1
|
Lee SJ, Kim E, Jeong Y, Youm JB, Kim HK, Han J, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, Kim SJ, Lee HA. Evaluation of the cardiotoxicity of Echinochrome A using human induced pluripotent stem cell-derived cardiac organoids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117489. [PMID: 39644572 DOI: 10.1016/j.ecoenv.2024.117489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Echinochrome A (EchA), a marine-derived natural product, has shown promise in treating cardiovascular and inflammatory diseases due to its antioxidant and anti-inflammatory properties. However, its cardiac safety remains underexplored. In this study, we utilized human induced pluripotent stem cell-derived cardiac organoids (hCOs) to validate their ability to model the cardiac safety profile of EchA in a human-relevant system. While EchA's therapeutic effects have been reported, prior studies have not evaluated its cardiotoxicity or arrhythmogenic potential in a high-fidelity 3D human cardiac model. The hCOs, characterized by expression of key cardiac markers (cTnT) and functional ion channels (Cav1.2, Nav1.5, hERG), exhibited structural and electrophysiological properties reflective of human cardiac physiology. Using multi-electrode array (MEA) analysis, we assessed the effects of EchA at concentrations ranging from 0.1 to 30 µM on electrophysiological parameters, including beat period, field potential amplitude, field potential duration, and spike slope. EchA treatment induced no significant changes in these parameters, confirming its non-toxic electrophysiological profile. Cellular viability and lactate dehydrogenase (LDH) assays revealed no cytotoxic effects of EchA across tested concentrations. Contractility assays further demonstrated that EchA did not affect contraction velocity, relaxation velocity, or time to 50 % maximal contraction and relaxation. This study fills a critical gap and highlights the translational relevance of hCOs for cardiotoxicity assessment, demonstrating EchA's cardiac safety and supporting its potential therapeutic and environmental applications.
Collapse
Affiliation(s)
- Su-Jin Lee
- Center for Bio-Signal Research, Division of Advanced Predictive Research, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea; Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Eunji Kim
- Center for Bio-Signal Research, Division of Advanced Predictive Research, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
| | - Yeeun Jeong
- Center for Bio-Signal Research, Division of Advanced Predictive Research, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
| | - Jae Boum Youm
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Elena A Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Natalia P Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Sergey A Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Sung Joon Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Hyang-Ae Lee
- Center for Bio-Signal Research, Division of Advanced Predictive Research, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea.
| |
Collapse
|
2
|
Blazeski A, Garcia-Cardena G, Kamm RD. Advancing Cardiac Organoid Engineering Through Application of Biophysical Forces. IEEE Rev Biomed Eng 2024; PP:211-230. [PMID: 40030454 DOI: 10.1109/rbme.2024.3514378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Cardiac organoids represent an important bioengineering opportunity in the development of models to study human heart pathophysiology. By incorporating multiple cardiac cell types in three-dimensional culture and developmentally-guided biochemical signaling, cardiac organoids recapitulate numerous features of heart tissue. However, cardiac tissue also experiences a variety of mechanical forces as the heart develops and over the course of each contraction cycle. It is now clear that these forces impact cellular specification, phenotype, and function, and should be incorporated into the engineering of cardiac organoids in order to generate better models. In this review, we discuss strategies for engineering cardiac organoids and report the effects of organoid design on the function of cardiac cells. We then discuss the mechanical environment of the heart, including forces arising from tissue elasticity, contraction, blood flow, and stretch, and report on efforts to mimic these biophysical cues in cardiac organoids. Finally, we review emerging areas of cardiac organoid research, for the study of cardiac development, the formation of multi-organ models, and the simulation of the effects of spaceflight on cardiac tissue and consider how these investigations might benefit from the inclusion of mechanical cues.
Collapse
|
3
|
Groen E, Mummery CL, Yiangou L, Davis RP. Three-dimensional cardiac models: a pre-clinical testing platform. Biochem Soc Trans 2024; 52:1045-1059. [PMID: 38778769 PMCID: PMC11346450 DOI: 10.1042/bst20230444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Major advancements in human pluripotent stem cell (hPSC) technology over recent years have yielded valuable tools for cardiovascular research. Multi-cell type 3-dimensional (3D) cardiac models in particular, are providing complementary approaches to animal studies that are better representatives than simple 2-dimensional (2D) cultures of differentiated hPSCs. These human 3D cardiac models can be broadly divided into two categories; namely those generated through aggregating pre-differentiated cells and those that form self-organizing structures during their in vitro differentiation from hPSCs. These models can either replicate aspects of cardiac development or enable the examination of interactions among constituent cell types, with some of these models showing increased maturity compared with 2D systems. Both groups have already emerged as physiologically relevant pre-clinical platforms for studying heart disease mechanisms, exhibiting key functional attributes of the human heart. In this review, we describe the different cardiac organoid models derived from hPSCs, their generation methods, applications in cardiovascular disease research and use in drug screening. We also address their current limitations and challenges as pre-clinical testing platforms and propose potential improvements to enhance their efficacy in cardiac drug discovery.
Collapse
Affiliation(s)
- Eline Groen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Loukia Yiangou
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Richard P. Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2300RC Leiden, The Netherlands
| |
Collapse
|
4
|
Lee HA, Woo DH, Lim DS, Oh J, Kim CY, Bae ON, Ahn SJ. Guidelines for Manufacturing and Application of Organoids: Heart. Int J Stem Cells 2024; 17:130-140. [PMID: 38777829 PMCID: PMC11170119 DOI: 10.15283/ijsc24046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Cardiac organoids have emerged as invaluable tools for assessing the impact of diverse substances on heart function. This report introduces guidelines for general requirements for manufacturing cardiac organoids and conducting cardiac organoid-based assays, encompassing protocols, analytical methodologies, and ethical considerations. In the quest to employ recently developed three-dimensional cardiac organoid models as substitutes for animal testing, it becomes imperative to establish robust criteria for evaluating organoid quality and conducting toxicity assessments. This guideline addresses this need, catering to regulatory requirements, and describes common standards for organoid quality and toxicity assessment methodologies, commensurate with current technological capabilities. While acknowledging the dynamic nature of technological progress and the potential for future comparative studies, this guideline serves as a foundational framework. It offers a comprehensive approach to standardized cardiac organoid testing, ensuring scientific rigor, reproducibility, and ethical integrity in investigations of cardiotoxicity, particularly through the utilization of human pluripotent stem cell-derived cardiac organoids.
Collapse
Affiliation(s)
- Hyang-Ae Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Korea
- Organoid Standards Initiative
| | - Dong-Hun Woo
- Organoid Standards Initiative
- Department of Commercializing Organoid Technology, NEXEL Co., Ltd., Seoul, Korea
| | - Do-Sun Lim
- Organoid Standards Initiative
- Department of Cardiology, Korea University Anam Hospital, Seoul, Korea
| | - Jisun Oh
- Organoid Standards Initiative
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - C-Yoon Kim
- Organoid Standards Initiative
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Ok-Nam Bae
- Organoid Standards Initiative
- College of Pharmacy, Hanyang University, Ansan, Korea
| | - Sun-Ju Ahn
- Organoid Standards Initiative
- Department of Biophysics, Sungkyunkwan University, Suwon, Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
5
|
Ma X, Wang Q, Li G, Li H, Xu S, Pang D. Cancer organoids: A platform in basic and translational research. Genes Dis 2024; 11:614-632. [PMID: 37692477 PMCID: PMC10491878 DOI: 10.1016/j.gendis.2023.02.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 02/16/2023] [Indexed: 09/12/2023] Open
Abstract
An accumulation of previous work has established organoids as good preclinical models of human tumors, facilitating translation from basic research to clinical practice. They are changing the paradigm of preclinical cancer research because they can recapitulate the heterogeneity and pathophysiology of human cancers and more closely approximate the complex tissue environment and structure found in clinical tumors than in vitro cell lines and animal models. However, the potential applications of cancer organoids remain to be comprehensively summarized. In the review, we firstly describe what is currently known about cancer organoid culture and then discuss in depth the basic mechanisms, including tumorigenesis and tumor metastasis, and describe recent advances in patient-derived tumor organoids (PDOs) for drug screening and immunological studies. Finally, the present challenges faced by organoid technology in clinical practice and its prospects are discussed. This review highlights that organoids may offer a novel therapeutic strategy for cancer research.
Collapse
Affiliation(s)
- Xin Ma
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Qin Wang
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Hui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| |
Collapse
|
6
|
Wu F, He Q, Li F, Yang X. A review of protocols for engineering human cardiac organoids. Heliyon 2023; 9:e19938. [PMID: 37809996 PMCID: PMC10559357 DOI: 10.1016/j.heliyon.2023.e19938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
The use of human cardiac organoids (hCOs) as 3D in vitro models for cardiovascular research has shown great promise. Human pluripotent stem cells (hPSCs) have proven to be a potent source for engineering hCOs. However, various protocols for generating hCOs from hPSCs result in significant differences in heart development, maturity, complexity, vascularization, and spatial structure, all of which can influence their functional and physiological properties. This protocol review aims to highlight different strategies for generating hCOs using hPSCs while also critically discussing their challenges and limitations.
Collapse
Affiliation(s)
- Fujian Wu
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, 518055, Guangdong, China
- Post-doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Qian He
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Furong Li
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Xiaofei Yang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, 518055, Guangdong, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| |
Collapse
|
7
|
Kim YG, Yun JH, Park JW, Seong D, Lee SH, Park KD, Lee HA, Park M. Effect of Xenogeneic Substances on the Glycan Profiles and Electrophysiological Properties of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Int J Stem Cells 2023; 16:281-292. [PMID: 37105557 PMCID: PMC10465332 DOI: 10.15283/ijsc22158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/30/2022] [Accepted: 02/12/2023] [Indexed: 04/29/2023] Open
Abstract
Background and Objectives Human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte (CM) hold great promise as a cellular source of CM for cardiac function restoration in ischemic heart disease. However, the use of animal-derived xenogeneic substances during the biomanufacturing of hiPSC-CM can induce inadvertent immune responses or chronic inflammation, followed by tumorigenicity. In this study, we aimed to reveal the effects of xenogeneic substances on the functional properties and potential immunogenicity of hiPSC-CM during differentiation, demonstrating the quality and safety of hiPSC-based cell therapy. Methods and Results We successfully generated hiPSC-CM in the presence and absence of xenogeneic substances (xeno-containing (XC) and xeno-free (XF) conditions, respectively), and compared their characteristics, including the contractile functions and glycan profiles. Compared to XC-hiPSC-CM, XF-hiPSC-CM showed early onset of myocyte contractile beating and maturation, with a high expression of cardiac lineage-specific genes (ACTC1, TNNT2, and RYR2) by using MEA and RT-qPCR. We quantified N-glycolylneuraminic acid (Neu5Gc), a xenogeneic sialic acid, in hiPSC-CM using an indirect enzyme-linked immunosorbent assay and liquid chromatography-multiple reaction monitoring- mass spectrometry. Neu5Gc was incorporated into the glycans of hiPSC-CM during xeno-containing differentiation, whereas it was barely detected in XF-hiPSC-CM. Conclusions To the best of our knowledge, this is the first study to show that the electrophysiological function and glycan profiles of hiPSC-CM can be affected by the presence of xenogeneic substances during their differentiation and maturation. To ensure quality control and safety in hiPSC-based cell therapy, xenogeneic substances should be excluded from the biomanufacturing process.
Collapse
Affiliation(s)
- Yong Guk Kim
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Jun Ho Yun
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Ji Won Park
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Dabin Seong
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Su-hae Lee
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Ki Dae Park
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Hyang-Ae Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Korea
| | - Misun Park
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| |
Collapse
|
8
|
Silva-Pedrosa R, Salgado AJ, Ferreira PE. Revolutionizing Disease Modeling: The Emergence of Organoids in Cellular Systems. Cells 2023; 12:930. [PMID: 36980271 PMCID: PMC10047824 DOI: 10.3390/cells12060930] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Cellular models have created opportunities to explore the characteristics of human diseases through well-established protocols, while avoiding the ethical restrictions associated with post-mortem studies and the costs associated with researching animal models. The capability of cell reprogramming, such as induced pluripotent stem cells (iPSCs) technology, solved the complications associated with human embryonic stem cells (hESC) usage. Moreover, iPSCs made significant contributions for human medicine, such as in diagnosis, therapeutic and regenerative medicine. The two-dimensional (2D) models allowed for monolayer cellular culture in vitro; however, they were surpassed by the three-dimensional (3D) cell culture system. The 3D cell culture provides higher cell-cell contact and a multi-layered cell culture, which more closely respects cellular morphology and polarity. It is more tightly able to resemble conditions in vivo and a closer approach to the architecture of human tissues, such as human organoids. Organoids are 3D cellular structures that mimic the architecture and function of native tissues. They are generated in vitro from stem cells or differentiated cells, such as epithelial or neural cells, and are used to study organ development, disease modeling, and drug discovery. Organoids have become a powerful tool for understanding the cellular and molecular mechanisms underlying human physiology, providing new insights into the pathogenesis of cancer, metabolic diseases, and brain disorders. Although organoid technology is up-and-coming, it also has some limitations that require improvements.
Collapse
Affiliation(s)
- Rita Silva-Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Eduardo Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
9
|
Csöbönyeiová M, Klein M, Kuniaková M, Varga I, Danišovič Ľ. Induced Pluripotent Stem Cell-Derived Organoids: Their Implication in COVID-19 Modeling. Int J Mol Sci 2023; 24:3459. [PMID: 36834870 PMCID: PMC9961667 DOI: 10.3390/ijms24043459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a significant global health issue. This novel virus's high morbidity and mortality rates have prompted the scientific community to quickly find the best COVID-19 model to investigate all pathological processes underlining its activity and, more importantly, search for optimal drug therapy with minimal toxicity risk. The gold standard in disease modeling involves animal and monolayer culture models; however, these models do not fully reflect the response to human tissues affected by the virus. However, more physiological 3D in vitro culture models, such as spheroids and organoids derived from induced pluripotent stem cells (iPSCs), could serve as promising alternatives. Different iPSC-derived organoids, such as lung, cardiac, brain, intestinal, kidney, liver, nasal, retinal, skin, and pancreatic organoids, have already shown immense potential in COVID-19 modeling. In the present comprehensive review article, we summarize the current knowledge on COVID-19 modeling and drug screening using selected iPSC-derived 3D culture models, including lung, brain, intestinal, cardiac, blood vessels, liver, kidney, and inner ear organoids. Undoubtedly, according to reviewed studies, organoids are the state-of-the-art approach to COVID-19 modeling.
Collapse
Affiliation(s)
- Mária Csöbönyeiová
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Marcela Kuniaková
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ľuboš Danišovič
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|