1
|
Jeon E, Seo MS, Lkhagva-Yondon E, Lim YR, Kim SW, Kang YJ, Lee JS, Lee BD, Wi R, Won SY, Chung YC, Park ES, Kim E, Jin BK, Jeon MS. Neuroprotective effect of L-DOPA-induced interleukin-13 on striatonigral degeneration in cerebral ischemia. Cell Death Dis 2024; 15:854. [PMID: 39578419 PMCID: PMC11584695 DOI: 10.1038/s41419-024-07252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Levodopa (L-DOPA) treatment is a clinically effective strategy for improving motor function in patients with ischemic stroke. However, the mechanisms by which modulating the dopamine system relieves the pathology of the ischemic brain remain unclear. Emerging evidence from an experimental mouse model of ischemic stroke, established by middle cerebral artery occlusion (MCAO), suggested that L-DOPA has the potential to modulate the inflammatory and immune response that occurs during a stroke. Here, we aimed to demonstrate the therapeutic effect of L-DOPA in regulating the systemic immune response and improving functional deficits in mice with ischemia. Transient MCAO led to progressive degeneration of nigrostriatal dopamine neurons and significant rotational behavior in mice. Exogenous L-DOPA treatment attenuated the striatonigral degeneration and reversed motor behavioral impairment. Notably, treatment with L-DOPA significantly increased IL-13 but reduced IFN-γ in infarct lesions. To investigate the role of IL-13 in motor behavior, we stereotaxically injected anti-IL-13 antibodies into the infarct area of the mouse brain one week after MCAO, followed by L-DOPA treatment. The intervention reduced dopamine, IL-13, and IL-10 levels and exacerbated motor function. IL-13 is potentially expressed on CD4 T cells, while IL-10 is mainly expressed on microglia rather than astrocytes. Finally, IL-13 activates the phagocytosis of microglia, which may contribute to neuroprotection by eliminating degenerating neurons. Our study provides evidence that the L-DOPA-activated dopamine system modulates peripheral immune cells, resulting in the expression of anti-inflammatory and neuroprotective cytokines in mice with ischemic stroke.
Collapse
Affiliation(s)
- Eunhae Jeon
- Translational Research Center, Inha University Hospital, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Myeong-Seong Seo
- Translational Research Center, Inha University Hospital, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Enkhmaa Lkhagva-Yondon
- Translational Research Center, Inha University Hospital, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Yu-Ree Lim
- Translational Research Center, Inha University Hospital, Incheon, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Seung-Woo Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Yu Jeong Kang
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jun Seok Lee
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Byoung Dae Lee
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Rayul Wi
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - So-Yoon Won
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Young Cheul Chung
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Predictive Toxicology, Korea Institute of Toxicology 1, Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea
| | - Eun S Park
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Byung Kwan Jin
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.
| | - Myung-Shin Jeon
- Translational Research Center, Inha University Hospital, Incheon, Republic of Korea.
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
2
|
Picone P, Palumbo FS, Cancilla F, Girgenti A, Cancemi P, Muccilli V, Francesco AD, Cimino M, Cipollina C, Soligo M, Manni L, Sferrazza G, Scalisi L, Nuzzo D. Brain biodistribution of myelin nanovesicles with targeting potential for multiple sclerosis. Acta Biomater 2024; 187:352-365. [PMID: 39159713 DOI: 10.1016/j.actbio.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease with multiple players. In particular, peripheral (myelin-reactive CD4+ T lymphocytes) and central immune cells (microglia) are involved in the neuroinflammatory process and are found in MS brain lesions. New nanotechnological approaches that can cross the blood-brain barrier and specifically target the key players in the disease using biocompatible nanomaterials with low immunoreactivity represent an important challenge. To this end, nanoparticles and nanovesicles have been studied to induce immune tolerance to a wide range of myelin-derived antigens as potential approaches against MS. To this aim, we extracted myelin from bovine brain and produced myelin-based nanovesicles (MyVes) by nanoprecipitation. MyVes have a diameter of about 100 nm, negative zeta potential and contain the typical proteins of the myelin sheath. The results showed that MyVes are not cytotoxic, are hemocompatibile and do not induce an inflammatory response. In vitro experiments showed that MyVes are specifically taken up by microglial cells and are able to induce the expression of the anti-inflammatory cytokine IL-4. In addition, we have used biodistribution experiments to show that MyVes are able to reach the brain after intranasal administration. Finally, MyVes induced the production of the anti-inflammatory cytokines IL-10 and IL-4 in peripheral blood mononuclear cells isolated from MS patients. Taken together, these data provide proof of concept that MyVes may represent a safe nanosystem capable of promoting anti-inflammatory effects by modulating both central and peripheral immune cells to treat neuroinflammation in MS. STATEMENT OF SIGNIFICANCE: Recently, nanoparticles and nanovesicles have been investigated as potential approaches for the treatment of neurodegenerative diseases. We propose the use of myelin nanovesicles (MyVes) as a potential application to counteract neuroinflammation in multiple sclerosis (MS). Approximately 2.8 million people worldwide are estimated to live with MS. It is an autoimmune disease directed toward various myelin-derived antigens. Both peripheral immune cells (lymphocytes) and central immune cells (microglia) actively contribute to MS brain lesions. MyVes, due to their myelin nature, specific characteristics (size, zeta potential, and presence of myelin proteins), biocompatibility, and ability to cross the blood-brain barrier, could represent the first nanosystem capable of promoting anti-inflammatory actions by modulating both central and peripheral immune cells to treat neuroinflammation in MS.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, via U. La Malfa 153, Palermo 90146, Italy.
| | - Fabio Salvatore Palumbo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Francesco Cancilla
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Antonella Girgenti
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, via U. La Malfa 153, Palermo 90146, Italy
| | - Patrizia Cancemi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6, Catania I-95125, Italy
| | - Antonella Di Francesco
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6, Catania I-95125, Italy
| | | | - Chiara Cipollina
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, via U. La Malfa 153, Palermo 90146, Italy; Fondazione RiMED, Palermo, Italy
| | - Marzia Soligo
- Istituto di Farmacologia Traslazionale, CNR, Via Fosso del Cavaliere 100, Roma 00133, Italy
| | - Luigi Manni
- Istituto di Farmacologia Traslazionale, CNR, Via Fosso del Cavaliere 100, Roma 00133, Italy
| | - Gianluca Sferrazza
- Istituto di Farmacologia Traslazionale, CNR, Via Fosso del Cavaliere 100, Roma 00133, Italy; Dipartimento di Scienze Biomediche, CNR, Roma 00185, Italy
| | - Luca Scalisi
- Centro Medico di Fisioterapia Villa Sarina, Alcamo, Palermo 91011, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, via U. La Malfa 153, Palermo 90146, Italy.
| |
Collapse
|
3
|
Tran-Chi VL, Maes M, Nantachai G, Hemrungrojn S, Solmi M, Stoyanov D, Stoyanova K, Tunvirachaisakul C. Cytokine dysregulation in amnestic mild cognitive impairment. Sci Rep 2024; 14:22486. [PMID: 39341896 PMCID: PMC11439069 DOI: 10.1038/s41598-024-73099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
The pathophysiology of amnestic Mild Cognitive Impairment (aMCI) is largely unknown, although some papers found signs of immune activation. To assess the cytokine network in aMCI after excluding patients with major depression (MDD) and to examine the immune profiles of quantitative aMCI (qMCI) and distress symptoms of old age (DSOA) scores. A case-control study was conducted on 61 Thai aMCI participants and 60 healthy old adults (both without MDD). The Bio-Plex Pro human cytokine 27-plex test kit was used to assay cytokines/chemokines/growth factors in fasting plasma samples. aMCI is characterized by a significant immunosuppression, and reductions in T helper 1 (Th)1 and T cell growth profiles, the immune-inflammatory responses system, interleukin (IL)1β, IL6, IL7, IL12p70, IL13, GM-CSF, and MCP-1. These 7 cytokines/chemokines exhibit neuroprotective effects at physiologic concentrations. In multivariate analyses, three neurotoxic chemokines, CCL11, CCL5, and CXCL8, emerged as significant predictors of aMCI. Logistic regression showed that aMCI was best predicted by combining IL7, IL1β, MCP-1, years of education (all inversely associated) and CCL5 (positively associated). We found that 38.2% of the variance in the qMCI score was explained by IL7, IL1β, MCP-1, IL13, years of education (inversely associated) and CCL5 (positively associated). The DSOA was not associated with any immune data. An imbalance between lowered levels of neuroprotective cytokines and chemokines, and relative increases in neurotoxic chemokines are key factors in aMCI. Future MCI research should always control for the confounding effects of affective symptoms.
Collapse
Affiliation(s)
- Vinh-Long Tran-Chi
- Ph.D. Programme in Clinical Sciences, School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China.
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- Kyung Hee University, Dongdaemun-gu, Seoul, South Korea.
- Center of Excellence in Cognitive Impairment and Dementia, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Cognitive Fitness and Biopsychiatry Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Strategic Research and Innovation Program for the Development of MU-PLOVDIV-(SRIPD-MUP), European Union-NextGenerationEU, Plovdiv, Bulgaria.
| | - Gallayaporn Nantachai
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Medical Services, Somdet Phra Sungharaj Nyanasumvara Geriatric Hospital, Ministry of Public Health, Chon Buri, Chon Buri Province, Thailand
| | - Solaphat Hemrungrojn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Fitness and Biopsychiatry Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
- Regional Centre for the Treatment of Eating Disorders and On Track, The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute (OHRI), Clinical Epidemiology Program, University of Ottawa, Ottawa, Ontario, Canada
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Drozdstoy Stoyanov
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Strategic Research and Innovation Program for the Development of MU-PLOVDIV-(SRIPD-MUP), European Union-NextGenerationEU, Plovdiv, Bulgaria
| | - Kristina Stoyanova
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Strategic Research and Innovation Program for the Development of MU-PLOVDIV-(SRIPD-MUP), European Union-NextGenerationEU, Plovdiv, Bulgaria
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Cognitive Impairment and Dementia, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Sun Y, Sun W, Liu J, Zhang B, Zheng L, Zou W. The dual role of microglia in intracerebral hemorrhage. Behav Brain Res 2024; 473:115198. [PMID: 39128628 DOI: 10.1016/j.bbr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Intracerebral hemorrhage has the characteristics of high morbidity, disability and mortality, which has caused a heavy burden to families and society. Microglia are resident immune cells in the central nervous system, and their activation plays a dual role in tissue damage after intracerebral hemorrhage. The damage in cerebral hemorrhage is embodied in the following aspects: releasing inflammatory factors and inflammatory mediators, triggering programmed cell death, producing glutamate induced excitotoxicity, and destroying blood-brain barrier; The protective effect is reflected in the phagocytosis and clearance of harmful substances by microglia, and the secretion of anti-inflammatory and neurotrophic factors. This article summarizes the function of microglia and its dual regulatory mechanism in intracerebral hemorrhage. In the future, drugs, acupuncture and other clinical treatments can be used to intervene in the activation state of microglia, so as to reduce the harm of microglia.
Collapse
Affiliation(s)
- Yue Sun
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Wentao Sun
- Faculty of Chinese Medicine Sciense Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Jiawei Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Baiwen Zhang
- Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lei Zheng
- Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
5
|
Saranya KR, Vimina ER, Pinto FR. TransNeT-CGP: A cluster-based comorbid gene prioritization by integrating transcriptomics and network-topological features. Comput Biol Chem 2024; 110:108038. [PMID: 38461796 DOI: 10.1016/j.compbiolchem.2024.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/11/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
The local disruptions caused by the genes of one disease can influence the pathways associated with the other diseases resulting in comorbidity. For gene therapies, it is necessary to prioritize the key genes that regulate common biological mechanisms to tackle the issues caused by overlapping diseases. This work proposes a clustering-based computational approach for prioritising the comorbid genes within the overlapping disease modules by analyzing Protein-Protein Interaction networks. For this, a sub-network with gene interactions of the disease pair was extracted from the interactome. The edge weights are assigned by combining the pairwise gene expression correlation and betweenness centrality scores. Further, a weighted graph clustering algorithm is applied and dominant nodes of high-density clusters are ranked based on clustering coefficients and neighborhood connectivity. Case studies based on neurodegenerative diseases such as Amyotrophic Lateral Sclerosis- Spinal Muscular Atrophy (ALS-SMA) pair and cancers such as Ovarian Carcinoma-Invasive Ductal Breast Carcinoma (OC-IDBC) pair were conducted to examine the efficacy of the proposed method. To identify the mechanistic role of top-ranked genes, we used Functional and Pathway enrichment analysis, connectivity analysis with leave-one-out (LOO) method, analysis of associated disease-related protein complexes, and prioritization tools such as TOPPGENE and Heml2.0. From pathway analysis, it was observed that the top 10 genes obtained using the proposed method were associated with 10 pathways in ALS-SMA comorbidity and 15 in the case of OC-IDBC, while that in similar methods like SAPDSB and S2B were 4, 6 respectively for ALS-SMA and 9, 10 respectively for OC-IDBC. In both case studies, 70 % of the disease-specific benchmark protein complexes were linked to top-ranked genes of the proposed method while that of SAPDSB and S2B were 55 % and 60 % respectively. Additionally, it was found that the removal of the top 10 genes disconnect the network into 14 distinct components in the case of ALS-SMA and 9 in the case of OC-IDBC. The experimental results shows that the proposed method can be effectively used for identifying key genes in comorbidity and can offer insights about the intricate molecular relationship driving comorbid diseases.
Collapse
Affiliation(s)
- K R Saranya
- Department of Computer Science & IT, School of Computing, Amrita Vishwa Vidyapeetham, Kochi Campus, India.
| | - E R Vimina
- Department of Computer Science & IT, School of Computing, Amrita Vishwa Vidyapeetham, Kochi Campus, India.
| | - F R Pinto
- Chemistry and Biochemistry Department, Faculty of Sciences, University of Lisbon, Portugal.
| |
Collapse
|
6
|
Pintori N, Mostallino R, Spano E, Orrù V, Piras MG, Castelli MP, De Luca MA. Immune and glial cell alterations in the rat brain after repeated exposure to the synthetic cannabinoid JWH-018. J Neuroimmunol 2024; 389:578325. [PMID: 38432046 DOI: 10.1016/j.jneuroim.2024.578325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
The use of synthetic cannabinoid receptor agonists (SCRAs) poses major psychiatric risks. We previously showed that repeated exposure to the prototypical SCRA JWH-018 induces alterations in dopamine (DA) transmission, abnormalities in the emotional state, and glial cell activation in the mesocorticolimbic DA circuits of rats. Despite growing evidence suggesting the relationship between substance use disorders (SUD) and neuroinflammation, little is known about the impact of SCRAs on the neuroimmune system. Here, we investigated whether repeated JWH-018 exposure altered neuroimmune signaling, which could be linked with previously reported central effects. Adult male Sprague-Dawley (SD) rats were exposed to JWH-018 (0.25 mg/kg, i.p.) for fourteen consecutive days, and the expression of cytokines, chemokines, and growth factors was measured seven days after treatment discontinuation in the striatum, cortex, and hippocampus. Moreover, microglial (ionized calcium-binding adaptor molecule 1, IBA-1) and astrocyte (glial fibrillary acidic protein, GFAP) activation markers were evaluated in the caudate-putamen (CPu). Repeated JWH-018 exposure induces a perturbation of neuroimmune signaling specifically in the striatum, as shown by increased levels of cytokines [interleukins (IL) -2, -4, -12p70, -13, interferon (IFN) γ], chemokines [macrophage inflammatory protein (MIP) -1α, -3α], and growth factors [macrophage colony-stimulating factor (M-CSF), vascular endothelial growth factor (VEGF)], together with increased IBA-1 and GFAP expression in the CPu. JWH-018 exposure induces persistant brain region-specific immune alterations up to seven days after drug discontinuation, which may contribute to the behavioral and neurochemical dysregulations in striatal areas that play a role in the reward-related processes that are frequently impaired in SUD.
Collapse
Affiliation(s)
- Nicholas Pintori
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Enrica Spano
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Valeria Orrù
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Lanusei, Italy
| | - Maria Grazia Piras
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Lanusei, Italy
| | - Maria Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy.
| |
Collapse
|
7
|
Grunwald C, Krętowska-Grunwald A, Adamska-Patruno E, Kochanowicz J, Kułakowska A, Chorąży M. The Role of Selected Interleukins in the Development and Progression of Multiple Sclerosis-A Systematic Review. Int J Mol Sci 2024; 25:2589. [PMID: 38473835 PMCID: PMC10932438 DOI: 10.3390/ijms25052589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Multiple sclerosis is a disabling inflammatory disorder of the central nervous system characterized by demyelination and neurodegeneration. Given that multiple sclerosis remains an incurable disease, the management of MS predominantly focuses on reducing relapses and decelerating the progression of both physical and cognitive decline. The continuous autoimmune process modulated by cytokines seems to be a vital contributing factor to the development and relapse of multiple sclerosis. This review sought to summarize the role of selected interleukins in the pathogenesis and advancement of MS. Patients with MS in the active disease phase seem to exhibit an increased serum level of IL-2, IL-4, IL-6, IL-13, IL-17, IL-21, IL-22 and IL-33 compared to healthy controls and patients in remission, while IL-10 appears to have a beneficial impact in preventing the progression of the disease. Despite being usually associated with proinflammatory activity, several studies have additionally recognized a neuroprotective role of IL-13, IL-22 and IL-33. Moreover, selected gene polymorphisms of IL-2R, IL-4, IL-6, IL-13 and IL-22 were identified as a possible risk factor related to MS development. Treatment strategies of multiple sclerosis that either target or utilize these cytokines seem rather promising, but more comprehensive research is necessary to gain a clearer understanding of how these cytokines precisely affect MS development and progression.
Collapse
Affiliation(s)
- Cezary Grunwald
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| | - Anna Krętowska-Grunwald
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Jerzego Waszyngtona 17, 15-274 Białystok, Poland;
| | - Edyta Adamska-Patruno
- Clinical Research Center, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland;
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| | - Monika Chorąży
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| |
Collapse
|
8
|
Pugel AD, Schoenfeld AM, Alsaifi SZ, Holmes JR, Morrison BE. The Role of NAD + and NAD +-Boosting Therapies in Inflammatory Response by IL-13. Pharmaceuticals (Basel) 2024; 17:226. [PMID: 38399441 PMCID: PMC10893221 DOI: 10.3390/ph17020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The essential role of nicotinamide adenine dinucleotide+ (NAD+) in redox reactions during oxidative respiration is well known, yet the coenzyme and regulator functions of NAD+ in diverse and important processes are still being discovered. Maintaining NAD+ levels through diet is essential for health. In fact, the United States requires supplementation of the NAD+ precursor niacin into the food chain for these reasons. A large body of research also indicates that elevating NAD+ levels is beneficial for numerous conditions, including cancer, cardiovascular health, inflammatory response, and longevity. Consequently, strategies have been created to elevate NAD+ levels through dietary supplementation with NAD+ precursor compounds. This paper explores current research regarding these therapeutic compounds. It then focuses on the NAD+ regulation of IL-13 signaling, which is a research area garnering little attention. IL-13 is a critical regulator of allergic response and is associated with Parkinson's disease and cancer. Evidence supporting the notion that increasing NAD+ levels might reduce IL-13 signal-induced inflammatory response is presented. The assessment is concluded with an examination of reports involving popular precursor compounds that boost NAD+ and their associations with IL-13 signaling in the context of offering a means for safely and effectively reducing inflammatory response by IL-13.
Collapse
Affiliation(s)
- Anton D. Pugel
- Biomolecular Ph.D. Program, Boise State University, Boise, ID 83725, USA;
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| | - Alyssa M. Schoenfeld
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| | - Sara Z. Alsaifi
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| | - Jocelyn R. Holmes
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| | - Brad E. Morrison
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| |
Collapse
|
9
|
de la Monte SM, Tong M, Hapel AJ. Concordant and Discordant Cerebrospinal Fluid and Plasma Cytokine and Chemokine Responses in Mild Cognitive Impairment and Early-Stage Alzheimer's Disease. Biomedicines 2023; 11:2394. [PMID: 37760836 PMCID: PMC10525668 DOI: 10.3390/biomedicines11092394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroinflammation may be a pathogenic mediator and biomarker of neurodegeneration at the boundary between mild cognitive impairment (MCI) and early-stage Alzheimer's disease (AD). Whether neuroinflammatory processes are endogenous to the central nervous system (CNS) or originate from systemic (peripheral blood) sources could impact strategies for therapeutic intervention. To address this issue, we measured cytokine and chemokine immunoreactivities in simultaneously obtained lumbar puncture cerebrospinal fluid (CSF) and serum samples from 39 patients including 18 with MCI or early AD and 21 normal controls using a 27-plex XMAP bead-based enzyme-linked immunosorbent assay (ELISA). The MCI/AD combined group had significant (p < 0.05 or better) or statistically trend-wise (0.05 ≤ p ≤ 0.10) concordant increases in CSF and serum IL-4, IL-5, IL-9, IL-13, and TNF-α and reductions in GM-CSF, b-FGF, IL-6, IP-10, and MCP-1; CSF-only increases in IFN-y and IL-7 and reductions in VEGF and IL-12p70; serum-only increases in IL-1β, MIP-1α, and eotaxin and reductions in G-CSF, IL-2, IL-8 and IL-15; and discordant CSF-serum responses with reduced CSF and increased serum PDGF-bb, IL-17a, and RANTES. The results demonstrate simultaneously parallel mixed but modestly greater pro-inflammatory compared to anti-inflammatory or neuroprotective responses in CSF and serum. In addition, the findings show evidence that several cytokines and chemokines are selectively altered in MCI/AD CSF, likely corresponding to distinct neuroinflammatory responses unrelated to systemic pathologies. The aggregate results suggest that early management of MCI/AD neuroinflammation should include both anti-inflammatory and pro-neuroprotective strategies to help prevent disease progression.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology (Neuropathology), Neurology, and Neurosurgery, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Andrew J. Hapel
- Department of Genome Biology, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia;
| |
Collapse
|
10
|
Kapate N, Dunne M, Kumbhojkar N, Prakash S, Wang LLW, Graveline A, Park KS, Chandran Suja V, Goyal J, Clegg JR, Mitragotri S. A backpack-based myeloid cell therapy for multiple sclerosis. Proc Natl Acad Sci U S A 2023; 120:e2221535120. [PMID: 37075071 PMCID: PMC10151518 DOI: 10.1073/pnas.2221535120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/20/2023] [Indexed: 04/20/2023] Open
Abstract
Multiple sclerosis (MS) is an incurable autoimmune disease and is currently treated by systemic immunosuppressants with off-target side effects. Although aberrant myeloid function is often observed in MS plaques in the central nervous system (CNS), the role of myeloid cells in therapeutic intervention is currently overlooked. Here, we developed a myeloid cell-based strategy to reduce the disease burden in experimental autoimmune encephalomyelitis (EAE), a mouse model of progressive MS. We developed monocyte-adhered microparticles ("backpacks") for activating myeloid cell phenotype to an anti-inflammatory state through localized interleukin-4 and dexamethasone signals. We demonstrate that backpack-laden monocytes infiltrated into the inflamed CNS and modulated both the local and systemic immune responses. Within the CNS, backpack-carrying monocytes regulated both the infiltrating and tissue-resident myeloid cell compartments in the spinal cord for functions related to antigen presentation and reactive species production. Treatment with backpack-monocytes also decreased the level of systemic pro-inflammatory cytokines. Additionally, backpack-laden monocytes induced modulatory effects on TH1 and TH17 populations in the spinal cord and blood, demonstrating cross talk between the myeloid and lymphoid arms of disease. Backpack-carrying monocytes conferred therapeutic benefit in EAE mice, as quantified by improved motor function. The use of backpack-laden monocytes offers an antigen-free, biomaterial-based approach to precisely tune cell phenotype in vivo, demonstrating the utility of myeloid cells as a therapeutic modality and target.
Collapse
Affiliation(s)
- Neha Kapate
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Boston, MA02115
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Michael Dunne
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Boston, MA02115
| | - Ninad Kumbhojkar
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Boston, MA02115
| | - Supriya Prakash
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Boston, MA02115
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Boston, MA02115
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Amanda Graveline
- Wyss Institute for Biologically Inspired Engineering, Boston, MA02115
| | - Kyung Soo Park
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Boston, MA02115
| | - Vineeth Chandran Suja
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Boston, MA02115
| | - Juhee Goyal
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
| | - John R. Clegg
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Boston, MA02115
| | - Samir Mitragotri
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Boston, MA02115
| |
Collapse
|
11
|
Stress-Related Immune Response and Selenium Status in Autoimmune Thyroid Disease Patients. Int J Mol Sci 2023; 24:ijms24032440. [PMID: 36768762 PMCID: PMC9917185 DOI: 10.3390/ijms24032440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Autoimmune thyroid disease (AITD), including Graves' disease (GD) or Hashimoto's thyroiditis (HT), occurs due to genetic susceptibility and environmental factors, among which the role of stressful events remains controversial. This study investigated the relationship between the number and impact of stressful life events in AITD patients with selenium status, and the Th1/Th2/Th17 immune response. The study population included three groups: HT (n = 47), GD (n = 13), and a control group (n = 49). Thyroid function parameters, autoantibody levels, and the plasma levels of cytokines, selenium, selenoprotein P (SeP), and glutathione peroxidase 3 (GPx) activity were measured. Participants filled out the Life Experiences Survey. No significant differences in the number of stressful life events were found among the patients with HT, GD, and the controls. A higher (median (interquartile range)) negative stress level (8 (4-12)) than a positive stress level (3 (1-9)) was found in the HT group. The HT group showed a correlation between SeP and the positive stress level: rs = -0.296, p = 0.048, and the GD group between GPx and the negative stress level (rs = -0.702, p = 0.011). Significant positive correlations between thyroid peroxidase antibody level and the total number of major life events (p = 0.023), the number of major life events in the last 7-12 months, and the number of major life events with no impact and a negative stress level were found. We suggest that the measurements of Th2-related cytokines and selenoproteins could be used as biomarkers for the development of AITD in cases where stress is considered a component cause of the pathogenic mechanism of the disease.
Collapse
|
12
|
Ethridge VT, Gargas NM, Sonner MJ, Moore RJ, Romer SH, Hatcher-Solis C, Rohan JG. Effects of transcranial direct current stimulation on brain cytokine levels in rats. Front Neurosci 2022; 16:1069484. [PMID: 36620466 PMCID: PMC9822516 DOI: 10.3389/fnins.2022.1069484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) has shown therapeutic potential to mitigate symptoms of various neurological disorders. Studies from our group and others used rodent models to demonstrate that tDCS modulates synaptic plasticity. We previously showed that 30 min of 0.25 mA tDCS administered to rats induced significant enhancement in the synaptic plasticity of hippocampal neurons. It has also been shown that tDCS induces expression of proteins known to mediate synaptic plasticity. This increase in synaptic plasticity may underly the observed therapeutic benefits of tDCS. However, the anti-inflammatory benefits of tDCS have not been thoroughly elucidated. Here we report that three sessions of tDCS spaced 1-3 weeks apart can significantly reduce levels of several inflammatory cytokines in brains of healthy rats. Rats receiving tDCS experienced enhanced synaptic plasticity without detectable improvement in behavioral tests or significant changes in astrocyte activation. The tDCS-mediated reduction in inflammatory cytokine levels supports the potential use of tDCS as a countermeasure against inflammation and offers additional support for the hypothesis that cytokines contribute to the modulation of synaptic plasticity.
Collapse
Affiliation(s)
- Victoria T. Ethridge
- Naval Medical Research Unit Dayton (NAMRU-D), Wright-Patterson Air Force Base, Dayton, OH, United States,Odyssey Systems Consulting Group, Wakefield, MA, United States,Leidos, Reston, VA, United States
| | - Nathan M. Gargas
- Naval Medical Research Unit Dayton (NAMRU-D), Wright-Patterson Air Force Base, Dayton, OH, United States,Odyssey Systems Consulting Group, Wakefield, MA, United States,Leidos, Reston, VA, United States
| | - Martha J. Sonner
- Naval Medical Research Unit Dayton (NAMRU-D), Wright-Patterson Air Force Base, Dayton, OH, United States,Leidos, Reston, VA, United States,ICON, Hinckley, OH, United States
| | - Raquel J. Moore
- Infoscitex, Dayton, OH, United States,711th HPW/RHBCN, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Shannon H. Romer
- Naval Medical Research Unit Dayton (NAMRU-D), Wright-Patterson Air Force Base, Dayton, OH, United States,Odyssey Systems Consulting Group, Wakefield, MA, United States,Leidos, Reston, VA, United States
| | | | - Joyce G. Rohan
- Naval Medical Research Unit Dayton (NAMRU-D), Wright-Patterson Air Force Base, Dayton, OH, United States,*Correspondence: Joyce G. Rohan,
| |
Collapse
|
13
|
The Crosstalk between the Blood–Brain Barrier Dysfunction and Neuroinflammation after General Anaesthesia. Curr Issues Mol Biol 2022; 44:5700-5717. [PMID: 36421670 PMCID: PMC9689502 DOI: 10.3390/cimb44110386] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
As we know, with continuous medical progress, the treatment of many diseases can be conducted via surgery, which often relies on general anaesthesia for its satisfactory performance. With the widespread use of general anaesthetics, people are beginning to question the safety of general anaesthesia and there is a growing interest in central nervous system (CNS) complications associated with anaesthetics. Recently, abundant evidence has suggested that both blood–brain barrier (BBB) dysfunction and neuroinflammation play roles in the development of CNS complications after anaesthesia. Whether there is a crosstalk between BBB dysfunction and neuroinflammation after general anaesthesia, and whether this possible crosstalk could be a therapeutic target for CNS complications after general anaesthesia needs to be clarified by further studies.
Collapse
|
14
|
Balzamino BO, Esposito G, Marino R, Calissano P, Latina V, Amadoro G, Keller F, Cacciamani A, Micera A. Morphological and biomolecular targets in retina and vitreous from Reelin-deficient mice (Reeler): Potential implications for age-related macular degeneration in Alzheimer’s dementia. Front Aging Neurosci 2022; 14:1015359. [DOI: 10.3389/fnagi.2022.1015359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
The neurosensory retina is an outgrowth of the Central Nervous System (CNS), and the eye is considered “a window to the brain.” Reelin glycoprotein is directly involved in neurodevelopment, in synaptic plasticity, learning and memory. Consequently, abnormal Reelin signaling has been associated with brain neurodegeneration but its contributing role in ocular degeneration is still poorly explored. To this aim, experimental procedures were assayed on vitreous or retinas obtained from Reeler mice (knockout for Reelin protein) at different postnatal days (p) p14, p21 and p28. At p28, a significant increase in the expression of Amyloid Precursor Protein (APP) and its amyloidogenic peptide (Aβ1-42 along with truncated tau fragment (i.e., NH2htau)- three pathological hallmarks of Alzheimer’s disease (AD)-were found in Reeler mice when compared to their age-matched wild-type controls. Likewise, several inflammatory mediators, such as Interleukins, or crucial biomarkers of oxidative stress were also found to be upregulated in Reeler mice by using different techniques such as ELLA assay, microchip array or real-time PCR. Taken together, these findings suggest that a dysfunctional Reelin signaling enables the expression of key pathological features which are classically associated with AD neurodegenerative processes. Thus, this work suggests that Reeler mouse might be a suitable animal model to study not only the pathophysiology of developmental processes but also several neurodegenerative diseases, such as AD and Age-related Macular Degeneration (AMD), characterized by accumulation of APP and/or Aβ1-42, NH2htau and inflammatory markers.
Collapse
|
15
|
Pitzer EM, Sugimoto C, Regan SL, Gudelsky GA, Williams MT, Vorhees CV. Developmental deltamethrin: Sex-specific hippocampal effects in Sprague Dawley rats. Curr Res Toxicol 2022; 3:100093. [PMID: 36393872 PMCID: PMC9661443 DOI: 10.1016/j.crtox.2022.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Pyrethroid pesticides are widely used and can cause long-term effects after early exposure. Epidemiological and animal studies reveal associations between pyrethroid exposure and altered cognition following prenatal and/or neonatal exposure. However, little is known about the cellular effects of such exposure. Sprague Dawley rats were gavaged with 0 or 1.0 mg/kg deltamethrin (DLM), a Type II pyrethroid, in corn oil (dose volume 5 mL/kg) once per day from postnatal day (P) 3-20 and assessed shortly after dosing ended or as adults. No effects of DLM exposure were found on striatal dopaminergic markers, nor on AMPA receptor subunits or on NMDA-NR1. However, DLM increased NMDA-NR2A and decreased NMDA-NR2B levels in the hippocampus, in males but not females. Additionally, adult hippocampal CA1 long-term potentiation was increased in DLM-treated males but not females. Potassium stimulated extracellular glutamate release in the hippocampus was not affected using in vivo microdialysis. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) showed increased apoptotic cells in the dentate gyrus of male rats, in the absence of changes in cleaved caspase-3 at P21. Proinflammatory cytokines interferon gamma trended up in striatum, interleukin-1β trended down in nucleus accumbens, IL-13 trended up in hippocampus, and keratinocyte chemoattractant/human growth-regulated oncogene (KC/GRO or CXCL1) was significantly increased in the hippocampus in male DLM-treated rats on P20. The data point to the developing hippocampus as a susceptible region to DLM-induced adverse effects.
Collapse
Affiliation(s)
- Emily M. Pitzer
- Dept. of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chiho Sugimoto
- Dept. of Physiology, Michigan State University, 766 Service Rd. 5401 Interdisciplinary Science and Technology Building, East Lansing, MI 48824, USA
| | - Samantha L. Regan
- Dept. of Human Genetics, University of Michigan Medical Center, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI 48109-5618, USA
| | - Gary A. Gudelsky
- College of Pharmacy, Div. of Pharmaceutical Sciences, 3212 Medical Sciences Building, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Michael T. Williams
- Dept. of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Charles V. Vorhees
- Dept. of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
16
|
Tatu AL, Nadasdy T, Arbune A, Chioncel V, Bobeica C, Niculet E, Iancu AV, Dumitru C, Popa VT, Kluger N, Clatici VG, Vasile CI, Onisor C, Nechifor A. Interrelationship and Sequencing of Interleukins4, 13, 31, and 33 - An Integrated Systematic Review: Dermatological and Multidisciplinary Perspectives. J Inflamm Res 2022; 15:5163-5184. [PMID: 36110506 PMCID: PMC9468867 DOI: 10.2147/jir.s374060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/13/2022] [Indexed: 11/23/2022] Open
Abstract
The interrelations and sequencing of interleukins are complex (inter)actions where each interleukin can stimulate the secretion of its preceding interleukin. In this paper, we attempt to summarize the currently known roles of IL-4, IL-13, IL-31, and IL-33 from a multi-disciplinary perspective. In order to conduct a comprehensive review of the current literature, a search was conducted using PubMed, Google Scholar, Medscape, UpToDate, and Key Elsevier for keywords. The results were compiled from case reports, case series, letters, and literature review papers, and analyzed by a panel of multi-disciplinary specialist physicians for relevance. Based on 173 results, we compiled the following review of interleukin signaling and its clinical significance across a multitude of medical specialties. Interleukins are at the bed rock of a multitude of pathologies across different organ systems and understanding their role will likely lead to novel treatments and better outcomes for our patients. New interleukins are being described, and the role of this inflammatory cascade is still coming to light. We hope this multi-discipline review on the role interleukins play in current pathology assists in this scope.
Collapse
Affiliation(s)
- Alin Laurentiu Tatu
- Dermatology Department, "Sf. Cuvioasa Parascheva" Clinical Hospital of Infectious Diseases, Galati, Romania.,Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania.,Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR) [Centrul Integrat Multi disciplinar de Cercetare de Interfata Dermatologica (CIM-CID)], Galați, Romania
| | - Thomas Nadasdy
- Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR) [Centrul Integrat Multi disciplinar de Cercetare de Interfata Dermatologica (CIM-CID)], Galați, Romania.,Dermatology Department, Municipal Emergency Hospital, Timişoara, Romania
| | - Anca Arbune
- Neurology Department, Fundeni Clinical Institute, Bucharest, Romania
| | - Valentin Chioncel
- Neurology Department, "Bagdasar-Arseni" Emergency Clinical Hospital, Bucharest, Romania
| | - Carmen Bobeica
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania
| | - Elena Niculet
- Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR) [Centrul Integrat Multi disciplinar de Cercetare de Interfata Dermatologica (CIM-CID)], Galați, Romania
| | - Alina Viorica Iancu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania
| | - Caterina Dumitru
- Pharmaceutical Sciences Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania
| | - Valentin Tudor Popa
- Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR) [Centrul Integrat Multi disciplinar de Cercetare de Interfata Dermatologica (CIM-CID)], Galați, Romania.,Dermatology Department, Center for the Morphologic Study of the Skin MORPHODERM, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Nicolas Kluger
- Department of Dermatology, Allergology and Venereology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland.,Apolo Medical Center, Bucharest, Romania
| | | | - Claudiu Ionut Vasile
- Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania
| | - Cristian Onisor
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania
| | - Alexandru Nechifor
- Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania
| |
Collapse
|
17
|
Flores-Aguilar L, Hall H, Orciani C, Foret MK, Kovecses O, Ducatenzeiler A, Cuello AC. Early loss of locus coeruleus innervation promotes cognitive and neuropathological changes before amyloid plaque deposition in a transgenic rat model of Alzheimer's disease. Neuropathol Appl Neurobiol 2022; 48:e12835. [PMID: 35822518 DOI: 10.1111/nan.12835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/31/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
AIMS The locus coeruleus (LC) is the main source of noradrenaline (NA) in the mammalian brain and has been found to degenerate during the initial stages of Alzheimer's disease (AD). Recent studies indicate that at late stages of the amyloid pathology, LC-pathological alterations accelerate AD-like pathology progression by interfering with the neuromodulatory and anti-inflammatory properties of NA. However, the impact of LC degeneration at the earliest stages of amyloidosis on the AD-like pathology is not well understood. METHODS The LC was lesioned in wild-type (wt) and McGill-R-Thy1-APP transgenic rats (APP tg) by administering N-(2-chloroethyl)-N-ethyl-bromo-benzylamine (DSP4) before amyloid plaque deposition. Cognitive deficits and AD-like neuropathological changes were measured after the LC lesion. RESULTS Four months post-treatment, rats displayed a decrease in brain noradrenergic innervation. The LC lesion in APP tg-treated rats enhanced cognitive deficits and decreased hippocampal cholinergic innervation and neurotrophin expression. In addition, the APP tg-treated rats displayed an increased microglial and astroglial cell number in close vicinity to hippocampal amyloid-beta burdened neurons. The recruited microglia showed cellular alterations indicative of an intermediate activation state. CONCLUSIONS Our results indicate that early LC demise aggravates the early neuroinflammatory process, cognitive impairments, cholinergic deficits and neurotrophin deregulation at the earliest stages of the human-like brain amyloidosis.
Collapse
Affiliation(s)
- Lisi Flores-Aguilar
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.,Current affiliation: Department of Pathology and Laboratory Medicine, University of California, Irvine, United States of America
| | - Hélène Hall
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Chiara Orciani
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Morgan K Foret
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Olivia Kovecses
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | | - A Claudio Cuello
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.,Visiting Professor, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Liu W, Fan M, Lu W, Zhu W, Meng L, Lu S. Emerging Roles of T Helper Cells in Non-Infectious Neuroinflammation: Savior or Sinner. Front Immunol 2022; 13:872167. [PMID: 35844577 PMCID: PMC9280647 DOI: 10.3389/fimmu.2022.872167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
CD4+ T cells, also known as T helper (Th) cells, contribute to the adaptive immunity both in the periphery and in the central nervous system (CNS). At least seven subsets of Th cells along with their signature cytokines have been identified nowadays. Neuroinflammation denotes the brain’s immune response to inflammatory conditions. In recent years, various CNS disorders have been related to the dysregulation of adaptive immunity, especially the process concerning Th cells and their cytokines. However, as the functions of Th cells are being discovered, it’s also found that their roles in different neuroinflammatory conditions, or even the participation of a specific Th subset in one CNS disorder may differ, and sometimes contrast. Based on those recent and contradictory evidence, the conflicting roles of Th cells in multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, epilepsy, traumatic brain injury as well as some typical mental disorders will be reviewed herein. Research progress, limitations and novel approaches concerning different neuroinflammatory conditions will also be mentioned and compared.
Collapse
Affiliation(s)
- Wenbin Liu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meiyang Fan
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wen Lu
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| |
Collapse
|
19
|
Wicks EE, Ran KR, Kim JE, Xu R, Lee RP, Jackson CM. The Translational Potential of Microglia and Monocyte-Derived Macrophages in Ischemic Stroke. Front Immunol 2022; 13:897022. [PMID: 35795678 PMCID: PMC9251541 DOI: 10.3389/fimmu.2022.897022] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The immune response to ischemic stroke is an area of study that is at the forefront of stroke research and presents promising new avenues for treatment development. Upon cerebral vessel occlusion, the innate immune system is activated by danger-associated molecular signals from stressed and dying neurons. Microglia, an immune cell population within the central nervous system which phagocytose cell debris and modulate the immune response via cytokine signaling, are the first cell population to become activated. Soon after, monocytes arrive from the peripheral immune system, differentiate into macrophages, and further aid in the immune response. Upon activation, both microglia and monocyte-derived macrophages are capable of polarizing into phenotypes which can either promote or attenuate the inflammatory response. Phenotypes which promote the inflammatory response are hypothesized to increase neuronal damage and impair recovery of neuronal function during the later phases of ischemic stroke. Therefore, modulating neuroimmune cells to adopt an anti-inflammatory response post ischemic stroke is an area of current research interest and potential treatment development. In this review, we outline the biology of microglia and monocyte-derived macrophages, further explain their roles in the acute, subacute, and chronic stages of ischemic stroke, and highlight current treatment development efforts which target these cells in the context of ischemic stroke.
Collapse
|
20
|
Zhu B, Li H, Zhang L, Chandra SS, Zhao H. A Markov random field model-based approach for differentially expressed gene detection from single-cell RNA-seq data. Brief Bioinform 2022; 23:6581434. [PMID: 35514182 PMCID: PMC9487630 DOI: 10.1093/bib/bbac166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
The development of single-cell RNA-sequencing (scRNA-seq) technologies has offered insights into complex biological systems at the single-cell resolution. In particular, these techniques facilitate the identifications of genes showing cell-type-specific differential expressions (DE). In this paper, we introduce MARBLES, a novel statistical model for cross-condition DE gene detection from scRNA-seq data. MARBLES employs a Markov Random Field model to borrow information across similar cell types and utilizes cell-type-specific pseudobulk count to account for sample-level variability. Our simulation results showed that MARBLES is more powerful than existing methods to detect DE genes with an appropriate control of false positive rate. Applications of MARBLES to real data identified novel disease-related DE genes and biological pathways from both a single-cell lipopolysaccharide mouse dataset with 24 381 cells and 11 076 genes and a Parkinson's disease human data set with 76 212 cells and 15 891 genes. Overall, MARBLES is a powerful tool to identify cell-type-specific DE genes across conditions from scRNA-seq data.
Collapse
Affiliation(s)
- Biqing Zhu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06511, USA
| | - Hongyu Li
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, 06511, USA
| | - Le Zhang
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Sreeganga S Chandra
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, 06511, USA,Department of Neuroscience, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06511, USA,Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, 06511, USA,Corresponding author. Hongyu Zhao, 300 George Street, Ste 503, New Haven, CT 06511. E-mail:
| |
Collapse
|
21
|
Van Broeckhoven J, Erens C, Sommer D, Scheijen E, Sanchez S, Vidal PM, Dooley D, Van Breedam E, Quarta A, Ponsaerts P, Hendrix S, Lemmens S. Macrophage-based delivery of interleukin-13 improves functional and histopathological outcomes following spinal cord injury. J Neuroinflammation 2022; 19:102. [PMID: 35488301 PMCID: PMC9052547 DOI: 10.1186/s12974-022-02458-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/07/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) elicits a robust neuroinflammatory reaction which, in turn, exacerbates the initial mechanical damage. Pivotal players orchestrating this response are macrophages (Mφs) and microglia. After SCI, the inflammatory environment is dominated by pro-inflammatory Mφs/microglia, which contribute to secondary cell death and prevent regeneration. Therefore, reprogramming Mφ/microglia towards a more anti-inflammatory and potentially neuroprotective phenotype has gained substantial therapeutic interest in recent years. Interleukin-13 (IL-13) is a potent inducer of such an anti-inflammatory phenotype. In this study, we used genetically modified Mφs as carriers to continuously secrete IL-13 (IL-13 Mφs) at the lesion site. METHODS Mφs were genetically modified to secrete IL-13 (IL-13 Mφs) and were phenotypically characterized using qPCR, western blot, and ELISA. To analyze the therapeutic potential, the IL-13 Mφs were intraspinally injected at the perilesional area after hemisection SCI in female mice. Functional recovery and histopathological improvements were evaluated using the Basso Mouse Scale score and immunohistochemistry. Neuroprotective effects of IL-13 were investigated using different cell viability assays in murine and human neuroblastoma cell lines, human neurospheroids, as well as murine organotypic brain slice cultures. RESULTS In contrast to Mφs prestimulated with recombinant IL-13, perilesional transplantation of IL-13 Mφs promoted functional recovery following SCI in mice. This improvement was accompanied by reduced lesion size and demyelinated area. The local anti-inflammatory shift induced by IL-13 Mφs resulted in reduced neuronal death and fewer contacts between dystrophic axons and Mφs/microglia, suggesting suppression of axonal dieback. Using IL-4Rα-deficient mice, we show that IL-13 signaling is required for these beneficial effects. Whereas direct neuroprotective effects of IL-13 on murine and human neuroblastoma cell lines or human neurospheroid cultures were absent, IL-13 rescued murine organotypic brain slices from cell death, probably by indirectly modulating the Mφ/microglia responses. CONCLUSIONS Collectively, our data suggest that the IL-13-induced anti-inflammatory Mφ/microglia phenotype can preserve neuronal tissue and ameliorate axonal dieback, thereby promoting recovery after SCI.
Collapse
Affiliation(s)
- Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Céline Erens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Daniela Sommer
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Elle Scheijen
- Department of Neurosciences, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Selien Sanchez
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Pia M Vidal
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, 4090541, Concepción, Chile
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular & Biomedical Research University College Dublin, Belfield, Dublin 4, Ireland
| | - Elise Van Breedam
- Laboratory of Experimental Hematology, University of Antwerp, 2610, Wilrijk, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
| | - Alessandra Quarta
- Laboratory of Experimental Hematology, University of Antwerp, 2610, Wilrijk, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, University of Antwerp, 2610, Wilrijk, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
| | - Sven Hendrix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium. .,Medical School Hamburg, Am Kaiserkai 1, 20457, Hamburg, Germany.
| | - Stefanie Lemmens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| |
Collapse
|
22
|
Singh SK, Krukowski K, Laumet GO, Weis D, Alexander JF, Heijnen CJ, Kavelaars A. CD8+ T cell-derived IL-13 increases macrophage IL-10 to resolve neuropathic pain. JCI Insight 2022; 7:154194. [PMID: 35260535 PMCID: PMC8983134 DOI: 10.1172/jci.insight.154194] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/26/2022] [Indexed: 01/11/2023] Open
Abstract
Understanding the endogenous mechanisms regulating resolution of pain may identify novel targets for treatment of chronic pain. Resolution of chemotherapy-induced peripheral neuropathy (CIPN) after treatment completion depends on CD8+ T cells and on IL-10 produced by other cells. Using Rag2–/– mice lacking T and B cells and adoptive transfer of Il13–/– CD8+ T cells, we showed that CD8+ T cells producing IL-13 were required for resolution of CIPN. Intrathecal administration of anti–IL-13 delayed resolution of CIPN and reduced IL-10 production by dorsal root ganglion macrophages. Depleting local CD206+ macrophages also delayed resolution of CIPN. In vitro, TIM3+CD8+ T cells cultured with cisplatin, apoptotic cells, or phosphatidylserine liposomes produced IL-13, which induced IL-10 in macrophages. In vivo, resolution of CIPN was delayed by intrathecal administration of anti-TIM3. Resolution was also delayed in Rag2–/– mice reconstituted with Havcr2 (TIM3)–/– CD8+ T cells. Our data indicated that cell damage induced by cisplatin activated TIM3 on CD8+ T cells, leading to increased IL-13 production, which in turn induced macrophage IL-10 production and resolution of CIPN. Development of exogenous activators of the IL-13/IL-10 pain resolution pathway may provide a way to treat the underlying cause of chronic pain.
Collapse
Affiliation(s)
- Susmita K Singh
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Karen Krukowski
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Biological Sciences, Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado, USA
| | - Geoffroy O Laumet
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Physiology, College of Natural Science, Michigan State University, East Lansing, Michigan, USA
| | - Drew Weis
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jenolyn F Alexander
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
23
|
Lin YT, Yeh TH. Studies on Clinical Features, Mechanisms, and Management of Olfactory Dysfunction Secondary to Chronic Rhinosinusitis. FRONTIERS IN ALLERGY 2022; 3:835151. [PMID: 35386650 PMCID: PMC8974686 DOI: 10.3389/falgy.2022.835151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is one of the most common causes of inflammation of the olfactory system, warranting investigation of the link between chronic inflammation and the loss of olfactory function. Type 2 inflammation is closely related to the clinical features and disease mechanisms of olfactory dysfunction secondary to CRS. Patients with eosinophilic CRS, aspirin-exacerbated respiratory disease, and central compartment atopic disease report increased olfactory dysfunction. Increased levels of interleukin-(IL-)2, IL-5, IL-6, IL-10, and IL-13 in the mucus from the olfactory slit have been reported to be associated with reduced olfactory test scores. The influence of several cytokines and signaling transduction pathways, including tumor necrosis factor-α, nuclear factor-κB, and c-Jun N-terminal kinases, on olfactory signal processing and neurogenesis has been demonstrated. Corticosteroids are the mainstay treatment for olfactory dysfunction secondary to CRS. Successful olfaction recovery was recently demonstrated in clinical trials of biotherapeutics, including omalizumab and dupilumab, although the treatment effect may diminish gradually after stopping the use of the medications. Future studies are required to relate the complex mechanisms underlying chronic inflammation in CRS to dysfunction of the olfactory system.
Collapse
Affiliation(s)
- Yi-Tsen Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Te-Huei Yeh
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
- *Correspondence: Te-Huei Yeh
| |
Collapse
|
24
|
Hong AR, Jang JG, Chung YC, Won SY, Jin BK. Interleukin 13 on Microglia is Neurotoxic in Lipopolysaccharide-injected Striatum in vivo. Exp Neurobiol 2022; 31:42-53. [PMID: 35256543 PMCID: PMC8907255 DOI: 10.5607/en21032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
To explore the potential function of interleukin-13 (IL-13), lipopolysaccharide (LPS) or PBS as a control was unilaterally microinjected into striatum of rat brain. Seven days after LPS injection, there was a significant loss of neurons and microglial activation in the striatum, visualized by immunohistochemical staining against neuronal nuclei (NeuN) and the OX-42 (complement receptor type 3, CR3), respectively. In parallel, IL-13 immunoreactivity was increased as early as 3 days and sustained up to 7 days post LPS injection, compared to PBS-injected control and detected exclusively within microglia. Moreover, GFAP immunostaining and blood brain barrier (BBB) permeability evaluation showed the loss of astrocytes and disruption of BBB, respectively. By contrast, treatment with IL-13 neutralizing antibody (IL-13NA) protects NeuN+ neurons against LPS-induced neurotoxicity in vivo . Accompanying neuroprotection, IL-13NA reduced loss of GFAP+ astrocytes and damage of BBB in LPS-injected striatum. Intriguingly, treatment with IL-13NA produced neurotrophic factors (NTFs) on survived astrocytes in LPS-injected rat striatum. Taken together, the present study suggests that LPS induces expression of IL-13 on microglia, which contributes to neurodegeneration via damage on astrocytes and BBB disruption in the striatum in vivo.
Collapse
Affiliation(s)
- Ah Reum Hong
- Department of Neuroscience, Graduate School, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Jae Geun Jang
- Department of Neuroscience, Graduate School, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Young Cheul Chung
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - So-Yoon Won
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Byung Kwan Jin
- Department of Neuroscience, Graduate School, School of Medicine, Kyung Hee University, Seoul 02447, Korea.,Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
25
|
Palomés-Borrajo G, Navarro X, Penas C. BET protein inhibition in macrophages enhances dorsal root ganglion neurite outgrowth in female mice. J Neurosci Res 2022; 100:1331-1346. [PMID: 35218246 PMCID: PMC9306766 DOI: 10.1002/jnr.25036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 11/07/2022]
Abstract
Peripheral nerve regeneration is limited after injury, especially in humans, due to the large distance the axons have to grow in the limbs. This process is highly dependent on the expression of neuroinflammatory factors produced by macrophages and glial cells. Given the importance of the epigenetic BET proteins on inflammation, we aimed to ascertain if BET inhibition may have an effect on axonal outgrowth. For this purpose, we treated female mice with JQ1 or vehicle after sciatic nerve crush injury and analyzed target reinnervation. We also used dorsal root ganglion (DRG) culture explants to analyze the effects of direct BET inhibition or treatment with conditioned medium from BET-inhibited macrophages. We observed that although JQ1 produced an enhancement of IL-4, IL-13, and GAP43 expression, it did not have an effect on sensory or motor reinnervation after crush injury in vivo. In contrast, JQ1 reduced neurite growth when interacting directly with DRG neurons ex vivo, whereas conditioned medium from JQ1-treated macrophages promoted neurite outgrowth. Therefore, BET-inhibited macrophages secrete pro-regenerative factors that induce neurite outgrowth, and that may counteract the direct inhibition of BET proteins in neurons in vivo. Finally, we observed an activation of the STAT6 pathway in DRG explants treated with conditioned medium from JQ1-treated macrophages. In conclusion, this study demonstrates that BET protein inhibition in macrophages provides a mechanism to enhance axonal outgrowth. However, specific targeting of BET proteins to macrophages will be needed to efficiently enhance functional recovery after nerve injury.
Collapse
Affiliation(s)
- Georgina Palomés-Borrajo
- Department of Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Clara Penas
- Department of Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
26
|
Jang J, Hong A, Chung Y, Jin B. Interleukin-4 Aggravates LPS-Induced Striatal Neurodegeneration In Vivo via Oxidative Stress and Polarization of Microglia/Macrophages. Int J Mol Sci 2022; 23:ijms23010571. [PMID: 35008995 PMCID: PMC8745503 DOI: 10.3390/ijms23010571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/10/2022] Open
Abstract
The present study investigated the effects of interleukin (IL)-4 on striatal neurons in lipopolysaccharide (LPS)-injected rat striatum in vivo. Either LPS or PBS as a control was unilaterally injected into the striatum, and brain tissues were processed for immunohistochemical and Nissl staining or for hydroethidine histochemistry at the indicated time points after LPS injection. Analysis by NeuN and Nissl immunohistochemical staining showed a significant loss of striatal neurons at 1, 3, and 7 days post LPS. In parallel, IL-4 immunoreactivity was upregulated as early as 1 day, reached a peak at 3 days, and was sustained up to 7 days post LPS. Increased levels of IL-4 immunoreactivity were exclusively detected in microglia/macrophages, but not in neurons nor astrocytes. The neutralizing antibody (NA) for IL-4 significantly protects striatal neurons against LPS-induced neurotoxicity in vivo. Accompanying neuroprotection, IL-4NA inhibited activation of microglia/macrophages, production of reactive oxygen species (ROS), ROS-derived oxidative damage and nitrosative stress, and produced polarization of microglia/macrophages shifted from M1 to M2. These results suggest that endogenous IL-4 expressed in LPS-activated microglia/macrophages contributes to striatal neurodegeneration in which oxidative/nitrosative stress and M1/M2 polarization are implicated.
Collapse
Affiliation(s)
- Jaegeun Jang
- Department of Neuroscience, Graduate School of Medicine, Kyung Hee University, Seoul 02447, Korea; (J.J.); (A.H.)
| | - Ahreum Hong
- Department of Neuroscience, Graduate School of Medicine, Kyung Hee University, Seoul 02447, Korea; (J.J.); (A.H.)
| | - Youngcheul Chung
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea
- Correspondence: (Y.C.); (B.J.); Tel.: +82-42-610-8383 (Y.C.); +82-2-961-9288 (B.J.); Fax: +82-2-969-4570 (Y.C.); +82-42-610-8148 (B.J.)
| | - Byungkwan Jin
- Department of Neuroscience, Graduate School of Medicine, Kyung Hee University, Seoul 02447, Korea; (J.J.); (A.H.)
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (Y.C.); (B.J.); Tel.: +82-42-610-8383 (Y.C.); +82-2-961-9288 (B.J.); Fax: +82-2-969-4570 (Y.C.); +82-42-610-8148 (B.J.)
| |
Collapse
|
27
|
Niranjan R, Subramanian M, Panneer D, Ojha SK. Eosinophils Restrict Diesel Exhaust Particles Induced Cell Proliferation of Lung Epithelial A549 Cells, Vial Interleukin-13 Mediated Mechanisms: Implications for Tissue Remodelling And Fibrosis. Comb Chem High Throughput Screen 2022; 25:1682-1694. [PMID: 34986769 DOI: 10.2174/1386207325666220105150655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diesel exhaust particulates (DEPs) affect lung physiology and cause serious damage to the lungs. A number of studies demonstrated that, eosinophils play a very important role in the development of tissue remodelling and fibrosis of lungs. However, the exact mechanism of pathogenesis of tissue remodelling and fibrosis is not known. METHODS Both in vitro and in vivo models were used in the study. HL-60 and A549 cells were used in the study. Balb/C mice of 8 to 12 weeks old were used for in vivo study. Cell viability by MTT assay, RNA isolation by tri reagent was accomplished. mRNA expression of inflammatory genes were accomplished by real time PCR or qPCR. Immunohistochemistry was done to asses the localization and expressions of proteins. One way ANOVA followed by post hoc test were done for the statistical analysis. Graph-Pad Prism software was used for statistical analysis. RESULTS We for the first time demonstrate that, Interleukin-13 plays a very important role in the development of tissue remodelling and fibrosis. We report that, diesel exhaust particles significantly induce eosinophils cell proliferation and interleukin-13 release in in vitro culture conditions. Supernatant collected from DEP-induced eosinophils cells significantly restrict cell proliferation of epithelial cells in response to exposure of diesel exhast particles. Furthermore, purified interleukin-13 decreases the proliferation of A549 cells, highliting the involvement of IL-13 in tissue remodeling. Notably, Etoricoxib (selective COX-2 inhibitor) did not inhibit DEP-triggered release of interleukin-13, suggesting another cell signalling pathway. The in vivo exposer of DEP to the lungs of mice, resulted in high level of eosinophils degranulation as depicted by the EPX-1 immunostaining and altered level of mRNA expressions of inflammatory genes. We also found that, a-SMA, fibroblast specific protein (FSP-1) has been changed in response to DEP in the mice lungs along with the mediators of inflammation. CONCLUSION Altogether, we elucidated, the mechanistic role of eosinophils and IL-13 in the DEP-triggered proliferation of lungs cells thus providing an inside in the pathophysiology of tissue remodelling and fibrosis of lungs.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Immunology laboratories, Division of Microbiology and Immunology, ICMR-Vector Control Research Centre, Puducherry, India, 605006
| | | | - Devaraju Panneer
- Division of Vector Biology and Control, ICMR-Vector Control Research Centre, Puducherry, India, 605006
| | - Sanjay Kumar Ojha
- Pandorum Technologies Pvt. Ltd., Bangalore Bio-innovation Centre, Helix Biotech Park, Electronic City Phase 1, Bengaluru - 560 100
| |
Collapse
|
28
|
Vai B, Mazza MG, Cazzetta S, Calesella F, Aggio V, Lorenzi C, Zanardi R, Poletti S, Colombo C, Benedetti F. Higher Interleukin 13 differentiates patients with a positive history of suicide attempts in major depressive disorder. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021. [DOI: 10.1016/j.jadr.2021.100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
29
|
Yeung SSH, Ho YS, Chang RCC. The role of meningeal populations of type II innate lymphoid cells in modulating neuroinflammation in neurodegenerative diseases. Exp Mol Med 2021; 53:1251-1267. [PMID: 34489558 PMCID: PMC8492689 DOI: 10.1038/s12276-021-00660-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
Recent research into meningeal lymphatics has revealed a never-before appreciated role of type II innate lymphoid cells (ILC2s) in modulating neuroinflammation in the central nervous system (CNS). To date, the role of ILC2-mediated inflammation in the periphery has been well studied. However, the exact distribution of ILC2s in the CNS and therefore their putative role in modulating neuroinflammation in neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and major depressive disorder (MDD) remain highly elusive. Here, we review the current evidence of ILC2-mediated modulation of neuroinflammatory cues (i.e., IL-33, IL-25, IL-5, IL-13, IL-10, TNFα, and CXCL16-CXCR6) within the CNS, highlight the distribution of ILC2s in both the periphery and CNS, and discuss some challenges associated with cell type-specific targeting that are important for therapeutics. A comprehensive understanding of the roles of ILC2s in mediating and responding to inflammatory cues may provide valuable insight into potential therapeutic strategies for many dementia-related disorders.
Collapse
Affiliation(s)
- Sherry Sin-Hang Yeung
- grid.194645.b0000000121742757Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Yuen-Shan Ho
- grid.16890.360000 0004 1764 6123School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR China
| | - Raymond Chuen-Chung Chang
- grid.194645.b0000000121742757Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China ,grid.194645.b0000000121742757State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| |
Collapse
|
30
|
Hartnell IJ, Blum D, Nicoll JAR, Dorothee G, Boche D. Glial cells and adaptive immunity in frontotemporal dementia with tau pathology. Brain 2021; 144:724-745. [PMID: 33527991 DOI: 10.1093/brain/awaa457] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/06/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation is involved in the aetiology of many neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and motor neuron disease. Whether neuroinflammation also plays an important role in the pathophysiology of frontotemporal dementia is less well known. Frontotemporal dementia is a heterogeneous classification that covers many subtypes, with the main pathology known as frontotemporal lobar degeneration. The disease can be categorized with respect to the identity of the protein that causes the frontotemporal lobar degeneration in the brain. The most common subgroup describes diseases caused by frontotemporal lobar degeneration associated with tau aggregation, also known as primary tauopathies. Evidence suggests that neuroinflammation may play a role in primary tauopathies with genome-wide association studies finding enrichment of genetic variants associated with specific inflammation-related gene loci. These loci are related to both the innate immune system, including brain resident microglia, and the adaptive immune system through possible peripheral T-cell involvement. This review discusses the genetic evidence and relates it to findings in animal models expressing pathogenic tau as well as to post-mortem and PET studies in human disease. Across experimental paradigms, there seems to be a consensus regarding the involvement of innate immunity in primary tauopathies, with increased microglia and astrocyte density and/or activation, as well as increases in pro-inflammatory markers. Whilst it is less clear as to whether inflammation precedes tau aggregation or vice versa; there is strong evidence to support a microglial contribution to the propagation of hyperphosphorylated in tau frontotemporal lobar degeneration associated with tau aggregation. Experimental evidence-albeit limited-also corroborates genetic data pointing to the involvement of cellular adaptive immunity in primary tauopathies. However, it is still unclear whether brain recruitment of peripheral immune cells is an aberrant result of pathological changes or a physiological aspect of the neuroinflammatory response to the tau pathology.
Collapse
Affiliation(s)
- Iain J Hartnell
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - David Blum
- University of Lille, Inserm, CHU-Lille, UMR-S 1172-Lille Neuroscience and Cognition, Lille, France.,Alzheimer & Tauopathies, LabEx DISTALZ, France
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Guillaume Dorothee
- Inserm, Sorbonne University, UMRS 938 Saint-Antoine Research Center, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
31
|
Loss of APP in mice increases thigmotaxis and is associated with elevated brain expression of IL-13 and IP-10/CXCL10. Physiol Behav 2021; 240:113533. [PMID: 34293404 DOI: 10.1016/j.physbeh.2021.113533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to memory loss and is often accompanied by increased anxiety. Although AD is a heterogeneous disease, dysregulation of inflammatory pathways is a consistent event. Interestingly, the amyloid precursor protein (APP), which is the source of the amyloid peptide Aβ, is also necessary for the efficient regulation of the innate immune response. Here, we hypothesize that loss of APP function in mice would lead to cognitive loss and anxiety behavior, both of which are typically present in AD, as well as changes in the expression of inflammatory mediators. To test this hypothesis, we performed open field, Y-maze and novel object recognition tests on 12-18-week-old male and female wildtype and AppKO mice to measure thigmotaxis, short-term spatial memory and long-term recognition memory. We then performed a quantitative multiplexed immunoassay to measure levels of 32 cytokines/chemokines associated with AD and anxiety. Our results showed that AppKO mice, compared to wildtype controls, experienced increased thigmotactic behavior but no memory impairments, and this phenotype correlated with increased IP-10 and IL-13 levels. Future studies will determine whether dysregulation of these inflammatory mediators contributes to pathogenesis in AD.
Collapse
|
32
|
Chung YS, Ahmed PK, Othman I, Shaikh MF. Orthosiphon stamineus Proteins Alleviate Hydrogen Peroxide Stress in SH-SY5Y Cells. Life (Basel) 2021; 11:life11060585. [PMID: 34202937 PMCID: PMC8235403 DOI: 10.3390/life11060585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
The neuroprotective potential of Orthosiphon stamineus leaf proteins (OSLPs) has never been evaluated in SH-SY5Y cells challenged by hydrogen peroxide (H2O2). This work thus aims to elucidate OSLP neuroprotective potential in alleviating H2O2 stress. OSLPs at varying concentrations were evaluated for cytotoxicity (24 and 48 h) and neuroprotective potential in H2O2-induced SH-SY5Y cells (24 h). The protective mechanism of H2O2-induced SH-SY5Y cells was also explored via mass-spectrometry-based label-free quantitative proteomics (LFQ) and bioinformatics. OSLPs (25, 50, 125, 250, 500, and 1000 µg/mL; 24 and 48 h) were found to be safe. Pre-treatments with OSLP doses (250, 500, and 1000 µg/mL, 24 h) significantly increased the survival of SH-SY5Y cells in a concentration-dependent manner and improved cell architecture—pyramidal-shaped cells, reduced clumping and shrinkage, with apparent neurite formations. OSLP pre-treatment (1000 µg/mL, 24 h) lowered the expressions of two major heat shock proteins, HSPA8 (heat shock protein family A (Hsp70) member 8) and HSP90AA1 (heat shock protein 90), which promote cellular stress signaling under stress conditions. OSLP is, therefore, suggested to be anti-inflammatory by modulating the “signaling of interleukin-4 and interleukin-13” pathway as the predominant mechanism in addition to regulating the “attenuation phase” and “HSP90 chaperone cycle for steroid hormone receptors” pathways to counteract heat shock protein (HSP)-induced damage under stress conditions.
Collapse
Affiliation(s)
- Yin-Sir Chung
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (Y.-S.C.); (I.O.)
| | - Pervaiz Khalid Ahmed
- School of Business, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- Global Asia in the 21st Century (GA21), Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (Y.-S.C.); (I.O.)
- Liquid Chromatography-Mass Spectrometry (LCMS) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (Y.-S.C.); (I.O.)
- Global Asia in the 21st Century (GA21), Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence:
| |
Collapse
|
33
|
Tejeda G, Ciciriello AJ, Dumont CM. Biomaterial Strategies to Bolster Neural Stem Cell-Mediated Repair of the Central Nervous System. Cells Tissues Organs 2021; 211:655-669. [PMID: 34120118 DOI: 10.1159/000515351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/12/2021] [Indexed: 01/25/2023] Open
Abstract
Stem cell therapies have the potential to not only repair, but to regenerate tissue of the central nervous system (CNS). Recent studies demonstrate that transplanted stem cells can differentiate into neurons and integrate with the intact circuitry after traumatic injury. Unfortunately, the positive findings described in rodent models have not been replicated in clinical trials, where the burden to maintain the cell viability necessary for tissue repair becomes more challenging. Low transplant survival remains the greatest barrier to stem cell-mediated repair of the CNS, often with fewer than 1-2% of the transplanted cells remaining after 1 week. Strategic transplantation parameters, such as injection location, cell concentration, and transplant timing achieve only modest improvements in stem cell transplant survival and appear inconsistent across studies. Biomaterials provide researchers with a means to significantly improve stem cell transplant survival through two mechanisms: (1) a vehicle to deliver and protect the stem cells and (2) a substrate to control the cytotoxic injury environment. These biomaterial strategies can alleviate cell death associated with delivery to the injury and can be used to limit cell death after transplantation by limiting cell exposure to cytotoxic signals. Moreover, it is likely that control of the injury environment with biomaterials will lead to a more reliable support for transplanted cell populations. This review will highlight the challenges associated with cell delivery in the CNS and the advances in biomaterial development and deployment for stem cell therapies necessary to bolster stem cell-mediated repair.
Collapse
Affiliation(s)
- Giancarlo Tejeda
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| | - Andrew J Ciciriello
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| | - Courtney M Dumont
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| |
Collapse
|
34
|
Chen VCH, Lin CK, Hsiao HP, Tzang BS, Hsu YH, Wu SI, Stewart R. Effects of Cancer, Chemotherapy, and Cytokines on Subjective and Objective Cognitive Functioning Among Patients with Breast Cancer. Cancers (Basel) 2021; 13:cancers13112576. [PMID: 34073990 PMCID: PMC8197334 DOI: 10.3390/cancers13112576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/21/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Although cognitive impairments have been complained about in patients with breast cancer who underwent chemotherapy, recent research has described possible neurocognitive decline prior to the start of chemotherapy and suggested that inflammatory cytokines may also have been involved. However, inconsistencies have been found in correlations of cognitive impairments with cancer, chemotherapy, and peridiagnostic cytokine levels. This cross-sectional study aimed to examine associations of cognitive functions and levels of cytokines in patients with newly- diagnosed breast cancer before chemotherapy, those that were 3 to 9 months after completing chemotherapy, and non-cancer controls, adjusting for baseline intelligence quotient, mood, and fatigue. We found that the performance in semantic association of verbal fluency in patients post chemotherapy might be affected by the status of cancer, IL-13, and anxiety. Our results indicated that verbal fluency and anxiety may be important when considering relevant psychosocial managements or prophylactic interventions for cognitive preservation associated with regulations in cytokines. Abstract Background: We aimed to investigate the associations of breast cancer (BC) and cancer-related chemotherapies with cytokine levels, and cognitive function. Methods: We evaluated subjective and objective cognitive function in BC patients before chemotherapy and 3~9 months after the completion of chemotherapy. Healthy volunteers without cancer were also compared as control group. Interleukins (IL) 2, 4, 5, 6, 10, 12p70, 13, 17A, 1β, IFNγ, and TNFα were measured. Associations of cancer status, chemotherapy and cytokine levels with subjective and objective cognitive impairments were analyzed using a regression model, adjusting for covariates, including IQ and psychological distress. Results: After adjustment, poorer performance in semantic verbal fluency was found in the post-chemotherapy subgroup compared to controls (p = 0.011, η2 = 0.070); whereas pre-chemotherapy patients scored higher in subjective cognitive perception. Higher IL-13 was associated with lower semantic verbal fluency in the post-chemotherapy subgroup. Higher IL-10 was associated with better perceived cognitive abilities in the pre-chemotherapy and control groups; while IL-5 and IL-13 were associated with lower perceived cognitive abilities in pre-chemotherapy and control groups. Our findings from mediation analysis further suggest that verbal fluency might be affected by cancer status, although mediated by anxiety. Conclusions: Our findings suggest that verbal fluency might be affected by cancer status, although mediated by anxiety. Different cytokines and their interactions may have different roles of neuroinflammation or neuroprotection that need further research.
Collapse
Affiliation(s)
- Vincent Chin-Hung Chen
- Department of Psychiatry, Chang Gung Medical Foundation, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (V.C.-H.C.); (H.-P.H.)
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chin-Kuo Lin
- Division of Pulmonary Infection and Critical Care, Department of Pulmonary and Critical Care Medicine Chang Gung Memorial Hospital, Chiayi 61306, Taiwan;
- Graduate Institute of Clinical Medicine Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Han-Pin Hsiao
- Department of Psychiatry, Chang Gung Medical Foundation, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (V.C.-H.C.); (H.-P.H.)
| | - Bor-Show Tzang
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yen-Hsuan Hsu
- Department of Psychology, National Chung Cheng University, Chiayi County 62102, Taiwan;
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi County 62102, Taiwan
| | - Shu-I Wu
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Department of Psychiatry, Mackay Memorial Hospital, New Taipei City 251020, Taiwan
- Correspondence: ; Tel.: +886-2-2543-3535
| | - Robert Stewart
- Department of Psychological Medicine, King’s College London, London SE5 8AF, UK;
- South London and Maudsley NHS Foundation Trust, London SE5 8AF, UK
| |
Collapse
|
35
|
Garrone B, Durando L, Prenderville J, Sokolowska E, Milanese C, Di Giorgio FP, Callaghan C, Bianchi M. Paracetamol (acetaminophen) rescues cognitive decline, neuroinflammation and cytoskeletal alterations in a model of post-operative cognitive decline (POCD) in middle-aged rats. Sci Rep 2021; 11:10139. [PMID: 33980934 PMCID: PMC8115335 DOI: 10.1038/s41598-021-89629-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/22/2021] [Indexed: 11/09/2022] Open
Abstract
Post-operative cognitive dysfunction (POCD) is a debilitating clinical phenomenon in elderly patients. Management of pain in elderly is complicated because analgesic opiates elicit major side effects. In contrast, paracetamol (acetaminophen) has shown analgesic efficacy, no impact on cognition, and its side effects are well tolerated. We investigated the efficacy of paracetamol, compared to the opioid analgesic buprenorphine, in a model of POCD by investigating cognitive decline, allodynia, peripheral and hippocampal cytokines levels, and hippocampal microtubule dynamics as a key modulator of synaptic plasticity. A POCD model was developed in middle-aged (MA) rats by inducing a tibia fracture via orthopaedic surgery. Control MA rats did not undergo any surgery and only received isoflurane anaesthesia. We demonstrated that cognitive decline and increased allodynia following surgery was prevented in paracetamol-treated animals, but not in animals which were exposed to anesthesia alone or underwent the surgery and received buprenorphine. Behavioral alterations were associated with different peripheral cytokine changes between buprenorphine and paracetamol treated animals. Buprenorphine showed no central effects, while paracetamol showed modulatory effects on hippocampal cytokines and markers of microtubule dynamics which were suggestive of neuroprotection. Our data provide the first experimental evidence corroborating the use of paracetamol as first-choice analgesic in POCD.
Collapse
Affiliation(s)
- B Garrone
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181, Rome, Italy
| | - L Durando
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181, Rome, Italy
| | - J Prenderville
- Transpharmation Ireland Ltd., Trinity College Dublin-Institute of Neuroscience (TCIN), Lloyd Institute, Trinity College, Dublin 2, Ireland
| | - E Sokolowska
- Transpharmation Ireland Ltd., Trinity College Dublin-Institute of Neuroscience (TCIN), Lloyd Institute, Trinity College, Dublin 2, Ireland
| | - C Milanese
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181, Rome, Italy
| | - F P Di Giorgio
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181, Rome, Italy
| | - C Callaghan
- Ulysses Neuroscience Ltd, Room 3.57B, Trinity College Dublin-Institute of Neuroscience (TCIN), Lloyd Institute, Trinity College, Dublin 2, Ireland
| | - M Bianchi
- Ulysses Neuroscience Ltd, Room 3.57B, Trinity College Dublin-Institute of Neuroscience (TCIN), Lloyd Institute, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
36
|
Kagoya R, Kondo K, Kishimoto‐Urata M, Shimizu Y, Kikuta S, Yamasoba T. A murine model of eosinophilic chronic rhinosinusitis using the topical application of a vitamin D3 analog. Allergy 2021; 76:1432-1442. [PMID: 33058214 DOI: 10.1111/all.14627] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/31/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Eosinophilic chronic rhinosinusitis (ECRS) is a chronic inflammatory disease, characterized by eosinophilic infiltration, T-helper type 2 (Th2-type) response, and olfactory dysfunction. A master regulator of Th2-type inflammation, thymic stromal lymphopoietin (TSLP), is important for basophil activation. TSLP-elicited basophils are a key factor in the pathogenesis of ECRS. METHODS In order to elucidate the mechanisms of ECRS in humans, we aimed to establish a murine model of ECRS based on TSLP production in response to the topical application of MC903 (a vitamin D3 analog) and the subsequent TSLP-induced basophil activation. Histological analyses were performed to assess immune cell infiltration into the nasal mucosa and to explore the impact of eosinophilic inflammation on the olfactory epithelium. The status of Th2-type inflammation was evaluated by quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA). RESULTS Eosinophils, basophils, and M2 macrophages increased significantly in the nasal mucosa of the mice treated with MC903 and ovalbumin (OVA), compared to those treated with OVA alone or the controls. Quantitative real-time PCR and ELISA revealed elevated expression of interleukin (IL)-4, IL-5, IL-13, TSLP, the chemokine CCL11, and CCL24 in the nasal mucosa of the ECRS mice. In parallel, thinned olfactory epithelium and decreased mature olfactory sensory neurons were observed in the ECRS mice. CONCLUSIONS Our model of ECRS displayed Th2-type inflammation in the sinonasal region, including both eosinophil infiltration and basophil infiltration. Additionally, olfactory epithelium turned out to be affected by eosinophilic inflammation. These features are consistent with the characteristics of the human ECRS.
Collapse
Affiliation(s)
- Ryoji Kagoya
- Department of Otorhinolaryngology–Head and Neck Surgery Graduate School of Medicine The University of Tokyo Tokyo Japan
- Department of Otolaryngology Teikyo University Tokyo Japan
| | - Kenji Kondo
- Department of Otorhinolaryngology–Head and Neck Surgery Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Megumi Kishimoto‐Urata
- Department of Otorhinolaryngology–Head and Neck Surgery Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Yuya Shimizu
- Department of Otorhinolaryngology–Head and Neck Surgery Graduate School of Medicine The University of Tokyo Tokyo Japan
- Department of Otolaryngology Teikyo University Tokyo Japan
| | - Shu Kikuta
- Department of Otorhinolaryngology–Head and Neck Surgery Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Tatsuya Yamasoba
- Department of Otorhinolaryngology–Head and Neck Surgery Graduate School of Medicine The University of Tokyo Tokyo Japan
| |
Collapse
|
37
|
Generation of cryopreserved macrophages from normal and genetically engineered human pluripotent stem cells for disease modelling. PLoS One 2021; 16:e0250107. [PMID: 33886609 PMCID: PMC8061979 DOI: 10.1371/journal.pone.0250107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/30/2021] [Indexed: 11/19/2022] Open
Abstract
Macrophages are innate immune cells that play critical roles in tissue homeostasis, inflammation, and immune oncology. Macrophages differentiated from human induced pluripotent stem cells (iPSCs) overcome many limitations of using peripheral blood derived macrophages. The ability to scale up and cryopreserve a large amount of end stage macrophages from single clonal iPSCs from normal and disease specific donors offers a unique opportunity for genomic analysis and drug screening. The present study describes the step wise generation and characterization of macrophages from iPSCs using a defined serum free method amenable to scale up to generate a large batch of pure end stage cryopreservable macrophages expressing CD68, CD33, CD11c, CD11b, CD1a, HLA-DR, CD86, CD64, CD80, CD206, CD169, CD47, HLA-ABC, and CX3CR. The end stage macrophages pre and post cryopreservation retain purity, morphology, responsiveness to stimuli and display robust phagocytic function coming right out of cryopreservation. The same differentiation process was used to generate end stage macrophages from isogenic iPSCs engineered to mimic mutations associated with Parkinson's disease (SNCA A53T), neuronal ceroid lipofuscinosis (GRN2/GRN R493X), and Rett syndrome (MECP2-Knockout). End stage macrophages from isogenic engineered clones displayed differential macrophage-specific purity markers, phagocytic function, and response to specific stimuli. Thus, generating a panel of functional, physiologically relevant iPSC-derived macrophages can potentially facilitate the understanding of neural inflammatory responses associated with neurodegeneration.
Collapse
|
38
|
Jeong JY, Wi R, Chung YC, Jin BK. Interleukin-13 Propagates Prothrombin Kringle-2-Induced Neurotoxicity in Hippocampi In Vivo via Oxidative Stress. Int J Mol Sci 2021; 22:ijms22073486. [PMID: 33801783 PMCID: PMC8036367 DOI: 10.3390/ijms22073486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
The present study investigated expression of endogenous interleukin-13 (IL-13) and its possible function in the hippocampus of prothrombin kringle-2 (pKr-2)-lesioned rats. Here we report that intrahippocampal injection of pKr-2 revealed a significant loss of NeuN-immunopositive (NeuN+) and Nissl+ cells in the hippocampus at 7 days after pKr-2. In parallel, pKr-2 increased IL-13 levels, which reached a peak at 3 days post pKr-2 and sustained up to 7 days post pKr-2. IL-13 immunoreactivity was seen exclusively in activated microglia/macrophages and neutrophils, but not in neurons or astrocytes. In experiments designed to explore the involvement of IL-13 in neurodegeneration, IL-13 neutralizing antibody (IL-13Nab) significantly increased survival of NeuN+ and Nissl+ cells. Accompanying neuroprotection, immunohistochemical analysis indicated that IL-13Nab inhibited pKr-2-induced expression of inducible nitric oxide synthase and myeloperoxidase within activated microglia/macrophages and neutrophils, possibly resulting in attenuation of reactive oxygen species (ROS) generation and oxidative damage of DNA and protein. The current findings suggest that the endogenous IL-13 expressed in pKr-2 activated microglia/macrophages and neutrophils might be harmful to hippocampal neurons via oxidative stress.
Collapse
Affiliation(s)
- Jae Yeong Jeong
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Rayul Wi
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Young Cheul Chung
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea
- Correspondence: (Y.C.C.); (B.K.J.)
| | - Byung Kwan Jin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: (Y.C.C.); (B.K.J.)
| |
Collapse
|
39
|
Isaacs AM, Morton SU, Movassagh M, Zhang Q, Hehnly C, Zhang L, Morales DM, Sinnar SA, Ericson JE, Mbabazi-Kabachelor E, Ssenyonga P, Onen J, Mulondo R, Hornig M, Warf BC, Broach JR, Townsend RR, Limbrick DD, Paulson JN, Schiff SJ. Immune activation during Paenibacillus brain infection in African infants with frequent cytomegalovirus co-infection. iScience 2021; 24:102351. [PMID: 33912816 PMCID: PMC8065213 DOI: 10.1016/j.isci.2021.102351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/24/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammation during neonatal brain infections leads to significant secondary sequelae such as hydrocephalus, which often follows neonatal sepsis in the developing world. In 100 African hydrocephalic infants we identified the biological pathways that account for this response. The dominant bacterial pathogen was a Paenibacillus species, with frequent cytomegalovirus co-infection. A proteogenomic strategy was employed to confirm host immune response to Paenibacillus and to define the interplay within the host immune response network. Immune activation emphasized neuroinflammation, oxidative stress reaction, and extracellular matrix organization. The innate immune system response included neutrophil activity, signaling via IL-4, IL-12, IL-13, interferon, and Jak/STAT pathways. Platelet-activating factors and factors involved with microbe recognition such as Class I MHC antigen-presenting complex were also increased. Evidence suggests that dysregulated neuroinflammation propagates inflammatory hydrocephalus, and these pathways are potential targets for adjunctive treatments to reduce the hazards of neuroinflammation and risk of hydrocephalus following neonatal sepsis. There is a characteristic immune response to Paenibacillus brain infection There is a characteristic immune response to CMV brain infection The matching immune response validates pathogen genomic presence The combined results support molecular infection causality
Collapse
Affiliation(s)
- Albert M Isaacs
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sarah U Morton
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Mercedeh Movassagh
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Qiang Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christine Hehnly
- Institute for Personalized Medicine, Pennsylvania State University, Hershey, PA 17033, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16801, USA
| | - Lijun Zhang
- Institute for Personalized Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Diego M Morales
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shamim A Sinnar
- Center for Neural Engineering, Pennsylvania State University, State College, PA 16801, USA.,Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jessica E Ericson
- Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | | | | | - Justin Onen
- CURE Children's Hospital of Uganda, Mbale, Uganda
| | | | - Mady Hornig
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
| | - James R Broach
- Institute for Personalized Medicine, Pennsylvania State University, Hershey, PA 17033, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16801, USA
| | - R Reid Townsend
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph N Paulson
- Department of Biostatistics, Product Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - Steven J Schiff
- Center for Neural Engineering, Pennsylvania State University, State College, PA 16801, USA.,Center for Infectious Disease Dynamics, Departments of Neurosurgery, Engineering Science and Mechanics, and Physics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
40
|
Chronic exposure to IL-6 induces a desensitized phenotype of the microglia. J Neuroinflammation 2021; 18:31. [PMID: 33482848 PMCID: PMC7821504 DOI: 10.1186/s12974-020-02063-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Background When the homeostasis of the central nervous system (CNS) is altered, microglial cells become activated displaying a wide range of phenotypes that depend on the specific site, the nature of the activator, and particularly the microenvironment generated by the lesion. Cytokines are important signals involved in the modulation of the molecular microenvironment and hence play a pivotal role in orchestrating microglial activation. Among them, interleukin-6 (IL-6) is a pleiotropic cytokine described in a wide range of pathological conditions as a potent inducer and modulator of microglial activation, but with contradictory results regarding its detrimental or beneficial functions. The objective of the present study was to evaluate the effects of chronic IL-6 production on the immune response associated with CNS-axonal anterograde degeneration. Methods The perforant pathway transection (PPT) paradigm was used in transgenic mice with astrocyte-targeted IL6-production (GFAP-IL6Tg). At 2, 3, 7, 14, and 21 days post-lesion, the hippocampal areas were processed for immunohistochemistry, flow cytometry, and protein microarray. Results An increase in the microglia/macrophage density was observed in GFAP-IL6Tg animals in non-lesion conditions and at later time-points after PPT, associated with higher microglial proliferation and a major monocyte/macrophage cell infiltration. Besides, in homeostasis, GFAP-IL6Tg showed an environment usually linked with an innate immune response, with more perivascular CD11b+/CD45high/MHCII+/CD86+ macrophages, higher T cell infiltration, and higher IL-10, IL-13, IL-17, and IL-6 production. After PPT, WT animals show a change in microglia phenotype expressing MHCII and co-stimulatory molecules, whereas transgenic mice lack this shift. This lack of response in the GFAP-IL6Tg was associated with lower axonal sprouting. Conclusions Chronic exposure to IL-6 induces a desensitized phenotype of the microglia. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02063-1.
Collapse
|
41
|
Xiao Z, Lei T, Liu Y, Yang Y, Bi W, Du H. The potential therapy with dental tissue-derived mesenchymal stem cells in Parkinson's disease. Stem Cell Res Ther 2021; 12:5. [PMID: 33407864 PMCID: PMC7789713 DOI: 10.1186/s13287-020-01957-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disease worldwide, is caused by the loss of dopaminergic (DAergic) neurons in the substantia nigra resulting in a series of motor or non-motor disorders. Current treatment methods are unable to stop the progression of PD and may bring certain side effects. Cell replacement therapy has brought new hope for the treatment of PD. Recently, human dental tissue-derived mesenchymal stem cells have received extensive attention. Currently, dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHED) are considered to have strong potential for the treatment of these neurodegenerative diseases. These cells are considered to be ideal cell sources for the treatment of PD on account of their unique characteristics, such as neural crest origin, immune rejection, and lack of ethical issues. In this review, we briefly describe the research investigating cell therapy for PD and discuss the application and progress of DPSCs and SHED in the treatment of PD. This review offers significant and comprehensive guidance for further clinical research on PD.
Collapse
Affiliation(s)
- Zhuangzhuang Xiao
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 XueYuan Road, Haidian District, Beijing, 100083, China
| | - Tong Lei
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 XueYuan Road, Haidian District, Beijing, 100083, China
| | - Yanyan Liu
- Kangyanbao (Beijing) Stem Cell Technology Co., Ltd, Beijing, 102600, China
| | - Yanjie Yang
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 XueYuan Road, Haidian District, Beijing, 100083, China
| | - Wangyu Bi
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 XueYuan Road, Haidian District, Beijing, 100083, China
| | - Hongwu Du
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 XueYuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
42
|
Gao C, Yan Y, Chen G, Wang T, Luo C, Zhang M, Chen X, Tao L. Autophagy Activation Represses Pyroptosis through the IL-13 and JAK1/STAT1 Pathways in a Mouse Model of Moderate Traumatic Brain Injury. ACS Chem Neurosci 2020; 11:4231-4239. [PMID: 33170612 DOI: 10.1021/acschemneuro.0c00517] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The newly highlighted research into programmed cell death (PCD), autophagy dependent cell death and pyroptotic cell death, has shown that these processes are both strongly correlated with the pathological progression of traumatic brain injury (TBI). However, their cross-talk in TBI remains unclear. Here, a moderate TBI model was established to explore the relationship between autophagy and pyroptosis. Rapamycin was used to activate the process of autophagy, which was impaired in the moderate TBI model, and this treatment reversed the expression of pyroptosis associated proteins, interleukin-13 (IL-13) and the pJAK-1 pathway, which were upregulated significantly after TBI. The level of IL-13 was downregulated, and the JAK-1 pathway was blocked to reveal the molecular mechanisms by which autophagy inhibits pyroptosis; these two treatments reduced the expression levels of pyroptosis associated proteins. In addition, these three interventions reduced the formation of neuronal NLRP3, the extent of brain edema, and the degree of cortical neuron degeneration. Furthermore, the deficit in motor function post-TBI was also markedly alleviated. Collectively, our results demonstrated that autophagy activation exerts a neuroprotective effect by inhibiting pyroptotic cell death in the moderate TBI model, and the inhibitory effect was dependent on the downregulation of IL-13 and repression of the JAK-1-STAT-1 signaling pathway.
Collapse
Affiliation(s)
- Cheng Gao
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Ya’nan Yan
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Guang Chen
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Tao Wang
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Mingyang Zhang
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Xiping Chen
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Luyang Tao
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| |
Collapse
|
43
|
Kang R, Gamdzyk M, Lenahan C, Tang J, Tan S, Zhang JH. The Dual Role of Microglia in Blood-Brain Barrier Dysfunction after Stroke. Curr Neuropharmacol 2020; 18:1237-1249. [PMID: 32469699 PMCID: PMC7770642 DOI: 10.2174/1570159x18666200529150907] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/26/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
It is well-known that stroke is one of the leading causes of death and disability all over the world. After a stroke, the blood-brain barrier subsequently breaks down. The BBB consists of endothelial cells surrounded by astrocytes. Microglia, considered the long-living resident immune cells of the brain, play a vital role in BBB function. M1 microglia worsen BBB disruption, while M2 microglia assist in repairing BBB damage. Microglia can also directly interact with endothelial cells and affect BBB permeability. In this review, we are going to discuss the mechanisms responsible for the dual role of microglia in BBB dysfunction after stroke.
Collapse
Affiliation(s)
- Ruiqing Kang
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA,Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Sheng Tan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
44
|
Li P, Li X, Deng P, Wang D, Bai X, Li Y, Luo C, Belguise K, Wang X, Wei X, Xia Z, Yi B. Activation of adenosine A3 receptor reduces early brain injury by alleviating neuroinflammation after subarachnoid hemorrhage in elderly rats. Aging (Albany NY) 2020; 13:694-713. [PMID: 33253120 PMCID: PMC7835045 DOI: 10.18632/aging.202178] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/05/2020] [Indexed: 04/14/2023]
Abstract
The incidence of subarachnoid hemorrhage (SAH) and hazard ratio of death increase with age. Overactivation of microglia contributes to brain damage. This study aimed to investigate the effects of A3 adenosine receptors (A3R) activation on neurofunction and microglial phenotype polarization in the context of SAH in aged rats. The A3R agonist (CI-IB-MECA) and antagonist (MRS1523) were used in the SAH model. Microglia were cultured to mimic SAH in the presence or absence of CI-IB-MECA and/or siRNA for A3R. The neurofunction and status of the microglial phenotype were evaluated. The P38 inhibitor SB202190 and the STAT6 inhibitor AS1517499 were used to explore the signaling pathway. The results showed that SAH induced microglia to polarize to the M(LPS) phenotype both in vivo and in vitro. CI-IB-MECA distinctly skewed microglia towards the M(IL-4) phenotype and ameliorated neurological dysfunction, along with the downregulation of inflammatory cytokines. Knockdown of A3R or inhibition of P38 and/or STAT6 weakened the effects of CI-IB-MECA on microglial phenotypic shifting. Collectively, our findings suggest that activation of A3R exerted anti-inflammatory and neuroprotective effects by regulating microglial phenotype polarization through P38/STAT6 pathway and indicated that A3R agonists may be a promising therapeutic options for the treatment of brain injury after SAH.
Collapse
Affiliation(s)
- Peng Li
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
- Department of Anesthesia, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Xiaojun Li
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Peng Deng
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Dandan Wang
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xuehong Bai
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yujie Li
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chunxia Luo
- Department of Neurology, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Karine Belguise
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), University P. Sabatier, Toulouse Cedex 9, France
| | - Xiaobo Wang
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), University P. Sabatier, Toulouse Cedex 9, France
| | - Xinchuan Wei
- Department of Anesthesia, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Zhengyuan Xia
- Department of Anesthesiology, University of Hong Kong, Hong Kong SAR, China
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Yi
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
45
|
Béroule DG. Paradoxical Effects of a Cytokine and an Anticonvulsant Strengthen the Epigenetic/Enzymatic Avenue for Autism Research. Front Cell Neurosci 2020; 14:585395. [PMID: 33262691 PMCID: PMC7686807 DOI: 10.3389/fncel.2020.585395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
Maternal exposure to the valproate short-chain fatty acid (SCFA) during pregnancy is known to possibly induce autism spectrum disorders (ASDs) in the offspring. By contrast, case studies have evidenced positive outcomes of this anticonvulsant drug in children with severe autism. Interestingly, the same paradoxical pattern applies to the IL-17a inflammatory cytokine involved in the immune system regulation. Such joint apparent contradictions can be overcome by pointing out that, among their respective signaling pathways, valproate and IL-17a share an enhancement of the “type A monoamine oxidase” (MAOA) enzyme carried by the X chromosome. In the Guided Propagation (GP) model of autism, such enzymatic rise triggers a prenatal epigenetic downregulation, which, without possible X-inactivation, and when coinciding with genetic expression variants of other brain enzymes, results in the delayed onset of autistic symptoms. The underlying imbalance of synaptic monoamines, serotonin in the first place, would reflect a mismatch between the environment to which the brain metabolism was prepared during gestation and the postnatal actual surroundings. Following a prenatal exposure to molecules that significantly elicit the MAOA gene expression, a daily treatment with the same metabolic impact would tend to recreate the fetal environment and contribute to rebalance monoamines, thus allowing proper neural circuits to gradually develop, provided behavioral re-education. Given the multifaceted other players than MAOA that are involved in the regulation of serotonin levels, potential compensatory effects are surveyed, which may underlie the autism heterogeneity. This explanatory framework opens up prospects regarding autism prevention and treatment, strikingly in line with current advances along the gut microbiome–brain axis.
Collapse
Affiliation(s)
- D G Béroule
- CNRS, Bat.508, Faculté des Sciences d'Orsay, BP 133, Orsay, France.,CRIIGEN, Paris, France
| |
Collapse
|
46
|
Eslami A, Dehbashi M, Ashja-Arvan M, Salehi H, Azimzadeh M, Ganjalikhani-Hakemi M. Assessment of ability of human adipose derived stem cells for long term overexpression of IL-11 and IL-13 as therapeutic cytokines. Cytotechnology 2020; 72:773-784. [PMID: 32935166 PMCID: PMC7547926 DOI: 10.1007/s10616-020-00421-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/02/2020] [Indexed: 02/05/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) are a type of mesenchymal stem cells with the therapeutic effects that make them one of the best sources for cell therapy. In this study, we aimed to assess the ability of human ADSCs for constant expression of IL-11 and IL-13, simultaneously. In this study, the characterized hADSCs were transduced with a lentiviral vector (PCDH-513B) containing IL-11 and IL-13 genes, and the ability of long-term expression of the transgenes was evaluated by ELISA technique on days 15, 45 and 75 after transduction. Our results indicated a high rate of transduction (more than 90%) in the isolated hADSCs. Our data showed the highest rate of expression on days 75 after transduction which was 242.67 pg/ml for IL-11 and 303.6 pg/ml for IL-13 compared with 35.2 pg/ml and 35.6 pg/ml in untreated cells, respectively (p = 0.001). Besides, MTT assay showed transduction of hADSCs with lentiviral viruses containing IL-11 and IL-13 had no adverse effect on hADSCs proliferation (p-value = 0.89). Finally, we successfully constructed a hADSC population stably overexpressing IL-11 as the neurotrophic cytokine and IL-13 as the anti-inflammatory cytokine and this transduced cells can be used for further studies in EAE mice model.
Collapse
Affiliation(s)
- Asma Eslami
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Moein Dehbashi
- Division of Genetics, Department of Cell and Molecular Biology, Faculty of Biological Sciences and Technologies, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Mehnoosh Ashja-Arvan
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Azimzadeh
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
47
|
Two single nucleotide polymorphisms in IL13 and IL13RA1 from individuals with idiopathic Parkinson's disease increase cellular susceptibility to oxidative stress. Brain Behav Immun 2020; 88:920-924. [PMID: 32276028 PMCID: PMC9012133 DOI: 10.1016/j.bbi.2020.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 01/18/2023] Open
Abstract
The human genes for interleukin 13 (IL-13) and its receptor alpha 1 (IL-13Rα1) are in chromosomal regions associated with Parkinson's disease (PD). The interaction of IL-13 with its receptor increases the susceptibility of mouse dopaminergic neurons to oxidative stress. We identified two rare single SNPs in IL13 and IL13RA1 and measured their cytotoxic effects. rs148077750 is a missense leucine to proline substitution in IL13. It was found in individuals with early onset PD and no other known monogenic forms of the disease and is significantly linked with PD (Fisher's exact test: p-value = 0.01, odds ratio = 14.2). rs145868092 is a leucine to phenylalanine substitution in IL13RA1 affecting a residue critical for IL-13 binding. Both mutations increased the cytotoxic activity of IL-13 on human SH-SY5Y neurons exposed to sublethal doses of hydrogen peroxide, t-butyl hydroperoxide or RLS3, an inducer of ferroptosis. Our data show that both rs148077750 and rs145868092 conferred a gain-of-function that may increase the risk of developing PD.
Collapse
|
48
|
Quarta A, Berneman Z, Ponsaerts P. Neuroprotective modulation of microglia effector functions following priming with interleukin 4 and 13: current limitations in understanding their mode-of-action. Brain Behav Immun 2020; 88:856-866. [PMID: 32224056 DOI: 10.1016/j.bbi.2020.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years the long-standing theory of microglia's properties for dual polarization towards a pro- or anti-inflammatory phenotype has been deeply challenged. Furthermore, the elucidation of microglia ontogenesis exposed intrinsic differences between microglia and peripheral myeloid cells, thereby further underscoring the need to re-evaluate microglia-specific activation behavior, especially within an inflamed central nervous system (CNS) environment. This review critically summarizes recent literature on the in vitro and in vivo response of murine microglia to the immune-modulatory cytokines interleukin 4 (IL4) and interleukin 13 (IL13), i.e. those driving the so-called anti-inflammatory phenotype. Here we highlight several pivotal factors that may influence experimental outcome and/or interpretation of in vitro and in vivo studies evaluating microglia's phenotypical and functional properties upon IL4/IL13 treatment. Finally, the current therapeutic relevance of IL4/IL13-induced microglia activation in both acute and chronic CNS disorders is discussed.
Collapse
Affiliation(s)
- Alessandra Quarta
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
49
|
Huang L, You J, Yao Y, Xie M. Interleukin-13 Gene Modification Enhances Grafted Mesenchymal Stem Cells Survival After Subretinal Transplantation. Cell Mol Neurobiol 2020; 40:725-735. [PMID: 31792777 PMCID: PMC11448798 DOI: 10.1007/s10571-019-00768-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) hold great potential for cell- and gene-based therapies for retinal degeneration. Limited survival is the main obstacle in achieving successful subretinal transplantation of MSCs. The present study sought to evaluate the effect of interleukin-13 (IL-13) gene modification on the phenotypic alteration of retinal microglia (RMG) and the survival of MSCs following subretinal grafting. In this study, LPS-activated RMG were cocultured with MSCs or IL-13-expressing MSCs (IL-13-MSCs) for 24 h, and activated phenotypes were detected in vitro. Western blotting was performed to quantify cytokine secretion by light-injured retinas following subretinal transplantation. The numbers of activated RMG and surviving grafted cells were analysed, and the integrity of the blood-retinal barrier (BRB) was examined in vivo. We found that, compared with normal MSCs, cocultured IL-13-MSCs suppressed the expression of pro-inflammatory factors and major histocompatibility complex II, promoted the expression of anti-inflammatory cytokines by activated RMG and simultaneously inhibited the proliferation of and phagocytosis by RMG. The subretinal transplantation of IL-13-MSCs increased the expression of neurotrophic factors, IL-13 and tight junction proteins in the host retina, decreased the number of phagocytic RMG and improved the survival of grafted cells. Furthermore, IL-13-MSCs alleviated BRB breakdown induced by subretinal injection. Our results demonstrate that IL-13-MSCs can polarize activated RMG to the neuroprotective M2 phenotype and enhance the survival of grafted MSCs against the damage stress induced by subretinal transplantation.
Collapse
Affiliation(s)
- Libin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, 350005, Fuzhou, China
| | - Junmei You
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, 350005, Fuzhou, China
| | - Yao Yao
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, 350005, Fuzhou, China
| | - Maosong Xie
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, 350005, Fuzhou, China.
| |
Collapse
|
50
|
Darnell EP, Wroblewski KE, Pagel KL, Kern DW, McClintock MK, Pinto JM. IL-1Rahigh-IL-4low-IL-13low: A Novel Plasma Cytokine Signature Associated with Olfactory Dysfunction in Older US Adults. Chem Senses 2020; 45:407-414. [PMID: 32369568 PMCID: PMC7320218 DOI: 10.1093/chemse/bjaa029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inflammation has been implicated in physical frailty, but its role in sensory impairment is unclear. Given that olfactory impairment predicts dementia and mortality, determining the role of the immune system in olfactory dysfunction would provide insights mechanisms of neurosensory decline. We analyzed data from the National Social Life, Health and Aging Project, a representative sample of home-dwelling older US adults. Plasma levels of 18 cytokines were measured using standard protocols (Luminex xMAP). Olfactory function was assessed with validated tools (n-butanol sensitivity and odor identification, each via Sniffin' Sticks). We tested the association between cytokine profiles and olfactory function using multivariate ordinal logistic regression, adjusting for age, gender, race/ethnicity, education level, cognitive function, smoking status, and comorbidity. Older adults with the IL-1Rahigh-IL-4low-IL-13low cytokine profile had worse n-butanol odor sensitivity (odds ratio [OR] = 1.61, 95% confidence interval [CI] 1.19-2.17) and worse odor identification (OR = 1.42, 95% CI 1.11-1.80). Proinflammatory, Th1, or Th2 cytokine profiles were not associated with olfactory function. Moreover, accounting for physical frailty did not alter the main findings. In conclusion, we identified a plasma cytokine signature-IL-1Rahigh-IL-4low-IL-13low-that is associated with olfactory dysfunction in older US adults. These data implicate systemic inflammation in age-related olfactory dysfunction and support a role for immune mechanisms in this process, a concept that warrants additional scrutiny.
Collapse
Affiliation(s)
- Eli P Darnell
- Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA
| | - Kristen E Wroblewski
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Kristina L Pagel
- Department of Comparative Human Development, The University of Chicago, Chicago, IL, USA
- Center on Demography and Aging, The University of Chicago, Chicago, IL, USA
- Institute for Mind and Biology, The University of Chicago, Chicago, IL, USA
| | - David W Kern
- Department of Comparative Human Development, The University of Chicago, Chicago, IL, USA
| | - Martha K McClintock
- Department of Comparative Human Development, The University of Chicago, Chicago, IL, USA
- Center on Demography and Aging, The University of Chicago, Chicago, IL, USA
- Institute for Mind and Biology, The University of Chicago, Chicago, IL, USA
| | - Jayant M Pinto
- Center on Demography and Aging, The University of Chicago, Chicago, IL, USA
- Section of Otolaryngology—Head and Neck Surgery, Department of Surgery, The University of Chicago, Chicago, IL, USA
| |
Collapse
|