1
|
Sbarbaro C, Márquez-Miranda V, Leal M, Pino-Rios R, Olivares P, González M, Díaz-Franulic I, González-Nilo F, Yáñez O, Duarte Y. Exploring the Mechanism of β-Cyclodextrin-Encased Phenolic Acids Functionalized with TPP for Antioxidant Activity and Targeting. Antioxidants (Basel) 2025; 14:465. [PMID: 40298777 PMCID: PMC12023939 DOI: 10.3390/antiox14040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Oxidative stress on the mitochondria in a human cell is attributed to several life-risking conditions, and as such, the importance of molecular structures packed with antioxidant properties and structural characteristics to enter the cell to help prevent such stress has been substantially relevant in recent years. In this study, we investigated the antioxidant properties of triphenylphosphonium (TPP)-conjugated phenolic acids encapsulated in β-cyclodextrin (β-CD). We synthesized TPP conjugates of caffeic, coumaric, and cinnamic acids and formed inclusion complexes with β-CD. Our results showed successful encapsulation of TPP conjugates in β-CD with high efficiency. The TPP conjugates maintained antioxidant activity, with slight reductions observed in β-CD complexes. Furthermore, cell viability studies showed low cytotoxicity of the dds. Computational analyses revealed that TPP conjugation preserved the chemical reactivity of the phenolic acids. Molecular dynamics simulations demonstrated stable inclusion complexes with β-CD and the free energy calculations indicated that TPP conjugation significantly enhanced the ability of caffeic acid to translocate across mitochondrial membranes. These results highlight the potential of TPP-conjugated phenolic acids encapsulated in β-CD as effective antioxidants with improved mitochondrial targeting capabilities.
Collapse
Affiliation(s)
- Christopher Sbarbaro
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| | - Matías Leal
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile;
| | - Ricardo Pino-Rios
- Instituto de Ciencias Exactas y Naturales (ICEN), Universidad Arturo Prat, Playa Brava 3256, Iquique 1111346, Chile;
| | - Pedro Olivares
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| | - Makarena González
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| | - Ignacio Díaz-Franulic
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| | - Fernando González-Nilo
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| | - Osvaldo Yáñez
- Centro de Modelación Ambiental y Dinámica de Sistemas (CEMADIS), Universidad de las Américas, Santiago 7500975, Chile;
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| |
Collapse
|
2
|
Jiang M, Li P, Han X, Jiang L, Han L, He Q, Yang C, Sun Z, Wang Y, Cao Y, Liu X, Wu W. Marine-Derived Bioactive Compounds: A Promising Strategy for Ameliorating Skeletal Muscle Dysfunction in COPD. Mar Drugs 2025; 23:158. [PMID: 40278279 PMCID: PMC12028452 DOI: 10.3390/md23040158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is frequently accompanied by skeletal muscle dysfunction, a critical and severe extrapulmonary complication. This dysfunction contributes to reduced exercise capacity, increased frequency of acute exacerbations, and elevated mortality, serving as an independent risk factor for poor prognosis in COPD patients. Owing to the unique physicochemical conditions of the marine environment, marine-derived bioactive compounds exhibit potent anti-inflammatory and antioxidant properties, demonstrating therapeutic potential for ameliorating COPD skeletal muscle dysfunction. This review summarizes marine-derived bioactive compounds with promising efficacy against skeletal muscle dysfunction in COPD, including polysaccharides, lipids, polyphenols, peptides, and carotenoids. The discussed compounds have shown bioactivities in promoting skeletal muscle health and suppressing muscle atrophy, thereby providing potential strategies for the prevention and treatment of COPD skeletal muscle dysfunction. These findings may expand the therapeutic strategies for managing COPD skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Meiling Jiang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (P.L.); (L.J.); (Y.W.)
| | - Xiaoyu Han
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Linhong Jiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (P.L.); (L.J.); (Y.W.)
| | - Lihua Han
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Qinglan He
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Chen Yang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Zhichao Sun
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (P.L.); (L.J.); (Y.W.)
| | - Yuanyuan Cao
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (P.L.); (L.J.); (Y.W.)
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| |
Collapse
|
3
|
Li S, Du Y, Chen G, Mao Y, Zhang W, Kang M, Zhu S, Wang D. Protocatechuic Acid Attenuates Inflammation in Macrophage-like Vascular Smooth Muscle Cells in ApoE -/- Mice. Nutrients 2025; 17:1090. [PMID: 40292571 PMCID: PMC11944442 DOI: 10.3390/nu17061090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Non-resolving inflammation in macrophage-like cells (MLCs) transdifferentiated from vascular smooth muscle cells and monocyte-derived macrophages aggravates atherosclerosis. We previously showed that polyphenolic protocatechuic acid (PCA) could reduce inflammation burden in monocyte-derived macrophages; however, it remains unknown how this compound affects MLCs inflammation. Methods: MLCs from the transdifferentiation of vascular smooth muscle cells induced by cholesterol and 30-week-old male ApoE-/- mice fed a semi-purified AIN-93G diet containing either 0.003% (wt:wt) of PCA for a duration of 20 weeks were used to examine the impact of PCA on the inflammatory response of MLCs. Results: Physiologically achievable doses of PCA (0.25-1 μM) dose-dependently inhibited lipopolysaccharide-induced NF-κB activation and simultaneously reduced pro-inflammatory cytokine levels. Mechanistically, this effect was mediated by effecting exportin-1 function, promoting nuclear export of phosphorylated-p65, independent of NF-κB kinase inhibitor α/β/γ, NF-κB inhibitor α, or importin-mediated nuclear import of p-p65. PCA reduced the nucleocytoplasmic ratio of exportin-1 (44%) without altering its abundance. Importantly, dietary supplementation with PCA reduced interleukin-1β content within MLCs in atherosclerotic plaques of ApoE-/- mice. In addition, dietary PCA reduced MLCs content in atherosclerotic plaques. Conclusions: PCA could attenuate inflammatory response in MLCs by targeting exportin-1 and also could inhibit the transdifferentiation of vascular smooth muscle cells into MLCs within atherosclerotic plaques, which might promote the translation from preclinical studies to clinical trials in patients with atherosclerosis.
Collapse
MESH Headings
- Animals
- Hydroxybenzoates/pharmacology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/cytology
- Apolipoproteins E/genetics
- Mice
- Macrophages/drug effects
- Macrophages/metabolism
- Inflammation/drug therapy
- Atherosclerosis/drug therapy
- NF-kappa B/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Mice, Knockout, ApoE
- Mice, Knockout
- Cytokines/metabolism
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Shuangshuang Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Northern Campus, Guangzhou 510080, China; (S.L.); (Y.D.); (G.C.); (Y.M.); (W.Z.); (M.K.); (S.Z.)
| | - Yushi Du
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Northern Campus, Guangzhou 510080, China; (S.L.); (Y.D.); (G.C.); (Y.M.); (W.Z.); (M.K.); (S.Z.)
| | - Guanyu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Northern Campus, Guangzhou 510080, China; (S.L.); (Y.D.); (G.C.); (Y.M.); (W.Z.); (M.K.); (S.Z.)
| | - Yihui Mao
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Northern Campus, Guangzhou 510080, China; (S.L.); (Y.D.); (G.C.); (Y.M.); (W.Z.); (M.K.); (S.Z.)
| | - Wenyu Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Northern Campus, Guangzhou 510080, China; (S.L.); (Y.D.); (G.C.); (Y.M.); (W.Z.); (M.K.); (S.Z.)
| | - Mengxi Kang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Northern Campus, Guangzhou 510080, China; (S.L.); (Y.D.); (G.C.); (Y.M.); (W.Z.); (M.K.); (S.Z.)
| | - Shasha Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Northern Campus, Guangzhou 510080, China; (S.L.); (Y.D.); (G.C.); (Y.M.); (W.Z.); (M.K.); (S.Z.)
| | - Dongliang Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Northern Campus, Guangzhou 510080, China; (S.L.); (Y.D.); (G.C.); (Y.M.); (W.Z.); (M.K.); (S.Z.)
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 518107, China
| |
Collapse
|
4
|
Ponce-Mora A, Salazar NA, Domenech-Bendaña A, Locascio A, Bejarano E, Gimeno-Mallench L. Interplay Between Polyphenols and Autophagy: Insights From an Aging Perspective. FRONT BIOSCI-LANDMRK 2025; 30:25728. [PMID: 40152368 DOI: 10.31083/fbl25728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 03/29/2025]
Abstract
The relationship between polyphenols and autophagy, particularly in the context of aging, presents a promising avenue for therapeutic interventions in age-related diseases. A decline in autophagy is associated with aging-related affections, and an increasing number of studies suggest that this enhancement is linked to cellular resilience and longevity. This review delves into the multifaceted roles of autophagy in cellular homeostasis and the potential of polyphenols to modulate autophagic pathways. We revised the most updated literature regarding the modulatory effects of polyphenols on autophagy in cardiovascular, liver, and kidney diseases, highlighting their therapeutic potential. We highlight the role of polyphenols as modulators of autophagy to combat age-related diseases, thus contributing to improving the quality of life in aging populations. A better understanding of the interplay of autophagy between autophagy and polyphenols will help pave the way for future research and clinical applications in the field of longevity medicine.
Collapse
Affiliation(s)
- Alejandro Ponce-Mora
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Nicolle Andrea Salazar
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Alicia Domenech-Bendaña
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Antonella Locascio
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Eloy Bejarano
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Lucia Gimeno-Mallench
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| |
Collapse
|
5
|
Fernández-Villascan C, Patiño-Herrera R, Patino I, Octavio Sánchez Vargas L, Salado-Leza D, Pérez E. Invasive Candidiasis: A Promising Approach Using Jatropha Dioica Extracts and Nanotechnology. Chem Biodivers 2025; 22:e202402339. [PMID: 39530555 DOI: 10.1002/cbdv.202402339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Candida albicans, a common fungal organism, often lives harmlessly in the human body. However, under certain conditions, it can turn into a dangerous pathogen, causing infections that range from mild to life-threatening. With rising resistance to antifungal treatments, understanding and controlling this opportunistic fungus has never been more crucial. This study highlights the potential of combining natural plant extracts, specifically the aqueous (JdextAq) and ethanolic (JdextEt) extracts of Jatropha dioica, with nanotechnology in the form of magnetite nanoparticles (MNPs) to combat this persistent pathogen. FTIR spectra revealed significant interactions between the metabolites and MNPs, specifically through binding to the Fe3+ and Fe2+ sites. The average size of the MNPs was 11±3 nm, and they are non-toxic even at high concentration (500 μg/ml). The same effect is observed with JdextEt; however, JdextAq is cytotoxic at this concentration. The JdextAq-MNPs hybrid is toxic even at very low concentrations (250-50 μg/ml). All materials demonstrated high inhibition against C. albicans. At safe concentrations for cell viability, MNPs (500 μg/ml) and JdextEt-MNPs (500-50 μg/ml) achieved the highest inhibition rates of 97.13 % and 97.56 %, respectively. As antifungal resistance rises, these findings pave the way for innovative therapeutic strategies against this opportunistic pathogen.
Collapse
Affiliation(s)
- Carlos Fernández-Villascan
- Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, Tecnológico Nacional de México, Av. Tecnológico y Antonio García Cubas Poniente #600, Celaya, Guanajuato, 38010, México
| | - Rosalba Patiño-Herrera
- Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, Tecnológico Nacional de México, Av. Tecnológico y Antonio García Cubas Poniente #600, Celaya, Guanajuato, 38010, México
| | - Ivonne Patino
- Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, Tecnológico Nacional de México, Av. Tecnológico y Antonio García Cubas Poniente #600, Celaya, Guanajuato, 38010, México
| | - Luis Octavio Sánchez Vargas
- Laboratorio de Bioquímica, Microbiología y Patología de la Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava #2 Zona Universitaria Poniente, San Luis Potosí, S. L. P., 78290, México
| | - Daniela Salado-Leza
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec Privadas del Pedregal, San Luis Potosí, S. L. P., 78295, México
- Investigadoras e Investigadores por México, CONAHCyT, Av. Insurgentes Sur 1582, 03940, Ciudad de México, México
| | - Elías Pérez
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec Privadas del Pedregal, San Luis Potosí, S. L. P., 78295, México
| |
Collapse
|
6
|
Stankovic S, Mutavdzin Krneta S, Djuric D, Milosevic V, Milenkovic D. Plant Polyphenols as Heart's Best Friends: From Health Properties, to Cellular Effects, to Molecular Mechanisms of Action. Int J Mol Sci 2025; 26:915. [PMID: 39940685 PMCID: PMC11816429 DOI: 10.3390/ijms26030915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/22/2024] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Polyphenols are micronutrients found in fruits, vegetables, tea, coffee, cocoa, medicinal herbs, fish, crustaceans, and algae. They can also be synthesized using recombinant microorganisms. Interest in plant-derived natural compounds has grown due to their potential therapeutic effects with minimal side effects. This is particularly important as the aging population faces increasing rates of chronic diseases such as cancer, diabetes, arthritis, cardiovascular, and neurological disorders. Studies have highlighted polyphenols' capacity to reduce risk factors linked to the onset of chronic illnesses. This narrative review discusses polyphenol families and their metabolism, and the cardioprotective effects of polyphenols evidenced from in vitro studies, as well as from in vivo studies, on different animal models of cardiac disease. This study also explores the molecular mechanisms underlying these benefits. Current research suggests that polyphenols may protect against ischemia, hypertension, cardiac hypertrophy, heart failure, and myocardial injury through complex mechanisms, including epigenetic and genomic modulation. However, further studies under nutritionally and physiologically relevant conditions, using untargeted multigenomic approaches, are needed to more comprehensively elucidate these mechanisms and firmly prove the cardioprotective effects of polyphenols.
Collapse
Affiliation(s)
- Sanja Stankovic
- Center for Medical Biochemistry, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Slavica Mutavdzin Krneta
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.K.); (D.D.)
| | - Dragan Djuric
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.K.); (D.D.)
| | - Verica Milosevic
- Department of Anatomy, Faculty of Medicine, University of Niš, 18000 Nis, Serbia;
| | - Dragan Milenkovic
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
7
|
Pojero F, Gervasi F. Polyphenol Treatment of Peripheral Blood Mononuclear Cells from Individuals of Different Ages. Methods Mol Biol 2025; 2857:191-221. [PMID: 39348067 DOI: 10.1007/978-1-0716-4128-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Human peripheral blood mononuclear cells (PBMCs) have been largely utilized to assess the cytotoxic, immunomodulatory, and anti-inflammatory properties of both synthetic and natural compounds. Within the latter category, polyphenols from dietary sources have been extensively analyzed. PBMCs represent a feasible in vitro model to study polyphenol hallmarks and activity according to quantitative and qualitative differences in immune responses in individuals of different age. In this chapter, we propose a method for PBMC treatment with polyphenols and analysis designed on age-dependent qualitative and quantitative variability in immune cell performance.
Collapse
Affiliation(s)
- Fanny Pojero
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Francesco Gervasi
- Specialistic Oncology Laboratory Unit, A.R.N.A.S. Hospitals Civico, Di Cristina e Benfratelli, Palermo, Italy
| |
Collapse
|
8
|
Cichon N, Grabowska W, Gorniak L, Stela M, Harmata P, Ceremuga M, Bijak M. Mechanistic and Therapeutic Insights into Flavonoid-Based Inhibition of Acetylcholinesterase: Implications for Neurodegenerative Diseases. Nutrients 2024; 17:78. [PMID: 39796512 PMCID: PMC11722824 DOI: 10.3390/nu17010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/03/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Flavonoids are naturally occurring polyphenolic compounds known for their extensive range of biological activities. This review focuses on the inhibitory effects of flavonoids on acetylcholinesterase (AChE) and their potential as therapeutic agents for cognitive dysfunction. AChE, a serine hydrolase that plays a crucial role in cholinergic neurotransmission, is a key target in the treatment of cognitive impairments due to its function in acetylcholine hydrolysis. Natural polyphenolic compounds, particularly flavonoids, have demonstrated significant inhibition of AChE, positioning them as promising alternatives or adjuncts in neuropharmacology. This study specifically examines flavonoids such as quercetin, apigenin, kaempferol, and naringenin, investigating their inhibitory efficacy, binding mechanisms, and additional neuroprotective properties, including their antioxidant and anti-inflammatory effects. In vitro, in vivo, and in silico analyses reveal that these flavonoids effectively interact with both the active and peripheral anionic sites of AChE, resulting in increased acetylcholine levels and the stabilization of cholinergic signaling. Their mechanisms of action extend beyond mere enzymatic inhibition, as they also exhibit antioxidant and anti-amyloidogenic properties, thereby offering a multifaceted approach to neuroprotection. Given these findings, flavonoids hold considerable therapeutic potential as modulators of AChE, with implications for enhancing cognitive function and treating neurodegenerative diseases. Future studies should prioritize the enhancement of flavonoid bioavailability, evaluate their efficacy in clinical settings, and explore their potential synergistic effects when combined with established therapies to fully harness their potential as neurotherapeutic agents.
Collapse
Affiliation(s)
- Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland (L.G.); (M.S.); (M.B.)
| | - Weronika Grabowska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland (L.G.); (M.S.); (M.B.)
| | - Leslaw Gorniak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland (L.G.); (M.S.); (M.B.)
| | - Maksymilian Stela
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland (L.G.); (M.S.); (M.B.)
| | - Piotr Harmata
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland;
| | - Michal Ceremuga
- Military Institute of Armoured and Automotive Technology, Okuniewska 1, 05-070 Sulejówek, Poland;
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland (L.G.); (M.S.); (M.B.)
| |
Collapse
|
9
|
Ciupei D, Colişar A, Leopold L, Stănilă A, Diaconeasa ZM. Polyphenols: From Classification to Therapeutic Potential and Bioavailability. Foods 2024; 13:4131. [PMID: 39767073 PMCID: PMC11675957 DOI: 10.3390/foods13244131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Though ubiquitous in nature, polyphenols gained scientific prominence only after the pioneering work of researchers like E. Fischer and K. Freudenberg, who demonstrated their potential beyond traditional applications, such as in the leather industry. Today, these bioactive compounds are recognized for their diverse therapeutic roles, including their use as adjuvants in cancer treatment, cancer prevention, and their anti-inflammatory and antioxidant properties. Additionally, polyphenols have demonstrated benefits in managing obesity, cardiovascular diseases, and neuromodulation. Their synthesis is influenced by environmental and genetic factors, with their concentrations varying based on the intensity of these variables, as well as the stage of ripening. This review provides a comprehensive overview of polyphenols, covering their classification, chemical structures, and bioavailability. The mechanisms influencing bioavailability, bioaccessibility, and bioactivity are explored in detail, alongside an introduction to their bioactive effects and associated metabolic pathways. Specific examples, such as the bioavailability of polyphenols in coffee and various types of onions, are analyzed. Despite their promising biological activities, a significant limitation of polyphenols lies in their inherently low oral bioavailability. However, their systemic circulation and the bioactive by-products formed during digestion present exciting opportunities for further research and application.
Collapse
Affiliation(s)
- Daria Ciupei
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania;
| | - Alexandru Colişar
- Faculty of Forestry and Cadastre, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania;
| | - Loredana Leopold
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania; (L.L.); (A.S.)
| | - Andreea Stănilă
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania; (L.L.); (A.S.)
| | - Zorița M. Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania; (L.L.); (A.S.)
| |
Collapse
|
10
|
Davidova S, Galabov AS, Satchanska G. Antibacterial, Antifungal, Antiviral Activity, and Mechanisms of Action of Plant Polyphenols. Microorganisms 2024; 12:2502. [PMID: 39770706 PMCID: PMC11728530 DOI: 10.3390/microorganisms12122502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
This review describes the enhanced classification of polyphenols into flavonoids, lignans, phenolic acids, stilbenes, and tannins. Its focus is the natural sources of polyphenols and an in-depth discussion of their antibacterial, antifungal, and antiviral activity. Besides a broad literature overview, this paper contains authors' experimental data according to some daily consumed vegetables such as tomatoes, different varieties of onion, garlic, parsley, and cayenne pepper and the probable relation of these activities to polyphenols. The isolation of polyphenols via conventional and ultrasonic, pressurized liquids and pulse-field extractions, as well as their methods for detection and determination, are interpreted as well. The main mechanisms by which polyphenols inhibit the growth of bacteria, fungi, and viruses, such as protein synthesis, cell membrane destabilization, and ROS production induction, are in focus. Data on polyphenol concentrations and their respective MIC or the inhibition zone diameters of different bacterial and fungal species and suppressing viral replication are depicted. The toxicity of polyphenols in vitro, ex vivo, and in vivo towards microorganisms and human/animal cells, and the safety of the polyphenols applied in clinical and industrial applications are expanded. This review also characterizes the antimicrobial effects of some chemically synthesized polyphenol derivatives. Biotechnological advances are also reported, especially the entrapment of polyphenols in biocompatible nanoparticles to enhance their bioavailability and efficacy. Polyphenols are promising for exploring molecules' novel antimicrobial substances and paving the path for effective novel antimicrobial agents' discovery, taking into consideration their positives and negatives.
Collapse
Affiliation(s)
- Slavena Davidova
- UPIZ “Educational and Research Laboratory”-MF, NBU, Department Natural Sciences, New Bulgarian University, Montevideo Blvd., 21, 1618 Sofia, Bulgaria;
| | - Angel S. Galabov
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 26, 1113 Sofia, Bulgaria;
| | - Galina Satchanska
- UPIZ “Educational and Research Laboratory”-MF, NBU, Department Natural Sciences, New Bulgarian University, Montevideo Blvd., 21, 1618 Sofia, Bulgaria;
| |
Collapse
|
11
|
Wangdi JT, O’Leary MF, Kelly VG, Tang JCY, Bowtell JL. Montmorency cherry supplementation enhances 15 km cycling time trial performance: Optimal timing 90-min pre-exercise. Eur J Sport Sci 2024; 24:1480-1494. [PMID: 39213288 PMCID: PMC11451560 DOI: 10.1002/ejsc.12187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Montmorency cherry (MC) can improve endurance performance, but optimal pre-exercise timing of supplementation and influence of training status on efficacy are unknown. We investigated the effect of MC concentrate ingestion between 30- and 150-min pre-exercise in trained and recreational cyclists on 15-km time trial (TT) performance and exercise economy. Twenty participants (10 recreationally active, RA; 10 trained, T) completed 10 min of steady-state exercise (SSE) at 40%Δ (SSE) and a TT on four separate occasions following an unsupplemented (US), 30-, 90- or 150-min pre-exercise Montmorency cherry concentrate (MCC) supplementation conditions (MCC30/90/150min). Venous and capillary blood samples were taken at regular intervals pre- and post-SSE and TT. MCC significantly improved TT performance, but not exercise economy. The greatest improvement in performance occurred following MCC90min compared to US (US 1603.1 ± 248 s vs. MCC90min 1554.8 ± 226.7 s, 2.83% performance improvement). Performance was significantly enhanced for trained (US 1496.6 ± 173.1 s vs. MCC90min 1466.8 ± 157.6 s) but not recreationally active participants. Capillary [lactate] and heart rate were significantly greater during the TT for the 90-min dose timing (p < 0.05). In the MCC30min and MCC90min conditions, plasma ferulic (US 8.71 ± 3.22 nmol. L-1 vs. MCC30min 15.80 ± 8.69 nmol. L-1, MCC90min 12.65 ± 4.84 nmol. L-1) and vanillic acid (US 25.14 ± 10.91 nmol.L-1 vs. MCC30min 153.07 ± 85.91 nmol. L-1, MCC90min 164.58 ± 59.06 nmol. L-1) were significantly higher pre-exercise than in US and MCC150min conditions (p < 0.05). There was no significant change in muscle oxygenation status or plasma nitrite/nitrate concentration. MCC supplementation enhanced endurance exercise performance optimally when consumed ∼90 min pre-exercise producing maximal plasma phenolic metabolites during exercise. The ergogenic effect was greater for trained participants.
Collapse
Affiliation(s)
- Jimmy T. Wangdi
- BioActivEx, Public Health and Sport SciencesSt Luke's CampusUniversity of Exeter Medical SchoolDevonUK
- School of Human Movement and Nutrition SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Mary F. O’Leary
- BioActivEx, Public Health and Sport SciencesSt Luke's CampusUniversity of Exeter Medical SchoolDevonUK
| | - Vincent G. Kelly
- School of Exercise and Nutrition SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Jonathan C. Y. Tang
- Bioanalytical FacilityNorwich Medical SchoolUniversity of East AngliaNorwichUK
- Clinical BiochemistryDepartments of Laboratory MedicineNorfolk and Norwich University Hospital NHS Foundation TrustNorwichUK
| | - Joanna L. Bowtell
- BioActivEx, Public Health and Sport SciencesSt Luke's CampusUniversity of Exeter Medical SchoolDevonUK
| |
Collapse
|
12
|
Osakabe N, Ohmoto M, Shimizu T, Iida N, Fushimi T, Fujii Y, Abe K, Calabrese V. Gastrointestinal hormone-mediated beneficial bioactivities of bitter polyphenols. FOOD BIOSCI 2024; 61:104550. [DOI: 10.1016/j.fbio.2024.104550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Zhang M, Qiu Z. The impact of freeze-dried Baiyedancong-Oolong tea aqueous extract containing bioactive compounds on the activities of CYP450 enzymes, the transport capabilities of P-gp and OATs, and transcription levels in mice. Food Nutr Res 2024; 68:10605. [PMID: 39376904 PMCID: PMC11457910 DOI: 10.29219/fnr.v68.10605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/14/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024] Open
Abstract
In this study, (-)-epigallocatechin gallate (EGCG) and caffeine extracted from freeze-dried autumn Baiyedancong Oolong tea (FBOT) were orally administered to mice for 7 consecutive days to explore the effects of BOT and its bioactive compounds on the activities and transcription levels of CYP450 enzymes, intestinal effluence transporter P-gp, and renal ingestion Organic Anion Transporters (OATs). Concurrently, EGCG and caffeine enhanced the activities of CYP3A, CYP2E1, and CYP2C37 in the liver of mice, while impairing the transport capabilities of P-gp and OATs. Reduced levels of MDR1 encoding P-gp transcription in the small intestine and renal OAT1 and OAT3 revealed that transcription was involved in the regulation of CYP450, P-gp, and OATs. The reduced transcription level of liver CYP2E1 suggested that CYP2E1 activity may have been elevated due to alternative mechanisms, but not through transcription. The absorption, metabolism, and excretion of drugs may be influenced by the daily consumption or high-dose administration of BOT and its related products, in which EGCG and caffeine may make great contributions.
Collapse
Affiliation(s)
- Miaogao Zhang
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhenguo Qiu
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
14
|
Kim KJ, Kim JY. Polyphenols in foods: a potential strategy for preventing and managing the postprandial hyperglycemic response. Food Sci Biotechnol 2024; 33:2699-2713. [PMID: 39184987 PMCID: PMC11339232 DOI: 10.1007/s10068-024-01607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 08/27/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a significant health risk worldwide, and effective management strategies are needed. Polyphenols exhibit diverse biological functions, are abundant in various plants, and influence carbohydrate digestion and absorption. This review provides a comprehensive overview of clinical evidence regarding the relationship between dietary polyphenols and the postprandial hyperglycemic response. Human intervention studies have demonstrated the benefits of polyphenol-rich foods in improving glucose and insulin metabolism, underscoring their role in preventing T2DM. These findings highlight the potential of polyphenol-rich foods for managing hyperglycemia and mitigating T2DM risk and provide insight into effective dietary strategies for glycemic control and overall health.
Collapse
Affiliation(s)
- Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| |
Collapse
|
15
|
Mamani Ramos Y, Huamán Castilla NL, Colque Ayma EJ, Mamani Condori N, Campos Quiróz CN, Vilca FZ. Divergent effects of azithromycin on purple corn (Zea mays L.) cultivation: Impact on biomass and antioxidant compounds. PLoS One 2024; 19:e0307548. [PMID: 39172948 PMCID: PMC11340972 DOI: 10.1371/journal.pone.0307548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/08/2024] [Indexed: 08/24/2024] Open
Abstract
The present study assessed the impact of using irrigation water contaminated with Azithromycin (AZM) residues on the biomass and antioxidant compounds of purple corn; for this purpose, the plants were cultivated under ambient conditions, and the substrate used consisted of soil free from AZM residues, mixed with compost in a ratio of 1:1 (v/v). The experiment was completely randomized with four replications, with treatments of 0, 1, 10, and 100 μg/L of AZM. The results indicate that the presence of AZM in irrigation water at doses of 1 and 10 μg/L increases the weight of dry aboveground biomass, while at an amount of 100 μg/L, it decreases. Likewise, this study reveals that by increasing the concentration of AZM from 1 to 10 μg/L, total polyphenols and monomeric anthocyanins double, in contrast, with an increase to 100 μg/L, these decrease by 44 and 53%, respectively. It has been demonstrated that purple corn exposed to the antibiotic AZM at low doses has a notable antioxidant function in terms of DPPH and ORAC. The content of flavonols, phenolic acids, and flavanols increases by 57, 28, and 83%, respectively, when the AZM concentration is from 1 to 10 μg/L. However, with an increase to 100 μg/L, these compounds decrease by 17, 40, and 42%, respectively. On the other hand, stem length, root length, and dry weight of root biomass are not significantly affected by the presence of AZM in irrigation water.
Collapse
Affiliation(s)
- Yoselin Mamani Ramos
- Escuela Profesional de Ingeniería Ambiental de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
- Laboratorio de Contaminantes Orgánicos y Ambiente del IINDEP de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
| | - Nils Leander Huamán Castilla
- Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Moquegua, Perú
- Laboratorio de Tecnologías Sustentables para la Extracción de Compuestos de Alto Valor, Instituto de Investigación para el Desarrollo del Perú, Universidad Nacional de Moquegua, Moquegua, Perú
| | - Elvis Jack Colque Ayma
- Laboratorio de Contaminantes Orgánicos y Ambiente del IINDEP de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
| | - Noemi Mamani Condori
- Escuela Profesional de Ingeniería Ambiental de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
- Laboratorio de Contaminantes Orgánicos y Ambiente del IINDEP de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
| | - Clara Nely Campos Quiróz
- Laboratorio de Contaminantes Orgánicos y Ambiente del IINDEP de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
| | - Franz Zirena Vilca
- Escuela Profesional de Ingeniería Ambiental de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
- Laboratorio de Contaminantes Orgánicos y Ambiente del IINDEP de la Universidad Nacional de Moquegua, Urb Ciudad Jardín-Pacocha-Ilo, Perú
| |
Collapse
|
16
|
Saracila M, Untea AE, Oancea AG, Varzaru I, Vlaicu PA. Comparative Analysis of Black Chokeberry ( Aronia melanocarpa L.) Fruit, Leaves, and Pomace for Their Phytochemical Composition, Antioxidant Potential, and Polyphenol Bioaccessibility. Foods 2024; 13:1856. [PMID: 38928798 PMCID: PMC11202527 DOI: 10.3390/foods13121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The study aims to compare the nutrient composition, antioxidant potential, and polyphenol bioaccessibility of the fruit, leaves, and pomace of black chokeberry. Phytochemical characterization, antioxidant activity, and the effect of in vitro gastrointestinal digestion on the individual phenolic compounds of fruit, leaves, and pomace of black chokeberry were assessed. Results showed that leaves had a higher content of polyphenols (61.06 mg GAE/g dw), flavonoids (8.47 mg QE/g), and tocopherols (1172.20 mg/kg) than fruit (27.99 mg GAE/g dw polyphenols, 5.23 mg QE/g flavonoids, 38.48 mg/kg tocopherols) and pomace (22.94 mg GAE/g dw polyphenols, 1.89 mg QE/g flavonoids and 157.19 mg/kg tocopherols), with superior in vitro antioxidant activity. Chlorogenic acids were the dominant phenolic compounds in black chokeberry undigested samples (2.713 mg/g in fruit, 17.954 mg/g in leaves, and 1.415 mg/g in pomace) but are poorly absorbed (bioaccessibility index in intestinal phase of 28.84% for fruit, 8.81% for leaves, and 31.90% for pomace). Hydroxybenzoic acids were highly stable in leaves and fruit during simulated digestion and had high bioaccessibility. In conclusion, residues from black chokeberry processing are also valuable sources of bioactive compounds, but the pomace had higher polyphenol bioaccessibility than leaves and might be a promising supplement for the food industry.
Collapse
Affiliation(s)
- Mihaela Saracila
- Feed and Food Quality Department, National Research and Development Institute for Animal Biology and Nutrition, Balotesti, 077015 Ilfov, Romania; (A.E.U.); (A.G.O.); (P.A.V.)
| | | | | | | | | |
Collapse
|
17
|
Haraf G, Goluch Z, Teleszko M, Latocha P. Antioxidant Activity and Fatty Acid Profile of Sous-Vide Beef Marinated with Kiwiberry Fruit Pulp: Effects of Level Addition and Refrigerated Storage. Foods 2024; 13:1446. [PMID: 38790746 PMCID: PMC11120118 DOI: 10.3390/foods13101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
The purpose of the study was to determine the antioxidant activity (AA) and fatty acid (FA) profile of sous-vide beef previously marinated in brine with a 10, 20 and 30% addition of kiwiberry (Actinidia arguta cv. 'Ananasnaya') fruit pulp, as well as changes in the parameters studied after 0, 1, 2 and 3 weeks of refrigerated storage in a vacuum package. The FA profile, FRAP (ferric-reducing antioxidant power assay), ABTS (2,2'-azinobis (3-ethylbenzthiazoline-6-acid)), total polyphenols, chlorophylls and carotenoids were also determined in the fruit pulp. Lipid indices for meat were calculated based on the obtained FA profile. The values of FRAP and ABTS of experimental meat products were significantly (p ≤ 0.05) higher than those of control samples but decreased with storage time. The proportion of unsaturated FA in the lipids of sous-vide meat was higher in samples with pulp than in control samples and insignificantly decreased with storage time. Meat marinated with kiwiberry pulp was characterized by a significantly (p ≤ 0.05) higher proportion of ALA (α-linolenic acid) and LA (linoleic acid), considerably affecting the more favorable value of polyunsaturated FA/saturated FA ratio. A troubling finding was the heightened level of palmitic acid (C16:0) in the lipids of beef subjected to 30% kiwiberry pulp, a factor recognized to play a significant role in the development of various diseases. Beef marinated with 20% kiwiberry pulp addition provides greater nutritional and health benefits than other sample variants because of optimal AA and FA profile changes during refrigerated storage.
Collapse
Affiliation(s)
- Gabriela Haraf
- Department of Food Technology and Nutrition, Faculty of Production Engineering, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland; (Z.G.); (M.T.)
| | - Zuzanna Goluch
- Department of Food Technology and Nutrition, Faculty of Production Engineering, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland; (Z.G.); (M.T.)
| | - Mirosława Teleszko
- Department of Food Technology and Nutrition, Faculty of Production Engineering, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland; (Z.G.); (M.T.)
| | - Piotr Latocha
- Department of Environmental Protection and Dendrology, Faculty of Horticulture, Institute of Horticultural Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| |
Collapse
|
18
|
Cotas J, Lomartire S, Gonçalves AMM, Pereira L. From Ocean to Medicine: Harnessing Seaweed's Potential for Drug Development. Int J Mol Sci 2024; 25:797. [PMID: 38255871 PMCID: PMC10815561 DOI: 10.3390/ijms25020797] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Seaweed, a miscellaneous group of marine algae, has long been recognized for its rich nutritional composition and bioactive compounds, being considered nutraceutical ingredient. This revision delves into the promising role of seaweed-derived nutrients as a beneficial resource for drug discovery and innovative product development. Seaweeds are abundant sources of essential vitamins, minerals, polysaccharides, polyphenols, and unique secondary metabolites, which reveal a wide range of biological activities. These bioactive compounds possess potential therapeutic properties, making them intriguing candidates for drug leads in various medical applications and pharmaceutical drug development. It explores their pharmacological properties, including antioxidant, anti-inflammatory, antimicrobial, and anticancer activities, shedding light on their potential as therapeutic agents. Moreover, the manuscript provides insights into the development of formulation strategies and delivery systems to enhance the bioavailability and stability of seaweed-derived compounds. The manuscript also discusses the challenges and opportunities associated with the integration of seaweed-based nutrients into the pharmaceutical and nutraceutical industries. Regulatory considerations, sustainability, and scalability of sustainable seaweed sourcing and cultivation methods are addressed, emphasizing the need for a holistic approach in harnessing seaweed's potential. This revision underscores the immense potential of seaweed-derived compounds as a valuable reservoir for drug leads and product development. By bridging the gap between marine biology, pharmacology, and product formulation, this research contributes to the critical advancement of sustainable and innovative solutions in the pharmaceutical and nutraceutical sectors.
Collapse
Affiliation(s)
- João Cotas
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| | - Silvia Lomartire
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| | - Ana M. M. Gonçalves
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leonel Pereira
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| |
Collapse
|
19
|
Popescu (Stegarus) DI, Frum A, Dobrea CM, Cristea R, Gligor FG, Vicas LG, Ionete RE, Sutan NA, Georgescu C. Comparative Antioxidant and Antimicrobial Activities of Several Conifer Needles and Bark Extracts. Pharmaceutics 2023; 16:52. [PMID: 38258063 PMCID: PMC10821083 DOI: 10.3390/pharmaceutics16010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Nowadays, an increased concern regarding using natural products for their health benefits can be observed. The aim of this study was to assess and compare several phenolic compounds found in 15- to 60-year-old Douglas fir, silver fir, larch, pine, and spruce needle and bark extracts and to evaluate their antioxidant and antimicrobial activities. Spectrophotometric assays were used to determine the total polyphenol content and the antioxidant activity that was assessed by using the DPPH• radical scavenging assay (RSA), the ferric reducing antioxidant power assay (FRAP), and the ABTS•+ radical cation scavenging assay (ABTS). The phytochemical content was determined by using high-performance liquid chromatography, and the antimicrobial activity was determined by assessing the minimal inhibition concentration (MIC). The results of the study show a total polyphenol content of 62.45-109.80 mg GAE/g d.w. and an antioxidant activity of 91.18-99.32% for RSA, 29.16-35.74 µmol TE/g d.w. for FRAP, and 38.23-53.57 µmol TE/g d.w. for ABTS. The greatest quantity of phenolic compound for most of the extracts was for (+)-catechin, and it had values between 165.79 and 5343.27 µg/g d.w. for these samples. The antimicrobial inhibition for all the extracts was the strongest for Staphylococcus aureus (MIC 62.5-125 µg/mL). The extracts analyzed could be used for their bioactive potential after further investigations.
Collapse
Affiliation(s)
- Diana Ionela Popescu (Stegarus)
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 240050 Ramnicu Valcea, Romania; (D.I.P.); (R.E.I.)
| | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
| | - Carmen Maximiliana Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
| | - Ramona Cristea
- Department of Agricultural Sciences and Food Engineering, “Lucian Blaga” University of Sibiu, 550012 Sibiu, Romania; (R.C.); (C.G.)
| | - Felicia Gabriela Gligor
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
| | - Laura Gratiela Vicas
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Roxana Elena Ionete
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 240050 Ramnicu Valcea, Romania; (D.I.P.); (R.E.I.)
| | - Nicoleta Anca Sutan
- Department of Natural Sciences, Piteşti University Center, National University of Science and Technology Politechnica Bucharest, 110040 Pitesti, Romania;
| | - Cecilia Georgescu
- Department of Agricultural Sciences and Food Engineering, “Lucian Blaga” University of Sibiu, 550012 Sibiu, Romania; (R.C.); (C.G.)
| |
Collapse
|
20
|
Osakabe N, Modafferi S, Ontario ML, Rampulla F, Zimbone V, Migliore MR, Fritsch T, Abdelhameed AS, Maiolino L, Lupo G, Anfuso CD, Genovese E, Monzani D, Wenzel U, Calabrese EJ, Vabulas RM, Calabrese V. Polyphenols in Inner Ear Neurobiology, Health and Disease: From Bench to Clinics. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2045. [PMID: 38004094 PMCID: PMC10673256 DOI: 10.3390/medicina59112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
There is substantial experimental and clinical interest in providing effective ways to both prevent and slow the onset of hearing loss. Auditory hair cells, which occur along the basilar membrane of the cochlea, often lose functionality due to age-related biological alterations, as well as from exposure to high decibel sounds affecting a diminished/damaged auditory sensitivity. Hearing loss is also seen to take place due to neuronal degeneration before or following hair cell destruction/loss. A strategy is necessary to protect hair cells and XIII cranial/auditory nerve cells prior to injury and throughout aging. Within this context, it was proposed that cochlea neural stem cells may be protected from such aging and environmental/noise insults via the ingestion of protective dietary supplements. Of particular importance is that these studies typically display a hormetic-like biphasic dose-response pattern that prevents the occurrence of auditory cell damage induced by various model chemical toxins, such as cisplatin. Likewise, the hormetic dose-response also enhances the occurrence of cochlear neural cell viability, proliferation, and differentiation. These findings are particularly important since they confirmed a strong dose dependency of the significant beneficial effects (which is biphasic), whilst having a low-dose beneficial response, whereas extensive exposures may become ineffective and/or potentially harmful. According to hormesis, phytochemicals including polyphenols exhibit biphasic dose-response effects activating low-dose antioxidant signaling pathways, resulting in the upregulation of vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Modulation of the vitagene network through polyphenols increases cellular resilience mechanisms, thus impacting neurological disorder pathophysiology. Here, we aimed to explore polyphenols targeting the NF-E2-related factor 2 (Nrf2) pathway to neuroprotective and therapeutic strategies that can potentially reduce oxidative stress and inflammation, thus preventing auditory hair cell and XIII cranial/auditory nerve cell degeneration. Furthermore, we explored techniques to enhance their bioavailability and efficacy.
Collapse
Affiliation(s)
- Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Saitama 337-8570, Japan;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Vincenzo Zimbone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Rita Migliore
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | | | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Luigi Maiolino
- Department of Medical, Surgical Advanced Technologies “G. F. Ingrassia”, University of Catania, 95125 Catania, Italy;
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Elisabetta Genovese
- Department of Maternal and Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Daniele Monzani
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37100 Verona, Italy;
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, 35392 Giessen, Germany
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - R. Martin Vabulas
- Charité-Universitätsmedizin Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| |
Collapse
|
21
|
Susilawati E, Levita J, Susilawati Y, Sumiwi SA. Pharmacology activity, toxicity, and clinical trials of Erythrina genus plants (Fabaceae): an evidence-based review. Front Pharmacol 2023; 14:1281150. [PMID: 38044940 PMCID: PMC10690608 DOI: 10.3389/fphar.2023.1281150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
The concept of using plants to alleviate diseases is always challenging. In West Java, Indonesia, a local plant, named dadap serep has been traditionally used to reduce blood glucose, fever, and edema, by pounding the leaves and applying them on the inflamed skin, or boiled and consumed as herbal tea. This plant belongs to the Erythrina genus, which covers approximately 120 species. The scope of this review (1943-2023) is related to the Global Development Goals, in particular Goal 3: Good Health and Wellbeing, by focusing on the pharmacology activity, toxicity, and clinical trials of Erythrina genus plants and their metabolites, e.g., pterocarpans, alkaloids, and flavonoids. Articles were searched on PubMed and ScienceDirect databases, using "Erythrina" AND "pharmacology activity" keywords, and only original articles written in English and open access were included. In vitro and in vivo studies reveal promising results, particularly for antibacterial and anticancer activities. The toxicity and clinical studies of Erythrina genus plants are limitedly reported. Considering that extensive caution should be taken when prescribing botanical drugs for patients parallelly taking a narrow therapeutic window drug, it is confirmed that no interactions of the Erythrina genus were recorded, indicating the safety of the studied plants. We, therefore, concluded that Erythrina genus plants are promising to be further explored for their effects in various signaling pathways as future plant-based drug candidates.
Collapse
Affiliation(s)
- Elis Susilawati
- Doctoral Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Faculty of Pharmacy, Bhakti Kencana University, Bandung, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Yasmiwar Susilawati
- Department of Biology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
22
|
Herrera-Rocha KM, Manjarrez-Juanes MM, Larrosa M, Barrios-Payán JA, Rocha-Guzmán NE, Macías-Salas A, Gallegos-Infante JA, Álvarez SA, González-Laredo RF, Moreno-Jiménez MR. The Synergistic Effect of Quince Fruit and Probiotics ( Lactobacillus and Bifidobacterium) on Reducing Oxidative Stress and Inflammation at the Intestinal Level and Improving Athletic Performance during Endurance Exercise. Nutrients 2023; 15:4764. [PMID: 38004161 PMCID: PMC10675360 DOI: 10.3390/nu15224764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Endurance exercise promotes damage at the intestinal level and generates a variety of symptoms related to oxidative stress processes, inflammatory processes, microbiota dysbiosis, and intestinal barrier damage. This study evaluated the effects of quince (Cydonia oblonga Mill.) and probiotics of the genera Lactobacillus and Bifidobacterium on intestinal protection and exercise endurance in an animal swimming model. Phytochemical characterization of the quince fruit demonstrated a total dietary fiber concentration of 0.820 ± 0.70 g/100 g and a fiber-bound phenolic content of 30,218 ± 104 µg/g in the freeze-dried fruit. UPLC-PDA-ESI-QqQ analyses identified a high content of polyphenol, mainly flavanols, hydroxycinnamic acids, hydroxybenzoic acids, flavonols, and, to a lesser extent, dihydrochalcones. The animal model of swimming was performed using C57BL/6 mice. The histological results determined that the consumption of the synbiotic generated intestinal protection and increased antioxidant (catalase and glutathione peroxidase enzymes) and anti-inflammatory (TNF-α and IL-6 and increasing IL-10) activities. An immunohistochemical analysis indicated mitochondrial biogenesis (Tom2) at the muscular level related to the increased swimming performance. These effects correlated mainly with the polyphenol content of the fruit and the effect of the probiotics. Therefore, this combination of quince and probiotics could be an alternative for the generation of a synbiotic product that improves exercise endurance and reduces the effects generated by the practice of high performance sports.
Collapse
Affiliation(s)
- Karen Marlenne Herrera-Rocha
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - María Magdalena Manjarrez-Juanes
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Mar Larrosa
- Department of Nutrition and Food Science, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge Alberto Barrios-Payán
- Laboratory of Experimental Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Vasco de Quiroga #15, Tlalpan, Ciudad de México 14080, Mexico
| | - Nuria Elizabeth Rocha-Guzmán
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Alejo Macías-Salas
- Hospital Santiago Ramón y Cajal, Departamento de Patología, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Durango 34079, Mexico
| | - José Alberto Gallegos-Infante
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Saul Alberto Álvarez
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Rubén Francisco González-Laredo
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Martha Rocío Moreno-Jiménez
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| |
Collapse
|
23
|
Singh K, Adhikari B, Low J, Brennan MA, Newman L, Brennan CS, Utama-Ang N. Development, characterization, and consumer acceptance evaluation of thermally stable capsule beads containing mixed extracts of green tea and turmeric. Sci Rep 2023; 13:19299. [PMID: 37935858 PMCID: PMC10630281 DOI: 10.1038/s41598-023-46339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
The aim of this study was to investigate the ability of shell (coating) formulations comprised of alginate and glucono delta lactone (GDL) to encapsulate a mixture of green tea and turmeric extracts. Three concentrations of alginate and GDL were used at 0.5%, 0.75%, and 1%, w/v and their solid ratio was varied using a factorial design. A response surface model was applied to optimize the retention of catechin and curcuminoid contents, to determine encapsulation efficiency, and to minimize undesirable flavor and taste. Increasing the concentration of alginate and GDL significantly increased the retention of catechin and curcuminoid contents, encapsulation efficiency, and consumer acceptance (p < 0.05). The encapsulating solution containing 1% of each alginate and GDL performed the best against each criterion. The thermal treatment carried out at the boiling point of water for 15 min had a significant impact on the retention of catechin and curcuminoid content which, in the thermally-treated beads, was 5.15 and 3.85 times higher than unencapsulated, respectively. The consumer acceptance of the encapsulated beads after thermal treatment was higher than that of the unencapsulated formulations as they exhibited lesser pungent flavor and bitterness. The innovative process of thermally stable microencapsulation can produce anti-cancer activity compounds involved in functional food industrial sectors.
Collapse
Affiliation(s)
- Kanjana Singh
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- School of Science, RMIT University, Melbourne, VIC, 3083, Australia
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC, 3083, Australia
| | - Julia Low
- School of Science, RMIT University, Melbourne, VIC, 3083, Australia
| | | | - Lisa Newman
- School of Science, RMIT University, Melbourne, VIC, 3083, Australia
| | | | - Niramon Utama-Ang
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Cluster of High Value Products From Thai Rice and Plants for Health, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
24
|
Zagoskina NV, Zubova MY, Nechaeva TL, Kazantseva VV, Goncharuk EA, Katanskaya VM, Baranova EN, Aksenova MA. Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). Int J Mol Sci 2023; 24:13874. [PMID: 37762177 PMCID: PMC10531498 DOI: 10.3390/ijms241813874] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Phenolic compounds or polyphenols are among the most common compounds of secondary metabolism in plants. Their biosynthesis is characteristic of all plant cells and is carried out with the participation of the shikimate and acetate-malonate pathways. In this case, polyphenols of various structures are formed, such as phenylpropanoids, flavonoids, and various oligomeric and polymeric compounds of phenolic nature. Their number already exceeds 10,000. The diversity of phenolics affects their biological activity and functional role. Most of their representatives are characterized by interaction with reactive oxygen species, which manifests itself not only in plants but also in the human body, where they enter through food chains. Having a high biological activity, phenolic compounds are successfully used as medicines and nutritional supplements for the health of the population. The accumulation and biosynthesis of polyphenols in plants depend on many factors, including physiological-biochemical, molecular-genetic, and environmental factors. In the review, we present the latest literature data on the structure of various classes of phenolic compounds, their antioxidant activity, and their biosynthesis, including their molecular genetic aspects (genes and transfactors). Since plants grow with significant environmental changes on the planet, their response to the action of abiotic factors (light, UV radiation, temperature, and heavy metals) at the level of accumulation and composition of these secondary metabolites, as well as their metabolic regulation, is considered. Information is given about plant polyphenols as important and necessary components of functional nutrition and pharmaceutically valuable substances for the health of the population. Proposals on promising areas of research and development in the field of plant polyphenols are presented.
Collapse
Affiliation(s)
- Natalia V. Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Maria Y. Zubova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Tatiana L. Nechaeva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Varvara V. Kazantseva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Evgenia A. Goncharuk
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Vera M. Katanskaya
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Ekaterina N. Baranova
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, 127276 Moscow, Russia;
- All Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, 127550 Moscow, Russia
| | - Maria A. Aksenova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| |
Collapse
|
25
|
Granato D. Next-generation analytical platforms for antioxidant capacity assessment: The urge for realistic and physiologically relevant methods. Biomed Pharmacother 2023; 165:115155. [PMID: 37454590 DOI: 10.1016/j.biopha.2023.115155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Bioactive compounds, such as carotenoids, alkaloids, and phenolics, are well known because of their alleged health benefits when consumed regularly in a balanced healthy diet. Some well-documented bioactivities are antioxidant, antihypertensive, antihyperglycemic, antilipidemic, anti-obesity, anti-inflammatory, and antimicrobial capacities. Trying to associate the chemical composition of distinct sources and their bioactivity using in vitro methods, several assays have been developed, implemented, and optimised to recapitulate human physiological conditions. However, in most cases, pitfalls are apparent, and no single test tube-based assay can predict in vivo responses. The need for a more physiologically relevant cell-based method to evaluate the antioxidant capacity of putative antioxidants is apparent. Therefore, in this Review, the current state-of-the-art in food science and nutrition is aligned with cell biology/bioengineering approaches to propose combining in vitro digestion and absorption to obtain a bioavailable fraction containing antioxidants. Overall, human plasma, 2-dimensional human cell lines, such as erythrocytes, lymphocytes, hepatocytes, enterocytes and, ultimately, 3-dimensional spheroids (organoids) could be used as biologically relevant models to assess the antioxidant activity of compounds, foods, and nutraceuticals. This versatile approach is deemed suitable, accurate, reproducible, and physiologically relevant to evaluate the protective effects of antioxidants against ROS-mediated oxidation in vitro.
Collapse
Affiliation(s)
- Daniel Granato
- University of Limerick, School of Natural Sciences, Faculty of Science and Engineering, Department of Biological Sciences, Bioactivity and Applications Lab, Limerick V94 T9PX, Ireland; Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
| |
Collapse
|
26
|
Micek A, Bolesławska I, Jagielski P, Konopka K, Waśkiewicz A, Witkowska AM, Przysławski J, Godos J. Association of dietary intake of polyphenols, lignans, and phytosterols with immune-stimulating microbiota and COVID-19 risk in a group of Polish men and women. Front Nutr 2023; 10:1241016. [PMID: 37599696 PMCID: PMC10436747 DOI: 10.3389/fnut.2023.1241016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Objectives Devastating consequences of COVID-19 disease enhanced the role of promoting prevention-focused practices. Among targeted efforts, diet is regarded as one of the potential factors which can affect immune function and optimal nutrition is postulated as the method of augmentation of people's viral resistance. As epidemiological evidence is scarce, the present study aimed to explore the association between dietary intake of total polyphenols, lignans and plant sterols and the abundance of immunomodulatory gut microbiota such as Enterococcus spp. and Escherichia coli and the risk of developing COVID-19 disease. Methods Demographic data, dietary habits, physical activity as well as the composition of body and gut microbiota were analyzed in a sample of 95 young healthy individuals. Dietary polyphenol, lignan and plant sterol intakes have been retrieved based on the amount of food consumed by the participants, the phytochemical content was assessed in laboratory analysis and using available databases. Results For all investigated polyphenols and phytosterols, except campesterol, every unit increase in the tertile of intake category was associated with a decrease in the odds of contracting COVID-19. The risk reduction ranged from several dozen percent to 70 %, depending on the individual plant-based chemical, and after controlling for basic covariates it was statistically significant for secoisolariciresinol (OR = 0.28, 95% CI: 0.11-0.61), total phytosterols (OR = 0.47, 95% CI: 0.22-0.95) and for stigmasterols (OR = 0.34, 95% CI: 0.14-0.72). We found an inverse association between increased β-sitosterol intake and phytosterols in total and the occurrence of Escherichia coli in stool samples outside reference values, with 72% (OR = 0.28, 95% CI: 0.08-0.86) and 66% (OR = 0.34, 95% CI: 0.10-1.08) reduced odds of abnormal level of bacteria for the highest compared with the lowest tertile of phytochemical consumption. Additionally, there was a trend of more frequent presence of Enterococcus spp. at relevant level in people with a higher intake of lariciresinol. Conclusion The beneficial effects of polyphenols and phytosterols should be emphasized and these plant-based compounds should be regarded in the context of their utility as antiviral agents preventing influenza-type infections.
Collapse
Affiliation(s)
- Agnieszka Micek
- Statistical Laboratory, Jagiellonian University Medical College, Cracow, Poland
| | - Izabela Bolesławska
- Department of Bromatology, Poznan University of Medical Sciences, Poznań, Poland
| | - Paweł Jagielski
- Department of Nutrition and Drug Research, Faculty of Health Sciences, Institute of Public Health, Jagiellonian University Medical College, Kraków, Poland
| | - Kamil Konopka
- Department of Oncology, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Waśkiewicz
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, Warszawa, Poland
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, Białystok, Poland
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, Poznań, Poland
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
27
|
Pereira L, Cotas J. Therapeutic Potential of Polyphenols and Other Micronutrients of Marine Origin. Mar Drugs 2023; 21:323. [PMID: 37367648 DOI: 10.3390/md21060323] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Polyphenols are compounds found in various plants and foods, known for their antioxidant and anti-inflammatory properties. Recently, researchers have been exploring the therapeutic potential of marine polyphenols and other minor nutrients that are found in algae, fish and crustaceans. These compounds have unique chemical structures and exhibit diverse biological properties, including anti-inflammatory, antioxidant, antimicrobial and antitumor action. Due to these properties, marine polyphenols are being investigated as possible therapeutic agents for the treatment of a wide variety of conditions, such as cardiovascular disease, diabetes, neurodegenerative diseases and cancer. This review focuses on the therapeutic potential of marine polyphenols and their applications in human health, and also, in marine phenolic classes, the extraction methods, purification techniques and future applications of marine phenolic compounds.
Collapse
Affiliation(s)
- Leonel Pereira
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, IATV-Institute of Environment, Technology and Life, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Instituto do Ambiente Tecnologia e Vida, Faculdade de Ciências e Tecnologia, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - João Cotas
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, IATV-Institute of Environment, Technology and Life, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
28
|
Niewiadomska J, Kasztura M, Janus I, Chełmecka E, Stygar DM, Frydrychowski P, Wojdyło A, Noszczyk-Nowak A. Punica granatum L. Extract Shows Cardioprotective Effects Measured by Oxidative Stress Markers and Biomarkers of Heart Failure in an Animal Model of Metabolic Syndrome. Antioxidants (Basel) 2023; 12:1152. [PMID: 37371882 PMCID: PMC10295190 DOI: 10.3390/antiox12061152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Metabolic syndrome (MetS) significantly increases the risk of cardiovascular diseases (CVD), a leading cause of death globally. The presented study investigated the cardioprotective role of dietary polyphenols found in pomegranate peels in an animal model of metabolic syndrome. Zucker diabetic fatty rats (ZDF, MetS rats, fa/fa) were supplemented with polyphenol-rich pomegranate peel extract (EPP) at two dosages: 100 mg/kg BW and 200 mg/kg BW. The extract was administered for 8 weeks. The effect of ethanolic peel extract on the concentration of oxidative stress markers (CAT, SOD, MnSOD, GR, GST, GPx, TOS, SH, and MDA), biomarkers of heart failure (cTnI, GAL-3), and alternations in tissue architecture was assessed. The results showed a significant increase in SH concentration mediated via EPP supplementation (p < 0.001). Treatment with a 100 mg/kg BW dosage reduced the TOS level more efficiently than the higher dose. Interestingly, the CAT and GST activities were relevantly higher in the MetS 100 group (p < 0.001) compared to the MetS control. The rats administered EPP at a dose of 200 mg/kg BW did not follow a similar trend. No differences in the GR (p = 0.063), SOD (p = 0.455), MnSOD (p = 0.155), and MDA (p = 0.790) concentration were observed after exposure to the pomegranate peel extract. The administration of EPP did not influence the cTnI and GAL-3 levels. Histology analysis of the heart and aorta sections revealed no toxic changes in phenolic-treated rats. The findings of this study prove that the extract from pomegranate peels possesses free radical scavenging properties in the myocardium. The effect on alleviating ventricular remodeling and cardiomyocyte necrosis was not confirmed and requires further investigation.
Collapse
Affiliation(s)
- Joanna Niewiadomska
- Department of Internal and Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Monika Kasztura
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Izabela Janus
- Department of Pathology, Division of Pathomorphology and Veterinary Forensics, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wrocław, Poland;
| | - Elżbieta Chełmecka
- Department of Statistics, Department of Instrumental Analysis, Faculty of Pharmaceutical Sciences in Sosnowiec Medical University of Silesia, 40-751 Katowice, Poland;
| | - Dominika Marta Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-751 Katowice, Poland;
| | - Piotr Frydrychowski
- Department of Internal and Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Agnieszka Noszczyk-Nowak
- Department of Internal and Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| |
Collapse
|
29
|
Nabil-Adam A, E. Elnosary M, L. Ashour M, M. Abd El-Moneam N, A. Shreadah M. Flavonoids Biosynthesis in Plants as a Defense Mechanism: Role and Function Concerning Pharmacodynamics and Pharmacokinetic Properties. FLAVONOID METABOLISM - RECENT ADVANCES AND APPLICATIONS IN CROP BREEDING 2023. [DOI: 10.5772/intechopen.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Flavonoids are a major class of secondary metabolites that comprises more than 6000 compounds that have been identified. They are biosynthesized via the phenylpropanoid metabolic pathway that involves groups of enzymes such as isomerases, hydroxylases, and reductases that greatly affect the determination of the flavonoid skeleton. For example, transferase enzymes responsible for the modification of sugar result in changes in the physiological activity of the flavonoids and changes in their physical properties, such as solubility, reactivity, and interaction with cellular target molecules, which affect their pharmacodynamics and pharmacokinetic properties. In addition, flavonoids have diverse biological activities such as antioxidants, anticancer, and antiviral in managing Alzheimer’s disease. However, most marine flavonoids are still incompletely discovered because marine flavonoid biosynthesis is produced and possesses unique substitutions that are not commonly found in terrestrial bioactive compounds. The current chapter will illustrate the importance of flavonoids’ role in metabolism and the main difference between marine and terrestrial flavonoids.
Collapse
|
30
|
Zhang M, Qiu Z. Effects of aqueous extract from Baiyedancong-Oolong tea on cytochrome P450 enzymes activities, P-gp and OATs transport abilities and transcription levels in mice. Front Nutr 2023; 10:1136329. [PMID: 37229476 PMCID: PMC10205018 DOI: 10.3389/fnut.2023.1136329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/09/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Recent studies have been conducted on its influence on drug metabolism and its potential mechanisms, among which the most studies have been focused on CYP3A enzymes. Methods In this study, Baiyedancong Oolong tea (BOT) was processed by freeze- and hot air-drying techniques separately to obtain the aqueous extracts of freeze-and hot-dried BOT (FBOT and HBOT, respectively). High and low doses of FBOT (1463.7 and 292.74 mg/kg/d, respectively) and HBOT (1454.46 mg/kg/d, 290.89, respectively) were administered to mice for 7 days. Results Aqueous extracts from BOT simultaneously improved liver CYP3A, CYP2E1, and CYP2C37 activities and weakened the transport ability of P-gp and OATs in a dose-dependent manner, thus affecting multiple links of oral drug metabolism in liver, intestinal absorption and metabolism, and renal excretion. Moreover, aqueous extracts from BOT significantly increased the mRNA expressions of liver CYP3A11 and CYP2C37 as well as intestinal CYP3A11. Decreased transcription levels of MDR1 encoding P-gp in small intestine and renal OAT1 and OAT3, which was in the same direction as the regulation of the above enzyme activities and transport capacities. Besides, the transcription level of liver CYP2E1 was weakened, which was inconsistent with its corresponding enzyme activity, suggesting that the increased CYP2E1 activity may be caused by other mechanisms. Conclusion Daily consumption or high dose administration of BOT and its related products may affect drug absorption, metabolisms, and excretion.
Collapse
|
31
|
Choi JH, Kim KM, Park SE, Kim MK, Kim S. Short-Term Effects of PJE Administration on Metabolic Parameters in Diet-Induced Obesity Mice. Foods 2023; 12:1675. [PMID: 37107470 PMCID: PMC10137377 DOI: 10.3390/foods12081675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The study investigated the effects of Petasites japonicus (Siebold & Zucc.) Maxim. extract (PJE) and fenofibrate on diet-induced obesity (DIO) in mice. PJE was found to contain various bio-active polyphenolic compounds, including kaempferol, p-hydroxybenzoic acid, ferulic acid, gallic acid, chlorogenic acid, 3,4-dicaffeoylquinic acid, caffeic acid, quercetin, rutin, protocatechuic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, p-coumaric acid, apigenin, and 1,3-dicaffeoylquinic acid. The results showed that PJE treatment up to 1000 μg/mL did not affect the viability of 3T3-L1 cell line, and it reduced the feed efficiency ratio in DIO mice. PJE administration also resulted in a significant reduction in body weight gain and fat accumulation in the liver compared to the DIO control group. Additionally, PJE administration improved the levels of lipid and related parameters, including total cholesterol, triacylglycerol, low-density lipoprotein, very low-density lipoprotein, glucose, insulin, insulin resistance, leptin, and atherogenic or cardiac indexes compared to the DIO control group. The study suggested that PJE may have a beneficial effect on insulin resistance, lipid profiles, atherogenesis, adipokines, and cardiac risk associated with diet-induced obesity.
Collapse
Affiliation(s)
- Jun-Hui Choi
- Department of Health Functional Food, Gwangju University, Gwangju 61743, Republic of Korea; (J.-H.C.); (K.-M.K.)
| | - Ki-Man Kim
- Department of Health Functional Food, Gwangju University, Gwangju 61743, Republic of Korea; (J.-H.C.); (K.-M.K.)
| | - Se-Eun Park
- Department of Health Functional Food, Gwangju University, Gwangju 61743, Republic of Korea; (J.-H.C.); (K.-M.K.)
| | - Myung-Kon Kim
- Department of Food Science and Technology, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Seung Kim
- Department of Health Functional Food, Gwangju University, Gwangju 61743, Republic of Korea; (J.-H.C.); (K.-M.K.)
| |
Collapse
|
32
|
Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C. Partitioning of Antioxidants in Edible Oil-Water Binary Systems and in Oil-in-Water Emulsions. Antioxidants (Basel) 2023; 12:828. [PMID: 37107202 PMCID: PMC10135117 DOI: 10.3390/antiox12040828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
In recent years, partitioning of antioxidants in oil-water two-phase systems has received great interest because of their potential in the downstream processing of biomolecules, their benefits in health, and because partition constant values between water and model organic solvents are closely related to important biological and pharmaceutical properties such as bioavailability, passive transport, membrane permeability, and metabolism. Partitioning is also of general interest in the oil industry. Edible oils such as olive oil contain a variety of bioactive components that, depending on their partition constants, end up in an aqueous phase when extracted from olive fruits. Frequently, waste waters are subsequently discarded, but their recovery would allow for obtaining extracts with antioxidant and/or biological activities, adding commercial value to the wastes and, at the same time, would allow for minimizing environmental risks. Thus, given the importance of partitioning antioxidants, in this manuscript, we review the background theory necessary to derive the relevant equations necessary to describe, quantitatively, the partitioning of antioxidants (and, in general, other drugs) and the common methods for determining their partition constants in both binary (PWOIL) and multiphasic systems composed with edible oils. We also include some discussion on the usefulness (or not) of extrapolating the widely employed octanol-water partition constant (PWOCT) values to predict PWOIL values as well as on the effects of acidity and temperature on their distributions. Finally, there is a brief section discussing the importance of partitioning in lipidic oil-in-water emulsions, where two partition constants, that between the oil-interfacial, POI, and that between aqueous-interfacial, PwI, regions, which are needed to describe the partitioning of antioxidants, and whose values cannot be predicted from the PWOIL or the PWOCT ones.
Collapse
Affiliation(s)
- Sonia Losada-Barreiro
- Departamento Química-Física, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Carlos Bravo-Díaz
- Departamento Química-Física, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
33
|
Increasing Bioavailability of Trans-Ferulic Acid by Encapsulation in Functionalized Mesoporous Silica. Pharmaceutics 2023; 15:pharmaceutics15020660. [PMID: 36839982 PMCID: PMC9968071 DOI: 10.3390/pharmaceutics15020660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Two types of mesoporous materials, MCM-41 and MCM-48, were functionalized by the soft-template method using (3-aminopropyl)triethoxysilane (APTES) as a modifying agent. The obtained mesoporous silica materials were loaded with trans-ferulic acid (FA). In order to establish the morphology and structure of mesoporous materials, a series of specific techniques were used such as: X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Brunauer-Emmet-Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetric analysis (TGA). We monitored the in vitro release of the loaded FA at two different pH values, by using simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Additionally, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Candida albicans ATCC 10231 were used to evaluate the antimicrobial activity of FA loaded mesoporous silica materials. In conclusion such functionalized mesoporous materials can be employed as controlled release systems for polyphenols extracted from natural sources.
Collapse
|
34
|
Perdigão JM, Teixeira BJB, Carvalho-da-Silva V, Prediger RD, Lima RR, Rogez H. A critical analysis on the concentrations of phenolic compounds tested using in vitro and in vivo Parkinson's disease models. Crit Rev Food Sci Nutr 2023; 64:6596-6615. [PMID: 36718558 DOI: 10.1080/10408398.2023.2171960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Phenolic compounds (PCs) have neuroprotective effects with potential to prevent or slower the progression of Parkinson's disease (PD). However, whether the PCs neuroprotective effects can be observed under their dietary concentrations remains unclear. Therefore, we searched for the most cited articles in density on PCs and PD in the Web of Science Core Collection and All-Database (WoS-CC/AD) and selected the articles based on our eligibility criteria. From these 81 articles selected, we extracted information on experimental design, compounds tested, concentration and/or dose administered, route of administration, and main results obtained. We compared the concentrations of PCs evaluated in vitro with the concentrations bioavailable in the human bloodstream. Further, after extrapolation to humans, we compared the doses administered to animals in vivo with the daily consumed amounts of PCs. Concentrations evaluated in 21 in vitro laboratory studies were higher than those bioavailable in the bloodstream. In the case of in vivo laboratory studies, only one study administered doses of PCs in normal daily amount. The results of the comparisons demonstrate that the neuroprotective effects of the selected articles are mainly associated with concentrations, amounts and routes of administration that do not correspond to the consumption of phenolic compounds through the diet.
Collapse
Affiliation(s)
- José Messias Perdigão
- Centre for Valorization of Amazonian Bioactive Compounds, Federal University of Pará, Belém, Brazil
| | | | | | - Rui Daniel Prediger
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Herve Rogez
- Centre for Valorization of Amazonian Bioactive Compounds, Federal University of Pará, Belém, Brazil
| |
Collapse
|
35
|
Biochemistry of Antioxidants: Mechanisms and Pharmaceutical Applications. Biomedicines 2022; 10:biomedicines10123051. [PMID: 36551806 PMCID: PMC9776363 DOI: 10.3390/biomedicines10123051] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Natural antioxidants from fruits and vegetables, meats, eggs and fish protect cells from the damage caused by free radicals. They are widely used to reduce food loss and waste, minimizing lipid oxidation, as well as for their effects on health through pharmaceutical preparations. In fact, the use of natural antioxidants is among the main efforts made to relieve the pressure on natural resources and to move towards more sustainable food and pharmaceutical systems. Alternative food waste management approaches include the valorization of by-products as a source of phenolic compounds for functional food formulations. In this review, we will deal with the chemistry of antioxidants, including their molecular structures and reaction mechanisms. The biochemical aspects will also be reviewed, including the effects of acidity and temperature on their partitioning in binary and multiphasic systems. The poor bioavailability of antioxidants remains a huge constraint for clinical applications, and we will briefly describe some delivery systems that provide for enhanced pharmacological action of antioxidants via drug targeting and increased bioavailability. The pharmacological activity of antioxidants can be improved by designing nanotechnology-based formulations, and recent nanoformulations include nanoparticles, polymeric micelles, liposomes/proliposomes, phytosomes and solid lipid nanoparticles, all showing promising outcomes in improving the efficiency and bioavailability of antioxidants. Finally, an overview of the pharmacological effects, therapeutic properties and future choice of antioxidants will be incorporated.
Collapse
|
36
|
Petrisor G, Motelica L, Ficai D, Trusca RD, Surdu VA, Voicu G, Oprea OC, Ficai A, Andronescu E. New Mesoporous Silica Materials Loaded with Polyphenols: Caffeic Acid, Ferulic Acid and p-Coumaric Acid as Dietary Supplements for Oral Administration. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15227982. [PMID: 36431468 PMCID: PMC9696098 DOI: 10.3390/ma15227982] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 05/13/2023]
Abstract
In this study, two types of mesoporous silica with different pore structures and volumes were synthesized by the soft-templating method. The two types of mesoporous silica, type MCM-41 and MCM-48, were loaded with three polyphenols-caffeic acid, p-coumaric acid and trans-ferulic acid-in the same ratio of mesoporous silica:polyphenol (1:0.4 w/w). The materials obtained were characterized from a morphological and structural point of view through different analysis techniques. Through X-ray diffraction (XRD), the crystallization plane and the ordered structure of the mesoporous silica were observed. The difference between the two types of materials containing MCM-41 and MCM-48 was observed through the different morphologies of the silica particles through scanning electron microscopy (SEM) and also through the Brunauer-Emmet-Teller (BET) analysis, that the surface areas and volumes of pores was different between the two types of mesoporous silica, and, after loading with polyphenols, the values were reduced. The characteristic bands of silica and of polyphenols were easily observed by Fourier-transform infrared spectroscopy (FTIR), and, through thermogravimetric analysis (TGA), the residual mass was determined and the estimated amount of polyphenol in the materials and the efficient loading of mesoporous silica with polyphenols could be determined. The in vitro study was performed in two types of simulated biological fluids with different pH-simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The obtained materials could be used in various biomedical applications as systems with controlled release of natural polyphenols and the most suitable application could be as food supplements especially when a mixture of such materials is used or when the polyphenols are co-loaded within the mesoporous silica.
Collapse
Affiliation(s)
- Gabriela Petrisor
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Ludmila Motelica
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Correspondence:
| | - Roxana Doina Trusca
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Vasile-Adrian Surdu
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Georgeta Voicu
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Anton Ficai
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| |
Collapse
|
37
|
In silico and in vitro studies on the inhibition of laccase activity by Ellagic acid: Implications in drug designing for the treatment of Cryptococcal infections. Int J Biol Macromol 2022; 209:642-654. [PMID: 35421416 DOI: 10.1016/j.ijbiomac.2022.04.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 01/14/2023]
Abstract
In recent years, the increased frequency of drug-resistant strains of Cryptococcus neoformans has depleted our antifungal armory. In the present study, we investigated the inhibitory potential of ellagic acid (EA) against C. neoformans laccase through in silico and in vitro studies. For the first time, a homology modelling was established to model laccase and modelled protein served as a receptor for docking EA. Thermodynamic stability of the docked complex was ascertained by molecular dynamics simulation (MD). The analysis of root mean square deviation and fluctuation of alpha carbons of protein justifies the stability of the bound EA in the binding pocket of laccase. Frontier molecular orbitals of the EA was studied by density functional theory-based optimization by using the Lee-Yang-Parr correlation functional (B3LYP) approach. Negative values of the highest occupied/unoccupied molecular orbitals (HOMO/LUMO) indicated that laccase with EA forms a stable complex. Interestingly, EA inhibited laccase activity both in vitro and in yeast cells of C. neoformans. Moreover, EA treatment remarkably inhibited the proliferation of C. neoformans inside macrophages. The findings of the present study unveil the molecular basis of the interactions of laccase with EA, which may prove to be beneficial for designing laccase inhibitors as potential anti-cryptococcal agents.
Collapse
|
38
|
Kostić S, Vilotić A, Pirković A, Dekanski D, Borozan S, Nacka-Aleksić M, Vrzić-Petronijević S, Krivokuća MJ. Caffeic acid protects human trophoblast HTR-8/SVneo cells from H 2O 2-induced oxidative stress and genotoxicity. Food Chem Toxicol 2022; 163:112993. [PMID: 35398184 DOI: 10.1016/j.fct.2022.112993] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Caffeic acid is highlighted as one of the major phenolic compounds present in foods with known antioxidant activity. This phenolic is among commonly consumed substances in everyday diet of pregnant women. However, there is not enough information on its effects during pregnancy, especially the most vulnerable early stage. Extravillous trophoblast cells are specific cells of the placenta that come in direct contact with maternal uterine tissue. Through this study we investigated the cytoprotective effects of caffeic acid on H2O2-induced oxidative damage in first trimester extravillous trophoblast cell line HTR-8/SVneo. Investigated concentrations (1-100 μM) of caffeic acid showed neither cytotoxic nor genotoxic effects on HTR-8/SVneo cells. The treatment with caffeic acid 100 μM significantly increased the percentage of cells in G2/M phase of the cell cycle, compared to non-treated cells. Pretreatment with caffeic acid (10 and 100 μM) attenuated oxidative DNA damage significantly, reduced cytotoxicity, protein and lipid peroxidation, and restored antioxidant capacity in trophoblast cells following H2O2 exposure. This beneficial outcome is probably mediated by the augmentation of GSH and effective ROS scavenging by caffeic acid. These promising results require further investigations to reveal the additional mechanisms/pathways and confirmation through studies in vivo.
Collapse
Affiliation(s)
- Sanja Kostić
- University of Belgrade, Faculty of Medicine, Clinic of Obstetrics and Gynecology, Clinical Center of Serbia, Koste Todorovića 26, 11000, Belgrade, Serbia
| | - Aleksandra Vilotić
- University of Belgrade, Institute for Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080, Belgrade, Serbia
| | - Andrea Pirković
- University of Belgrade, Institute for Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080, Belgrade, Serbia
| | - Dragana Dekanski
- University of Belgrade, Institute for Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080, Belgrade, Serbia
| | - Sunčica Borozan
- University of Belgrade, Faculty of Veterinary medicine, Department of Chemistry, Bulevar oslobođenja 18, 11000, Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- University of Belgrade, Institute for Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080, Belgrade, Serbia
| | - Svetlana Vrzić-Petronijević
- University of Belgrade, Faculty of Medicine, Clinic of Obstetrics and Gynecology, Clinical Center of Serbia, Koste Todorovića 26, 11000, Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- University of Belgrade, Institute for Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080, Belgrade, Serbia.
| |
Collapse
|
39
|
Vong CI, Rathinasabapathy T, Moncada M, Komarnytsky S. All Polyphenols Are Not Created Equal: Exploring the Diversity of Phenolic Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2077-2091. [PMID: 35147422 DOI: 10.1021/acs.jafc.1c07179] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dietary intake of plant polyphenols is significant, and many of them enter a human body as a highly diverse pool of ring-fission phenolic metabolites arising from digestion and microbial catabolism of the parental structures. Difficulty in designing the uniform intervention studies and limited tools calibrated to detect and quantify the inherent complexity of phenolic metabolites hindered efforts to establish and validate protective health effects of these molecules. Here, we highlight the recent findings that describe novel complex downstream metabolite profiles with a particular focus on dihydrophenolic (phenylpropanoic) acids of microbial origin, ingested and phase II-transformed methylated phenolic metabolites (methylated sinks), and small phenolic metabolites derived from the breakdown of different classes of flavonoids, stilbenoids, and tannins. There is a critical need for precise identification of the individual phenolic metabolite signatures originating from different polyphenol groups to enable future translation of these findings into break-through nutritional interventions and dietary guidelines.
Collapse
Affiliation(s)
- Chi In Vong
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| | - Thirumurugan Rathinasabapathy
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| | - Marvin Moncada
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
40
|
Chandra A, Johri A. A Peek into Pandora’s Box: COVID-19 and Neurodegeneration. Brain Sci 2022; 12:brainsci12020190. [PMID: 35203953 PMCID: PMC8870638 DOI: 10.3390/brainsci12020190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Ever since it was first reported in Wuhan, China, the coronavirus-induced disease of 2019 (COVID-19) has become an enigma of sorts with ever expanding reports of direct and indirect effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on almost all the vital organ systems. Along with inciting acute pulmonary complications, the virus attacks the cardiac, renal, hepatic, and gastrointestinal systems as well as the central nervous system (CNS). The person-to-person variability in susceptibility of individuals to disease severity still remains a puzzle, although the comorbidities and the age/gender of a person are believed to play a key role. SARS-CoV-2 needs angiotensin-converting enzyme 2 (ACE2) receptor for its infectivity, and the association between SARS-CoV-2 and ACE2 leads to a decline in ACE2 activity and its neuroprotective effects. Acute respiratory distress may also induce hypoxia, leading to increased oxidative stress and neurodegeneration. Infection of the neurons along with peripheral leukocytes’ activation results in proinflammatory cytokine release, rendering the brain more susceptible to neurodegenerative changes. Due to the advancement in molecular biology techniques and vaccine development programs, the world now has hope to relatively quickly study and combat the deadly virus. On the other side, however, the virus seems to be still evolving with new variants being discovered periodically. In keeping up with the pace of this virus, there has been an avalanche of studies. This review provides an update on the recent progress in adjudicating the CNS-related mechanisms of SARS-CoV-2 infection and its potential to incite or accelerate neurodegeneration in surviving patients. Current as well as emerging therapeutic opportunities and biomarker development are highlighted.
Collapse
|
41
|
Visioli F, Ingram A, Beckman JS, Magnusson KR, Hagen TM. Strategies to protect against age-related mitochondrial decay: Do natural products and their derivatives help? Free Radic Biol Med 2022; 178:330-346. [PMID: 34890770 DOI: 10.1016/j.freeradbiomed.2021.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria serve vital roles critical for overall cellular function outside of energy transduction. Thus, mitochondrial decay is postulated to be a key factor in aging and in age-related diseases. Mitochondria may be targets of their own decay through oxidative damage. However, treating animals with antioxidants has been met with only limited success in rejuvenating mitochondrial function or in increasing lifespan. A host of nutritional strategies outside of using traditional antioxidants have been devised to promote mitochondrial function. Dietary compounds are under study that induce gene expression, enhance mitochondrial biogenesis, mitophagy, or replenish key metabolites that decline with age. Moreover, redox-active compounds may now be targeted to mitochondria which improve their effectiveness. Herein we review the evidence that representative dietary effectors modulate mitochondrial function by stimulating their renewal or reversing the age-related loss of key metabolites. While in vitro evidence continues to accumulate that many of these compounds benefit mitochondrial function and/or prevent their decay, the results using animal models and, in some instances human clinical trials, are more mixed and sometimes even contraindicated. Thus, further research on optimal dosage and age of intervention are warranted before recommending potential mitochondrial rejuvenating compounds for human use.
Collapse
Affiliation(s)
- Francesco Visioli
- Department of Molecular Medicine, University of Padova, Italy; IMDEA-Food, Madrid, Spain
| | - Avery Ingram
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Joseph S Beckman
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Kathy R Magnusson
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Tory M Hagen
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
42
|
Shafreen RMB, Lakshmi SA, Pandian SK, Kim YM, Deutsch J, Katrich E, Gorinstein S. In Vitro and In Silico Interaction Studies with Red Wine Polyphenols against Different Proteins from Human Serum. Molecules 2021; 26:molecules26216686. [PMID: 34771095 PMCID: PMC8587719 DOI: 10.3390/molecules26216686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022] Open
Abstract
Previous reports have shown that consumption of wine has several health benefits; however, there are different types of wine. In the present study, red wines were investigated for their compositions of active ingredients. The interaction of each component in terms of its binding mode with different serum proteins was unraveled, and the components were implicated as drug candidates in clinical settings. Overall, the study indicates that red wines have a composition of flavonoids, non-flavonoids, and phenolic acids that can interact with the key regions of proteins to enhance their biological activity. Among them, rutin, resveratrol, and tannic acid have shown good binding affinity and possess beneficial properties that can enhance their role in clinical applications.
Collapse
Affiliation(s)
- Raja Mohamed Beema Shafreen
- Department of Biotechnology, Dr. Umayal Ramanathan College for Women, Algappapuram, Karaikudi 630003, India;
| | - Selvaraj Alagu Lakshmi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630003, India; (S.A.L.); (S.K.P.)
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630003, India; (S.A.L.); (S.K.P.)
| | - Young-Mo Kim
- Industry Academic Collaboration Foundation, Kwangju Women’s University, Gwangju 62396, Korea;
| | - Joseph Deutsch
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (E.K.)
| | - Elena Katrich
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (E.K.)
| | - Shela Gorinstein
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (E.K.)
- Correspondence: ; Tel.: +972-2-6758690
| |
Collapse
|