1
|
Davidova S, Galabov AS, Satchanska G. Antibacterial, Antifungal, Antiviral Activity, and Mechanisms of Action of Plant Polyphenols. Microorganisms 2024; 12:2502. [PMID: 39770706 PMCID: PMC11728530 DOI: 10.3390/microorganisms12122502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
This review describes the enhanced classification of polyphenols into flavonoids, lignans, phenolic acids, stilbenes, and tannins. Its focus is the natural sources of polyphenols and an in-depth discussion of their antibacterial, antifungal, and antiviral activity. Besides a broad literature overview, this paper contains authors' experimental data according to some daily consumed vegetables such as tomatoes, different varieties of onion, garlic, parsley, and cayenne pepper and the probable relation of these activities to polyphenols. The isolation of polyphenols via conventional and ultrasonic, pressurized liquids and pulse-field extractions, as well as their methods for detection and determination, are interpreted as well. The main mechanisms by which polyphenols inhibit the growth of bacteria, fungi, and viruses, such as protein synthesis, cell membrane destabilization, and ROS production induction, are in focus. Data on polyphenol concentrations and their respective MIC or the inhibition zone diameters of different bacterial and fungal species and suppressing viral replication are depicted. The toxicity of polyphenols in vitro, ex vivo, and in vivo towards microorganisms and human/animal cells, and the safety of the polyphenols applied in clinical and industrial applications are expanded. This review also characterizes the antimicrobial effects of some chemically synthesized polyphenol derivatives. Biotechnological advances are also reported, especially the entrapment of polyphenols in biocompatible nanoparticles to enhance their bioavailability and efficacy. Polyphenols are promising for exploring molecules' novel antimicrobial substances and paving the path for effective novel antimicrobial agents' discovery, taking into consideration their positives and negatives.
Collapse
Affiliation(s)
- Slavena Davidova
- UPIZ “Educational and Research Laboratory”-MF, NBU, Department Natural Sciences, New Bulgarian University, Montevideo Blvd., 21, 1618 Sofia, Bulgaria;
| | - Angel S. Galabov
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 26, 1113 Sofia, Bulgaria;
| | - Galina Satchanska
- UPIZ “Educational and Research Laboratory”-MF, NBU, Department Natural Sciences, New Bulgarian University, Montevideo Blvd., 21, 1618 Sofia, Bulgaria;
| |
Collapse
|
2
|
Bolat E, Sarıtaş S, Duman H, Eker F, Akdaşçi E, Karav S, Witkowska AM. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024; 16:2550. [PMID: 39125431 PMCID: PMC11314462 DOI: 10.3390/nu16152550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| |
Collapse
|
3
|
Gostimirovic M, Rajkovic J, Bukarica A, Simanovic J, Gojkovic-Bukarica L. Resveratrol and Gut Microbiota Synergy: Preventive and Therapeutic Effects. Int J Mol Sci 2023; 24:17573. [PMID: 38139400 PMCID: PMC10743535 DOI: 10.3390/ijms242417573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The role of an imbalanced high-fat diet in the pathophysiology of common chronic noncommunicable diseases has been known for years. More recently, the concept of 'gut microbiota' and the interaction between their composition and gut metabolites produced from the intake of dietary products have gained the focus of researchers, mostly from the perspective of the prevention of cardiovascular and metabolic disorders, which are still the leading cause of death globally. The aim of this work is to highlight the health benefits of the interaction between resveratrol (RSV), red grape polyphenol, and gut microbiota, through aspects of their therapeutic and preventive potentials. Since changed microbiota (mostly as a consequence of antibiotic overuse) contribute to the persistence of post ('long')-COVID-19 symptoms, these aspects will be covered too. Data were obtained from the electronic databases (MedLine/PubMed), according to specific keywords regarding the protective role of resveratrol, the gut microbiota, and their synergy. RSV exerts beneficial properties in the modulation of cardiovascular, metabolic, and post-COVID-19-related disorders. In healthy individuals, it maintains an ergogenic capacity, prevents oxidative stress, and modulates the inflammatory response. Overall, it improves quality of life. The RSV-gut-microbiota interaction is beneficial in terms of maintaining human health. Along with physical activity, it is key for the prevention of chronic noncommunicable diseases.
Collapse
Affiliation(s)
- Milos Gostimirovic
- Department of Cardiovascular Pharmacology, Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.G.); (J.S.); (L.G.-B.)
| | - Jovana Rajkovic
- Department of Cardiovascular Pharmacology, Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.G.); (J.S.); (L.G.-B.)
| | - Ana Bukarica
- Institute for Cardiovascular Diseases Dedinje, Faculty of Medicine, University of Belgrade, 11040 Belgrade, Serbia;
| | - Jovana Simanovic
- Department of Cardiovascular Pharmacology, Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.G.); (J.S.); (L.G.-B.)
| | - Ljiljana Gojkovic-Bukarica
- Department of Cardiovascular Pharmacology, Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.G.); (J.S.); (L.G.-B.)
| |
Collapse
|
4
|
Grujić-Milanović J, Rajković J, Milanović S, Jaćević V, Miloradović Z, Nežić L, Novaković R. Natural Substances vs. Approved Drugs in the Treatment of Main Cardiovascular Disorders-Is There a Breakthrough? Antioxidants (Basel) 2023; 12:2088. [PMID: 38136208 PMCID: PMC10740850 DOI: 10.3390/antiox12122088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a group of diseases with a very high rate of morbidity and mortality. The clinical presentation of CVDs can vary from asymptomatic to classic symptoms such as chest pain in patients with myocardial infarction. Current therapeutics for CVDs mainly target disease symptoms. The most common CVDs are coronary artery disease, acute myocardial infarction, atrial fibrillation, chronic heart failure, arterial hypertension, and valvular heart disease. In their treatment, conventional therapies and pharmacological therapies are used. However, the use of herbal medicines in the therapy of these diseases has also been reported in the literature, resulting in a need for critical evaluation of advances related to their use. Therefore, we carried out a narrative review of pharmacological and herbal therapeutic effects reported for these diseases. Data for this comprehensive review were obtained from electronic databases such as MedLine, PubMed, Web of Science, Scopus, and Google Scholar. Conventional therapy requires an individual approach to the patients, as when patients do not respond well, this often causes allergic effects or various other unwanted effects. Nowadays, medicinal plants as therapeutics are frequently used in different parts of the world. Preclinical/clinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common CVDs. The natural products analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in CVDs pharmacotherapy, and some of them have already been approved by the FDA. There are insufficient clinical studies to compare the effectiveness of natural products compared to approved therapeutics for the treatment of CVDs. Further long-term studies are needed to accelerate the potential of using natural products for these diseases. Despite this undoubted beneficence on CVDs, there are no strong breakthroughs supporting the implementation of natural products in clinical practice. Nevertheless, they are promising agents in the supplementation and co-therapy of CVDs.
Collapse
Affiliation(s)
- Jelica Grujić-Milanović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department of Cardiovascular Research, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Jovana Rajković
- Institute for Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia
| | - Sladjan Milanović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department for Biomechanics, Biomedical Engineering and Physics of Complex Systems, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Vesna Jaćević
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, 11 000 Belgrade, Serbia;
- Medical Faculty of the Military Medical Academy, University of Defense, 11 000 Belgrade, Serbia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 002 Hradec Kralove, Czech Republic
| | - Zoran Miloradović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department of Cardiovascular Research, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Lana Nežić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Radmila Novaković
- Institute of Molecular Genetics and Genetic Engineering, Center for Genome Sequencing and Bioinformatics, University of Belgrade, 11 000 Belgrade, Serbia;
| |
Collapse
|
5
|
Foglio E, D’Avorio E, Vitiello L, Masuelli L, Bei R, Pacifici F, Della-Morte D, Mirabilii S, Ricciardi MR, Tafuri A, Garaci E, Russo MA, Tafani M, Limana F. Doxorubicin-Induced Cardiac Senescence Is Alleviated Following Treatment with Combined Polyphenols and Micronutrients through Enhancement in Mitophagy. Cells 2023; 12:2605. [PMID: 37998340 PMCID: PMC10670650 DOI: 10.3390/cells12222605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Oxidative stress and impaired mitophagy are the hallmarks of cardiomyocyte senescence. Specifically, a decrease in mitophagic flux leads to the accumulation of damaged mitochondria and the development of senescence through increased ROS and other mediators. In this study, we describe the preventive role of A5+, a mix of polyphenols and other micronutrients, in doxorubicin (DOXO)-induced senescence of H9C2 cells. Specifically, H9C2 cells exposed to DOXO showed an increase in the protein expression proteins of senescence-associated genes, p21 and p16, and a decrease in the telomere binding factors TRF1 and TRF2, indicative of senescence induction. Nevertheless, A5+ pre-treatment attenuated the senescent-like cell phenotype, as evidenced by inhibition of all senescent markers and a decrease in SA-β-gal staining in DOXO-treated H9C2 cells. Importantly, A5+ restored the LC3 II/LC3 I ratio, Parkin and BNIP3 expression, therefore rescuing mitophagy, and decreased ROS production. Further, A5+ pre-treatment determined a ripolarization of the mitochondrial membrane and improved basal respiration. A5+-mediated protective effects might be related to its ability to activate mitochondrial SIRT3 in synergy with other micronutrients, but in contrast with SIRT4 activation. Accordingly, SIRT4 knockdown in H9C2 cells further increased MnSOD activity, enhanced mitophagy, and reduced ROS generation following A5+ pre-treatment and DOXO exposure compared to WT cells. Indeed, we demonstrated that A5+ protects H9C2 cells from DOXO-induced senescence, establishing a new specific role for A5+ in controlling mitochondrial quality control by restoring SIRT3 activity and mitophagy, which provided a molecular basis for the development of therapeutic strategies against cardiomyocyte senescence.
Collapse
Affiliation(s)
- Eleonora Foglio
- Technoscience, Parco Scientifico e Tecnologico Pontino, 04100 Latina, Italy
| | - Erica D’Avorio
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
| | | | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (M.T.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Francesca Pacifici
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - David Della-Morte
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Simone Mirabilii
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
| | - Maria Rosaria Ricciardi
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
| | - Agostino Tafuri
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
| | - Enrico Garaci
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
| | - Matteo Antonio Russo
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
- IRCCS San Raffaele Roma, 00166 Rome, Italy;
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (M.T.)
| | - Federica Limana
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
- Laboratory of Cellular and Molecular Pathology, IRCCS San Raffaele Roma, 00166 Rome, Italy
| |
Collapse
|
6
|
Percaccio E, De Angelis M, Acquaviva A, Nicotra G, Ferrante C, Mazzanti G, Di Giacomo S, Nencioni L, Di Sotto A. ECHOPvir: A Mixture of Echinacea and Hop Extracts Endowed with Cytoprotective, Immunomodulatory and Antiviral Properties. Nutrients 2023; 15:4380. [PMID: 37892456 PMCID: PMC10609862 DOI: 10.3390/nu15204380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Respiratory viral infections continue to pose significant challenges, particularly for more susceptible and immunocompromised individuals. Nutraceutical strategies have been proposed as promising strategies to mitigate their impact and improve public health. In the present study, we developed a mixture of two hydroalcoholic extracts from the aerial parts of Echinacea purpurea (L.) Moench (ECP) and the cones of Humulus lupulus L. (HOP) that can be harnessed in the prevention and treatment of viral respiratory diseases. The ECP/HOP mixture (named ECHOPvir) was characterized for the antioxidant and cytoprotective properties in airway cells. Moreover, the immunomodulating properties of the mixture in murine macrophages against antioxidant and inflammatory stimuli and its antiviral efficacy against the PR8/H1N1 influenza virus were assayed. The modulation of the Nrf2 was also investigated as a mechanistic hypothesis. The ECP/HOP mixture showed a promising multitarget bioactivity profile, with combined cytoprotective, antioxidant, immunomodulating and antiviral activities, likely due to the peculiar phytocomplexes of both ECP and HOP, and often potentiated the effect of the single extracts. The Nrf2 activation seemed to trigger these cytoprotective properties and suggest a possible usefulness in counteracting the damage caused by different stressors, including viral infection. Further studies may strengthen the interest in this product and underpin its future nutraceutical applications.
Collapse
Affiliation(s)
- Ester Percaccio
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (G.M.)
| | - Marta De Angelis
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.D.A.); (L.N.)
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandra Acquaviva
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (A.A.); (C.F.)
| | | | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (A.A.); (C.F.)
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (G.M.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (G.M.)
- Unit of Human Nutrition and Health, Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, 00161 Rome, Italy;
| | - Lucia Nencioni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.D.A.); (L.N.)
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (G.M.)
| |
Collapse
|
7
|
Wang Z, Song XQ, Xu W, Lei S, Zhang H, Yang L. Stand Up to Stand Out: Natural Dietary Polyphenols Curcumin, Resveratrol, and Gossypol as Potential Therapeutic Candidates against Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Nutrients 2023; 15:3885. [PMID: 37764669 PMCID: PMC10535599 DOI: 10.3390/nu15183885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic has stimulated collaborative drug discovery efforts in academia and the industry with the aim of developing therapies and vaccines that target SARS-CoV-2. Several novel therapies have been approved and deployed in the last three years. However, their clinical application has revealed limitations due to the rapid emergence of viral variants. Therefore, the development of next-generation SARS-CoV-2 therapeutic agents with a high potency and safety profile remains a high priority for global health. Increasing awareness of the "back to nature" approach for improving human health has prompted renewed interest in natural products, especially dietary polyphenols, as an additional therapeutic strategy to treat SARS-CoV-2 patients, owing to its good safety profile, exceptional nutritional value, health-promoting benefits (including potential antiviral properties), affordability, and availability. Herein, we describe the biological properties and pleiotropic molecular mechanisms of dietary polyphenols curcumin, resveratrol, and gossypol as inhibitors against SARS-CoV-2 and its variants as observed in in vitro and in vivo studies. Based on the advantages and disadvantages of dietary polyphenols and to obtain maximal benefits, several strategies such as nanotechnology (e.g., curcumin-incorporated nanofibrous membranes with antibacterial-antiviral ability), lead optimization (e.g., a methylated analog of curcumin), combination therapies (e.g., a specific combination of plant extracts and micronutrients), and broad-spectrum activities (e.g., gossypol broadly inhibits coronaviruses) have also been emphasized as positive factors in the facilitation of anti-SARS-CoV-2 drug development to support effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xian-qing Song
- General Surgery Department, Baoan Central Hospital, Affiliated Baoan Central Hospital of Guangdong Medical University, Shenzhen 518000, China
| | - Wenjing Xu
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Shizeng Lei
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Hao Zhang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
8
|
Rathod NB, Elabed N, Punia S, Ozogul F, Kim SK, Rocha JM. Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061217. [PMID: 36986905 PMCID: PMC10053535 DOI: 10.3390/plants12061217] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 06/01/2023]
Abstract
Polyphenol has been used in treatment for some health disorders due to their diverse health promoting properties. These compounds can reduce the impacts of oxidation on the human body, prevent the organs and cell structure against deterioration and protect their functional integrity. The health promoting abilities are attributed to their high bioactivity imparting them high antioxidative, antihypertensive, immunomodulatory, antimicrobial, and antiviral activity, as well as anticancer properties. The application of polyphenols such as flavonoids, catechin, tannins, and phenolic acids in the food industry as bio-preservative substances for foods and beverages can exert a superb activity on the inhibition of oxidative stress via different types of mechanisms. In this review, the detailed classification of polyphenolic compunds and their important bioactivity with special focus on human health are addressed. Additionally, their ability to inhibit SARS-CoV-2 could be used as alternative therapy to treat COVID patients. Inclusions of polyphenolic compounds in various foods have demonstrated their ability to extend shelf life and they positive impacts on human health (antioxidative, antihypertensive, immunomodulatory, antimicrobial, anticancer). Additionally, their ability to inhibit the SARS-CoV-2 virus has been reported. Considering their natural occurrence and GRAS status they are highly recommended in food.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Post-Graduate Institute of Post-Harvest Technology and Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Roha 402 116, India
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, BP 77-1054 Amilcar, Carthage 1054, Tunisia
| | - Sneh Punia
- Department of Food, Nutrition and Packaging Sciences, Clemoson University, Clemosn, SC 29634, USA
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, 01330 Adana, Turkey
| | - Se-Kwon Kim
- Department of Marine Science & Convergence Engineering, College of Science & Technology, Hanyang University, ERICA Campus, Ansan 11558, Republic of Korea
| | - João Miguel Rocha
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
9
|
Pacifici F, Malatesta G, Mammi C, Pastore D, Marzolla V, Ricordi C, Chiereghin F, Infante M, Donadel G, Curcio F, Noce A, Rovella V, Lauro D, Tesauro M, Di Daniele N, Garaci E, Caprio M, Della-Morte D. A Novel Mix of Polyphenols and Micronutrients Reduces Adipogenesis and Promotes White Adipose Tissue Browning via UCP1 Expression and AMPK Activation. Cells 2023; 12:714. [PMID: 36899850 PMCID: PMC10001138 DOI: 10.3390/cells12050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Background: Obesity is a pandemic disease characterized by excessive severe body comorbidities. Reduction in fat accumulation represents a mechanism of prevention, and the replacement of white adipose tissue (WAT) with brown adipose tissue (BAT) has been proposed as one promising strategy against obesity. In the present study, we sought to investigate the ability of a natural mixture of polyphenols and micronutrients (A5+) to counteract white adipogenesis by promoting WAT browning. Methods: For this study, we employed a murine 3T3-L1 fibroblast cell line treated with A5+, or DMSO as control, during the differentiation in mature adipocytes for 10 days. Cell cycle analysis was performed using propidium iodide staining and cytofluorimetric analysis. Intracellular lipid contents were detected by Oil Red O staining. Inflammation Array, along with qRT-PCR and Western Blot analyses, served to measure the expression of the analyzed markers, such as pro-inflammatory cytokines. Results: A5+ administration significantly reduced lipids' accumulation in adipocytes when compared to control cells (p < 0.005). Similarly, A5+ inhibited cellular proliferation during the mitotic clonal expansion (MCE), the most relevant stage in adipocytes differentiation (p < 0.0001). We also found that A5+ significantly reduced the release of pro-inflammatory cytokines, such as IL-6 and Leptin (p < 0.005), and promoted fat browning and fatty acid oxidation through increasing expression levels of genes related to BAT, such as UCP1 (p < 0.05). This thermogenic process is mediated via AMPK-ATGL pathway activation. Conclusion: Overall, these results demonstrated that the synergistic effect of compounds contained in A5+ may be able to counteract adipogenesis and then obesity by inducing fat browning.
Collapse
Affiliation(s)
- Francesca Pacifici
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Gina Malatesta
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Caterina Mammi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00166 Rome, Italy
| | - Donatella Pastore
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy
| | - Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00166 Rome, Italy
| | - Camillo Ricordi
- Cell Transplant Center, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Francesca Chiereghin
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy
| | - Marco Infante
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Section of Diabetology, UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Giulia Donadel
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesco Curcio
- Covid Internal Medicine Unit, Department of Translational Medical Sciences, AOU Federico II, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Valentina Rovella
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Manfredi Tesauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Enrico Garaci
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00166 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
10
|
Resveratrol Food Supplement Products and the Challenges of Accurate Label Information to Ensure Food Safety for Consumers. Nutrients 2023; 15:nu15020474. [PMID: 36678345 PMCID: PMC9861762 DOI: 10.3390/nu15020474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The food supplement market is growing as many consumers wish to complement their nutrient intake. Despite all the regulations in place to ensure food supplements safety, there are still many cases of irregularities reported especially connected to internet sales. Twenty resveratrol food supplement products sold on the Slovenian market were evaluated on their compliance of declared vs. determined resveratrol content, as well as the compliance of labels with the European Union (EU) and Slovenian regulatory requirements. Both the ingredient contents and food information are important parts of food safety. Analyses of 20 food supplements performed using high-performance thin-layer chromatography (HPTLC) coupled with densitometry showed that 95% of products had contents different from what was declared and 55% of products contained higher contents than declared. In 25% of the products the determined content per unit exceeded the maximum level (150 mg/day) specified in EU novel food conditions for food supplement with trans-resveratrol. Evaluation of the 20 food supplement labels included mandatory and voluntary food information, food supplement information, novel food information, health claims and nutrition claims. Most labels contained the necessary information, but multiple errors were observed ranging from typos to misleading practices. From a food safety perspective there is still a lot of improvement needed in the field of food supplements.
Collapse
|
11
|
Bizzarri BM, Fanelli A, Ciprini S, Giorgi A, De Angelis M, Fioravanti R, Nencioni L, Saladino R. Multicomponent Synthesis of Diaminopurine and Guanine PNA's Analogues Active against Influenza A Virus from Prebiotic Compounds. ACS OMEGA 2022; 7:45253-45264. [PMID: 36530301 PMCID: PMC9753540 DOI: 10.1021/acsomega.2c05754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Peptide nucleic acids (PNAs) play a key role in prebiotic chemistry as a chimera between RNA and proteins. We developed an alternative synthesis of bioactive PNA's diaminopurine and guanine analogues from prebiotic compounds, such as aminomalononitrile (AMN), urea, and guanidine, using a two-step multicomponent microwave-assisted and solvent-free approach in the presence of selected amino acids. The novel derivatives showed selective inhibitory activity against influenza virus A/Puerto Rico/8/34 H1N1 encompassing the range of nanomolar activity. Derivatives decorated with the tyrosine residue showed the highest inhibitory activity against the virus.
Collapse
Affiliation(s)
- Bruno Mattia Bizzarri
- Department
of Biological and Ecological Sciences, University
of Tuscia, Viterbo 01100, Italy
| | - Angelica Fanelli
- Department
of Biological and Ecological Sciences, University
of Tuscia, Viterbo 01100, Italy
| | - Stefania Ciprini
- Department
of Biological and Ecological Sciences, University
of Tuscia, Viterbo 01100, Italy
| | - Alessandra Giorgi
- Department
of Biological and Ecological Sciences, University
of Tuscia, Viterbo 01100, Italy
| | - Marta De Angelis
- Department
of Public Health and Infectious Diseases, Laboratory Affiliated to
Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome 00185, Italy
| | - Raoul Fioravanti
- Department
of Public Health and Infectious Diseases, Laboratory Affiliated to
Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome 00185, Italy
| | - Lucia Nencioni
- Department
of Public Health and Infectious Diseases, Laboratory Affiliated to
Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome 00185, Italy
| | - Raffaele Saladino
- Department
of Biological and Ecological Sciences, University
of Tuscia, Viterbo 01100, Italy
| |
Collapse
|
12
|
Della-Morte D, Pacifici F. Nature can still be the strongest help against aging and neurodegeneration: the sirtuins way. Neural Regen Res 2022; 18:1271-1272. [PMID: 36453409 PMCID: PMC9838169 DOI: 10.4103/1673-5374.360173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- David Della-Morte
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy,Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, IRCCS San Raffaele Roma, Rome, Italy,Department of Neurology and Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL, USA,Correspondence to: David Della-Morte, .
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
13
|
He M, Feng L, Chen Y, Gao B, Du Y, Zhou L, Li F, Liu H. Polydatin attenuates tubulointerstitial fibrosis in diabetic kidney disease by inhibiting YAP expression and nuclear translocation. Front Physiol 2022; 13:927794. [PMID: 36277194 PMCID: PMC9585250 DOI: 10.3389/fphys.2022.927794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
The activation of Yes-associated protein (YAP) pathway is mutually causal with the increase of extracellular matrix (ECM) stiffness. Polydatin (PD) has been proved to have anti-fibrosis effect in diabetic kidney disease (DKD), but it is still a mystery whether PD participates in YAP-related mechano-transduction. Therefore, this study intends to solve the following two problems: 1) To construct an in vitro system of polyacrylamide hydrogels (PA gels) based on the true stiffness of kidneys in healthy and DKD rats, and observe the effect of PD on pathological matrix stiffness-induced YAP expression in renal fibroblasts; 2) Compared with verteporfin (VP), a pharmacological inhibitor of YAP, to explore whether the therapeutic effect of PD on DKD in vivo model is related to the regulation of YAP. In this study, the in vitro system of PA gels with 3 kPa, 12 kPa and 30 kPa stiffness was constructed and determined for the first time to simulate the kidney stiffness of healthy rats, rats with DKD for 8 weeks and 16 weeks, respectively. Compared with the PA gels with 3 kPa stiffness, the PA gels with 12 kPa and 30 kPa stiffness significantly increased the expression of YAP, α-smooth muscle actin (α-SMA) and collagen I, and the production of reactive oxygen species (ROS) in renal fibroblasts, and the PA gels with 30 kPa stiffness were the highest. PD significantly inhibited the above-mentioned changes of fibroblasts induced by pathological matrix stiffness, suggesting that the inhibition of PD on fibroblast-to-myofibroblast transformation and ECM production was at least partially associated with regulating YAP-related mechano-transduction pathway. Importantly, the inhibitory effect of PD on YAP expression and nuclear translocation in kidneys of DKD rats is similar to that of VP, but PD is superior to VP in reducing urinary protein, blood glucose, blood urea nitrogen and serum creatinine, as well as decreasing the expression of α-SMA and collagen I, ROS overproduction and renal fibrosis. Our results prove for the first time from the biomechanical point of view that PD is a potential therapeutic strategy for delaying the progression of renal fibrosis by inhibiting YAP expression and nuclear translocation.
Collapse
Affiliation(s)
- Manlin He
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Lan Feng
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Yang Chen
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Bin Gao
- Department of Endocrinology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Yiwei Du
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Lu Zhou
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hongbao Liu, ; Fei Li,
| | - Hongbao Liu
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
- *Correspondence: Hongbao Liu, ; Fei Li,
| |
Collapse
|
14
|
Polydatin Attenuates Cisplatin-Induced Acute Kidney Injury via SIRT6-Mediated Autophagy Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9035547. [PMID: 36160707 PMCID: PMC9507782 DOI: 10.1155/2022/9035547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022]
Abstract
In the treatment of malignant tumors, the effectiveness of cisplatin (CP) is limited by its nephrotoxicity, leading to cisplatin-induced acute kidney injury (CP-AKI). Polydatin (PD) has been demonstrated to regulate autophagy in tumors, sepsis, and diabetes. We have recently confirmed that PD attenuated CP-AKI by inhibiting ferroptosis, but it is not clear whether PD can regulate autophagy to protect from CP-AKI. The purpose of this study was to investigate the effect of PD on autophagy in CP-treated HK-2 cells and CP-AKI mouse models, exploring the role of sirtuin 6 (SIRT6) upregulated by PD. In this study, the blocking of autophagy flux was observed in both CP-treated HK-2 cells in vitro and CP-AKI mouse models in vivo, whereas this blocking was reversed by PD, which was characterized by the increase of autophagy microtubule-associated protein light chain 3 II expression and autophagolysosome/autophagosome ratio and the decrease of p62 expression. Furthermore, PD also significantly increased the expression of SIRT6 in vivo and in vitro. The protective effect of PD manifested by the stimulating of autophagy flux, with the reducing of inflammatory response and oxidative stress, which included downregulation of tumor necrosis factor-α and interleukin-1β, decreased activity of myeloperoxidase and content of malondialdehyde, and increased activity of superoxide dismutase and level of glutathione, both in vivo and in vitro, was reversed by either inhibition of autophagy flux by chloroquine or downregulation of SIRT6 by OSS-128167. Taken together, the present findings provide the first evidence demonstrating that PD exhibited nephroprotective effects on CP-AKI by restoring SIRT6-mediated autophagy flux mechanisms.
Collapse
|
15
|
Tirado-Kulieva VA, Hernández-Martínez E, Choque-Rivera TJ. Phenolic compounds versus SARS-CoV-2: An update on the main findings against COVID-19. Heliyon 2022; 8:e10702. [PMID: 36157310 PMCID: PMC9484857 DOI: 10.1016/j.heliyon.2022.e10702] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/04/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 remains an international concern. Although there are drugs to fight it, new natural alternatives such as polyphenols are essential due to their antioxidant activity and high antiviral potential. In this context, this review reports the main findings on the effect of phenolic compounds (PCs) against SARS-CoV-2 virus. First, the proven activity of PCs against different human viruses is briefly detailed, which serves as a starting point to study their anti-COVID-19 potential. SARS-CoV-2 targets (its proteins) are defined. Findings from in silico, in vitro and in vivo studies of a wide variety of phenolic compounds are shown, emphasizing their mechanism of action, which is fundamental for drug design. Furthermore, clinical trials have demonstrated the effectiveness of PCs in the prevention and as a possible therapeutic management against COVID-19. The results were complemented with information on the influence of polyphenols in strengthening/modulating the immune system. It is recommended to investigate compounds such as vitamins, minerals, alkaloids, triterpenes and fatty acids, and their synergistic use with PCs, many of which have been successful against SARS-CoV-2. Based on findings on other viruses, synergistic evaluation of PCs with accepted drugs against COVID-19 is also suggested. Other recommendations and limitations are also shown, which is useful for professionals involved in the development of efficient, safe and low-cost therapeutic strategies based on plant matrices rich in PCs. To the authors' knowledge, this manuscript is the first to evaluate the relationship between the antiviral and immunomodulatory (including anti-inflammatory and antioxidant effects) activity of PCs and their underlying mechanisms in relation to the fight against COVID-19. It is also of interest for the general population to be informed about the importance of consuming foods rich in bioactive compounds for their health benefits.
Collapse
|
16
|
De Angelis M, De Filippis B, Balaha M, Giampietro L, Miteva MT, De Chiara G, Palamara AT, Nencioni L, Mollica A. Nitrostilbenes: Synthesis and Biological Evaluation as Potential Anti-Influenza Virus Agents. Pharmaceuticals (Basel) 2022; 15:ph15091061. [PMID: 36145282 PMCID: PMC9505218 DOI: 10.3390/ph15091061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Resveratrol (RSV) is a natural stilbene polyphenolic compound found in several plant species. It is characterized by antioxidant properties, and its role in controlling viral replication has been demonstrated for different viral infections. Despite its promising antiviral properties, RSV biological activity is limited by its low bioavailability and high metabolic rate. In this study, we optimized its structure by synthesizing new RSV derivatives that maintained the phenolic scaffold and contained different substitution patterns and evaluated their potential anti-influenza virus activity. The results showed that viral protein synthesis decreased 24 h post infection; particularly, the nitro-containing compounds strongly reduced viral replication. The molecules did not exert their antioxidant properties during infection; in fact, they were not able to rescue the virus-induced drop in GSH content or improve the antioxidant response mediated by the Nrf2 transcription factor and G6PD enzyme. Similar to what has already been reported for RSV, they interfered with the nuclear-cytoplasmic traffic of viral nucleoprotein, probably inhibiting cellular kinases involved in the regulation of specific steps of the virus life cycle. Overall, the data indicate that more lipophilic RSV derivatives have improved antiviral efficacy compared with RSV and open the way for new cell-targeted antiviral strategies.
Collapse
Affiliation(s)
- Marta De Angelis
- Laboratory Affiliated to Institute, Department of Public Health and Infectious Diseases, Pasteur Italia-Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Barbara De Filippis
- Department of Pharmacy, University “G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
- Correspondence: (B.D.F.); (L.N.); Tel.: +39-0871-3479-433-535 (B.D.F.); +39-0649-914-608 (L.N.)
| | - Marwa Balaha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Letizia Giampietro
- Department of Pharmacy, University “G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Mariya Timotey Miteva
- Laboratory Affiliated to Institute, Department of Public Health and Infectious Diseases, Pasteur Italia-Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Giovanna De Chiara
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Anna Teresa Palamara
- Laboratory Affiliated to Institute, Department of Public Health and Infectious Diseases, Pasteur Italia-Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
- Department of Infectious Diseases, Italian National Institute of Health, 00161 Rome, Italy
| | - Lucia Nencioni
- Laboratory Affiliated to Institute, Department of Public Health and Infectious Diseases, Pasteur Italia-Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (B.D.F.); (L.N.); Tel.: +39-0871-3479-433-535 (B.D.F.); +39-0649-914-608 (L.N.)
| | - Adriano Mollica
- Department of Pharmacy, University “G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
17
|
Xu T, Meng JR, Cheng W, Liu JZ, Chu J, Zhang Q, Ma N, Bai LP, Guo Y. Discovery of honokiol thioethers containing 1,3,4-oxadiazole moieties as potential α-glucosidase and SARS-CoV-2 entry inhibitors. Bioorg Med Chem 2022; 67:116838. [PMID: 35617790 PMCID: PMC9123836 DOI: 10.1016/j.bmc.2022.116838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
Abstract
Honokiol, isolated from a traditional Chinese medicine (TCM) Magnolia officinalis, is a biphenolic compound with several biological activities. To improve and broaden its biological activity, herein, two series of honokiol thioethers bearing 1,3,4-oxadiazole moieties were prepared and assessed for their α-glucosidase and SARS-CoV-2 entry inhibitory activities. Among all the honokiol thioethers, compound 7l exhibited the strongest α-glucosidase inhibitory effect with an IC50 value of 18.9 ± 2.3 µM, which was superior to the reference drug acarbose (IC50 = 24.4 ± 0.3 µM). Some interesting results of structure–activity relationships (SARs) have also been discussed. Enzyme kinetic study demonstrated that 7l was a noncompetitive α-glucosidase inhibitor, which was further supported by the results of molecular docking. Moreover, honokiol thioethers 7e, 9a, 9e, and 9r exhibited potent antiviral activity against SARS-CoV-2 pseudovirus entering into HEK-293 T-ACE2h. Especially 9a displayed the strongest inhibitory activity against SARS-CoV-2 pseudovirus entry with an IC50 value of 16.96 ± 2.45 μM, which was lower than the positive control Evans blue (21.98 ± 1.98 μM). Biolayer interferometry (BLI) binding and docking studies suggested that 9a and 9r may effectively block the binding of SARS-CoV-2 to the host ACE2 receptor through dual recognition of SARS-CoV-2 spike RBD and human ACE2. Additionally, the potent honokiol thioethers 7l, 9a, and 9r displayed relatively no cytotoxicity to normal cells (LO2). These findings will provide a theoretical basis for the discovery of honokiol derivatives as potential both α-glucosidase and SARS-CoV-2 entry inhibitors.
Collapse
Affiliation(s)
- Ting Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau
| | - Jie-Ru Meng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau
| | - Wanqing Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Jia-Zheng Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau
| | - Junyan Chu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Qian Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Nannan Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau.
| | - Yong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China.
| |
Collapse
|
18
|
Rotondo JC, Martini F, Maritati M, Caselli E, Gallenga CE, Guarino M, De Giorgio R, Mazziotta C, Tramarin ML, Badiale G, Tognon M, Contini C. Advanced Molecular and Immunological Diagnostic Methods to Detect SARS-CoV-2 Infection. Microorganisms 2022; 10:1193. [PMID: 35744711 PMCID: PMC9231257 DOI: 10.3390/microorganisms10061193] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 emerged in late 2019 in China and quickly spread across the globe, causing over 521 million cases of infection and 6.26 million deaths to date. After 2 years, numerous advances have been made. First of all, the preventive vaccine, which has been implemented in record time, is effective in more than 95% of cases. Additionally, in the diagnostic field, there are numerous molecular and antigenic diagnostic kits that are equipped with high sensitivity and specificity. Real Time-PCR-based assays for the detection of viral RNA are currently considered the gold-standard method for SARS-CoV-2 diagnosis and can be used efficiently on pooled nasopharyngeal, or oropharyngeal samples for widespread screening. Moreover, additional, and more advanced molecular methods such as droplet-digital PCR (ddPCR), clustered regularly interspaced short palindromic repeats (CRISPR) and next-generation sequencing (NGS), are currently under development to detect the SARS-CoV-2 RNA. However, as the number of subjects infected with SARS-CoV-2 continuously increases globally, health care systems are being placed under increased stress. Thus, the clinical laboratory plays an important role, helping to select especially asymptomatic individuals who are actively carrying the live replicating virus, with fast and non-invasive molecular technologies. Recent diagnostic strategies, other than molecular methods, have been adopted to either detect viral antigens, i.e., antigen-based immunoassays, or human anti-SARS-CoV-2 antibodies, i.e., antibody-based immunoassays, in nasal or oropharyngeal swabs, as well as in blood or saliva samples. However, the role of mucosal sIgAs, which are essential in the control of viruses entering the body through mucosal surfaces, remains to be elucidated, and in particular the role of the immune response in counteracting SARS-CoV-2 infection, primarily at the site(s) of virus entry that appears to be promising.
Collapse
Affiliation(s)
- John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Martina Maritati
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Orthopaedic Ward, Casa di Cura Santa Maria Maddalena, 45030 Occhiobello, Italy
| | - Elisabetta Caselli
- Section of Microbiology, CIAS Research Center and LTTA, Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Carla Enrica Gallenga
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Matteo Guarino
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (M.G.); (R.D.G.)
| | - Roberto De Giorgio
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (M.G.); (R.D.G.)
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Letizia Tramarin
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Giada Badiale
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Carlo Contini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| |
Collapse
|
19
|
Milani D, Caruso L, Zauli E, Al Owaifeer AM, Secchiero P, Zauli G, Gemmati D, Tisato V. p53/NF-kB Balance in SARS-CoV-2 Infection: From OMICs, Genomics and Pharmacogenomics Insights to Tailored Therapeutic Perspectives (COVIDomics). Front Pharmacol 2022; 13:871583. [PMID: 35721196 PMCID: PMC9201997 DOI: 10.3389/fphar.2022.871583] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 infection affects different organs and tissues, including the upper and lower airways, the lung, the gut, the olfactory system and the eye, which may represent one of the gates to the central nervous system. Key transcriptional factors, such as p53 and NF-kB and their reciprocal balance, are altered upon SARS-CoV-2 infection, as well as other key molecules such as the virus host cell entry mediator ACE2, member of the RAS-pathway. These changes are thought to play a central role in the impaired immune response, as well as in the massive cytokine release, the so-called cytokine storm that represents a hallmark of the most severe form of SARS-CoV-2 infection. Host genetics susceptibility is an additional key side to consider in a complex disease as COVID-19 characterized by such a wide range of clinical phenotypes. In this review, we underline some molecular mechanisms by which SARS-CoV-2 modulates p53 and NF-kB expression and activity in order to maximize viral replication into the host cells. We also face the RAS-pathway unbalance triggered by virus-ACE2 interaction to discuss potential pharmacological and pharmacogenomics approaches aimed at restoring p53/NF-kB and ACE1/ACE2 balance to counteract the most severe forms of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Daniela Milani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Adi Mohammed Al Owaifeer
- Department of Research, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
- Ophthalmology Unit, Department of Surgery, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Research, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis and Thrombosis, University of Ferrara, Ferrara, Italy
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
20
|
Brahmi F, Vejux A, Ghzaiel I, Ksila M, Zarrouk A, Ghrairi T, Essadek S, Mandard S, Leoni V, Poli G, Vervandier-Fasseur D, Kharoubi O, El Midaoui A, Atanasov AG, Meziane S, Latruffe N, Nasser B, Bouhaouala-Zahar B, Masmoudi-Kouki O, Madani K, Boulekbache-Makhlouf L, Lizard G. Role of Diet and Nutrients in SARS-CoV-2 Infection: Incidence on Oxidative Stress, Inflammatory Status and Viral Production. Nutrients 2022; 14:2194. [PMID: 35683996 PMCID: PMC9182601 DOI: 10.3390/nu14112194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Coronavirus illness (COVID-19) is an infectious pathology generated by intense severe respiratory syndrome coronavirus 2 (SARS-CoV-2). This infectious disease has emerged in 2019. The COVID-19-associated pandemic has considerably affected the way of life and the economy in the world. It is consequently crucial to find solutions allowing remedying or alleviating the effects of this infectious disease. Natural products have been in perpetual application from immemorial time given that they are attested to be efficient towards several illnesses without major side effects. Various studies have shown that plant extracts or purified molecules have a promising inhibiting impact towards coronavirus. In addition, it is substantial to understand the characteristics, susceptibility and impact of diet on patients infected with COVID-19. In this review, we recapitulate the influence of extracts or pure molecules from medicinal plants on COVID-19. We approach the possibilities of plant treatment/co-treatment and feeding applied to COVID-19. We also show coronavirus susceptibility and complications associated with nutrient deficiencies and then discuss the major food groups efficient on COVID-19 pathogenesis. Then, we covered emerging technologies using plant-based SARS-CoV-2 vaccine. We conclude by giving nutrient and plants curative therapy recommendations which are of potential interest in the COVID-19 infection and could pave the way for pharmacological treatments or co-treatments of COVID-19.
Collapse
Affiliation(s)
- Fatiha Brahmi
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (K.M.); (L.B.-M.)
| | - Anne Vejux
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
| | - Imen Ghzaiel
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
- Lab-NAFS ‘Nutrition-Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia;
| | - Mohamed Ksila
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (T.G.); (O.M.-K.)
| | - Amira Zarrouk
- Lab-NAFS ‘Nutrition-Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia;
- Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (T.G.); (O.M.-K.)
| | - Soukena Essadek
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
- Laboratory Neuroscience and Biochemistry, University of Hassan 1st, Settat 26000, Morocco;
| | - Stéphane Mandard
- Lipness Team and LipSTIC LabEx, UFR Sciences de Santé, INSERM/University of Bourgogne Franche-Comté LNC UMR1231, 21000 Dijon, France;
| | - Valerio Leoni
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale Brianza ASST-Brianza, Desio Hospital, Via Mazzini 1, 20833 Desio, Italy;
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, 10043 Orbassano (Turin), Italy;
| | - Dominique Vervandier-Fasseur
- Team OCS, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), University of Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Omar Kharoubi
- Laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences, University Oran 1 ABB, Oran 31000, Algeria;
| | - Adil El Midaoui
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada;
- Faculty of Sciences and Techniques, Moulay Ismail University of Meknes, Errachidia 52000, Morocco
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Smail Meziane
- Institut Européen des Antioxydants, 1b Rue Victor de Lespinats, 54230 Neuves-Maison, France;
| | - Norbert Latruffe
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
| | - Boubker Nasser
- Laboratory Neuroscience and Biochemistry, University of Hassan 1st, Settat 26000, Morocco;
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Biomolecules, Venoms and Theranostic Applications, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Olfa Masmoudi-Kouki
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (T.G.); (O.M.-K.)
| | - Khodir Madani
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (K.M.); (L.B.-M.)
- Centre de Recherche en Technologie des Industries Agroalimentaires, Route de Targua Ouzemour, Bejaia 06000, Algeria
| | - Lila Boulekbache-Makhlouf
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (K.M.); (L.B.-M.)
| | - Gérard Lizard
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
| |
Collapse
|
21
|
The Protective Effect of a Unique Mix of Polyphenols and Micronutrients against Neurodegeneration Induced by an In Vitro Model of Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms23063110. [PMID: 35328530 PMCID: PMC8955775 DOI: 10.3390/ijms23063110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
Parkinson’s disease (PD) is second-most common disabling neurological disorder worldwide, and unfortunately, there is not yet a definitive way to prevent it. Polyphenols have been widely shown protective efficacy against various PD symptoms. However, data on their effect on physio-pathological mechanisms underlying this disease are still lacking. In the present work, we evaluated the activity of a mixture of polyphenols and micronutrients, named A5+, in the murine neuroblastoma cell line N1E115 treated with 6-Hydroxydopamine (6-OHDA), an established neurotoxic stimulus used to induce an in vitro PD model. We demonstrate that a pretreatment of these cells with A5+ causes significant reduction of inflammation, resulting in a decrease in pro-inflammatory cytokines (IFN-γ, IL-6, TNF-α, and CXCL1), a reduction in ROS production and activation of extracellular signal-regulated kinases (ERK)1/2, and a decrease in apoptotic mechanisms with the related increase in cell viability. Intriguingly, A5+ treatment promoted cellular differentiation into dopaminergic neurons, as evident by the enhancement in the expression of tyrosine hydroxylase, a well-established dopaminergic neuronal marker. Overall, these results demonstrate the synergic and innovative efficacy of A5+ mixture against PD cellular pathological processes, although further studies are needed to clarify the mechanisms underlying its beneficial effect.
Collapse
|
22
|
De Angelis M, Amatore D, Checconi P, Zevini A, Fraternale A, Magnani M, Hiscott J, De Chiara G, Palamara AT, Nencioni L. Influenza Virus Down-Modulates G6PD Expression and Activity to Induce Oxidative Stress and Promote Its Replication. Front Cell Infect Microbiol 2022; 11:804976. [PMID: 35071051 PMCID: PMC8770543 DOI: 10.3389/fcimb.2021.804976] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/14/2021] [Indexed: 12/30/2022] Open
Abstract
Influenza virus infection induces oxidative stress in host cells by decreasing the intracellular content of glutathione (GSH) and increasing reactive oxygen species (ROS) level. Glucose-6-phosphate dehydrogenase (G6PD) is responsible for the production of reducing equivalents of nicotinamide adenine dinucleotide phosphate (NADPH) that is used to regenerate the reduced form of GSH, thus restoring redox homeostasis. Cells deficient in G6PD display elevated levels of ROS and an increased susceptibility to viral infection, although the consequences of G6PD modulation during viral infection remain to be elucidated. In this study, we demonstrated that influenza virus infection decreases G6PD expression and activity, resulting in an increase in oxidative stress and virus replication. Moreover, the down regulation of G6PD correlated with a decrease in the expression of nuclear factor erythroid 2-related factor 2 (NRF2), a key transcription factor that regulates the expression of the antioxidant response gene network. Also down-regulated in influenza virus infected cells was sirtuin 2 (SIRT2), a NADPH-dependent deacetylase involved in the regulation of G6PD activity. Acetylation of G6PD increased during influenza virus infection in a manner that was strictly dependent on SIRT2 expression. Furthermore, the use of a pharmacological activator of SIRT2 rescued GSH production and NRF2 expression, leading to decreased influenza virus replication. Overall, these data identify a novel strategy used by influenza virus to induce oxidative stress and to favor its replication in host cells. These observations furthermore suggest that manipulation of metabolic and oxidative stress pathways could define new therapeutic strategies to interfere with influenza virus infection.
Collapse
Affiliation(s)
- Marta De Angelis
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Donatella Amatore
- Scientific Department, Army Medical Center, Via di Santo Stefano Rotondo, Rome, Italy
| | - Paola Checconi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, IRCCS San Raffaele Roma, Rome, Italy
| | - Alessandra Zevini
- Pasteur Laboratory, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | | | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - John Hiscott
- Pasteur Laboratory, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Giovanna De Chiara
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Anna Teresa Palamara
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Nencioni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|