedure renders possible its wide application in the clinical setting, and, therefore, the early detection of the presence of tumors. In this review of the literature, we gathered information on biomarkers assessed through liquid biopsy in soft tissue and bone sarcoma patients and we present the information they can yield for each individual tumor type.
Collapse
Affiliation(s)
- Argyris C. Hadjimichael
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece; (A.C.H.); (A.P.)
- Third Department of Orthopaedic Surgery, “KAT” General Hospital of Athens, Nikis 2, 14561 Kifissia, Greece;
| | - Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece; (A.C.H.); (A.P.)
| | - Angelos Kaspiris
- Division for Orthopaedic Research, Laboratory of Molecular Pharmacology, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Athanasios F. Foukas
- Third Department of Orthopaedic Surgery, “KAT” General Hospital of Athens, Nikis 2, 14561 Kifissia, Greece;
| | - Stamatios E. Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece; (A.C.H.); (A.P.)
| |
Collapse
|