1
|
Hua Z, Zhao Y, Zhang M, Wang Y, Feng H, Wei X, Wu X, Chen W, Xue Y. Research progress on intervertebral disc repair strategies and mechanisms based on hydrogel. J Biomater Appl 2025; 39:1121-1142. [PMID: 39929142 DOI: 10.1177/08853282251320227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Intervertebral disc degeneration (IDD) arises from a complex interplay of genetic, environmental, and age-related factors, culminating in a spectrum of low back pain (LBP) disorders that exert significant societal and economic impact. The present therapeutic landscape for IDD poses formidable clinical hurdles, necessitating the exploration of innovative treatment modalities. The hydrogel, as a biomaterial, exhibits superior biocompatibility compared to other biomaterials such as bioceramics and bio-metal materials. It also demonstrates mechanical properties closer to those of natural intervertebral discs (IVDs) and favorable biodegradability conducive to IVD regeneration. Therefore, it has emerged as a promising candidate material in the field of regenerative medicine and tissue engineering for treating IDD. Hydrogels have made significant strides in the field of IDD treatment. Particularly, injectable hydrogels not only provide mechanical support but also enable controlled release of bioactive molecules, playing a crucial role in mitigating inflammation and promoting extracellular matrix (ECM) regeneration. Furthermore, the ability of injectable hydrogels to achieve minimally invasive implantation helps minimize tissue damage. This article initially provides a concise exposition of the structure and function of IVD, the progression of IDD, and delineates extant clinical interventions for IDD. Subsequently, it categorizes hydrogels, encapsulates recent advancements in biomaterials and cellular therapies, and delves into the mechanisms through which hydrogels foster disc regeneration. Ultimately, the article deliberates on the prospects and challenges attendant to hydrogel therapy for IDD.
Collapse
Affiliation(s)
- Zekun Hua
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yinuo Zhao
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Meng Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanqin Wang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Haoyu Feng
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaogang Wu
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Weiyi Chen
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanru Xue
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Lu BC, Liu EJ, Guo SW, Zhang ZF, Zong CM, Song P, Yao XH, Zhao WG, Chen T, Zhang DY. A multifunctional hydrogel of cellulose nanofiber/microfibrillated cellulose hierarchical network for photothermal antibacterial and all-solid supercapacitor assembly. Int J Biol Macromol 2025; 306:141063. [PMID: 39978494 DOI: 10.1016/j.ijbiomac.2025.141063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/08/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
In recent years, flexible-hydrogel wearable devices have undergone rapid development while photothermal therapy, energy storage/conversion, and other fields have been widely developed and used. However, the poor mechanical properties of hydrogels can affect their stability and reliability in practical applications, and it is often difficult to achieve both excellent mechanical properties and multifunctional characteristics. This study prepared a hierarchical cellulose network/PVA multifunctional composite hydrogel (MCPH) using cellulose nanofiber as fine fibers and microfibrillated cellulose as coarse fibers. The hierarchical cellulose network provides tensile strength as a skeleton while the PVA serves as the soft matrix to assist energy dissipation, which provides the composite hydrogel with good mechanical properties (toughness of 1.21 MJ m-3 and tensile modulus of 2.20 MPa). In addition, owing to hierarchical cellulose network preventing excessive stacking of MXene while achieving stable series connection of nano fillers, MCPH exhibits excellent photothermal conversion rate, photothermal antibacterial ability (viability of Escherichia coli and Staphylococcus aureus < 0.88 %), and energy storage capacity (6886 mF/cm2). Thus, this study not only prepared a composite hydrogel with good mechanical properties and excellent multifunctional properties but also expanded the application potential of cellulose, an important green renewable plant resource, in high-value-added wearable products.
Collapse
Affiliation(s)
- Bai-Chuan Lu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - En-Jiang Liu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Shi-Wen Guo
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zheng-Feng Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Chen-Man Zong
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Peng Song
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiao-Hui Yao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Wei-Guo Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Tao Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Dong-Yang Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
3
|
Liu M, Cui Z, Xu D, Liu C, Zhou C. Chitin nanocrystal-reinforced chitin/collagen composite hydrogels for annulus fibrosus repair after discectomy. Mater Today Bio 2025; 31:101537. [PMID: 40026628 PMCID: PMC11869017 DOI: 10.1016/j.mtbio.2025.101537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/06/2025] [Accepted: 02/01/2025] [Indexed: 03/05/2025] Open
Abstract
Discectomy is a widely utilized approach for alleviating disc herniation; however, effective repair of postoperative annulus fibrosus (AF) defects remains a significant challenge. This study introduces a hydrogel patch with enhanced mechanical properties for AF repair fabricated using chitin (Ch), collagen (Col), and chitin nanocrystals (ChNCs) through a freeze-thaw cycling technique. The Ch and Col components constitute the matrix of the hydrogel patch, while uniformly dispersed ChNCs act as a nanofiller, markedly improving the mechanical performance (compression strain: 95 %; compression modulus: 0.27 MPa) of the resulting Ch/Col@ChNCs hydrogel patch. The patch demonstrates advantageous properties, including high porosity, superior water absorption, thermal stability, and biodegradability in simulated body fluid. In vitro assessments reveal excellent biocompatibility with AF cells and enhanced collagen deposition. Furthermore, in vivo studies confirm that the patch effectively repairs postoperative disc defects, exhibiting strong integration with surrounding tissues and facilitating the orderly regeneration of fibrous tissue. This innovative hydrogel patch, combining exceptional properties with a straightforward fabrication process, presents a viable strategy for advancing clinical biomaterials for postoperative AF repair.
Collapse
Affiliation(s)
- Mingzhi Liu
- The Affiliated Hospital of Qingdao University, 266035, Qingdao, China
| | - Zhiyong Cui
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, China
| | - Derong Xu
- The Affiliated Hospital of Qingdao University, 266035, Qingdao, China
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, China
| | - Chuanli Zhou
- The Affiliated Hospital of Qingdao University, 266035, Qingdao, China
| |
Collapse
|
4
|
Darmenbayeva A, Zhussipnazarova G, Rajasekharan R, Massalimova B, Zharlykapova R, Nurlybayeva A, Mukazhanova Z, Aubakirova G, Begenova B, Manapova S, Bulekbayeva K, Shinibekova A. Applications and Advantages of Cellulose-Chitosan Biocomposites: Sustainable Alternatives for Reducing Plastic Dependency. Polymers (Basel) 2024; 17:23. [PMID: 39795426 PMCID: PMC11722889 DOI: 10.3390/polym17010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
This review presents a comprehensive review of cellulose-chitosan-based biocomposites that have high potential as sustainable alternatives to synthetic polymers. These biocomposites, due to biocompatibility, biodegradability, and antimicrobial properties, attract attention for wide application in various industries. This review includes modern methods for producing cellulose-chitosan composites aimed at improving their mechanical and chemical properties, such as strength, flexibility, and water resistance. Particular attention is paid to the use of composites in packaging materials, where they provide protection and durability of products, and help reduce the environmental footprint. In medicine, such composites are used for drug delivery and tissue engineering, providing controlled release of active substances and tissue regeneration. In addition, their advantages in wastewater treatment are discussed, where the composites effectively remove heavy metal ions and organic pollutants due to their high sorption capacity. This study focuses on the wide potential of cellulose-chitosan biocomposites and their role in solving environmental problems.
Collapse
Affiliation(s)
- Akmaral Darmenbayeva
- Department of Chemistry and Chemical Technology, M.Kh. Dulaty Taraz University, Taraz 080000, Kazakhstan; (R.Z.); (A.N.); (K.B.); (A.S.)
| | - Gaziza Zhussipnazarova
- Department of Chemistry and Chemical Technology, M.Kh. Dulaty Taraz University, Taraz 080000, Kazakhstan; (R.Z.); (A.N.); (K.B.); (A.S.)
| | - Reshmy Rajasekharan
- Department of Science and Humanities, Providence College of Engineering, Ala 689122, Kerala, India;
| | - Bakytgul Massalimova
- Department of Chemistry and Chemical Engineering, M. Kozybayev North Kazakhstan University, Petropavlovsk 150000, Kazakhstan; (B.M.); (G.A.); (B.B.)
| | - Roza Zharlykapova
- Department of Chemistry and Chemical Technology, M.Kh. Dulaty Taraz University, Taraz 080000, Kazakhstan; (R.Z.); (A.N.); (K.B.); (A.S.)
| | - Aisha Nurlybayeva
- Department of Chemistry and Chemical Technology, M.Kh. Dulaty Taraz University, Taraz 080000, Kazakhstan; (R.Z.); (A.N.); (K.B.); (A.S.)
| | - Zhazira Mukazhanova
- Higher School of IT and Natural Sciences, S. Amanzholov East Kazakhstan University, Ust-Kamenogorsk 070010, Kazakhstan;
| | - Gulsim Aubakirova
- Department of Chemistry and Chemical Engineering, M. Kozybayev North Kazakhstan University, Petropavlovsk 150000, Kazakhstan; (B.M.); (G.A.); (B.B.)
| | - Bahyt Begenova
- Department of Chemistry and Chemical Engineering, M. Kozybayev North Kazakhstan University, Petropavlovsk 150000, Kazakhstan; (B.M.); (G.A.); (B.B.)
| | - Saltanat Manapova
- Department of Chemistry, S. Amanzholov East Kazakhstan University, Ust-Kamenogorsk 070010, Kazakhstan;
| | - Kamila Bulekbayeva
- Department of Chemistry and Chemical Technology, M.Kh. Dulaty Taraz University, Taraz 080000, Kazakhstan; (R.Z.); (A.N.); (K.B.); (A.S.)
| | - Assem Shinibekova
- Department of Chemistry and Chemical Technology, M.Kh. Dulaty Taraz University, Taraz 080000, Kazakhstan; (R.Z.); (A.N.); (K.B.); (A.S.)
| |
Collapse
|
5
|
Chen X, Jing S, Xue C, Guan X. Progress in the Application of Hydrogels in Intervertebral Disc Repair: A Comprehensive Review. Curr Pain Headache Rep 2024; 28:1333-1348. [PMID: 38985414 PMCID: PMC11666692 DOI: 10.1007/s11916-024-01296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE OF REVIEW Intervertebral disc degeneration (IVDD) is a common orthopaedic disease and an important cause of lower back pain, which seriously affects the work and life of patients and causes a large economic burden to society. The traditional treatment of IVDD mainly involves early pain relief and late surgical intervention, but it cannot reverse the pathological course of IVDD. Current studies suggest that IVDD is related to the imbalance between the anabolic and catabolic functions of the extracellular matrix (ECM). Anti-inflammatory drugs, bioactive substances, and stem cells have all been shown to improve ECM, but traditional injection methods face short half-life and leakage problems. RECENT FINDINGS The good biocompatibility and slow-release function of polymer hydrogels are being noticed and explored to combine with drugs or bioactive substances to treat IVDD. This paper introduces the pathophysiological mechanism of IVDD, and discusses the advantages, disadvantages and development prospects of hydrogels for the treatment of IVDD, so as to provide guidance for future breakthroughs in the treatment of IVDD.
Collapse
Affiliation(s)
- Xin Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shaoze Jing
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Chenhui Xue
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaoming Guan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
6
|
Tamo AK. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J Mater Chem B 2024; 12:7692-7759. [PMID: 38805188 DOI: 10.1039/d4tb00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tissue engineering has emerged as a remarkable field aiming to restore or replace damaged tissues through the use of biomimetic constructs. Among the diverse materials investigated for this purpose, nanocellulose-based hydrogels have garnered attention due to their intriguing biocompatibility, tunable mechanical properties, and sustainability. Over the past few years, numerous research works have been published focusing on the successful use of nanocellulose-based hydrogels as artificial extracellular matrices for regenerating various types of tissues. The review emphasizes the importance of tissue engineering, highlighting hydrogels as biomimetic scaffolds, and specifically focuses on the role of nanocellulose in composites that mimic the structures, properties, and functions of the native extracellular matrix for regenerating damaged tissues. It also summarizes the types of nanocellulose, as well as their structural, mechanical, and biological properties, and their contributions to enhancing the properties and characteristics of functional hydrogels for tissue engineering of skin, bone, cartilage, heart, nerves and blood vessels. Additionally, recent advancements in the application of nanocellulose-based hydrogels for tissue engineering have been evaluated and documented. The review also addresses the challenges encountered in their fabrication while exploring the potential future prospects of these hydrogel matrices for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
7
|
Tamo AK, Djouonkep LDW, Selabi NBS. 3D Printing of Polysaccharide-Based Hydrogel Scaffolds for Tissue Engineering Applications: A Review. Int J Biol Macromol 2024; 270:132123. [PMID: 38761909 DOI: 10.1016/j.ijbiomac.2024.132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
In tissue engineering, 3D printing represents a versatile technology employing inks to construct three-dimensional living structures, mimicking natural biological systems. This technology efficiently translates digital blueprints into highly reproducible 3D objects. Recent advances have expanded 3D printing applications, allowing for the fabrication of diverse anatomical components, including engineered functional tissues and organs. The development of printable inks, which incorporate macromolecules, enzymes, cells, and growth factors, is advancing with the aim of restoring damaged tissues and organs. Polysaccharides, recognized for their intrinsic resemblance to components of the extracellular matrix have garnered significant attention in the field of tissue engineering. This review explores diverse 3D printing techniques, outlining distinctive features that should characterize scaffolds used as ideal matrices in tissue engineering. A detailed investigation into the properties and roles of polysaccharides in tissue engineering is highlighted. The review also culminates in a profound exploration of 3D polysaccharide-based hydrogel applications, focusing on recent breakthroughs in regenerating different tissues such as skin, bone, cartilage, heart, nerve, vasculature, and skeletal muscle. It further addresses challenges and prospective directions in 3D printing hydrogels based on polysaccharides, paving the way for innovative research to fabricate functional tissues, enhancing patient care, and improving quality of life.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany; Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany; Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France.
| | - Lesly Dasilva Wandji Djouonkep
- College of Petroleum Engineering, Yangtze University, Wuhan 430100, China; Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan 430100, China
| | - Naomie Beolle Songwe Selabi
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
8
|
Zakeri Z, Heiderzadeh M, Kocaarslan A, Metin E, Hosseini Karimi SN, Saghati S, Vural A, Akyoldaş G, Baysal K, Yağcı Y, Gürsoy-Özdemir Y, Taşoğlu S, Rahbarghazi R, Sokullu E. Exosomes encapsulated in hydrogels for effective central nervous system drug delivery. Biomater Sci 2024; 12:2561-2578. [PMID: 38602364 DOI: 10.1039/d3bm01055d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The targeted delivery of pharmacologically active molecules, metabolites, and growth factors to the brain parenchyma has become one of the major challenges following the onset of neurodegeneration and pathological conditions. The therapeutic effect of active biomolecules is significantly impaired after systemic administration in the central nervous system (CNS) because of the blood-brain barrier (BBB). Therefore, the development of novel therapeutic approaches capable of overcoming these limitations is under discussion. Exosomes (Exo) are nano-sized vesicles of endosomal origin that have a high distribution rate in biofluids. Recent advances have introduced Exo as naturally suitable bio-shuttles for the delivery of neurotrophic factors to the brain parenchyma. In recent years, many researchers have attempted to regulate the delivery of Exo to target sites while reducing their removal from circulation. The encapsulation of Exo in natural and synthetic hydrogels offers a valuable strategy to address the limitations of Exo, maintaining their integrity and controlling their release at a desired site. Herein, we highlight the current and novel approaches related to the application of hydrogels for the encapsulation of Exo in the field of CNS tissue engineering.
Collapse
Affiliation(s)
- Ziba Zakeri
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | - Morteza Heiderzadeh
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | - Azra Kocaarslan
- Chemistry Department, Faculty of Science, İstanbul Technical University, İstanbul, Turkey
| | - Ecem Metin
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | | | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atay Vural
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Neurology, School of Medicine, KoÒ« University, Istanbul 34450, Turkey
| | - Göktuğ Akyoldaş
- Department of Neurosurgery, Koç University Hospital, Istanbul 34450, Turkey
| | - Kemal Baysal
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Biochemistry, School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Yusuf Yağcı
- Chemistry Department, Faculty of Science, İstanbul Technical University, İstanbul, Turkey
| | - Yasemin Gürsoy-Özdemir
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Neurology, School of Medicine, KoÒ« University, Istanbul 34450, Turkey
| | - Savaş Taşoğlu
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Mechanical Engineering Department, School of Engineering, Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey
| |
Collapse
|
9
|
Almajidi YQ, Ponnusankar S, Chaitanya MVNL, Marisetti AL, Hsu CY, Dhiaa AM, Saadh MJ, Pal Y, Thabit R, Adhab AH, Alsaikhan F, Narmani A, Farhood B. Chitosan-based nanofibrous scaffolds for biomedical and pharmaceutical applications: A comprehensive review. Int J Biol Macromol 2024; 264:130683. [PMID: 38458289 DOI: 10.1016/j.ijbiomac.2024.130683] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/03/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Nowadays, there is a wide range of deficiencies in treatment of diseases. These limitations are correlated with the inefficient ability of current modalities in the prognosis, diagnosis, and treatment of diseases. Therefore, there is a fundamental need for the development of novel approaches to overcome the mentioned restrictions. Chitosan (CS) nanoparticles, with remarkable physicochemical and mechanical properties, are FDA-approved biomaterials with potential biomedical aspects, like serum stability, biocompatibility, biodegradability, mucoadhesivity, non-immunogenicity, anti-inflammatory, desirable pharmacokinetics and pharmacodynamics, etc. CS-based materials are mentioned as ideal bioactive materials for fabricating nanofibrous scaffolds. Sustained and controlled drug release and in situ gelation are other potential advantages of these scaffolds. This review highlights the latest advances in the fabrication of innovative CS-based nanofibrous scaffolds as potential bioactive materials in regenerative medicine and drug delivery systems, with an outlook on their future applications.
Collapse
Affiliation(s)
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty 643001, The Nilgiris, India
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Arya Lakshmi Marisetti
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan.
| | | | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Yogendra Pal
- Department of Pharmaceutical Chemistry, CT College of Pharmacy, Shahpur, Jalandhar, Punjab 144020, India
| | - Russul Thabit
- Medical Technical College, Al-Farahidi University, Iraq
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
10
|
Hameed H, Khan MA, Paiva-Santos AC, Ereej N, Faheem S. Chitin: A versatile biopolymer-based functional therapy for cartilage regeneration. Int J Biol Macromol 2024; 265:131120. [PMID: 38527680 DOI: 10.1016/j.ijbiomac.2024.131120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Chitin is the second most abundant biopolymer and its inherent biological characteristics make it ideal to use for tissue engineering. For many decades, its properties like non-toxicity, abundant availability, ease of modification, biodegradability, biocompatibility, and anti-microbial activity have made chitin an ideal biopolymer for drug delivery. Research studies have also shown many potential benefits of chitin in the formulation of functional therapy for cartilage regeneration. Chitin and its derivatives can be processed into 2D/3D scaffolds, hydrogels, films, exosomes, and nano-fibers, which make it a versatile and functional biopolymer in tissue engineering. Chitin is a biomimetic polymer that provides targeted delivery of mesenchymal stem cells, especially of chondrocytes at the injected donor sites to accelerate regeneration by enhancing cell proliferation and differentiation. Due to this property, chitin is considered an interesting polymer that has a high potential to provide targeted therapy in the regeneration of cartilage. Our paper presents an overview of the method of extraction, structure, properties, and functional role of this versatile biopolymer in tissue engineering, especially cartilage regeneration.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| |
Collapse
|
11
|
Zeshan M, Amjed N, Ashraf H, Farooq A, Akram N, Zia KM. A review on the application of chitosan-based polymers in liver tissue engineering. Int J Biol Macromol 2024; 262:129350. [PMID: 38242400 DOI: 10.1016/j.ijbiomac.2024.129350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
Chitosan-based polymers have enormous structural tendencies to build bioactive materials with novel characteristics, functions, and various applications, mainly in liver tissue engineering (LTE). The specific physicochemical, biological, mechanical, and biodegradation properties give the effective ways to blend these biopolymers with synthetic and natural polymers to fabricate scaffolds matrixes, sponges, and complexes. A variety of natural and synthetic biomaterials, including chitosan (CS), alginate (Alg), collagen (CN), gelatin (GL), hyaluronic acid (HA), hydroxyapatite (HAp), polyethylene glycol (PEG), polycaprolactone (PCL), poly(lactic-co-glycolic) acid (PGLA), polylactic acid (PLA), and silk fibroin gained considerable attention due to their structure-properties relationship. The incorporation of CS within the polymer matrix results in increased mechanical strength and also imparts biological behavior to the designed PU formulations. The significant and growing interest in the LTE sector, this review aims to be a detailed exploration of CS-based polymers biomaterials for LTE. A brief explanation of the sources and extraction, properties, structure, and scope of CS is described in the introduction. After that, a full overview of the liver, its anatomy, issues, hepatocyte transplantation, LTE, and CS LTE applications are discussed.
Collapse
Affiliation(s)
- Muhammad Zeshan
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Nyla Amjed
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Humna Ashraf
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ariba Farooq
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Nadia Akram
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Khalid Mahmood Zia
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| |
Collapse
|
12
|
Peniche H, Razonado IA, Alcouffe P, Sudre G, Peniche C, Osorio-Madrazo A, David L. Wet-Spun Chitosan-Sodium Caseinate Fibers for Biomedicine: From Spinning Process to Physical Properties. Int J Mol Sci 2024; 25:1768. [PMID: 38339046 PMCID: PMC10855522 DOI: 10.3390/ijms25031768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
We designed and characterized chitosan-caseinate fibers processed through wet spinning for biomedical applications such as drug delivery from knitted medical devices. Sodium caseinate was either incorporated directly into the chitosan dope or allowed to diffuse into the chitosan hydrogel from a coagulation bath containing sodium caseinate and sodium hydroxide (NaOH). The latter route, where caseinate was incorporated in the neutralization bath, produced fibers with better mechanical properties for textile applications than those formed by the chitosan-caseinate mixed collodion route. The latter processing method consists of enriching a pre-formed chitosan hydrogel with caseinate, preserving the structure of the semicrystalline hydrogel without drastically affecting interactions involved in the chitosan self-assembly. Thus, dried fibers, after coagulation in a NaOH/sodium caseinate aqueous bath, exhibited preserved ultimate mechanical properties. The crystallinity ratio of chitosan was not significantly impacted by the presence of caseinate. However, when caseinate was incorporated into the chitosan dope, chitosan-caseinate fibers exhibited lower ultimate mechanical properties, possibly due to a lower entanglement density in the amorphous phase of the chitosan matrix. A standpoint is to optimize the chitosan-caseinate composition ratio and processing route to find a good compromise between the preservation of fiber mechanical properties and appropriate fiber composition for potential application in drug release.
Collapse
Affiliation(s)
- Hazel Peniche
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
- Biomaterials Center, University of Havana, Havana 10600, Cuba
| | - Ivy Ann Razonado
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
| | - Pierre Alcouffe
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
| | - Guillaume Sudre
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
| | - Carlos Peniche
- Faculty of Chemistry, University of Havana, Havana 10600, Cuba;
| | - Anayancy Osorio-Madrazo
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Jena Center for Soft Matter (JCSM), and Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich Schiller University of Jena, 07743 Jena, Germany
- Laboratory of Organ Printing, University of Bayreuth, 95447 Bayreuth, Germany
| | - Laurent David
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
| |
Collapse
|
13
|
Desai SU, Srinivasan SS, Kumbar SG, Moss IL. Hydrogel-Based Strategies for Intervertebral Disc Regeneration: Advances, Challenges and Clinical Prospects. Gels 2024; 10:62. [PMID: 38247785 PMCID: PMC10815657 DOI: 10.3390/gels10010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Millions of people worldwide suffer from low back pain and disability associated with intervertebral disc (IVD) degeneration. IVD degeneration is highly correlated with aging, as the nucleus pulposus (NP) dehydrates and the annulus fibrosus (AF) fissures form, which often results in intervertebral disc herniation or disc space collapse and related clinical symptoms. Currently available options for treating intervertebral disc degeneration are symptoms control with therapy modalities, and/or medication, and/or surgical resection of the IVD with or without spinal fusion. As such, there is an urgent clinical demand for more effective disease-modifying treatments for this ubiquitous disorder, rather than the current paradigms focused only on symptom control. Hydrogels are unique biomaterials that have a variety of distinctive qualities, including (but not limited to) biocompatibility, highly adjustable mechanical characteristics, and most importantly, the capacity to absorb and retain water in a manner like that of native human nucleus pulposus tissue. In recent years, various hydrogels have been investigated in vitro and in vivo for the repair of intervertebral discs, some of which are ready for clinical testing. In this review, we summarize the latest findings and developments in the application of hydrogel technology for the repair and regeneration of intervertebral discs.
Collapse
Affiliation(s)
- Shivam U. Desai
- Department of Orthopedic Surgery, Central Michigan University, College of Medicine, Saginaw, MI 48602, USA
| | | | | | - Isaac L. Moss
- Department of Orthopedic Surgery, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
14
|
El-Araby A, Janati W, Ullah R, Ercisli S, Errachidi F. Chitosan, chitosan derivatives, and chitosan-based nanocomposites: eco-friendly materials for advanced applications (a review). Front Chem 2024; 11:1327426. [PMID: 38239928 PMCID: PMC10794439 DOI: 10.3389/fchem.2023.1327426] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
For many years, chitosan has been widely regarded as a promising eco-friendly polymer thanks to its renewability, biocompatibility, biodegradability, non-toxicity, and ease of modification, giving it enormous potential for future development. As a cationic polysaccharide, chitosan exhibits specific physicochemical, biological, and mechanical properties that depend on factors such as its molecular weight and degree of deacetylation. Recently, there has been renewed interest surrounding chitosan derivatives and chitosan-based nanocomposites. This heightened attention is driven by the pursuit of enhancing efficiency and expanding the spectrum of chitosan applications. Chitosan's adaptability and unique properties make it a game-changer, promising significant contributions to industries ranging from healthcare to environmental remediation. This review presents an up-to-date overview of chitosan production sources and extraction methods, focusing on chitosan's physicochemical properties, including molecular weight, degree of deacetylation and solubility, as well as its antibacterial, antifungal and antioxidant activities. In addition, we highlight the advantages of chitosan derivatives and biopolymer modification methods, with recent advances in the preparation of chitosan-based nanocomposites. Finally, the versatile applications of chitosan, whether in its native state, derived or incorporated into nanocomposites in various fields, such as the food industry, agriculture, the cosmetics industry, the pharmaceutical industry, medicine, and wastewater treatment, were discussed.
Collapse
Affiliation(s)
- Abir El-Araby
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Walid Janati
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Centre, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Horticulture, Ataturk University, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, Türkiye
| | - Faouzi Errachidi
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
15
|
Ramezani G, Stiharu I, van de Ven TGM, Nerguizian V. Advancement in Biosensor Technologies of 2D MaterialIntegrated with Cellulose-Physical Properties. MICROMACHINES 2023; 15:82. [PMID: 38258201 PMCID: PMC10819598 DOI: 10.3390/mi15010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Abstract
This review paper provides an in-depth analysis of recent advancements in integrating two-dimensional (2D) materials with cellulose to enhance biosensing technology. The incorporation of 2D materials such as graphene and transition metal dichalcogenides, along with nanocellulose, improves the sensitivity, stability, and flexibility of biosensors. Practical applications of these advanced biosensors are explored in fields like medical diagnostics and environmental monitoring. This innovative approach is driving research opportunities and expanding the possibilities for diverse applications in this rapidly evolving field.
Collapse
Affiliation(s)
- Ghazaleh Ramezani
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Ion Stiharu
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Theo G. M. van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada;
| | - Vahe Nerguizian
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame West, Montreal, QC H3C 1K3, Canada;
| |
Collapse
|
16
|
Gao Y, Chen X, Zheng G, Lin M, Zhou H, Zhang X. Current status and development direction of immunomodulatory therapy for intervertebral disk degeneration. Front Med (Lausanne) 2023; 10:1289642. [PMID: 38179277 PMCID: PMC10764593 DOI: 10.3389/fmed.2023.1289642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Intervertebral disk (IVD) degeneration (IVDD) is a main factor in lower back pain, and immunomodulation plays a vital role in disease progression. The IVD is an immune privileged organ, and immunosuppressive molecules in tissues reduce immune cell (mainly monocytes/macrophages and mast cells) infiltration, and these cells can release proinflammatory cytokines and chemokines, disrupting the IVD microenvironment and leading to disease progression. Improving the inflammatory microenvironment in the IVD through immunomodulation during IVDD may be a promising therapeutic strategy. This article reviews the normal physiology of the IVD and its degenerative mechanisms, focusing on IVDD-related immunomodulation, including innate immune responses involving Toll-like receptors, NOD-like receptors and the complement system and adaptive immune responses that regulate cellular and humoral immunity, as well as IVDD-associated immunomodulatory therapies, which mainly include mesenchymal stem cell therapies, small molecule therapies, growth factor therapies, scaffolds, and gene therapy, to provide new strategies for the treatment of IVDD.
Collapse
Affiliation(s)
- Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Xiyue Chen
- Department of Orthopaedics, Sanya People’s Hospital, Sanya, Hainan, China
| | - Guan Zheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopaedics, Sanya People’s Hospital, Sanya, Hainan, China
| |
Collapse
|
17
|
Sinna J, Jeencham R, Mueangkhot P, Sophon S, Noralak P, Raksapakdee R, Numpaisal PO, Ruksakulpiwat Y. Development of Poly(vinyl alcohol) Grafted Glycidyl Methacrylate/Cellulose Nanofiber Injectable Hydrogels for Meniscus Tissue Engineering. Polymers (Basel) 2023; 15:4230. [PMID: 37959910 PMCID: PMC10647663 DOI: 10.3390/polym15214230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
This study aimed to develop poly (vinyl alcohol) grafted glycidyl methacrylate/cellulose nanofiber (PVA-g-GMA/CNF) injectable hydrogels for meniscus tissue engineering. PVA-g-GMA is an interesting polymer for preparing cross-linking injectable hydrogels with UV radiation, but it has poor mechanical properties and low cell proliferation. In this study, CNF as a reinforcing agent was selected to improve mechanical properties and cell proliferation in PVA-g-GMA injectable hydro-gels. The effect of CNF concentration on hydrogel properties was investigated. Both PVA-g-GMA and PVA-g-GMA hydrogels incorporating 0.3, 0.5, and 0.7% (w/v) CNF can be formed by UV curing at a wavelength of 365 nm, 6 mW/cm2 for 10 min. All hydrogels showed substantial microporosity with interconnected tunnels, and a pore size diameter range of 3-68 µm. In addition, all hydrogels also showed high physicochemical properties, a gel fraction of 81-82%, porosity of 83-94%, water content of 73-87%, and water swelling of 272-652%. The water content and swelling of hydrogels were increased when CNF concentration increased. It is worth noting that the reduction of porosity in the hydrogels occurred with increasing CNF concentration. With increasing CNF concentration from 0.3% to 0.7% (w/v), the compressive strength and compressive modulus of the hydrogels significantly increased from 23 kPa to 127 kPa and 27 kPa to 130 kPa, respectively. All of the hydrogels were seeded with human cartilage stem/progenitor cells (CSPCs) and cultured for 14 days. PVA-g-GMA hydrogels incorporating 0.5% and 0.7% (w/v) CNF demonstrated a higher cell proliferation rate than PVA-g-GMA and PVA-g-GMA hydrogels incorporating 0.3% (w/v) CNF, as confirmed by MTT assay. At optimum formulation, 10%PVA-g-GMA/0.7%CNF injectable hydrogel met tissue engineering requirements, which showed excellent properties and significantly promoted cell proliferation, and has a great potential for meniscus tissue engineering application.
Collapse
Affiliation(s)
- Jiraporn Sinna
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Rachasit Jeencham
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| | - Priyapat Mueangkhot
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sorasak Sophon
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pornpattara Noralak
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Romtira Raksapakdee
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Piya-on Numpaisal
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- School of Orthopaedics, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yupaporn Ruksakulpiwat
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
18
|
Ying Y, Cai K, Cai X, Zhang K, Qiu R, Jiang G, Luo K. Recent advances in the repair of degenerative intervertebral disc for preclinical applications. Front Bioeng Biotechnol 2023; 11:1259731. [PMID: 37811372 PMCID: PMC10557490 DOI: 10.3389/fbioe.2023.1259731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
The intervertebral disc (IVD) is a load-bearing, avascular tissue that cushions pressure and increases flexibility in the spine. Under the influence of obesity, injury, and reduced nutrient supply, it develops pathological changes such as fibular annulus (AF) injury, disc herniation, and inflammation, eventually leading to intervertebral disc degeneration (IDD). Lower back pain (LBP) caused by IDD is a severe chronic disorder that severely affects patients' quality of life and has a substantial socioeconomic impact. Patients may consider surgical treatment after conservative treatment has failed. However, the broken AF cannot be repaired after surgery, and the incidence of re-protrusion and reoccurring pain is high, possibly leading to a degeneration of the adjacent vertebrae. Therefore, effective treatment strategies must be explored to repair and prevent IDD. This paper systematically reviews recent advances in repairing IVD, describes its advantages and shortcomings, and explores the future direction of repair technology.
Collapse
Affiliation(s)
- Yijian Ying
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Kaiwen Cai
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiongxiong Cai
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Kai Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Rongzhang Qiu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Guoqiang Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kefeng Luo
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
19
|
Berradi A, Aziz F, Achaby ME, Ouazzani N, Mandi L. A Comprehensive Review of Polysaccharide-Based Hydrogels as Promising Biomaterials. Polymers (Basel) 2023; 15:2908. [PMID: 37447553 DOI: 10.3390/polym15132908] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Polysaccharides have emerged as a promising material for hydrogel preparation due to their biocompatibility, biodegradability, and low cost. This review focuses on polysaccharide-based hydrogels' synthesis, characterization, and applications. The various synthetic methods used to prepare polysaccharide-based hydrogels are discussed. The characterization techniques are also highlighted to evaluate the physical and chemical properties of polysaccharide-based hydrogels. Finally, the applications of SAPs in various fields are discussed, along with their potential benefits and limitations. Due to environmental concerns, this review shows a growing interest in developing bio-sourced hydrogels made from natural materials such as polysaccharides. SAPs have many beneficial properties, including good mechanical and morphological properties, thermal stability, biocompatibility, biodegradability, non-toxicity, abundance, economic viability, and good swelling ability. However, some challenges remain to be overcome, such as limiting the formulation complexity of some SAPs and establishing a general protocol for calculating their water absorption and retention capacity. Furthermore, the development of SAPs requires a multidisciplinary approach and research should focus on improving their synthesis, modification, and characterization as well as exploring their potential applications. Biocompatibility, biodegradation, and the regulatory approval pathway of SAPs should be carefully evaluated to ensure their safety and efficacy.
Collapse
Affiliation(s)
- Achraf Berradi
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| | - Faissal Aziz
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| | - Mounir El Achaby
- Materials Science and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Naaila Ouazzani
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| | - Laila Mandi
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| |
Collapse
|
20
|
Ghilan A, Nicu R, Ciolacu DE, Ciolacu F. Insight into the Latest Medical Applications of Nanocellulose. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4447. [PMID: 37374630 DOI: 10.3390/ma16124447] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Nanocelluloses (NCs) are appealing nanomaterials that have experienced rapid development in recent years, with great potential in the biomedical field. This trend aligns with the increasing demand for sustainable materials, which will contribute both to an improvement in wellbeing and an extension of human life, and with the demand to keep up with advances in medical technology. In recent years, due to the diversity of their physical and biological properties and the possibility of tuning them according to the desired goal, these nanomaterials represent a point of maximum interest in the medical field. Applications such as tissue engineering, drug delivery, wound dressing, medical implants or those in cardiovascular health are some of the applications in which NCs have been successfully used. This review presents insight into the latest medical applications of NCs, in the forms of cellulose nanocrystals (CNCs), cellulose nanofibers (CNFs) and bacterial nanocellulose (BNC), with an emphasis on the domains that have recently experienced remarkable growth, namely wound dressing, tissue engineering and drug delivery. In order to highlight only the most recent achievements, the presented information is focused on studies from the last 3 years. Approaches to the preparation of NCs are discussed either by top-down (chemical or mechanical degradation) or by bottom-up (biosynthesis) techniques, along with their morphological characterization and unique properties, such as mechanical and biological properties. Finally, the main challenges, limitations and future research directions of NCs are identified in a sustained effort to identify their effective use in biomedical fields.
Collapse
Affiliation(s)
- Alina Ghilan
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Raluca Nicu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Diana E Ciolacu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Florin Ciolacu
- Department of Natural and Synthetic Polymers, "Gheorghe Asachi" Technical University of Iasi, 700050 Iasi, Romania
| |
Collapse
|
21
|
Jeencham R, Tawonsawatruk T, Numpaisal PO, Ruksakulpiwat Y. Reinforcement of Injectable Hydrogel for Meniscus Tissue Engineering by Using Cellulose Nanofiber from Cassava Pulp. Polymers (Basel) 2023; 15:polym15092092. [PMID: 37177235 PMCID: PMC10180748 DOI: 10.3390/polym15092092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Injectable hydrogels can be applied to treat damaged meniscus in minimally invasive conditions. Generally, injectable hydrogels can be prepared from various polymers such as polycaprolactone (PCL) and poly (N-isopropylacrylamide) (PNIPAAm). Poly (ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer-diacrylate (PEO-PPO-PEO-DA) is an interesting polymer due to its biodegradability and can be prepared as water-insoluble injectable hydrogel after curing with UV light at low intensity. However, mechanical and cell adhesion properties are not optimal for these hydrogels. For the improved mechanical performance of the injectable hydrogel, cellulose nanofiber (CNF) extracted from cassava pulp was used as a reinforcing filler in this study. In addition, gelatin methacrylate (GelMA), the denatured form of collagen was used to enhance cell adhesion. PEO-PPO-PEO-DA/CNF/GelMA injectable hydrogels were prepared with 2-hydroxy-1-(4-(hydroxy ethoxy) phenyl)-2-methyl-1-propanone as a photoinitiator and then cured with UV light, 365 nm at 6 mW/cm2. Physicochemical characteristics of the hydrogels and hydrogels with CNF were studied in detail including morphology characterization, pore size diameter, porosity, mechanical properties, water uptake, and swelling. In addition, cell viability was also studied. CNF-reinforced injectable hydrogels were successfully prepared after curing with UV light within 10 min with a thickness of 2 mm. CNF significantly improved the mechanical characteristics of injectable hydrogels. The incorporation of GelMA into the injectable hydrogels improved the viability of human cartilage stem/progenitor cells. At optimum formulation, 12%PEO-PPO-PEO-DA/0.5%CNF/3%GelMA injectable hydrogels significantly promoted cell viability (>80%) and also showed good physicochemical properties, which met tissue engineering requirements. In summary, this work shows that these novel injectable hydrogels have the potential for meniscus tissue engineering.
Collapse
Affiliation(s)
- Rachasit Jeencham
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| | - Tulyapruek Tawonsawatruk
- Department of Orthopedics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Piya-On Numpaisal
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- School of Orthopaedics, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yupaporn Ruksakulpiwat
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
22
|
Oliveira AS, Silva JC, Loureiro MV, Marques AC, Kotov NA, Colaço R, Serro AP. Super-Strong Hydrogel Composites Reinforced with PBO Nanofibers for Cartilage Replacement. Macromol Biosci 2023; 23:e2200240. [PMID: 36443994 DOI: 10.1002/mabi.202200240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/28/2022] [Indexed: 11/30/2022]
Abstract
Cartilage replacement materials exhibiting a set of demanding properties such as high water content, high mechanical stiffness, low friction, and excellent biocompatibility are quite difficult to achieve. Here, poly(p-phenylene-2,6-benzobisoxazole) (PBO) nanofibers are combined with polyvinyl alcohol (PVA) to form a super-strong structure with a performance that surpasses the vast majority of previously existing hydrogels. PVA-PBO composites with water contents in the 59-76% range exhibit tensile and compressive moduli reaching 20.3 and 4.5 MPa, respectively, and a coefficient of friction below 0.08. Further, they are biocompatible and support the viability of chondrocytes for 1 week, with significant improvements in cell adhesion, proliferation, and differentiation compared to PVA. The new composites can be safely sterilized by steam heat or gamma radiation without compromising their integrity and overall performance. In addition, they show potential to be used as local delivery platforms for anti-inflammatory drugs. These attractive features make PVA-PBO composites highly competitive engineered materials with remarkable potential for use in the design of load-bearing tissues. Complementary work has also revealed that these composites will be interesting alternatives in other industrial fields where high thermal and mechanical resistance are essential requirements, or which can take advantage of the pH responsiveness functionality.
Collapse
Affiliation(s)
- Andreia S Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, Caparica, 2829-511, Portugal.,Instituto de Engenharia Mecânica and Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - João C Silva
- Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Centre for Rapid and Sustainable Product Development, Politécnico de Leiria, Rua de Portugal-Zona Industrial, Marinha Grande, 2430-028, Portugal
| | - Mónica V Loureiro
- Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Ana C Marques
- Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Nicholas A Kotov
- Biointerfaces Institute, Department of Chemical Engineering, and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rogério Colaço
- Instituto de Engenharia Mecânica and Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Ana P Serro
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, Caparica, 2829-511, Portugal
| |
Collapse
|
23
|
Generation of dorsoventral human spinal cord organoids via functionalizing composite scaffold for drug testing. iScience 2022; 26:105898. [PMID: 36647382 PMCID: PMC9840144 DOI: 10.1016/j.isci.2022.105898] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The spinal cord possesses highly complex, finely organized cytoarchitecture guided by two dorsoventral morphogenic organizing centers. Thus, generation of human spinal cord tissue in vitro is challenging. Here, we demonstrated a novel method for generation of human dorsoventral spinal cord organoids using composite scaffolds. Specifically, the spinal cord ventralizing signaling Shh agonist (SAG) was loaded into a porous chitosan microsphere (PCSM), then thermosensitive Matrigel was coated on the surface to form composite microspheres with functional sustained-release SAG, termed as PCSM-Matrigel@SAG. Using PCSM-Matrigel@SAG as the core to induce 3D engineering of human spinal cord organoids from human pluripotent stem cells (ehSC-organoids), we found ehSC-organoids could form dorsoventral spinal cord-like cytoarchitecture with major domain-specific progenitors and neurons. Besides, these ehSC-organoids also showed functional calcium activity. In summary, these ehSC-organoids are of great significance for modeling spinal cord development, drug screening as 3D models for motor neuron diseases, and spinal cord injury repair.
Collapse
|
24
|
Demott CJ, Grunlan MA. Emerging polymeric material strategies for cartilage repair. J Mater Chem B 2022; 10:9578-9589. [PMID: 36373438 DOI: 10.1039/d2tb02005j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cartilage is found throughout the body, serving an array of essential functions. Owing to the limited healing capacity of cartilage, damage or degeneration is often permanent and so requires clinical intervention. Established surgical techniques generally rely on biological grafting. However, recent advances in polymeric materials provide an encouraging alternative to overcome limits of auto- and allografts. For regenerative engineering of cartilage, a polymeric scaffold ideally supports and instructs tissue regeneration while also providing mechanical integrity. Scaffolds direct regeneration via chemical and mechanical cues, as well as delivery and support of exogenous cells and bioactive factors. Advanced polymeric scaffolds aim to direct regeneration locally, replicating the heterogeneities of native tissues. Alternatively, new cartilage-mimetic hydrogels have potential to serve as synthetic cartilage replacements. Prepared as multi-network or composite hydrogels, the most promising candidates have simultaneously realized the hydration, mechanical, and tribological properties of native cartilage. Collectively, the recent rise in polymers for cartilage regeneration and replacement proposes a changing paradigm, with a new generation of materials paving the way for improved clinical outcomes.
Collapse
Affiliation(s)
- Connor J Demott
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3003, USA.,Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843-3003, USA.,Department of Chemistry, Texas A&M University, College Station, TX 77843-3003, USA.
| |
Collapse
|
25
|
Lignocellulosic-Based Materials from Bean and Pistachio Pod Wastes for Dye-Contaminated Water Treatment: Optimization and Modeling of Indigo Carmine Sorption. Polymers (Basel) 2022; 14:polym14183776. [PMID: 36145920 PMCID: PMC9504809 DOI: 10.3390/polym14183776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, biomass lignocellulosic materials extracted via chemical and physical treatments from bean and pistachio pod waste were used for the optimized elimination of Indigo Carmine (IC) from aqueous medium, using a design of experiments methodology. The physicochemical properties of the studied materials (raw and treated counterparts) used for the sorption of IC were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with EDX, and thermal analysis. Key variables influencing the adsorption of IC, namely the initial IC concentration, the pH of the solution, the stirring time and the mass of adsorbents, were optimized by the central composite design (CCD) with three center points, the measured response being the amount of IC adsorbed. The optimal conditions obtained from the statistical analysis for the removal of IC were as follows: maximum adsorbed amounts of IC: 1.81 mg/g, 2.05 mg/g, 3.56 mg/g; 7.42 mg/g, 8.95 mg/g, 15.35 mg/g, for raw bean pods (RBS), BST1 and BST2 (bean pods chemically treated), and for raw pistachio pods (RPS), PST1 and PST2 (pistachio pods chemically treated), respectively. The pseudo-second-order nonlinear kinetics model well described the IC adsorption kinetics for RBS, BST1 and BST2, while the Elovich model was properly fitted by RPS, PST1, and PST2 biomaterials data. The Freundlich isotherm best described the shrinkage of IC on different sorbents. The good correlation of the experimental data of the IC with respect to the Freundlich isotherm indicated a multilayer adsorption with heterogeneous adsorption sites and different energies. The interest of this work consisted in developing analytical methods for the treatment of water polluted by dyes by using biosorbents, local biological materials widely available and inexpensive. The results collected in this work highlighted the interesting structural, morphological, and physico-chemical properties of the agro-waste used in the study, which properties allowed an important fixation of the target dye in solution. The research showed that the agro-waste used in the study are possible precursors to locally manufacture adsorbents at low cost, thus allowing the efficient removal of waste and dyes in liquid effluents.
Collapse
|
26
|
Tamo AK, Tran TA, Doench I, Jahangir S, Lall A, David L, Peniche-Covas C, Walther A, Osorio-Madrazo A. 3D Printing of Cellulase-Laden Cellulose Nanofiber/Chitosan Hydrogel Composites: Towards Tissue Engineering Functional Biomaterials with Enzyme-Mediated Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6039. [PMID: 36079419 PMCID: PMC9456765 DOI: 10.3390/ma15176039] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 05/18/2023]
Abstract
The 3D printing of a multifunctional hydrogel biomaterial with bioactivity for tissue engineering, good mechanical properties and a biodegradability mediated by free and encapsulated cellulase was proposed. Bioinks of cellulase-laden and cellulose nanofiber filled chitosan viscous suspensions were used to 3D print enzymatic biodegradable and biocompatible cellulose nanofiber (CNF) reinforced chitosan (CHI) hydrogels. The study of the kinetics of CNF enzymatic degradation was studied in situ in fibroblast cell culture. To preserve enzyme stability as well as to guarantee its sustained release, the cellulase was preliminarily encapsulated in chitosan-caseinate nanoparticles, which were further incorporated in the CNF/CHI viscous suspension before the 3D printing of the ink. The incorporation of the enzyme within the CHI/CNF hydrogel contributed to control the decrease of the CNF mechanical reinforcement in the long term while keeping the cell growth-promoting property of chitosan. The hydrolysis kinetics of cellulose in the 3D printed scaffolds showed a slow but sustained degradation of the CNFs with enzyme, with approximately 65% and 55% relative activities still obtained after 14 days of incubation for the encapsulated and free enzyme, respectively. The 3D printed composite hydrogels showed excellent cytocompatibility supporting fibroblast cell attachment, proliferation and growth. Ultimately, the concomitant cell growth and biodegradation of CNFs within the 3D printed CHI/CNF scaffolds highlights the remarkable potential of CHI/CNF composites in the design of tissue models for the development of 3D constructs with tailored in vitro/in vivo degradability for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Tuan Anh Tran
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Ingo Doench
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Shaghayegh Jahangir
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Aastha Lall
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Laurent David
- Polymer Materials Engineering IMP CNRS UMR 5223, Université Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet St Etienne, INSA de Lyon, CNRS, 69622 Villeurbanne, France
| | - Carlos Peniche-Covas
- Center of Biomaterials, Faculty of Chemistry, University of Havana, Havana 10400, Cuba
| | - Andreas Walther
- ABMS Lab, Active, Adaptive and Autonomous Bioinspired Materials, Department of Chemistry, University of Mainz, 55128 Mainz, Germany
| | - Anayancy Osorio-Madrazo
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
27
|
Ebunang DVT, Tajeu KY, Pecheu CN, Jiokeng SLZ, Tamo AK, Doench I, Osorio-Madrazo A, Tonle IK, Ngameni E. Amino-Functionalized Laponite Clay Material as a Sensor Modifier for the Electrochemical Detection of Quercetin. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22166173. [PMID: 36015934 PMCID: PMC9414484 DOI: 10.3390/s22166173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 05/07/2023]
Abstract
In this work, an electrode modified with an amino-functionalized clay mineral was used for the electrochemical analysis and quantification of quercetin (QCT). The resulting amine laponite (LaNH2) was used as modifier for a glassy carbon electrode (GCE). The organic-inorganic hybrid material was structurally characterized using X-ray diffraction, Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and CHN elemental analysis. The covalent grafting of the organosilane to the clay backbone was confirmed. The charge on the aminated laponite, both without and with the protonation of NH2 groups, was evaluated via cyclic voltammetry. On the protonated amine (LaNH3+)-modified GCE, the cyclic voltammograms for QCT showed two oxidation peaks and one reduction peak in the range of -0.2 V to 1.2 V in a phosphate buffer-ethanol mixture at pH 3. By using the differential pulse voltammetry (DPV), the modification showed an increase in the electrode performance and a strong pH dependence. The experimental conditions were optimized, with the results showing that the peak current intensity of the DPV increased linearly with the QCT concentration in the range from 2 × 10-7 M to 2 × 10-6 M, leading to a detection limit of 2.63 × 10-8 M (S/N 3). The sensor selectivity was also evaluated in the presence of interfering species. Finally, the proposed aminated organoclay-modified electrode was successfully applied for the detection of QCT in human urine. The accuracy of the results achieved with the sensor was evaluated by comparing the results obtained using UV-visible spectrometry.
Collapse
Affiliation(s)
- Delmas Vidal Tabe Ebunang
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Kevin Yemele Tajeu
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Chancellin Nkepdep Pecheu
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Sherman Lesly Zambou Jiokeng
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement (LCPME), UMR 7564 CNRS—Université de Lorraine, 405, Rue de Vandœuvre, 54600 Villers-lès-Nancy, France
| | - Arnaud Kamdem Tamo
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK-Sensors, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Ingo Doench
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK-Sensors, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Anayancy Osorio-Madrazo
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK-Sensors, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Correspondence: (A.O.-M.); (E.N.); Tel.: +49-761-203-67363 (A.O.-M.); +237-675-311-930 (E.N.)
| | - Ignas Kenfack Tonle
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Emmanuel Ngameni
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Yaounde 1, Yaoundé P.O. Box 812, Cameroon
- Correspondence: (A.O.-M.); (E.N.); Tel.: +49-761-203-67363 (A.O.-M.); +237-675-311-930 (E.N.)
| |
Collapse
|
28
|
Rahimtoroghi E, Kasra M, Maleki H. Hydrogels reinforced by electrospun nanofibrous yarns designed for tissue engineering applications: mechanical and cellular properties. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2097676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Elham Rahimtoroghi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mehran Kasra
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Homa Maleki
- Faculty of Arts, University of Birjand, University Boulevard, Birjand, South Khorasan, Iran
| |
Collapse
|
29
|
Zhang D, Feng M, Liu W, Yu J, Wei X, Yang K, Zhan J, Peng W, Luo M, Han T, Jin Z, Yin H, Sun K, Yin X, Zhu L. From Mechanobiology to Mechanical Repair Strategies: A Bibliometric Analysis of Biomechanical Studies of Intervertebral Discs. J Pain Res 2022; 15:2105-2122. [PMID: 35923841 PMCID: PMC9342884 DOI: 10.2147/jpr.s361938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Neck pain and low back pain are major challenges in public health, and intervertebral disc (IVD) biomechanics is an important multidisciplinary field. To date, no bibliometric literature review of the relevant literature has been performed, so we explored the emerging trends, landmark studies, and major contributors to IVD biomechanics research. We searched the Web of Science core collection (1900–2022) using keywords mainly composed of “biomechanics” and “intervertebral disc” to conduct a bibliometric analysis of original papers and their references, focusing on citations, authors, journals, and countries/regions. A co-citation analysis and clustering of the references were also completed. A total of 3189 records met the inclusion criteria. In the co-citation network, cluster #0, labeled as “annulus fibrosus tissue engineering”, and cluster #1, labeled as “micromechanical environment”, were the biggest clusters. References by MacLean et al and Holzapfel et al were positioned exactly between them and had high betweenness centrality. There existed a research topic evolution between mechanobiology and mechanical repair strategies of IVDs, and the latter had been identified as an emerging trend in IVD biomechanics. Numerous landmark studies had contributed to several fields, including mechanical testing of normal and pathological IVDs, mechanical evaluation of new repair strategies and development of finite element model. Adams MA was the author most cited by IVD biomechanics papers. Spine, the European Spine Journal, and the Journal of Biomechanics were the three journals where the most original articles and their references have been published. The United States has contributed most to the literature (n = 1277 papers); however, the research output of China is increasing. In conclusion, the present study suggests that IVD repair is an emerging trend in IVD biomechanics.
Collapse
Affiliation(s)
- Dian Zhang
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Minshan Feng
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Wei Liu
- Department of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Jie Yu
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xu Wei
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Kexin Yang
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jiawen Zhan
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Wei Peng
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Mingyi Luo
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Tao Han
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Zhefeng Jin
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - He Yin
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Kai Sun
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xunlu Yin
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Correspondence: Xunlu Yin; Liguo Zhu, Department of Spine, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, People’s Republic of China, Email ;
| | - Liguo Zhu
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
30
|
Jordan JH, Easson MW, Cheng HN, Condon BD. Application of Lignin-Containing Cellulose Nanofibers and Cottonseed Protein Isolate for Improved Performance of Paper. Polymers (Basel) 2022; 14:2154. [PMID: 35683825 PMCID: PMC9183002 DOI: 10.3390/polym14112154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
There is current interest in replacing petroleum-based additives in consumer paper products with abundantly available, renewable and sustainable biopolymers such as lignin-containing cellulose nanofibers (LCNFs) and cottonseed protein. This research characterized the performance of cottonseed protein isolate with/without LCNFs to increase the dry strength of filter paper. The application of 10% protein solution with 2% LCNFs as an additive improved the elongation at break, tensile strength and modulus of treated paper products compared to the improved performance of cottonseed protein alone. Improvements in tensile modulus and tensile strength were greatest for samples containing larger amounts of lignin and a greater degree of polymerization than for those with less lignin from the same biomass sources.
Collapse
Affiliation(s)
| | - Michael W. Easson
- The Southern Regional Research Center, Agricultural Research Service, USDA, 1100 Allen Toussaint Blvd., New Orleans, LA 70124, USA; (J.H.J.); (H.N.C.); (B.D.C.)
| | | | | |
Collapse
|
31
|
Pure Chitosan Biomedical Textile Fibers from Mixtures of Low- and High-Molecular Weight Bidisperse Polymer Solutions: Processing and Understanding of Microstructure-Mechanical Properties' Relationship. Int J Mol Sci 2022; 23:ijms23094767. [PMID: 35563158 PMCID: PMC9105658 DOI: 10.3390/ijms23094767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Natural polymers, as extracted from biomass, may exhibit large macromolecular polydispersity. We investigated the impact of low molar mass chitosan (LMW, DPw~115) on the properties of chitosan fibers obtained by wet spinning of chitosan solutions with bimodal distributions of molar masses. The fiber crystallinity index (CrI) was assessed by synchrotron X-ray diffraction and the mechanical properties were obtained by uniaxial tensile tests. The LMW chitosan showed to slightly increase the crystallinity index in films which were initially processed from the bimodal molar mass chitosan solutions, as a result of increased molecular mobility and possible crystal nucleating effects. Nevertheless, the CrI remained almost constant or slightly decreased in stretched fibers at increasing content of LMW chitosan in the bidisperse chitosan collodion. The ultimate mechanical properties of fibers were altered by the addition of LMW chitosan as a result of a decrease of entanglement density and chain orientation in the solid state. An increase of crystallinity might not be expected from LMW chitosan with a still relatively high degree of polymerization (DPw ≥ 115). Instead, different nucleation agents-either smaller molecules or nanoparticles-should be used to improve the mechanical properties of chitosan fibers for textile applications.
Collapse
|
32
|
Hickman TT, Rathan-Kumar S, Peck SH. Development, Pathogenesis, and Regeneration of the Intervertebral Disc: Current and Future Insights Spanning Traditional to Omics Methods. Front Cell Dev Biol 2022; 10:841831. [PMID: 35359439 PMCID: PMC8963184 DOI: 10.3389/fcell.2022.841831] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
The intervertebral disc (IVD) is the fibrocartilaginous joint located between each vertebral body that confers flexibility and weight bearing capabilities to the spine. The IVD plays an important role in absorbing shock and stress applied to the spine, which helps to protect not only the vertebral bones, but also the brain and the rest of the central nervous system. Degeneration of the IVD is correlated with back pain, which can be debilitating and severely affects quality of life. Indeed, back pain results in substantial socioeconomic losses and healthcare costs globally each year, with about 85% of the world population experiencing back pain at some point in their lifetimes. Currently, therapeutic strategies for treating IVD degeneration are limited, and as such, there is great interest in advancing treatments for back pain. Ideally, treatments for back pain would restore native structure and thereby function to the degenerated IVD. However, the complex developmental origin and tissue composition of the IVD along with the avascular nature of the mature disc makes regeneration of the IVD a uniquely challenging task. Investigators across the field of IVD research have been working to elucidate the mechanisms behind the formation of this multifaceted structure, which may identify new therapeutic targets and inform development of novel regenerative strategies. This review summarizes current knowledge base on IVD development, degeneration, and regenerative strategies taken from traditional genetic approaches and omics studies and discusses the future landscape of investigations in IVD research and advancement of clinical therapies.
Collapse
Affiliation(s)
- Tara T. Hickman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sudiksha Rathan-Kumar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sun H. Peck
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Sun H. Peck,
| |
Collapse
|
33
|
Silva RD, Carvalho LT, Moraes RM, Medeiros SDF, Lacerda TM. Biomimetic Biomaterials Based on Polysaccharides: Recent Progress and Future Perspectives. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rodrigo Duarte Silva
- Nanotechnology National Laboratory for Agriculture (LNNA) Embrapa Instrumentation Rua XV de Novembro 1452 São Carlos SP 13560‐970 Brazil
| | - Layde Teixeira Carvalho
- Department of Chemical Engineering Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Rodolfo Minto Moraes
- Department of Material Engineering Engineering School of Lorena University of São Paulo, (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Simone de Fátima Medeiros
- Department of Chemical Engineering Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Talita Martins Lacerda
- Department of Biotechnology Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| |
Collapse
|
34
|
Banza M, Rutto H. Continuous fixed-bed column study and adsorption modeling removal of Ni 2+, Cu 2+, Zn 2+ and Cd 2+ ions from synthetic acid mine drainage by nanocomposite cellulose hydrogel. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:117-129. [PMID: 35137674 DOI: 10.1080/10934529.2022.2036552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal ions are widely recognized for their harmful effects on human health and the environment. Heavy metal ions removal using nanocomposite hydrogel is a promising method for industrial applications and process development owing to their utilization in both kinematic and dynamic adsorption process. There is a need to develop simple, low-cost water purification techniques that use biodegradable bio-based natural polymers like cellulose nanocrystal that have been modified with nanomaterials. These innovative functional cellulose nanocrystals-based nanomaterials have been shown to successfully remove a variety of contaminants from wastewater to acceptable levels. Due to their capacity to hold water in their porous structures, hydrogels are the most commonly used 3D polymer mesh materials for environmental remediation. The application of potential hydrogel for the absorption of Cu2+, Ni2+, Zn2+ and Cd2+ ions from an aqueous solution in a packed bed adsorption column was studied in this work. The adsorbent was studied using FTIR, SEM, XRD and TGA. The influence of breakthrough factors such as bed height (10, 17 and 25 cm) influent concentration (10, 20 and 50 mg/L) and the feed flow rate (10, 20 and 30 mL/min) was assessed. Bed Depth Service Time, Thomas and Yoon-Nelson models were used to fit the experimental data. With an increase in bed height, breakthrough and exhaustion time, the removal efficiency rose to 99.42 ± 0.12 for Cu2+, 99.23 ± 1.16 for Ni2+, 99.36 ± 0.89 for Cd2+ and 98.94 ± 0.48 for Zn2+, but declined with increased flow rate and influent concentration. Better performance was observed at a bed height of 25 cm, an influent metal ion concentration of 10 mg/L and a flow velocity of 10 mL/min. The BDST and Yoon-Nelson models were both successfully used to predict the breakthrough curves of heavy metal ions removal.
Collapse
Affiliation(s)
- Musamba Banza
- Clean Technology and Applied Materials Research Group, Department of Chemical and Metallurgical Engineering, Vaal University of Technology, South Africa
| | - Hilary Rutto
- Clean Technology and Applied Materials Research Group, Department of Chemical and Metallurgical Engineering, Vaal University of Technology, South Africa
| |
Collapse
|
35
|
Biomedyczne właściwości chitozanu – zastosowanie w inżynierii tkankowej Biomedical properties of chitosan: Application in tissue engineering. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2021-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
Inżynieria tkankowa to interdyscyplinarna dziedzina badań, która stosuje zasady inżynierii i nauk przyrodniczych do opracowywania substytutów biologicznych, przywracania, utrzymywania lub poprawy funkcji tkanek. Łączy medycy-nę kliniczną, inżynierię mechaniczną, materiałoznawstwo i biologię molekularną. Chitozan jest związkiem, który może być stosowany na szeroką skalę w biomedycynie, m.in. jako nośnik leków, nici chirurgiczne, materiały opatrunkowe przeznaczone do przyspieszonego gojenia ran oraz rusztowania komórkowe w inżynierii tkankowej. Chitozon spełnia najważniejsze kryteria dla biomateriałów, m.in. kompatybilność, odpowiednie właściwości mechaniczne, morfologia i porowatość, nietoksyczność i biodegradowalność. Rusztowania chitozanowe mogą sprzyjać adhezji, różnicowaniu i proliferacji na powierzchni komórek. Z chitozanu można tworzyć różne formy funkcjonalne w zależności od potrzeb i wymagań, w tym: hydrożele 3D, gąbki 3D, folie i membrany oraz nanowłókna. Ze względu na unikalne właściwości fizykochemiczne biopolimer ten może być również wykorzystany do oczyszczania białek terapeutycznych z endotoksyn bakteryjnych, co jest dziś istotnym problemem w oczyszczaniu produktu końcowego w zastosowaniach medycznych. Obecnie terapie oparte na białkach rekombinowanych znajdują szerokie zastosowanie w terapiach celowanych, inżynierii tkankowej oraz szeroko pojętej medycynie regeneracyjnej. Dlatego tak ważny jest współistniejący, dobrze zapro-jektowany system oczyszczania produktu białkowego, który nie zmieni swoich zasadniczych właściwości. Artykuł jest przeglądem aktualnych badań nad zastosowaniem materiałów bioaktywnych na bazie chitozanu w medycynie regene-racyjnej różnych tkanek i narządów (m.in. tkanki chrzęstnej i kostnej, tkanki skórnej czy tkanki nerwowej).
Collapse
|
36
|
Advancements in Fabrication and Application of Chitosan Composites in Implants and Dentistry: A Review. Biomolecules 2022; 12:biom12020155. [PMID: 35204654 PMCID: PMC8961661 DOI: 10.3390/biom12020155] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/05/2023] Open
Abstract
Chitosan is a biopolymer that is found in nature and is produced from chitin deacetylation. Chitosan has been studied thoroughly for multiple applications with an interdisciplinary approach. Antifungal antibacterial activities, mucoadhesion, non-toxicity, biodegradability, and biocompatibility are some of the unique characteristics of chitosan-based biomaterials. Moreover, chitosan is the only widely-used natural polysaccharide, and it is possible to chemically modify it for different applications and functions. In various fields, chitosan composite and compound manufacturing has acquired much interest in developing several promising products. Chitosan and its derivatives have gained attention universally in biomedical and pharmaceutical industries as a result of their desired characteristics. In the present mini-review, novel methods for preparing chitosan-containing materials for dental and implant engineering applications along with challenges and future perspectives are discussed.
Collapse
|
37
|
Djouonkep LDW, Tamo AK, Doench I, Selabi NBS, Ilunga EM, Lenwoue ARK, Gauthier M, Cheng Z, Osorio-Madrazo A. Synthesis of High Performance Thiophene-Aromatic Polyesters from Bio-Sourced Organic Acids and Polysaccharide-Derived Diol: Characterization and Degradability Studies. Molecules 2022; 27:325. [PMID: 35011561 PMCID: PMC8746364 DOI: 10.3390/molecules27010325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 12/18/2022] Open
Abstract
In this work, the feasibility of replacing petroleum-based poly(ethylene terephthalate) (PET) with fully bio-based copolyesters derived from dimethyl 2,5-thiophenedicarboxylate (DMTD), dimethyl 2,5-dimethoxyterephthalate (DMDMT), and polysaccharide-derived 1,6-hexanediol (HDO) was investigated. A systematic study of structure-property relationship revealed that the properties of these poly(thiophene-aromatic) copolyesters (PHS(20-90)) can be tailored by varying the ratio of diester monomers in the reaction, whereby an increase in DMTD content noticeably shortened the reaction time in the transesterification step due to its higher reactivity as compared with DMDMT. The copolyesters had weight-average molar masses (Mw) between 27,500 and 38,800 g/mol, and dispersity Đ of 2.0-2.5. The different polarity and stability of heterocyclic DMTD provided an efficient mean to tailor the crystallization ability of the copolyesters, which in turn affected the thermal and mechanical performance. The glass transition temperature (Tg) could be tuned from 70-100 °C, while the tensile strength was in a range of 23-80 MPa. The obtained results confirmed that the co-monomers were successfully inserted into the copolyester chains. As compared with commercial poly(ethylene terephthalate), the copolyesters displayed not only enhanced susceptibility to hydrolysis, but also appreciable biodegradability by lipases, with weight losses of up to 16% by weight after 28 weeks of incubation.
Collapse
Affiliation(s)
- Lesly Dasilva Wandji Djouonkep
- Institute of Fine Organic Chemistry and New Organic Materials, Wuhan University of Science and Technology, Wuhan 430081, China; (L.D.W.D.); (M.G.)
- Department of Petroleum Engineering, Applied Chemistry in Oil and Gas Fields, Yangtze University, Wuhan 430100, China
| | - Arnaud Kamdem Tamo
- Laboratory for Bioinspired Materials—BMBT, Institute of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.)
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Ingo Doench
- Laboratory for Bioinspired Materials—BMBT, Institute of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.)
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Naomie Beolle Songwe Selabi
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China; (N.B.S.S.); (E.M.I.)
| | - Emmanuel Monga Ilunga
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China; (N.B.S.S.); (E.M.I.)
| | - Arnaud Regis Kamgue Lenwoue
- National Engineering Laboratory of Petroleum Drilling Technology, Department of Petroleum Engineering, Leak Resistance & Sealing Technology Research Department, Yangtze University, Wuhan 430100, China;
| | - Mario Gauthier
- Institute of Fine Organic Chemistry and New Organic Materials, Wuhan University of Science and Technology, Wuhan 430081, China; (L.D.W.D.); (M.G.)
- Department of Chemistry, Institute for Polymer Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Zhengzai Cheng
- Institute of Fine Organic Chemistry and New Organic Materials, Wuhan University of Science and Technology, Wuhan 430081, China; (L.D.W.D.); (M.G.)
- Coal Conversion and New Carbon Materials Hubei Key Laboratory, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Anayancy Osorio-Madrazo
- Laboratory for Bioinspired Materials—BMBT, Institute of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.)
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
38
|
Cernencu AI, Dinu AI, Stancu IC, Lungu A, Iovu H. Nanoengineered biomimetic hydrogels: A major advancement to fabricate 3D-printed constructs for regenerative medicine. Biotechnol Bioeng 2021; 119:762-783. [PMID: 34961918 DOI: 10.1002/bit.28020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Nanostructured compounds already validated as performant reinforcements for biomedical applications together with different fabrication strategies have been often used to channel the biophysical and biochemical features of hydrogel networks. Ergo, a wide array of nanostructured compounds has been employed as additive materials integrated with hydrophilic networks based on naturally-derived polymers to produce promising scaffolding materials for specific fields of regenerative medicine. To date, nanoengineered hydrogels are extensively explored in (bio)printing formulations, representing the most advanced designs of hydrogel (bio)inks able to fabricate structures with improved mechanical properties and high print fidelity along with a cell-interactive environment. The development of printing inks comprising organic-inorganic hybrid nanocomposites is in full ascent as the impact of a small amount of nanoscale additive does not translate only in improved physicochemical and biomechanical properties of bioink. The biopolymeric nanocomposites may even exhibit additional particular properties engendered by nano-scale reinforcement such as electrical conductivity, magnetic responsiveness, antibacterial or antioxidation properties. The present review focus on hydrogels nanoengineered for 3D printing of biomimetic constructs, with particular emphasis on the impact of the spatial distribution of reinforcing agents (0D, 1D, 2D). Here, a systematic analysis of the naturally-derived nanostructured inks is presented highlighting the relationship between relevant length scales and size effects that influence the final properties of the hydrogels designed for regenerative medicine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alexandra I Cernencu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Andreea I Dinu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Izabela C Stancu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Adriana Lungu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania.,Academy of Romanian Scientists, 54 Splaiul Independentei, 050094, Bucharest, Romania
| |
Collapse
|
39
|
Aranaz I, Acosta N. Chitin- and Chitosan-Based Composite Materials. Biomimetics (Basel) 2021; 7:biomimetics7010001. [PMID: 35076459 PMCID: PMC8788413 DOI: 10.3390/biomimetics7010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Inmaculada Aranaz
- Instituto Pluridisciplinar de la UCM, Paseo Juan XXIII, n1, 28040 Madrid, Spain
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain
- Correspondence: (I.A.); (N.A.); Tel.: +34-913-943-284 (I.A.)
| | - Niuris Acosta
- Instituto Pluridisciplinar de la UCM, Paseo Juan XXIII, n1, 28040 Madrid, Spain
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain
- Correspondence: (I.A.); (N.A.); Tel.: +34-913-943-284 (I.A.)
| |
Collapse
|
40
|
Bhatnagar P, Law JX, Ng SF. Chitosan Reinforced with Kenaf Nanocrystalline Cellulose as an Effective Carrier for the Delivery of Platelet Lysate in the Acceleration of Wound Healing. Polymers (Basel) 2021; 13:4392. [PMID: 34960943 PMCID: PMC8707177 DOI: 10.3390/polym13244392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
The clinical use of platelet lysate (PL) in the treatment of wounds is limited by its rapid degradation by proteases at the tissue site. This research aims to develop a chitosan (CS) and kenaf nanocrystalline cellulose (NCC) hydrogel composite, which intend to stabilize PL and control its release onto the wound site for prolonged action. NCC was synthesized from raw kenaf bast fibers and incorporated into the CS hydrogel. The physicochemical properties, in vitro cytocompatibility, cell proliferation, wound scratch assay, PL release, and CS stabilizing effect of the hydrogel composites were analyzed. The study of swelling ratio (>1000%) and moisture loss (60-90%) showed the excellent water retention capacity of the CS-NCC-PL hydrogels as compared with the commercial product. In vitro release PL study (flux = 0.165 mg/cm2/h) indicated that NCC act as a nanofiller and provided the sustained release of PL compared with the CS hydrogel alone. The CS also showed the protective effect of growth factor (GF) present in PL, thereby promoting fast wound healing via the formulation. The CS-NCC hydrogels also augmented fibroblast proliferation in vitro and enhanced wound closures over 72 h. This study provides a new insight on CS with renewable source kenaf NCC as a nanofiller as a potential autologous PL wound therapy.
Collapse
Affiliation(s)
- Payal Bhatnagar
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Jia Xian Law
- Centre for Tissue Engineering & Regenerative Medicine, 12th Floor, Clinical Block, UKM Medical Centre, Jalan Yaa’cob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Shiow-Fern Ng
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
41
|
Zhao H, Zhang Y, Liu Y, Zheng P, Gao T, Cao Y, Liu X, Yin J, Pei R. In Situ Forming Cellulose Nanofibril-Reinforced Hyaluronic Acid Hydrogel for Cartilage Regeneration. Biomacromolecules 2021; 22:5097-5107. [PMID: 34723499 DOI: 10.1021/acs.biomac.1c01063] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hyaluronic acid (HA) based hydrogels are one of most functional natural biomaterials in the field of cartilage tissue engineering (CTE). Even with the promising advantages of HA hydrogels, the complicated mechanical properties of the native cartilage have not been realized, and fabricating HA hydrogels with excellent mechanical properties to make them practical in CTE still remains a current challenge. Here, a strategy that integrates hydrogels and nanomaterials is shown to form a HA hydrogel with sufficient mechanical loading for cartilage tissue production and recombination. Cellulose nanofibrils (CNFs) are promising nanomaterial candidates as they possess high mechanical strength and excellent biocompatibility. In this study, we developed methacrylate-functionalized CNFs that are able to photo-crosslink with methacrylated HA to fabricate HA/CNF nanocomposite hydrogels. The present composite hydrogels with a compressive modulus of 0.46 ± 0.05 MPa showed adequate compressive strength (0.198 ± 0.009 MPa) and restorability, which can be expected to employ as a stress-bearing tissue such as articular cartilage. Besides, this nanocomposite hydrogel could provide a good microenvironment for bone marrow mesenchymal stem cell proliferation, as well as chondrogenic differentiation, and exhibit prominent repair effect in the full-thickness cartilage defect model of SD rats. These results suggest that the HA/CNF nanocomposite hydrogel creates a new possibility for fabricating a scaffold in CTE.
Collapse
Affiliation(s)
- Hongbo Zhao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou 215000, China.,Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou 215000, China
| | - Yuanshan Liu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou 215000, China
| | - Penghui Zheng
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou 215000, China
| | - Tong Gao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou 215000, China
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou 215000, China
| | - Xingzhu Liu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou 215000, China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou 215000, China
| |
Collapse
|
42
|
Smirnov MA, Fedotova VS, Sokolova MP, Nikolaeva AL, Elokhovsky VY, Karttunen M. Polymerizable Choline- and Imidazolium-Based Ionic Liquids Reinforced with Bacterial Cellulose for 3D-Printing. Polymers (Basel) 2021; 13:3044. [PMID: 34577946 PMCID: PMC8471885 DOI: 10.3390/polym13183044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/23/2022] Open
Abstract
In this work, a novel approach is demonstrated for 3D-printing of bacterial cellulose (BC) reinforced UV-curable ion gels using two-component solvents based on 1-butyl-3-methylimidazolium chloride or choline chloride combined with acrylic acid. Preservation of cellulose's crystalline and nanofibrous structure is demonstrated using wide-angle X-ray diffraction (WAXD) and atomic force microscopy (AFM). Rheological measurements reveal that cholinium-based systems, in comparison with imidazolium-based ones, are characterised with lower viscosity at low shear rates and improved stability against phase separation at high shear rates. Grafting of poly(acrylic acid) onto the surfaces of cellulose nanofibers during UV-induced polymerization of acrylic acid results in higher elongation at break for choline chloride-based compositions: 175% in comparison with 94% for imidazolium-based systems as well as enhanced mechanical properties in compression mode. As a result, cholinium-based BC ion gels containing acrylic acid can be considered as more suitable for 3D-printing of objects with improved mechanical properties due to increased dispersion stability and filler/matrix interaction.
Collapse
Affiliation(s)
- Michael A. Smirnov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi pr. 31, 199004 St. Petersburg, Russia; (V.S.F.); (M.P.S.); (A.L.N.); (V.Y.E.)
- Institute of Chemistry, Saint Petersburg State University, Universitetsky pr. 26, Peterhof, 198504 St. Petersburg, Russia
| | - Veronika S. Fedotova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi pr. 31, 199004 St. Petersburg, Russia; (V.S.F.); (M.P.S.); (A.L.N.); (V.Y.E.)
- Institute of Chemistry, Saint Petersburg State University, Universitetsky pr. 26, Peterhof, 198504 St. Petersburg, Russia
| | - Maria P. Sokolova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi pr. 31, 199004 St. Petersburg, Russia; (V.S.F.); (M.P.S.); (A.L.N.); (V.Y.E.)
| | - Alexandra L. Nikolaeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi pr. 31, 199004 St. Petersburg, Russia; (V.S.F.); (M.P.S.); (A.L.N.); (V.Y.E.)
| | - Vladimir Yu. Elokhovsky
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi pr. 31, 199004 St. Petersburg, Russia; (V.S.F.); (M.P.S.); (A.L.N.); (V.Y.E.)
| | - Mikko Karttunen
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi pr. 31, 199004 St. Petersburg, Russia; (V.S.F.); (M.P.S.); (A.L.N.); (V.Y.E.)
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
43
|
Biomaterial-Assisted Regenerative Medicine. Int J Mol Sci 2021; 22:ijms22168657. [PMID: 34445363 PMCID: PMC8395440 DOI: 10.3390/ijms22168657] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
This review aims to show case recent regenerative medicine based on biomaterial technologies. Regenerative medicine has arousing substantial interest throughout the world, with “The enhancement of cell activity” one of the essential concepts for the development of regenerative medicine. For example, drug research on drug screening is an important field of regenerative medicine, with the purpose of efficient evaluation of drug effects. It is crucial to enhance cell activity in the body for drug research because the difference in cell condition between in vitro and in vivo leads to a gap in drug evaluation. Biomaterial technology is essential for the further development of regenerative medicine because biomaterials effectively support cell culture or cell transplantation with high cell viability or activity. For example, biomaterial-based cell culture and drug screening could obtain information similar to preclinical or clinical studies. In the case of in vivo studies, biomaterials can assist cell activity, such as natural healing potential, leading to efficient tissue repair of damaged tissue. Therefore, regenerative medicine combined with biomaterials has been noted. For the research of biomaterial-based regenerative medicine, the research objective of regenerative medicine should link to the properties of the biomaterial used in the study. This review introduces regenerative medicine with biomaterial.
Collapse
|
44
|
Peng Y, Qing X, Shu H, Tian S, Yang W, Chen S, Lin H, Lv X, Zhao L, Chen X, Pu F, Huang D, Cao X, Shao Z, Yp, Zs, Xc, Yp, Yp, Xq, Hs, St, Wy, Yp, Xq, Hs, St, Hl, Xl, Lz, Xc, Fp, Sc, Yp, Xq, Hs, St, Yp, Xq, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Zs, Xc. Proper animal experimental designs for preclinical research of biomaterials for intervertebral disc regeneration. BIOMATERIALS TRANSLATIONAL 2021; 2:91-142. [PMID: 35836965 PMCID: PMC9255780 DOI: 10.12336/biomatertransl.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/09/2021] [Indexed: 01/17/2023]
Abstract
Low back pain is a vital musculoskeletal disease that impairs life quality, leads to disability and imposes heavy economic burden on the society, while it is greatly attributed to intervertebral disc degeneration (IDD). However, the existing treatments, such as medicines, chiropractic adjustments and surgery, cannot achieve ideal disc regeneration. Therefore, advanced bioactive therapies are implemented, including stem cells delivery, bioreagents administration, and implantation of biomaterials etc. Among these researches, few reported unsatisfying regenerative outcomes. However, these advanced therapies have barely achieved successful clinical translation. The main reason for the inconsistency between satisfying preclinical results and poor clinical translation may largely rely on the animal models that cannot actually simulate the human disc degeneration. The inappropriate animal model also leads to difficulties in comparing the efficacies among biomaterials in different reaches. Therefore, animal models that better simulate the clinical charateristics of human IDD should be acknowledged. In addition, in vivo regenerative outcomes should be carefully evaluated to obtain robust results. Nevertheless, many researches neglect certain critical characteristics, such as adhesive properties for biomaterials blocking annulus fibrosus defects and hyperalgesia that is closely related to the clinical manifestations, e.g., low back pain. Herein, in this review, we summarized the animal models established for IDD, and highlighted the proper models and parameters that may result in acknowledged IDD models. Then, we discussed the existing biomaterials for disc regeneration and the characteristics that should be considered for regenerating different parts of discs. Finally, well-established assays and parameters for in vivo disc regeneration are explored.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xi Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Donghua Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Controlled Polyelectrolyte Association of Chitosan and Carboxylated Nano-Fibrillated Cellulose by Desalting. Polymers (Basel) 2021; 13:polym13122023. [PMID: 34205669 PMCID: PMC8234568 DOI: 10.3390/polym13122023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
We prepared chitosan (CHI) hydrogels reinforced with highly charged cellulose nanofibrils (CNF) by the desalting method. To this end, the screening of electrostatic interactions between CHI polycation and CNF polyanion was performed by adding NaCl at 0.4 mol/L to the chitosan acetate solution and to the cellulose nanofibrils suspension. The polyelectrolyte complexation between CHI polycation and CNF polyanion was then triggered by desalting the CHI/CNF aqueous mixture by multistep dialysis, in large excess of chitosan. Further gelation of non-complexed CHI was performed by alkaline neutralization of the polymer, yielding high reinforcement effects as probed by the viscoelastic properties of the final hydrogel. The results showed that polyelectrolyte association by desalting can be achieved with a polyanionic nanoparticle partner. Beyond obtaining hydrogel with improved mechanical performance, these composite hydrogels may serve as precursor for dried solid forms with high mechanical properties.
Collapse
|
46
|
Schmitt C, Radetzki F, Stirnweiss A, Mendel T, Ludtka C, Friedmann A, Baerthel A, Brehm W, Milosevic J, Meisel HJ, Goehre F, Schwan S. Long-term pre-clinical evaluation of an injectable chitosan nanocellulose hydrogel with encapsulated adipose-derived stem cells in an ovine model for IVD regeneration. J Tissue Eng Regen Med 2021; 15:660-673. [PMID: 33989456 DOI: 10.1002/term.3216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 01/04/2023]
Abstract
The potential therapeutic benefit of adipose-derived stem cells (ASCs) encapsulated in an injectable hydrogel for stimulating intervertebral disc (IVD) regeneration has been assessed by a number of translational and preclinical studies. However, previous work has been primarily limited to small animal models and short-term outcomes of only a few weeks. Long-term studies in representative large animal models are crucial for translation into clinical success, especially for permanent stabilization of major defects such as disc herniation. An injectable chitosan carboxymethyl cellulose hydrogel scaffold loaded with ASCs was evaluated regarding its intraoperative handling, crosslinking kinetics, cell viability, fully-crosslinked viscoelasticity, and long-term therapeutic effects in an ovine model. Three IVDs per animal were damaged in 10 sheep. Subcutaneous adipose tissue was the source for autologous ASCs. Six weeks after IVD damage, two of the damaged IVDs were treated via ASC-loaded hydrogel injection. After 12 months following the implantation, IVD disc height and histological and cellular changes were assessed. This system was reliable and easy to handle intraoperatively. Over 12 months, IVD height was stabilized and degeneration progression significantly mitigated compared to untreated, damaged IVDs. Here we show for the first time in a large animal model that an injectable chitosan carboxymethyl cellulose hydrogel system with encapsulated ASCs is able to affect long-term stabilization of an injured IVD and significantly decrease degeneration processes as compared to controls.
Collapse
Affiliation(s)
- Christine Schmitt
- Halle Wittenberg, Department for Orthopaedics and Traumatology, Martin Luther University, Halle (Saale), Germany.,Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Florian Radetzki
- Halle Wittenberg, Department for Orthopaedics and Traumatology, Martin Luther University, Halle (Saale), Germany.,Department of Orthopedic and Trauma Surgery, Dessau Municipal Hospital, Dessau-Roßlau, Germany
| | - Annika Stirnweiss
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Thomas Mendel
- Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Jena, Jena, Germany.,Department of Trauma and Reconstructive Surgery, BG Klinikum Bergmannstrost Halle gGmbH, Halle (Saale), Germany
| | - Christopher Ludtka
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Andrea Friedmann
- Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany.,Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Andre Baerthel
- Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany.,Department of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Walther Brehm
- Department of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | | | - Hans Jörg Meisel
- Spinplant GmbH, Halle, Germany.,Department of Neurosurgery, BG Klinikum Bergmannstrost Halle gGmbH, Halle (Saale), Germany
| | - Felix Goehre
- Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany.,Department of Neurosurgery, BG Klinikum Bergmannstrost Halle gGmbH, Halle (Saale), Germany.,Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Stefan Schwan
- Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany.,Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| |
Collapse
|
47
|
Kamdem Tamo A, Doench I, Walter L, Montembault A, Sudre G, David L, Morales-Helguera A, Selig M, Rolauffs B, Bernstein A, Hoenders D, Walther A, Osorio-Madrazo A. Development of Bioinspired Functional Chitosan/Cellulose Nanofiber 3D Hydrogel Constructs by 3D Printing for Application in the Engineering of Mechanically Demanding Tissues. Polymers (Basel) 2021; 13:1663. [PMID: 34065272 PMCID: PMC8160918 DOI: 10.3390/polym13101663] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Soft tissues are commonly fiber-reinforced hydrogel composite structures, distinguishable from hard tissues by their low mineral and high water content. In this work, we proposed the development of 3D printed hydrogel constructs of the biopolymers chitosan (CHI) and cellulose nanofibers (CNFs), both without any chemical modification, which processing did not incorporate any chemical crosslinking. The unique mechanical properties of native cellulose nanofibers offer new strategies for the design of environmentally friendly high mechanical performance composites. In the here proposed 3D printed bioinspired CNF-filled CHI hydrogel biomaterials, the chitosan serves as a biocompatible matrix promoting cell growth with balanced hydrophilic properties, while the CNFs provide mechanical reinforcement to the CHI-based hydrogel. By means of extrusion-based printing (EBB), the design and development of 3D functional hydrogel scaffolds was achieved by using low concentrations of chitosan (2.0-3.0% (w/v)) and cellulose nanofibers (0.2-0.4% (w/v)). CHI/CNF printed hydrogels with good mechanical performance (Young's modulus 3.0 MPa, stress at break 1.5 MPa, and strain at break 75%), anisotropic microstructure and suitable biological response, were achieved. The CHI/CNF composition and processing parameters were optimized in terms of 3D printability, resolution, and quality of the constructs (microstructure and mechanical properties), resulting in good cell viability. This work allows expanding the library of the so far used biopolymer compositions for 3D printing of mechanically performant hydrogel constructs, purely based in the natural polymers chitosan and cellulose, offering new perspectives in the engineering of mechanically demanding hydrogel tissues like intervertebral disc (IVD), cartilage, meniscus, among others.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Laboratory for Sensors, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.); (L.W.)
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Ingo Doench
- Laboratory for Sensors, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.); (L.W.)
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Lukas Walter
- Laboratory for Sensors, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.); (L.W.)
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Alexandra Montembault
- Ingénierie des Matériaux Polymères IMP UMR 5223—CNRS, Université Claude Bernard Lyon 1, Université de Lyon, CEDEX, 69622 Villeurbanne, France; (A.M.); (G.S.); (L.D.)
| | - Guillaume Sudre
- Ingénierie des Matériaux Polymères IMP UMR 5223—CNRS, Université Claude Bernard Lyon 1, Université de Lyon, CEDEX, 69622 Villeurbanne, France; (A.M.); (G.S.); (L.D.)
| | - Laurent David
- Ingénierie des Matériaux Polymères IMP UMR 5223—CNRS, Université Claude Bernard Lyon 1, Université de Lyon, CEDEX, 69622 Villeurbanne, France; (A.M.); (G.S.); (L.D.)
| | - Aliuska Morales-Helguera
- Chemical Bioactive Center CBQ, Molecular Simulation and Drug Design Group, Central University of Las Villas, Santa Clara 50400, Cuba;
| | - Mischa Selig
- Center for Tissue Replacement, Regeneration & Neogenesis—G.E.R.N., Department of Orthopedics and Trauma Surgery, University of Freiburg, 79108 Freiburg, Germany; (M.S.); (B.R.); (A.B.)
| | - Bernd Rolauffs
- Center for Tissue Replacement, Regeneration & Neogenesis—G.E.R.N., Department of Orthopedics and Trauma Surgery, University of Freiburg, 79108 Freiburg, Germany; (M.S.); (B.R.); (A.B.)
| | - Anke Bernstein
- Center for Tissue Replacement, Regeneration & Neogenesis—G.E.R.N., Department of Orthopedics and Trauma Surgery, University of Freiburg, 79108 Freiburg, Germany; (M.S.); (B.R.); (A.B.)
| | - Daniel Hoenders
- Department of Chemistry, University Mainz, 55128 Mainz, Germany; (D.H.); (A.W.)
| | - Andreas Walther
- Department of Chemistry, University Mainz, 55128 Mainz, Germany; (D.H.); (A.W.)
| | - Anayancy Osorio-Madrazo
- Laboratory for Sensors, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.); (L.W.)
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
48
|
Marquez-Bravo S, Doench I, Molina P, Bentley FE, Tamo AK, Passieux R, Lossada F, David L, Osorio-Madrazo A. Functional Bionanocomposite Fibers of Chitosan Filled with Cellulose Nanofibers Obtained by Gel Spinning. Polymers (Basel) 2021; 13:polym13101563. [PMID: 34068136 PMCID: PMC8152965 DOI: 10.3390/polym13101563] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Extremely high mechanical performance spun bionanocomposite fibers of chitosan (CHI), and cellulose nanofibers (CNFs) were successfully achieved by gel spinning of CHI aqueous viscous formulations filled with CNFs. The microstructural characterization of the fibers by X-ray diffraction revealed the crystallization of the CHI polymer chains into anhydrous chitosan allomorph. The spinning process combining acidic-basic-neutralization-stretching-drying steps allowed obtaining CHI/CNF composite fibers of high crystallinity, with enhanced effect at incorporating the CNFs. Chitosan crystallization seems to be promoted by the presence of cellulose nanofibers, serving as nucleation sites for the growing of CHI crystals. Moreover, the preferential orientation of both CNFs and CHI crystals along the spun fiber direction was revealed in the two-dimensional X-ray diffraction patterns. By increasing the CNF amount up to the optimum concentration of 0.4 wt % in the viscous CHI/CNF collodion, Young's modulus of the spun fibers significantly increased up to 8 GPa. Similarly, the stress at break and the yield stress drastically increased from 115 to 163 MPa, and from 67 to 119 MPa, respectively, by adding only 0.4 wt % of CNFs into a collodion solution containing 4 wt % of chitosan. The toughness of the CHI-based fibers thereby increased from 5 to 9 MJ.m-3. For higher CNFs contents like 0.5 wt %, the high mechanical performance of the CHI/CNF composite fibers was still observed, but with a slight worsening of the mechanical parameters, which may be related to a minor disruption of the CHI matrix hydrogel network constituting the collodion and gel fiber, as precursor state for the dry fiber formation. Finally, the rheological behavior observed for the different CHI/CNF viscous collodions and the obtained structural, thermal and mechanical properties results revealed an optimum matrix/filler compatibility and interface when adding 0.4 wt % of nanofibrillated cellulose (CNF) into 4 wt % CHI formulations, yielding functional bionanocomposite fibers of outstanding mechanical properties.
Collapse
Affiliation(s)
- Sofia Marquez-Bravo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Ingo Doench
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Pamela Molina
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Flor Estefany Bentley
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Renaud Passieux
- Laboratoire Ingénierie des Matériaux Polymères IMP, CNRS UMR 5223, University of Lyon, University Claude Bernard Lyon 1, CEDEX, 69622 Villeurbanne, France; (R.P.); (L.D.)
| | | | - Laurent David
- Laboratoire Ingénierie des Matériaux Polymères IMP, CNRS UMR 5223, University of Lyon, University Claude Bernard Lyon 1, CEDEX, 69622 Villeurbanne, France; (R.P.); (L.D.)
| | - Anayancy Osorio-Madrazo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-203-67363
| |
Collapse
|
49
|
Zheng K, Du D. Recent advances of hydrogel-based biomaterials for intervertebral disc tissue treatment: A literature review. J Tissue Eng Regen Med 2021; 15:299-321. [PMID: 33660950 DOI: 10.1002/term.3172] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Low back pain is an increasingly prevalent symptom mainly associated with intervertebral disc (IVD) degeneration. It is highly correlated with aging, as the nucleus pulposus (NP) dehydrates and annulus fibrosus fissure formatting, which finally results in the IVD herniation and related clinical symptoms. Hydrogels have been drawing increasing attention as the ideal candidates for IVD degeneration because of their unique properties such as biocompatibility, highly tunable mechanical properties, and especially the water absorption and retention ability resembling the normal NP tissue. Numerous innovative hydrogel polymers have been generated in the most recent years. This review article will first briefly describe the anatomy and pathophysiology of IVDs and current therapies with their limitations. Following that, the article introduces the hydrogel materials in the classification of their origins. Next, it reviews the recent hydrogel polymers explored for IVD regeneration and analyses what efforts have been made to overcome the existing limitations. Finally, the challenges and prospects of hydrogel-based treatments for IVD tissue are also discussed. We believe that these novel hydrogel-based strategies may shed light on new possibilities in IVD degeneration disease.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
50
|
Wang C, Wang L, Zhang Q, Cheng L, Yue H, Xia X, Zhou H. Preparation and characterization of apoacynum venetum cellulose nanofibers reinforced chitosan-based composite hydrogels. Colloids Surf B Biointerfaces 2021; 199:111441. [DOI: 10.1016/j.colsurfb.2020.111441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022]
|