1
|
Kopacz A, Kloska D, Bar A, Targosz-Korecka M, Cysewski D, Awsiuk K, Piechota-Polanczyk A, Cichon M, Chlopicki S, Jozkowicz A, Grochot-Przeczek A. Endothelial miR-34a deletion guards against aneurysm development despite endothelial dysfunction. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167812. [PMID: 40139409 DOI: 10.1016/j.bbadis.2025.167812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
We previously reported a link between NRF2, a cytoprotective transcription factor, and the ageing of endothelial cells (ECs) and aorta. We also found that NRF2 KO mice are more susceptible to the development of abdominal aortic aneurysm (AAA), which is an age-associated condition. Since miR-34a is a marker of ageing, we explored its relationship with NRF2 and its role in vascular function and AAA formation. Here, we demonstrate that premature NRF2-dependent ageing of ECs is mediated by miR-34a. Infusion of hypertensive angiotensin II (Ang II) in mice increases miR-34a in the aortic endothelial layer and serum, particularly in mice developing AAA. Mice lacking endothelial miR-34a exhibit severe EC dysfunction. Despite that, they are protected from AAA, also on the NRF2 KO background. This protective effect is reversed by rapamycin, which suppresses Ang II-induced EC proliferation. We identified MTA2, but not SIRT1, as a target of miR-34a that inhibits EC proliferation stimulated by Ang II. These findings suggest that fine-tuning of EC proliferation could have potential therapeutic implications for the treatment of aneurysms.
Collapse
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Damian Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Marta Targosz-Korecka
- Department of Physics of Nanostructures and Nanotechnology, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Dominik Cysewski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Awsiuk
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Aleksandra Piechota-Polanczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Milena Cichon
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
2
|
Liu X, Li Z, Xu H, He W, Wu L, Ji B, Nuermaimaiti N, Ao G, Feng Y, He X. Revealing shared molecular and mechanistic signatures between intracranial aneurysms and abdominal aortic aneurysms: a comprehensive genomic analysis. Orphanet J Rare Dis 2025; 20:196. [PMID: 40275351 PMCID: PMC12020248 DOI: 10.1186/s13023-025-03689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
Intracranial aneurysms (IAs) and abdominal aortic aneurysms (AAAs) are both vascular diseases that are closely linked. However, the pathogenesis underlying the co-occurrence of IAs and AAAs remains poorly understood. This study aims to identify key biomarkers that shed light on the molecular mechanisms connecting these two diseases using bioinformatics analysis. Gene expression profiles (GSE122897, GSE237229) were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) common to both IAs and AAAs were identified and subjected to functional enrichment analysis. The Cytoscape cytoHubba plugin was used to identify hub genes, and their predictive ability was evaluated using the receiver operating characteristic (ROC) curve. Additionally, immune infiltration analyses and single-gene gene set enrichment analysis (GSEA) were conducted for the hub genes. A total of 46 DEGs were identified, including 40 upregulated genes and 6 downregulated genes. The common DEGs were found to be involved in extracellular matrix structural constituents, collagen fibril organization, and regulation of basic cellular processes. ITGA11 was identified as a key gene implicated in the comorbidity of IAs and AAAs, with its upregulation strongly associated with plasma cells. Furthermore, in both IAs and AAAs, glycosaminoglycan biosynthesis of extracellular matrix components and immune-related diseases were significantly linked to the high expression of ITGA11. Our findings suggest that the comorbidity of IAs and AAAs may be driven by shared inflammatory and immune response mechanisms, with ITGA11 emerging as a potential biomarker for this co-occurrence.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, Guangzhou, 510282, China
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhenjun Li
- Brain Vascular Disease Center, Guangdong Second Provincial People's Hospital, Guangzhou, 510317, China
| | - Hongzhen Xu
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Wangqing He
- Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, Guangzhou, 510282, China
| | - Lei Wu
- Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, Guangzhou, 510282, China
| | - Bin Ji
- Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, Guangzhou, 510282, China
| | - Nuerzhati Nuermaimaiti
- Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, Guangzhou, 510282, China
| | - Guangnan Ao
- Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, Guangzhou, 510282, China
| | - Yuhang Feng
- Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, Guangzhou, 510282, China
| | - Xuying He
- Brain Vascular Disease Center, Guangdong Second Provincial People's Hospital, Guangzhou, 510317, China.
| |
Collapse
|
3
|
Andreas M, Lang IM. Chemokine receptor-directed imaging, prognostication, and treatment of abdominal aortic aneurysm: can we do it all with CXCR4? Cardiovasc Res 2025; 121:222-223. [PMID: 39760698 DOI: 10.1093/cvr/cvae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Affiliation(s)
- Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, Währinger Gürtel 18-20, Vienna A-1090, Austria
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna A-1090, Austria
| | - Irene M Lang
- Department of Cardiac Surgery, Medical University of Vienna, Währinger Gürtel 18-20, Vienna A-1090, Austria
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna A-1090, Austria
| |
Collapse
|
4
|
Soto ME, Rodríguez-Brito M, Pérez-Torres I, Herrera-Alarcon V, Martínez-Hernández H, Hernández I, Castrejón-Téllez V, Peña-Ocaña BA, Alvarez-Leon E, Manzano-Pech L, Gamboa R, Fuentevilla-Alvarez G, Huesca-Gómez C. Analysis of FBN1, TGFβ2, TGFβR1 and TGFβR2 mRNA as Key Molecular Mechanisms in the Damage of Aortic Aneurysm and Dissection in Marfan Syndrome. Int J Mol Sci 2025; 26:3067. [PMID: 40243722 PMCID: PMC11989073 DOI: 10.3390/ijms26073067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Marfan syndrome (MFS) is an inherited connective tissue disorder, with aortic root aneurysm and/or dissection being the most severe and life-threatening complication. These conditions have been linked to pathogenic variants in the FBN1 gene and dysregulated TGFβ signaling. Our objective was to evaluate the mRNA expression of FBN1, TGFBR1, TGFBR2, and TGFB2 in aortic tissue from MFS patients undergoing surgery for aortic dilation. This prospective study (2014-2023) included 20 MFS patients diagnosed according to the 2010 Ghent criteria, who underwent surgery for aneurysm or dissection based on Heart Team recommendations, along with 20 non-MFS controls. RNA was extracted, and mRNA levels were quantified using RT-qPCR. Patients with dissection showed significantly higher FBN1 mRNA levels [79 (48.1-110.1)] compared to controls [37.2 (25.1-79)] (p = 0.03). Conversely, TGFB2 expression was significantly lower in MFS patients [12.17 (6.54-24.70)] than in controls [44.29 (25.85-85.36)] (p = 0.029). A positive correlation was observed between higher FBN1 expression and a larger sinotubular junction diameter (r = 0.42, p = 0.07), while increased FBN1 expression was particularly evident in MFS patients with dissection. Additionally, TGFB2 expression showed an inverse correlation with ascending aortic diameter (r = 0.53, p = 0.01). In aortic tissue, we found decreased TGFB2 and receptor levels alongside increased FBN1 mRNA levels. These molecular alterations may reflect compensatory mechanisms in response to tissue damage caused by mechanical stress, leading to dysregulation of physiological signaling pathways and ultimately contributing to aortic dilation in MFS.
Collapse
Affiliation(s)
- María Elena Soto
- Research Direction, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14080, Mexico;
- Cardiovascular Line in American British Cowdray (ABC) Medical Center, PAI ABC Sur 136 No. 16, Col. Las Américas, Mexico City 01120, Mexico
| | - Myrlene Rodríguez-Brito
- Cardiothoracic Surgery Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. 4 Sección XVI, Mexico City 14080, Mexico; (M.R.-B.); (V.H.-A.); (H.M.-H.); (I.H.)
| | - Israel Pérez-Torres
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14080, Mexico; (I.P.-T.); (L.M.-P.)
| | - Valentín Herrera-Alarcon
- Cardiothoracic Surgery Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. 4 Sección XVI, Mexico City 14080, Mexico; (M.R.-B.); (V.H.-A.); (H.M.-H.); (I.H.)
| | - Humberto Martínez-Hernández
- Cardiothoracic Surgery Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. 4 Sección XVI, Mexico City 14080, Mexico; (M.R.-B.); (V.H.-A.); (H.M.-H.); (I.H.)
| | - Iván Hernández
- Cardiothoracic Surgery Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. 4 Sección XVI, Mexico City 14080, Mexico; (M.R.-B.); (V.H.-A.); (H.M.-H.); (I.H.)
| | - Vicente Castrejón-Téllez
- Physiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. 4 Sección XVI, Mexico City 14080, Mexico; (V.C.-T.)
| | - Betsy Anaid Peña-Ocaña
- Biochemistry Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14080, Mexico;
- Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez 29050, Mexico
| | - Edith Alvarez-Leon
- Sub-Directorate of Basic Research, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14080, Mexico;
| | - Linaloe Manzano-Pech
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14080, Mexico; (I.P.-T.); (L.M.-P.)
| | - Ricardo Gamboa
- Physiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. 4 Sección XVI, Mexico City 14080, Mexico; (V.C.-T.)
| | - Giovanny Fuentevilla-Alvarez
- Endocrinology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. 4 Sección XVI, Mexico City 14080, Mexico
| | - Claudia Huesca-Gómez
- Physiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. 4 Sección XVI, Mexico City 14080, Mexico; (V.C.-T.)
| |
Collapse
|
5
|
Zhu J, Meganathan I, MacAruthur R, Kassiri Z. Inflammation in Abdominal Aortic Aneurysm: Cause or Comorbidity? Can J Cardiol 2024; 40:2378-2391. [PMID: 39181326 DOI: 10.1016/j.cjca.2024.08.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Aortic aneurysm is a potentially deadly disease. It is chronic degeneration of the aortic wall that involves an inflammatory response and the immune system, aberrant remodelling of the extracellular matrix, and maladaptive transformation of the aortic cells. This review article focuses on the role of the inflammatory cells in abdominal aortic aneurysm. Studies in human aneurysmal specimens and animal models have identified various inflammatory cell types that could contribute to formation or expansion of aneurysms. These include the commonly studied leukocytes (neutrophils and macrophages) as well as the less commonly explored natural killer cells, dendritic cells, T cells, and B cells. Despite the well-demonstrated contribution of inflammatory cells and the related signalling pathways to development and expansion of aneurysms, anti-inflammatory therapy approaches have demonstrated limitations and may require additional considerations such as a combinational approach in targeting multiple pathways for significant beneficial outcomes.
Collapse
Affiliation(s)
- Jiechun Zhu
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ilamaran Meganathan
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Roderick MacAruthur
- Department of Cardiac Surgery, Mazankowski Alberta Heart Institute, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
6
|
Siegrist H, Spieler A, Peters AS, Passek KH, Böckler D, Dihlmann S. D-Dimers and MPO Are No Suitable Biomarkers for Application in Abdominal Aortic Aneurysm (AAA) Surveillance in a Real-World Setting of Vascular Surgery Patients. Biomolecules 2024; 14:1525. [PMID: 39766232 PMCID: PMC11673383 DOI: 10.3390/biom14121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
There is currently no clinically valid biomarker for predicting the growth and prognosis of abdominal aortic aneurysms (AAA). The most promising candidates with the highest diagnostic values are plasma D-dimers and markers of activated neutrophils, i.e., myeloperoxidase (MPO) or cell-free DNA. So far, case-control studies on these markers have been performed almost exclusively using healthy individuals as controls. To validate the value of these markers in the clinical setting of a vascular surgery department, we analysed the diagnostic and prognostic potential of plasma D-dimers and MPO in 177 AAA patients versus 138 non-AAA patients with different vascular diseases. Significantly elevated levels of D-dimers were recorded for AAA patients compared with non-AAA patients, although the difference between the two groups was significantly smaller than that in other studies comparing AAA patients with healthy controls. Surprisingly, MPO levels were significantly higher in non-AAA patients than in those with AAA. After adjusting for the confounding factors of sex, peripheral artery disease (PAD) and internal carotid stenosis in multivariate regression models, neither D-dimers nor MPO remained independent correlates of AAA. In contrast, D-dimer plasma levels correlated well with the maximal aortic diameter. Combined analysis of D-dimers and circulating cell-free DNA levels derived from a previous study failed to improve the predictive values for the maximal aortic diameter. In conclusion, our data show that D-dimers and MPO are not suitable biomarkers for monitoring AAA in a real-world setting of mixed vascular surgery patients.
Collapse
Affiliation(s)
- Hans Siegrist
- Klinik für Gefäßchirurgie und Endovaskuläre Chirurgie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (H.S.); (A.S.); (A.S.P.); (K.H.P.); (D.B.)
| | - Anja Spieler
- Klinik für Gefäßchirurgie und Endovaskuläre Chirurgie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (H.S.); (A.S.); (A.S.P.); (K.H.P.); (D.B.)
| | - Andreas S. Peters
- Klinik für Gefäßchirurgie und Endovaskuläre Chirurgie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (H.S.); (A.S.); (A.S.P.); (K.H.P.); (D.B.)
- Vaskuläre Biomaterialbank Heidelberg (VBBH), Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Karola H. Passek
- Klinik für Gefäßchirurgie und Endovaskuläre Chirurgie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (H.S.); (A.S.); (A.S.P.); (K.H.P.); (D.B.)
| | - Dittmar Böckler
- Klinik für Gefäßchirurgie und Endovaskuläre Chirurgie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (H.S.); (A.S.); (A.S.P.); (K.H.P.); (D.B.)
- Vaskuläre Biomaterialbank Heidelberg (VBBH), Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Susanne Dihlmann
- Klinik für Gefäßchirurgie und Endovaskuläre Chirurgie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (H.S.); (A.S.); (A.S.P.); (K.H.P.); (D.B.)
| |
Collapse
|
7
|
Galkina SI, Fedorova NV, Golenkina EA, Ksenofontov AL, Serebryakova MV, Kordyukova LV, Stadnichuk VI, Baratova LA, Sud'ina GF. Differential effects of angiotensin II and aldosterone on human neutrophil adhesion and concomitant secretion of proteins, free amino acids and reactive oxygen and nitrogen species. Int Immunopharmacol 2024; 139:112687. [PMID: 39018693 DOI: 10.1016/j.intimp.2024.112687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Invasion and adhesion of neutrophils into tissues and their concomitant secretion play an important role in the development of vascular pathologies, including abdominal aortic aneurysm (AAA). Chronic administration of angiotensin II is used to initiate AAA formation in mice. The role of aldosterone in this process is being studied. We conducted for the first time a complex comparative study of the effects of angiotensin II and aldosterone on the adhesion of human neutrophils to fibronectin and the concomitant secretion of proteins, free amino acids as well as reactive oxygen (ROS) and nitrogen (NO) species. Neither angiotensin II nor aldosterone affected the attachment of neutrophils to fibronectin and the concomitant production of ROS. We showed for the first time that aldosterone stimulated the release of amino acid hydroxylysine, a product of lysyl hydroxylase, the activity of which is positively correlated with cell invasiveness. Aldosterone also initiates the secretion of matrix metalloproteinase 9 (MMP-9) and cathepsin G, which may reorganize the extracellular matrix and stimulate the recruitment and adhesion of neutrophils to the aortic walls. Angiotensin II did not affect protein secretion. It may contribute to neutrophil-induced vascular injury by inhibiting the production of NO or by increasing the secretion of isoleucine. Our results suggest that it is aldosterone-induced neutrophil secretion that may play a significant role in neutrophil-induced vascular wall destruction in angiotensin II-induced AAA or other vascular complications.
Collapse
Affiliation(s)
- Svetlana I Galkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Natalia V Fedorova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina A Golenkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander L Ksenofontov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Marina V Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Larisa V Kordyukova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Ludmila A Baratova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Galina F Sud'ina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
8
|
Zhao K, Zeng Z, He Y, Zhao R, Niu J, Sun H, Li S, Dong J, Jing Z, Zhou J. Recent advances in targeted therapy for inflammatory vascular diseases. J Control Release 2024; 372:730-750. [PMID: 38945301 DOI: 10.1016/j.jconrel.2024.06.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Vascular diseases constitute a significant contributor to worldwide mortality rates, placing a substantial strain on healthcare systems and socio-economic aspects. They are closely associated with inflammatory responses, as sustained inflammation could impact endothelial function, the release of inflammatory mediators, and platelet activation, thus accelerating the progression of vascular diseases. Consequently, directing therapeutic efforts towards mitigating inflammation represents a crucial approach in the management of vascular diseases. Traditional anti-inflammatory medications may have extensive effects on multiple tissues and organs when absorbed through the bloodstream. Conversely, treatments targeting inflammatory vascular diseases, such as monoclonal antibodies, drug-eluting stents, and nano-drugs, can achieve more precise effects, including precise intervention, minimal non-specific effects, and prolonged efficacy. In addition, personalized therapy is an important development trend in targeted therapy for inflammatory vascular diseases. Leveraging advanced simulation algorithms and clinical trial data, treatment strategies are gradually being personalized based on patients' genetic, biomarker, and clinical profiles. It is expected that the application of precision medicine in the field of vascular diseases will have a broader future. In conclusion, targeting therapies offer enhanced safety and efficacy compared to conventional medications; investigating novel targeting therapies and promoting clinical transformation may be a promising direction in improving the prognosis of patients with inflammatory vascular diseases. This article reviews the pathogenesis of inflammatory vascular diseases and presents a comprehensive overview of the potential for targeted therapies in managing this condition.
Collapse
Affiliation(s)
- Kaiwen Zhao
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Zan Zeng
- Department of Vascular Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yuzhen He
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Rong Zhao
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Jinzhu Niu
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Huiying Sun
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Shuangshuang Li
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Jian Dong
- Department of Vascular Surgery, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zaiping Jing
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Jian Zhou
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China; Department of Vascular Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China; Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai, China.
| |
Collapse
|
9
|
Xiong Y, Liu S, Liu Y, Zhao J, Sun J, Li Y, Pan B, Wang W. PI3Kγ promotes neutrophil extracellular trap formation by noncanonical pyroptosis in abdominal aortic aneurysm. JCI Insight 2024; 9:e183237. [PMID: 39024551 PMCID: PMC11343590 DOI: 10.1172/jci.insight.183237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is one of the most life-threatening cardiovascular diseases; however, effective drug treatments are still lacking. The formation of neutrophil extracellular traps (NETs) has been shown to be a crucial trigger of AAA, and identifying upstream regulatory targets is thus key to discovering therapeutic agents for AAA. We revealed that phosphoinositide-3-kinase γ (PI3Kγ) acted as an upstream regulatory molecule and that PI3Kγ inhibition reduced NET formation and aortic wall inflammation, thereby markedly ameliorating AAA. However, the mechanism of NET formation regulated by PI3Kγ remains unclear. In this study, we showed that PI3Kγ deficiency inactivated the noncanonical pyroptosis pathway, which suppressed downstream NET formation. In addition, PI3Kγ regulation of noncanonical pyroptosis was dependent on cyclic AMP/protein kinase A signaling. These results clarify the molecular mechanism and crosstalk between PI3Kγ and NETosis in the development of AAA, potentially facilitating the discovery of therapeutic options for AAA.
Collapse
Affiliation(s)
- Yacheng Xiong
- Department of General & Vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Liu
- Department of General & Vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Liu
- Department of General & Vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jiani Zhao
- Department of General & Vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jinjian Sun
- Department of General & Vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yongqing Li
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Baihong Pan
- Department of General & Vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of General & Vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
ZECCA F, MANNELLI L, FAA G, MUSCOGIURI G, SANFILIPPO R, SURI JS, SABA L. Abdominal aortic aneurysms: is it time for a diagnostic revolution? Evidence from the Cardiovascular Health Study. ITALIAN JOURNAL OF VASCULAR AND ENDOVASCULAR SURGERY 2024; 31. [DOI: 10.23736/s1824-4777.24.01655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
|
11
|
Leblanc PO, Breton Y, Léveillé F, Tessier PA, Pelletier M. The impact of the herbicide glyphosate and its metabolites AMPA and MPA on the metabolism and functions of human blood neutrophils and their sex-dependent effects on reactive oxygen species and CXCL8/IL-8 production. ENVIRONMENTAL RESEARCH 2024; 252:118831. [PMID: 38580005 DOI: 10.1016/j.envres.2024.118831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Significant levels of glyphosate, the world's most widely used herbicide, and its primary metabolites, AMPA and MPA, are detected in various human organs and body fluids, including blood. Several studies have associated the presence of glyphosate in humans with health problems, and effects on immune cells and their functions have been reported. However, the impact of this molecule and its metabolites on neutrophils, the most abundant leukocytes in the human bloodstream, is still poorly documented. We isolated neutrophils from human donor blood and investigated the effects of exposure to glyphosate, AMPA, and MPA on viability, energy metabolism, and essential antimicrobial functions in vitro. We observed that neutrophil viability was unaffected at the blood-relevant average concentrations of the general population and exposed workers, as well as at higher intoxication concentrations. Neutrophil energy metabolism was also not altered following exposure to the chemicals. However, while phagocytosis was unaffected, reactive oxygen species generation and CXCL8/IL-8 production were altered by exposure to the molecules. Alterations in function following exposure to glyphosate and metabolites differed according to the sex of the donors, which could be linked to glyphosate's known role as an endocrine disruptor. While ROS generation was increased in both sexes, male neutrophils exposed to glyphosate had increased intracellular production of CXCL8/IL-8, with no effect on female neutrophils. Conversely, exposure to the metabolites AMPA and MPA decreased extracellular production of this chemokine only in female neutrophils, with MPA also increasing intracellular production in male cells exposed to the chemoattractant N-formyl-methionine-leucyl-phenylalanine. Our study highlights the effects of glyphosate and its metabolites on the antimicrobial functions of neutrophils, which could be associated with health problems as future studies provide a better understanding of the risks associated with glyphosate use. Advances in knowledge will enable better and potentially stricter regulations to protect the public.
Collapse
Affiliation(s)
- Pier-Olivier Leblanc
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada
| | - Yann Breton
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada
| | - Florence Léveillé
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada
| | - Philippe A Tessier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec, G1V 0A6, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec, G1V 0A6, Canada.
| |
Collapse
|
12
|
Wakeham DJ, New KJ. Neutrophil Elastase: A Key Factor in the Development of Aortic Aneurysm. Am J Hypertens 2024; 37:321-322. [PMID: 38315760 DOI: 10.1093/ajh/hpae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Affiliation(s)
- Denis J Wakeham
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA
- The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Karl J New
- Clinical Physiology & Nutrition, Faculty of Life Science and Education, University of South Wales, Treforest, UK
| |
Collapse
|
13
|
Gu X, Yu Z, Qian T, Jin Y, Xu G, Li J, Gu J, Li M, Tao K. Transcriptomic analysis identifies the shared diagnostic biomarkers and immune relationship between Atherosclerosis and abdominal aortic aneurysm based on fatty acid metabolism gene set. Front Mol Biosci 2024; 11:1365447. [PMID: 38660376 PMCID: PMC11040089 DOI: 10.3389/fmolb.2024.1365447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Background Epidemiological research has demonstrated that there is a connection between lipid metabolism disorder and an increased risk of developing arteriosclerosis (AS) and abdominal aortic aneurysm (AAA). However, the precise relationship between lipid metabolism, AS, and AAA is still not fully understood. The objective of this study was to examine the pathways and potential fatty acid metabolism-related genes (FRGs) that are shared between AS and AAA. Methods AS- and AAA-associated datasets were retrieved from the Gene Expression Omnibus (GEO) database, and the limma package was utilized to identify differentially expressed FRGs (DFRGs) common to both AS and AAA patients. Functional enrichment analysis was conducted on the (DFRGs), and a protein-protein interaction (PPI) network was established. The selection of signature genes was performed through the utilization of least absolute shrinkage and selection operator (LASSO) regression and random forest (RF). Subsequently, a nomogram was developed using the results of the screening process, and the crucial genes were validated in two separate external datasets (GSE28829 and GSE17901) as well as clinical samples. In the end, single-sample gene set enrichment analysis (ssGSEA) was utilized to assess the immune cell patterns in both AS and AAA. Additionally, the correlation between key crosstalk genes and immune cell was evaluated. Results In comparison to control group, both AS and AAA patients exhibited a decrease in fatty acid metabolism score. We found 40 DFRGs overlapping in AS and AAA, with lipid and amino acid metabolism critical in their pathogenesis. PCBD1, ACADL, MGLL, BCKDHB, and IDH3G were identified as signature genes connecting AS and AAA. Their expression levels were confirmed in validation datasets and clinical samples. The analysis of immune infiltration showed that neutrophils, NK CD56dim cells, and Tem cells are important in AS and AAA development. Correlation analysis suggested that these signature genes may be involved in immune cell infiltration. Conclusion The fatty acid metabolism pathway appears to be linked to the development of both AS and AAA. Furthermore, PCBD1, ACADL, MGLL, BCKDHB, and IDH3G have the potential to serve as diagnostic markers for patients with AS complicated by AAA.
Collapse
Affiliation(s)
- Xuefeng Gu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu Province, China
| | - Zhongxian Yu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu Province, China
| | - Tianwei Qian
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu Province, China
| | - Yiqi Jin
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Guoxiong Xu
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Jiang Li
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Jianfeng Gu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu Province, China
| | - Ming Li
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu Province, China
| | - Ke Tao
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu Province, China
| |
Collapse
|
14
|
Plana E, Oto J, Herranz R, Medina P, Cana F, Miralles M. Calprotectin as a new inflammatory marker of abdominal aortic aneurysm: A pilot study. Vasc Med 2024; 29:189-199. [PMID: 38457311 DOI: 10.1177/1358863x241231494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
INTRODUCTION Abdominal aortic aneurysm (AAA) is a relevant clinical problem due to the risk of rupture of progressively dilated infrarenal aorta. It is characterized by degradation of elastic fibers, extracellular matrix, and inflammation of the arterial wall. Though neutrophil infiltration is a known feature of AAA, markers of neutrophil activation are scarcely analyzed; hence, the main objective of this study. METHODS Plasma levels of main neutrophil activation markers were quantified in patients with AAA and a double control group (CTL) formed by healthy volunteers (HV) and patients with severe atherosclerosis submitted for carotid endarterectomy (CE). Calprotectin, a cytoplasmic neutrophil protein, was quantified, by Western blot, in arterial tissue samples from patients with AAA and organ donors. Colocalization of calprotectin and neutrophil elastase was assessed by immunofluorescence. RESULTS Plasma calprotectin and IL-6 were both elevated in patients with AAA compared with CTL (p ⩽ 0.0001) and a strong correlation was found between both molecules (p < 0.001). This difference was maintained when comparing with HV and CE for calprotectin but only with HV for IL-6. Calprotectin was also elevated in arterial tissue samples from patients with AAA compared with organ donors (p < 0.0001), and colocalized with neutrophils in the arterial wall. CONCLUSIONS Circulating calprotectin could be a specific AAA marker and a potential therapeutical target. Calprotectin is related to inflammation and neutrophil activation in arterial wall and independent of other atherosclerotic events.
Collapse
Affiliation(s)
- Emma Plana
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Valencia, Spain
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Raquel Herranz
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Fernando Cana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Manuel Miralles
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Valencia, Spain
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
- Department of Surgery, University of Valencia, Valencia, Spain
| |
Collapse
|
15
|
Ibrahim N, Bleichert S, Klopf J, Kurzreiter G, Hayden H, Knöbl V, Artner T, Krall M, Stiglbauer-Tscholakoff A, Oehler R, Petzelbauer P, Busch A, Bailey MA, Eilenberg W, Neumayer C, Brostjan C. Reducing Abdominal Aortic Aneurysm Progression by Blocking Neutrophil Extracellular Traps Depends on Thrombus Formation. JACC Basic Transl Sci 2024; 9:342-360. [PMID: 38559632 PMCID: PMC10978405 DOI: 10.1016/j.jacbts.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 04/04/2024]
Abstract
Neutrophil extracellular traps (NETs) are implicated in the pathogenesis of abdominal aortic aneurysm (AAA), located in adventitia and intraluminal thrombus. We compared the therapeutic potential of targeting upstream or downstream effector molecules of NET formation in 2 murine AAA models based on angiotensin II or peri-adventitial elastase application. In both models, NETs were detected in formed aneurysms at treatment start. Although NET inhibitors failed in the elastase model, they prevented progression of angiotensin II-induced aneurysms with thrombus, which resembles established human disease (including thrombus development). Blockade of upstream NET mediators was more effective than interference with downstream NET molecules.
Collapse
Affiliation(s)
- Nahla Ibrahim
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Sonja Bleichert
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Johannes Klopf
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Gabriel Kurzreiter
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Hubert Hayden
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Viktoria Knöbl
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Tyler Artner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Moritz Krall
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Alexander Stiglbauer-Tscholakoff
- Division of Cardiovascular and Interventional Radiology, Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Rudolf Oehler
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Albert Busch
- Department for Visceral, Thoracic and Vascular Surgery, Technical University of Dresden and University Hospital Carl-Gustav Carus, Dresden, Germany
| | - Marc A. Bailey
- Leeds Institute for Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
- Leeds Vascular Institute, Leeds General Infirmary, Leeds, United Kingdom
| | - Wolf Eilenberg
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| |
Collapse
|
16
|
Hu K, Zhong L, Lin W, Zhao G, Pu W, Feng Z, Zhou M, Ding J, Zhang J. Pathogenesis-Guided Rational Engineering of Nanotherapies for the Targeted Treatment of Abdominal Aortic Aneurysm by Inhibiting Neutrophilic Inflammation. ACS NANO 2024; 18:6650-6672. [PMID: 38369729 DOI: 10.1021/acsnano.4c00120] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Abdominal aortic aneurysm (AAA) remains a fatal disease in the elderly. Currently, no drugs can be clinically used for AAA therapy. Considering the pivotal role of neutrophils in the pathogenesis of AAA, herein we propose the targeted therapy of AAA by site-specifically regulating neutrophilic inflammation. Based on a luminol-conjugated α-cyclodextrin material (LaCD), intrinsically anti-inflammatory nanoparticles (NPs) were engineered by simple nanoprecipitation, which were examined as a nanotherapy (defined as LaCD NP). After efficient accumulation in the aneurysmal aorta and localization in pathologically relevant inflammatory cells in rats with CaCl2-induced AAA, LaCD NP significantly alleviated AAA progression, as implicated by the decreased aortic expansion, suppressed elastin degradation, inhibited calcification, and improved structural integrity of the abdominal aorta. By functionalizing LaCD NP with alendronate, a calcification-targeting moiety, the in vivo aneurysmal targeting capability of LaCD NP was considerably enhanced, thereby affording significantly potentiated therapeutic outcomes in AAA rats. Mechanistically, LaCD NP can effectively inhibit neutrophil-mediated inflammatory responses in the aneurysmal aorta. Particularly, LaCD NP potently attenuated the formation of neutrophil extracellular traps (NETs), thereby suppressing NETs-mediated pro-inflammatory events and NETosis-associated negative effects responsible for AAA progression. Consequently, we demonstrated the effectiveness and underlying mechanisms of anti-NETosis nanotherapies for the targeted treatment of AAA. Our findings provide promising insights into discovering precision therapies for AAA and other inflammatory vascular diseases.
Collapse
Affiliation(s)
- Kaiyao Hu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Ling Zhong
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Wenjie Lin
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Guanli Zhao
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Wendan Pu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Zhiqiang Feng
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Min Zhou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Jun Ding
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
- Yu-Yue Pathology Scientific Research Center, 313 Gaoteng Avenue, Jiulongpo District, Chongqing 400039, People's Republic of China
| |
Collapse
|
17
|
Domagała D, Data K, Szyller H, Farzaneh M, Mozdziak P, Woźniak S, Zabel M, Dzięgiel P, Kempisty B. Cellular, Molecular and Clinical Aspects of Aortic Aneurysm-Vascular Physiology and Pathophysiology. Cells 2024; 13:274. [PMID: 38334666 PMCID: PMC10854611 DOI: 10.3390/cells13030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
A disturbance of the structure of the aortic wall results in the formation of aortic aneurysm, which is characterized by a significant bulge on the vessel surface that may have consequences, such as distention and finally rupture. Abdominal aortic aneurysm (AAA) is a major pathological condition because it affects approximately 8% of elderly men and 1.5% of elderly women. The pathogenesis of AAA involves multiple interlocking mechanisms, including inflammation, immune cell activation, protein degradation and cellular malalignments. The expression of inflammatory factors, such as cytokines and chemokines, induce the infiltration of inflammatory cells into the wall of the aorta, including macrophages, natural killer cells (NK cells) and T and B lymphocytes. Protein degradation occurs with a high expression not only of matrix metalloproteinases (MMPs) but also of neutrophil gelatinase-associated lipocalin (NGAL), interferon gamma (IFN-γ) and chymases. The loss of extracellular matrix (ECM) due to cell apoptosis and phenotype switching reduces tissue density and may contribute to AAA. It is important to consider the key mechanisms of initiating and promoting AAA to achieve better preventative and therapeutic outcomes.
Collapse
Affiliation(s)
- Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Hubert Szyller
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
| | - Sławomir Woźniak
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Institute of Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
18
|
Shao BZ, Jiang JJ, Zhao YC, Zheng XR, Xi N, Zhao GR, Huang XW, Wang SL. Neutrophil extracellular traps in central nervous system (CNS) diseases. PeerJ 2024; 12:e16465. [PMID: 38188146 PMCID: PMC10771765 DOI: 10.7717/peerj.16465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/24/2023] [Indexed: 01/09/2024] Open
Abstract
Excessive induction of inflammatory and immune responses is widely considered as one of vital factors contributing to the pathogenesis and progression of central nervous system (CNS) diseases. Neutrophils are well-studied members of inflammatory and immune cell family, contributing to the innate and adaptive immunity. Neutrophil-released neutrophil extracellular traps (NETs) play an important role in the regulation of various kinds of diseases, including CNS diseases. In this review, current knowledge on the biological features of NETs will be introduced. In addition, the role of NETs in several popular and well-studied CNS diseases including cerebral stroke, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis (ALS), and neurological cancers will be described and discussed through the reviewing of previous related studies.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | | | - Yi-Cheng Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Rui Zheng
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Na Xi
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Guan-Ren Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Wu Huang
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | | |
Collapse
|
19
|
Wang Q, Chen G, Qi Z, Zeng Y, Tan L, Tang H. Global research status analysis of the association between aortic aneurysm and inflammation: a bibliometric analysis from 1999 to 2023. Front Cardiovasc Med 2023; 10:1260935. [PMID: 38111889 PMCID: PMC10725951 DOI: 10.3389/fcvm.2023.1260935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
Background Aortic aneurysm is a chronic arterial disease that can lead to aortic rupture, causing severe complications and life-threatening risks for patients, and it is one of the common causes of death among the elderly. Increasing evidence suggests that inflammation plays an important role in the progression of aortic aneurysm. However, there is a lack of literature-based quantitative analysis in this field. Methods Up to March 30, 2023, we collected 3,993 articles related to aortic aneurysm and inflammation from the Web of Science Core Collection (WoSCC) database for bibliometric analysis. The collected literature data were subjected to visual analysis of regional distribution, institutions, authors, keywords, and other information using tools such as CiteSpace, VOSviewer, the R package "bibliometric," and online platforms. Results The number of publications in this research field has been steadily increasing each year, with the United States and China being the main contributing countries. Harvard University in the United States emerged as the most active and influential research institution in this field. Jonathan Golledge and Peter Libby were identified as the authors with the highest publication output and academic impact, respectively. Researchers in this field tend to publish their findings in influential journals such as the Journal of Vascular Surgery and Arteriosclerosis Thrombosis and Vascular Biology. "Abdominal aortic aneurysm," "giant cell arteritis," "arterial stiffness," and "smooth muscle cells" were identified as the hottest topics in the field of aortic aneurysm and inflammation. In terms of keyword co-occurrence analysis, "Clinical relevant studies of AA" (red), "Inflammatory activation" (green), "Inflammatory mechanisms related to pathogenesis" (dark blue), "Cytokines" (yellow), "Risk factors" (purple), and "Pathological changes in vascular wall" (cyan) formed the major research framework in this field. "Inflammation-related pathogenesis" and "inflammation activation" have emerged as recent hot research directions, with "monocytes," "progression," and "proliferation" being the prominent topics. Conclusion This study provides a comprehensive analysis of the knowledge network framework and research hotspots in the field of aortic aneurysm and inflammation through a literature-based quantitative approach. It offers valuable insights to guide scholars in identifying meaningful research directions in this field.
Collapse
Affiliation(s)
- Qiuguo Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guihuan Chen
- Department of Anesthesiology, Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, China
| | - Zhen Qi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yifan Zeng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hao Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Song J, Zhang Y, Bai Y, Sun X, Lu Y, Guo Y, He Y, Gao M, Chi X, Heng BC, Zhang X, Li W, Xu M, Wei Y, You F, Zhang X, Lu D, Deng X. The Deubiquitinase OTUD1 Suppresses Secretory Neutrophil Polarization And Ameliorates Immunopathology of Periodontitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303207. [PMID: 37639212 PMCID: PMC10602526 DOI: 10.1002/advs.202303207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/12/2023] [Indexed: 08/29/2023]
Abstract
Tissue-infiltrating neutrophils (TINs) secrete various signaling molecules to establish paracrine communication within the inflammatory milieu. It is imperative to identify molecular mediators that control this secretory phenotype of TINs. The present study uncovers a secretory neutrophil subset that exhibits increased pro-inflammatory cytokine production and enhanced migratory capacity which is highly related with periodontal pathogenesis. Further analysis identifies the OTU domain-containing protein 1 (OTUD1) plays a regulatory role in this secretory neutrophil polarization. In human and mouse periodontitis, the waning of inflammation is correlated with OTUD1 upregulation, whereas severe periodontitis is induced when neutrophil-intrinsic OTUD1 is depleted. Mechanistically, OTUD1 interacts with SEC23B, a component of the coat protein II complex (COPII). By removing the K63-linked polyubiquitin chains on SEC23B Lysine 81, the deubiquitinase OTUD1 negatively regulates the COPII secretory machinery and limits protein ER-to-Golgi trafficking, thus restricting the surface expression of integrin-regulated proteins, CD9 and CD47. Accordingly, blockade of protein transport by Brefeldin A (BFA) curbs recruitment of Otud1-deficient TINs and attenuates inflammation-induced alveolar bone destruction. The results thus identify OTUD1 signaling as a negative feedback loop that limits the polarization of neutrophils with secretory phenotype and highlight the potential application of BFA in the treatment of periodontal inflammation.
Collapse
Affiliation(s)
- Jia Song
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Yuning Zhang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Yunyang Bai
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xiaowen Sun
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Yanhui Lu
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Yusi Guo
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Ying He
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Min Gao
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xiaopei Chi
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Boon Chin Heng
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
- Central LaboratoryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xin Zhang
- Institute of Systems BiomedicineSchool of Basic Medical SciencesNHC Key Laboratory of Medical ImmunologyBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191P. R. China
| | - Wenjing Li
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Mingming Xu
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Yan Wei
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Fuping You
- Institute of Systems BiomedicineSchool of Basic Medical SciencesNHC Key Laboratory of Medical ImmunologyBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191P. R. China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
- Peking University‐Yunnan Baiyao International Medical Research CenterBeijing100191P. R. China
| | - Dan Lu
- Institute of Systems BiomedicineSchool of Basic Medical SciencesNHC Key Laboratory of Medical ImmunologyBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191P. R. China
| | - Xuliang Deng
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
- Peking University‐Yunnan Baiyao International Medical Research CenterBeijing100191P. R. China
| |
Collapse
|
21
|
Poledniczek M, Neumayer C, Kopp CW, Schlager O, Gremmel T, Jozkowicz A, Gschwandtner ME, Koppensteiner R, Wadowski PP. Micro- and Macrovascular Effects of Inflammation in Peripheral Artery Disease-Pathophysiology and Translational Therapeutic Approaches. Biomedicines 2023; 11:2284. [PMID: 37626780 PMCID: PMC10452462 DOI: 10.3390/biomedicines11082284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammation has a critical role in the development and progression of atherosclerosis. On the molecular level, inflammatory pathways negatively impact endothelial barrier properties and thus, tissue homeostasis. Conformational changes and destruction of the glycocalyx further promote pro-inflammatory pathways also contributing to pro-coagulability and a prothrombotic state. In addition, changes in the extracellular matrix composition lead to (peri-)vascular remodelling and alterations of the vessel wall, e.g., aneurysm formation. Moreover, progressive fibrosis leads to reduced tissue perfusion due to loss of functional capillaries. The present review aims at discussing the molecular and clinical effects of inflammatory processes on the micro- and macrovasculature with a focus on peripheral artery disease.
Collapse
Affiliation(s)
- Michael Poledniczek
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Oliver Schlager
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Thomas Gremmel
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria;
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, 3100 St. Pölten, Austria
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Michael E. Gschwandtner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| |
Collapse
|
22
|
Panzer B, Kopp CW, Neumayer C, Koppensteiner R, Jozkowicz A, Poledniczek M, Gremmel T, Jilma B, Wadowski PP. Toll-like Receptors as Pro-Thrombotic Drivers in Viral Infections: A Narrative Review. Cells 2023; 12:1865. [PMID: 37508529 PMCID: PMC10377790 DOI: 10.3390/cells12141865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Toll-like receptors (TLRs) have a critical role in the pathogenesis and disease course of viral infections. The induced pro-inflammatory responses result in the disturbance of the endovascular surface layer and impair vascular homeostasis. The injury of the vessel wall further promotes pro-thrombotic and pro-coagulatory processes, eventually leading to micro-vessel plugging and tissue necrosis. Moreover, TLRs have a direct role in the sensing of viruses and platelet activation. TLR-mediated upregulation of von Willebrand factor release and neutrophil, as well as macrophage extra-cellular trap formation, further contribute to (micro-) thrombotic processes during inflammation. The following review focuses on TLR signaling pathways of TLRs expressed in humans provoking pro-thrombotic responses, which determine patient outcome during viral infections, especially in those with cardiovascular diseases.
Collapse
Affiliation(s)
- Benjamin Panzer
- Department of Cardiology, Wilhelminenspital, 1090 Vienna, Austria
| | - Christoph W Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Alicja Jozkowicz
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Medical Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Gremmel
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, 3100 St. Pölten, Austria
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Patricia P Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
23
|
Liu D, Ghani D, Wain J, Szeto WY, Laudanski K. Concomitant elevated serum levels of tenascin, MMP-9 and YKL-40, suggest ongoing remodeling of the heart up to 3 months after cardiac surgery after normalization of the revascularization markers. Eur J Med Res 2022; 27:208. [PMID: 36271425 PMCID: PMC9585873 DOI: 10.1186/s40001-022-00831-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The recovery from cardiac surgery involves resolving inflammation and remodeling with significant connective tissue turnover. Dynamics of smoldering inflammation and injury (white blood cells, platelets, CRP, IL-8, IL-6), vascular inflammation (IL-15, VEGF, RANTES), connective tissue remodeling (tenascin, MMP-9), cardiac injury and remodeling (YKL-40), and vascular remodeling (epiregulin, MCP-1, VEGF) were assessed up to 3 months after cardiac surgery. We hypothesize that at 3 months, studied markers will return to pre-surgical levels. METHODS Patients (n = 139) scheduled for non-emergent heart surgery were included, except for patients with pre-existing immunological aberrancies. Blood was collected before surgery(tbaseline), 24 h later(t24h) after the first sample, 7 days(t7d), and 3 months(t3m) after tbaseline. Serum markers were measured via multiplex or ELISA. Electronic medical records (EMR) were used to extract demographical, pre-existing conditions and clinical data. Disposition (discharge home, discharge to facility, death, re-admission) was determined at 28 days and 3 months from admission. RESULTS Not all inflammatory markers returned to baseline (CRP↑↑, leukocytosis, thrombocytosis, IL-8↓, IL-6↓). Tenascin and YKL-40 levels remained elevated even at t3m. YKL-40 serum levels were significantly elevated at t24h and t7d while normalized at t3m. VEGF returned to the baseline, yet MCP-1 remained elevated at 3 months. CCL28 increased at 3 months, while RANTES and IL-15 declined at the same time. Disposition at discharge was determined by serum MMP-9, while YKL-40 correlated with duration of surgery and APACHE II24h. CONCLUSIONS The data demonstrated an ongoing extracellular matrix turnover at 3 months, while acute inflammation and vascular remodeling resolved only partially.
Collapse
Affiliation(s)
- Da Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Danyal Ghani
- College of Art and Sciences, Drexel University, Philadelphia, PA, USA
| | - Justin Wain
- Campbell University School of Osteopathic Medicine, Buies Creek, NC, USA
| | - Wilson Y Szeto
- Department of Cardiac Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA. .,Leonard Davis Institute for Health Economics, University of Pennsylvania, JMB 127, 3620 Hamilton Walk, Philadelphia, PA, 19146, USA.
| |
Collapse
|
24
|
Márquez-Sánchez AC, Koltsova EK. Immune and inflammatory mechanisms of abdominal aortic aneurysm. Front Immunol 2022; 13:989933. [PMID: 36275758 PMCID: PMC9583679 DOI: 10.3389/fimmu.2022.989933] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. Immune-mediated infiltration and a destruction of the aortic wall during AAA development plays significant role in the pathogenesis of this disease. While various immune cells had been found in AAA, the mechanisms of their activation and function are still far from being understood. A better understanding of mechanisms regulating the development of aberrant immune cell activation in AAA is essential for the development of novel preventive and therapeutic approaches. In this review we summarize current knowledge about the role of immune cells in AAA and discuss how pathogenic immune cell activation is regulated in this disease.
Collapse
|
25
|
Soluble ST2 as a Potential Biomarker for Abdominal Aortic Aneurysms-A Single-Center Retrospective Cohort Study. Int J Mol Sci 2022; 23:ijms23179598. [PMID: 36076997 PMCID: PMC9455465 DOI: 10.3390/ijms23179598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The maximal aortic diameter is the only clinically applied predictor of abdominal aortic aneurysm (AAA) progression and indicator for surgical repair. Circulating biomarkers resulting from AAA pathogenesis are attractive candidates for the diagnosis and prognosis of aneurysmal disease. Due to the reported role of interleukin 33 in AAA development, we investigated the corresponding circulating receptor molecules of soluble suppression of tumorigenesis 2 (sST2) in AAA patients regarding their marker potential in diagnosis and prognosis. We conducted a single-center retrospective cohort study in a diagnostic setting, measuring the circulating serum sST2 protein levels of 47 AAA patients under surveillance, matched with 25 peripheral artery disease (PAD) patients and 25 healthy controls. In a prognostic setting, we analyzed the longitudinal monitoring data of 50 monitored AAA patients. Slow versus fast AAA progression was defined as a <2 or ≥2 mm increase in AAA diameter over 6 months and a <4 or ≥4 mm increase over 12 months. Additionally, the association of circulating serum sST2 and AAA growth was investigated using a specifically tailored log-linear mixed model. Serum sST2 concentrations were significantly increased in AAA patients compared with healthy individuals: the median of AAA patient cohort was 112.72 ng/mL (p = 0.025) and that of AAA patient cohort 2 was 14.32 ng/mL (p = 0.039) versus healthy controls (8.82 ng/mL). Likewise, PAD patients showed significantly elevated sST2 protein levels compared with healthy controls (the median was 12.10 ng/mL; p = 0.048) but similar concentrations to AAA patients. Additionally, sST2 protein levels were found to be unsuited to identifying fast AAA progression over short-term periods of 6 or 12 months, which was confirmed by a log-linear mixed model. In conclusion, the significantly elevated protein levels of sST2 detected in patients with vascular disease may be useful in the early diagnosis of AAA but cannot distinguish between AAA and PAD or predict AAA progression.
Collapse
|
26
|
Neutrophils, Fast and Strong. Biomedicines 2022; 10:biomedicines10082040. [PMID: 36009587 PMCID: PMC9406130 DOI: 10.3390/biomedicines10082040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
|
27
|
Stilo F, Catanese V, Nenna A, Montelione N, Codispoti FA, Verghi E, Gabellini T, Jawabra M, Chello M, Spinelli F. Biomarkers in EndoVascular Aneurysm Repair (EVAR) and Abdominal Aortic Aneurysm: Pathophysiology and Clinical Implications. Diagnostics (Basel) 2022; 12:diagnostics12010183. [PMID: 35054350 PMCID: PMC8774611 DOI: 10.3390/diagnostics12010183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Circulating biomarkers have been recently investigated among patients undergoing endovascular aortic aneurysm repair (EVAR) for abdominal aortic aneurysm (AAA). Considering the plethora of small descriptive studies reporting potential associations between biomarkers and clinical outcomes, this review aims to summarize the current literature considering both the treated disease (post EVAR) and the untreated disease (AAA before EVAR). All studies describing outcomes of tissue biomarkers in patients undergoing EVAR and in patients with AAA were included, and references were checked for additional sources. In the EVAR scenario, circulating interleukin-6 (IL-6) is a marker of inflammatory reaction which might predict postoperative morbidity; cystatin C is a promising early marker of post-procedural acute kidney injury; plasma matrix metalloproteinase-9 (MMP-9) concentration after 3 months from EVAR might help in detecting post-procedural endoleak. This review also summarizes the current gaps in knowledge and future direction of this field of research. Among markers used in patients with AAA, galectin and granzyme appear to be promising and should be carefully investigated even in the EVAR setting. Larger prospective trials are required to establish and evaluate prognostic models with highest values with these markers.
Collapse
Affiliation(s)
- Francesco Stilo
- Department of Vascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy;
| | - Vincenzo Catanese
- Department of Vascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy;
- Correspondence: or
| | - Antonio Nenna
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Nunzio Montelione
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Francesco Alberto Codispoti
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Emanuele Verghi
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Teresa Gabellini
- Residency Program of Vascular and Endovascular Surgery, University of Ferrara, 44121 Ferrara, Italy;
| | - Mohamad Jawabra
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Massimo Chello
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Francesco Spinelli
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| |
Collapse
|
28
|
Kessler V, Klopf J, Eilenberg W, Neumayer C, Brostjan C. AAA Revisited: A Comprehensive Review of Risk Factors, Management, and Hallmarks of Pathogenesis. Biomedicines 2022; 10:94. [PMID: 35052774 PMCID: PMC8773452 DOI: 10.3390/biomedicines10010094] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
Despite declining incidence and mortality rates in many countries, the abdominal aortic aneurysm (AAA) continues to represent a life-threatening cardiovascular condition with an overall prevalence of about 2-3% in the industrialized world. While the risk of AAA development is considerably higher for men of advanced age with a history of smoking, screening programs serve to detect the often asymptomatic condition and prevent aortic rupture with an associated death rate of up to 80%. This review summarizes the current knowledge on identified risk factors, the multifactorial process of pathogenesis, as well as the latest advances in medical treatment and surgical repair to provide a perspective for AAA management.
Collapse
Affiliation(s)
| | | | | | | | - Christine Brostjan
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (V.K.); (J.K.); (W.E.); (C.N.)
| |
Collapse
|
29
|
Siwicka-Gieroba D, Dabrowski W. Credibility of the Neutrophil-to-Lymphocyte Count Ratio in Severe Traumatic Brain Injury. Life (Basel) 2021; 11:life11121352. [PMID: 34947883 PMCID: PMC8706648 DOI: 10.3390/life11121352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide. The consequences of a TBI generate the activation and accumulation of inflammatory cells. The peak number of neutrophils entering into an injured brain is observed after 24 h; however, cells infiltrate within 5 min of closed brain injury. Neutrophils release toxic molecules including free radicals, proinflammatory cytokines, and proteases that advance secondary damage. Regulatory T cells impair T cell infiltration into the central nervous system and elevate reactive astrogliosis and interferon-γ gene expression, probably inducing the process of healing. Therefore, the neutrophil-to-lymphocyte ratio (NLR) may be a low-cost, objective, and available predictor of inflammation as well as a marker of secondary injury associated with neutrophil activation. Recent studies have documented that an NLR value on admission might be effective for predicting outcome and mortality in severe brain injury patients.
Collapse
|