1
|
Chen P, Wang S, Zhang H, Li J. Recent advances in nanotherapy-based treatment of epilepsy. Colloids Surf B Biointerfaces 2025; 249:114499. [PMID: 39778465 DOI: 10.1016/j.colsurfb.2025.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/21/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Epilepsy is a complex neurological disorder characterized by recurrent seizures affecting millions of people worldwide. Despite advances in drug therapy, a significant proportion of patients remain resistant to conventional antiepileptic drugs (AEDs) due to challenges such as impermeability of the blood-brain barrier (BBB), multidrug resistance, and multifaceted epileptogenesis. Nanotechnology offers promising strategies to overcome these barriers by enhancing drug delivery across the BBB, improving target specificity and minimizing systemic side effects. This review explores recent advances in different innovative strategies of nanodelivery systems for epilepsy therapy, and we will discuss the design principles, mechanisms of action and therapeutic efficacy of these nanodelivery systems. In addition, we discuss the challenges and limitations that hinder the clinical translation of nanomedicine-based therapies for epilepsy. We emphasize the need for personalized and multidisciplinary approaches as well as the importance of continued research and interdisciplinary collaboration in order to translate these innovative strategies into effective therapies. Ultimately, the use of nanotechnology has the potential to enhance seizure control, reduce the burden of epilepsy, and improve the quality of life of patients affected by this complex neurological disorder. Nanotechnology-based drug delivery systems may usher in a new era of precision medicine for epilepsy treatment.
Collapse
Affiliation(s)
- Peng Chen
- General Hospital of Northern Theater Command, Liaoning 110016, China
| | - Shudong Wang
- Jinzhou Medical University, Liaoning 121001, China
| | - Heming Zhang
- Dalian Medical University, Liaoning 116044, China
| | - Jian Li
- General Hospital of Northern Theater Command, Liaoning 110016, China.
| |
Collapse
|
2
|
Shi J, Xie J, Li Z, He X, Wei P, Sander JW, Zhao G. The Role of Neuroinflammation and Network Anomalies in Drug-Resistant Epilepsy. Neurosci Bull 2025; 41:881-905. [PMID: 39992353 PMCID: PMC12014895 DOI: 10.1007/s12264-025-01348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/30/2024] [Indexed: 02/25/2025] Open
Abstract
Epilepsy affects over 50 million people worldwide. Drug-resistant epilepsy (DRE) accounts for up to a third of these cases, and neuro-inflammation is thought to play a role in such cases. Despite being a long-debated issue in the field of DRE, the mechanisms underlying neuroinflammation have yet to be fully elucidated. The pro-inflammatory microenvironment within the brain tissue of people with DRE has been probed using single-cell multimodal transcriptomics. Evidence suggests that inflammatory cells and pro-inflammatory cytokines in the nervous system can lead to extensive biochemical changes, such as connexin hemichannel excitability and disruption of neurotransmitter homeostasis. The presence of inflammation may give rise to neuronal network abnormalities that suppress endogenous antiepileptic systems. We focus on the role of neuroinflammation and brain network anomalies in DRE from multiple perspectives to identify critical points for clinical application. We hope to provide an insightful overview to advance the quest for better DRE treatments.
Collapse
Affiliation(s)
- Jianwei Shi
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute, Beijing, 100053, China
| | - Jing Xie
- Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | - Zesheng Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute, Beijing, 100053, China
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Hefei, 230022, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- China International Neuroscience Institute, Beijing, 100053, China.
| | - Josemir W Sander
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
- Chalfont Centre for Epilepsy, Chalfont St Peter, Buckinghamshire, SL9 0RJ, UK.
- Neurology Department, West China Hospital of Sichuan University, Chengdu, 61004, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- China International Neuroscience Institute, Beijing, 100053, China.
| |
Collapse
|
3
|
Rewell SSJ, Shad A, Chen L, Macowan M, Chu E, Gandasasmita N, Casillas-Espinosa PM, Li J, O'Brien TJ, Semple BD. A post-injury immune challenge with lipopolysaccharide following adult traumatic brain injury alters neuroinflammation and the gut microbiome acutely, but has little effect on chronic outcomes. Exp Neurol 2025; 386:115150. [PMID: 39842491 DOI: 10.1016/j.expneurol.2025.115150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Patients with a traumatic brain injury (TBI) are susceptible to hospital-acquired infections, presenting a significant challenge to an already-compromised immune system. The consequences and mechanisms by which this dual insult worsens outcomes are poorly understood. This study aimed to explore how a systemic immune stimulus (lipopolysaccharide, LPS) influences outcomes following experimental TBI in young adult mice. Male and female C57Bl/6J mice underwent controlled cortical impact or sham surgery, followed by 1 mg/kg i.p. LPS or saline-vehicle at 4 days post-TBI, before behavioral assessment and tissue collection at 6 h, 24 h, 7 days or 6 months. LPS induced acute sickness behaviors including weight loss, transient hypoactivity, and increased anxiety-like behavior. Early systemic immune activation by LPS was confirmed by increased spleen weight and serum cytokines. In brain tissue, gene expression analysis revealed a time course of inflammatory immune activation in TBI or LPS-treated mice (e.g., IL-1β, IL-6, CCL2, TNFα), which was exacerbated in TBI + LPS mice. This group also presented with fecal microbiome dysbiosis at 24 h post-LPS, with reduced bacterial diversity and changes in the relative abundance of key bacterial genera associated with sub-acute neurobehavioral and immune changes. Chronically, TBI induced hyperactivity and cognitive deficits, brain atrophy, and increased seizure susceptibility, similarly in vehicle and LPS-treated groups. Together, findings suggest that an immune challenge with LPS early after TBI, akin to a hospital-acquired infection, alters the acute neuroinflammatory response to injury, but has no lasting effects. Future studies could consider more clinically-relevant models of infection to build upon these findings.
Collapse
Affiliation(s)
- Sarah S J Rewell
- Department of Neuroscience, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Alfred Health, Prahran, VIC, Australia
| | - Ali Shad
- Department of Neuroscience, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Alfred Health, Prahran, VIC, Australia
| | - Lingjun Chen
- Department of Neuroscience, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Matthew Macowan
- Department of Immunology, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Erskine Chu
- Department of Neuroscience, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Natasha Gandasasmita
- Department of Neuroscience, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Alfred Health, Prahran, VIC, Australia
| | - Jian Li
- Department of Microbiology, Monash Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Alfred Health, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Nguyen DA, Niquet J, Marrero-Rosado B, Schultz CR, Stone MF, de Araujo Furtado M, Biney AK, Lumley LA. Age differences in organophosphorus nerve agent-induced seizure, blood brain barrier integrity, and neurodegeneration in midazolam-treated rats. Exp Neurol 2025; 385:115122. [PMID: 39710244 DOI: 10.1016/j.expneurol.2024.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Exposure to organophosphorus nerve agents irreversibly inhibits acetylcholinesterase and may lead to cholinergic crisis and seizures. Although benzodiazepines are the standard of care after nerve agent-induced status epilepticus, when treatment is delayed for up to 30 min or more, refractory status epilepticus can develop. Adult male rodents are often utilized for evaluation of therapeutic efficacy against nerve agent exposure. However, there may be age and sex differences in toxicity and in therapeutic response. We previously reported that juvenile rats are less susceptible to the lethal effects of soman compared to adults, while pups are the most susceptible. Here, we report on age and sex differences in delayed midazolam treatment efficacy on survival, seizures and brain pathology. Male and female pups, juvenile and adult rats were exposed to an equitoxic dose of soman and treated with atropine sulfate and the oxime asoxime chloride (HI-6 dimethanesulphonate) 1 min after exposure and with midazolam 40 min after seizure onset, determined by EEG in juvenile and adult rats, and by behavior in pups. Survival, seizure data, and spontaneous recurrent seizures were evaluated. Brains were processed to assess neurodegeneration, neuroinflammation, and blood brain barrier (BBB) integrity. Juvenile and adult rats exposed to soman and treated with midazolam had BBB disruption, epileptogenesis, neurodegeneration, microglial activation, and astrogliosis; adult rats had poorer outcomes. Pups and juvenile rats exposed to soman had poor survival prior to midazolam treatment but most survived once treated; overall, neurodegeneration or disrupted BBB integrity was not detected in midazolam-treated pups. We found that age is a determinant factor in soman-induced toxicity and response to standard medical countermeasures. In addition, we observed sex differences in response to soman in juveniles and males with respect to body weight growth curves and in neuronal loss in juveniles and adults. Adjunct therapies to midazolam are warranted and it is important to evaluate both age and sex as factors in therapeutic response.
Collapse
Affiliation(s)
- Donna A Nguyen
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, United States of America
| | - Jerome Niquet
- Department of Neurology, David Geffen School of Medicine at UCLA, Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States of America
| | - Brenda Marrero-Rosado
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, United States of America
| | - Caroline R Schultz
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, United States of America
| | - Michael F Stone
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, United States of America
| | | | - Abiel K Biney
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, United States of America
| | - Lucille A Lumley
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, United States of America.
| |
Collapse
|
5
|
Alves M, de Diego-Garcia L, Vegliante G, Moreno O, Gil B, Ramos-Cabrer P, Mitra M, Martin AF, Menéndez-Méndez A, Wang Y, Strogulski NR, Sun MJ, Melia C, Conte G, Plaza-García S, Khalin I, Teng X, Plesnila N, Klebl B, Dinkel K, Hamacher M, Bhattacharya A, Ceusters M, Palmer J, Loane DJ, Llop J, Henshall DC, Engel T. P2X7R antagonism suppresses long-lasting brain hyperexcitability following traumatic brain injury in mice. Theranostics 2025; 15:1399-1419. [PMID: 39886340 PMCID: PMC11780721 DOI: 10.7150/thno.97254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/01/2024] [Indexed: 02/01/2025] Open
Abstract
Purpose: Post-traumatic epilepsy (PTE) is one of the most common life-quality reducing consequences of traumatic brain injury (TBI). However, to date there are no pharmacological approaches to predict or to prevent the development of PTE. The P2X7 receptor (P2X7R) is a cationic ATP-dependent membrane channel that is expressed throughout the brain. While increasing evidence suggests a role for the P2X7R during seizures and epilepsy, it is unclear if changes in P2X7R expression can predict TBI-induced epilepsy development, and whether P2X7R antagonism can protect against long-lasting brain hyperexcitability caused by TBI. Methods: TBI was induced in adult male mice using the controlled cortical impact model (CCI). To test the anti-epileptogenic effects of P2X7R antagonism, mice were treated with brain-penetrant P2X7R antagonists JNJ-54175446 (30 mg/kg) or AFC-5128 (30 mg/kg) for 7 days post-CCI. The cell-type specific effects of P2X7Rs on TBI-induced hyperexcitability were analyzed in mice lacking exon 2 of the P2rx7 gene selectively in microglia (P2rx7:Cx3cr1-Cre). Static positron emission tomography (PET) via an intravenous injection of the P2X7R radioligand 18F-JNJ-64413739 and magnetic resonance imaging (MRI) were conducted twice during the first- and third-week post-injury. Results: Following TBI, while there were no obvious changes in P2X7R protein levels in the ipsilateral hippocampus post-injury, there was a delayed increase in P2X7R protein levels in the ipsilateral cortex at 3 months post-injury. Treatment with P2X7R antagonists shortly after TBI reduced long-lasting brain hyperexcitability, reduced cortical contusion volume, and normalized injury-induced hyperactivity to control sham-levels at 3 weeks post-TBI. Notably, mice lacking P2rx7 in microglia had an increased seizure threshold after TBI, suggesting that P2X7R contributed to brain hyperexcitability via its effects on microglia. Finally, P2X7R radioligand uptake after TBI correlated with seizure threshold at 3 weeks post-injury. Conclusions: Our results demonstrate the antiepileptogenic potential of P2X7R antagonism to prevent TBI-induced epilepsy and indicate that P2X7R-based PET imaging may be a useful diagnostic tool to identify people at risk of developing PTE.
Collapse
MESH Headings
- Animals
- Brain Injuries, Traumatic/complications
- Brain Injuries, Traumatic/drug therapy
- Brain Injuries, Traumatic/physiopathology
- Brain Injuries, Traumatic/metabolism
- Mice
- Male
- Receptors, Purinergic P2X7/metabolism
- Receptors, Purinergic P2X7/genetics
- Purinergic P2X Receptor Antagonists/pharmacology
- Disease Models, Animal
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Epilepsy, Post-Traumatic/prevention & control
- Epilepsy, Post-Traumatic/drug therapy
- Epilepsy, Post-Traumatic/etiology
- Mice, Inbred C57BL
- Seizures/drug therapy
- Positron-Emission Tomography
- Microglia/metabolism
- Microglia/drug effects
- Pyridines
- Tetrazoles
Collapse
Affiliation(s)
- Mariana Alves
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Laura de Diego-Garcia
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
- Department of Optometry, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Avda. Arcos de Jalon 118, 28040 Madrid, Spain
| | - Gloria Vegliante
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Oscar Moreno
- CIC biomaGUNE, Basque research and Technology Alliance (BRTA), P° Miramon 182, 20014 San Sebastian, Gipuzkoa, Spain
| | - Beatriz Gil
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque research and Technology Alliance (BRTA), P° Miramon 182, 20014 San Sebastian, Gipuzkoa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Meghma Mitra
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Ana Fernandez Martin
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Aida Menéndez-Méndez
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
- Department of Medicine, Faculty of Biomedical Sciences and Health, Universidad Europea de Madrid, C. Tajo, s/n, 28670 Villaviciosa de Odón, Madrid, Spain
| | - Yitao Wang
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Nathan Ryzewski Strogulski
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Meng-Juan Sun
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Ciara Melia
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Giorgia Conte
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Sandra Plaza-García
- CIC biomaGUNE, Basque research and Technology Alliance (BRTA), P° Miramon 182, 20014 San Sebastian, Gipuzkoa, Spain
| | - Igor Khalin
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Xinchen Teng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Bert Klebl
- KHAN Technology Transfer Fund I GmbH & Co. KG, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Klaus Dinkel
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Michael Hamacher
- Affectis Pharmaceuticals AG, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | | | - Marc Ceusters
- Janssen Pharmaceutica NV, Beerse, Belgium
- The Marc Ceusters Company, BV, Diest, Belgium
| | - James Palmer
- Janssen Research and Development LLC, San Diego, California, USA
| | - David J. Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Jordi Llop
- CIC biomaGUNE, Basque research and Technology Alliance (BRTA), P° Miramon 182, 20014 San Sebastian, Gipuzkoa, Spain
| | - David C. Henshall
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro Research Ireland Centre for Translational Brain Science, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro Research Ireland Centre for Translational Brain Science, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| |
Collapse
|
6
|
Cases‐Cunillera S, Quatraccioni A, Rossini L, Ruffolo G, Ono T, Baulac S, Auvin S, O'Brien TJ, Henshall DC, Akman Ö, Sankar R, Galanopoulou AS. WONOEP appraisal: The role of glial cells in focal malformations associated with early onset epilepsies. Epilepsia 2024; 65:3457-3468. [PMID: 39401070 PMCID: PMC11647439 DOI: 10.1111/epi.18126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
Epilepsy represents a common neurological disorder in patients with developmental brain lesions, particularly in association with malformations of cortical development and low-grade glioneuronal tumors. In these diseases, genetic and molecular alterations in neurons are increasingly discovered that can trigger abnormalities in the neuronal network, leading to higher neuronal excitability levels. However, the mechanisms underlying epilepsy cannot rely solely on assessing the neuronal component. Growing evidence has revealed the high degree of complexity underlying epileptogenic processes, in which glial cells emerge as potential modulators of neuronal activity. Understanding the role of glial cells in developmental brain lesions such as malformations of cortical development and low-grade glioneuronal tumors is crucial due to the high degree of pharmacoresistance characteristic of these lesions. This has prompted research to investigate the role of glial and immune cells in epileptiform activity to find new therapeutic targets that could be used as combinatorial drug therapy. In a special session of the XVI Workshop of the Neurobiology of Epilepsy (WONOEP, Talloires, France, July 2022) organized by the Neurobiology Commission of the International League Against Epilepsy, we discussed the evidence exploring the genetic and molecular mechanisms of glial cells and immune response and their implications in the pathogenesis of neurodevelopmental pathologies associated with early life epilepsies.
Collapse
Affiliation(s)
- Silvia Cases‐Cunillera
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Neuronal Signaling in Epilepsy and GliomaParisFrance
| | - Anne Quatraccioni
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of BonnBonnGermany
| | - Laura Rossini
- Epilepsy UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Gabriele Ruffolo
- Department of Physiology and PharmacologyIstituto Pasteur–Fondazione Cenci Bolognetti, University of Rome SapienzaRomeItaly
- IRCCS San Raffaele RomaRomeItaly
| | - Tomonori Ono
- Epilepsy Center, National Hospital Organization Nagasaki Medical CenterŌmuraJapan
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, INSERM, CNRS, AP‐HP, Hôpital de la Pitié SalpêtrièreParisFrance
| | - Stéphane Auvin
- Pediatric Neurology Department, AP‐HP, Robert Debré University HospitalCRMR épilepsies Rares, EpiCARE memberParisFrance
- Université Paris Cité, INSERM NeuroDiderotParisFrance
- Institut Universitaire de FranceParisFrance
| | - Terence J. O'Brien
- Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyRoyal Melbourne HospitalMelbourneVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
- Department of Medicine (Royal Melbourne Hospital)University of MelbourneMelbourneVictoriaAustralia
| | - David C. Henshall
- Department of Physiology and Medical Physics, RCSIUniversity of Medicine and Health SciencesDublinIreland
| | - Özlem Akman
- Department of PhysiologyFaculty of Medicine, Demiroglu Bilim UniversityIstanbulTurkey
| | - Raman Sankar
- Department of Pediatrics and NeurologyDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominique P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
7
|
Li C, Casillas‐Espinosa PM, Saletti PG, Chi T, Yamakawa G, Silva J, Hudson M, Liu W, Jones NC, Shultz SR, Ali I, Mishra U, Cloyd JC, Moshe ́ SL, Galanopoulou AS, O'Brien TJ, Coles LD. Pharmacokinetics and brain uptake of sodium selenate and selenium in naïve rats and a lateral fluid percussion injury rat model. Pharmacol Res Perspect 2024; 12:e1256. [PMID: 39506350 PMCID: PMC11540874 DOI: 10.1002/prp2.1256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 11/08/2024] Open
Abstract
Post-traumatic epilepsy (PTE) is a life-long complication of traumatic brain injury (TBI). The development of PTE is associated with neurological morbidity and increases the risk of mortality. An aim of EpiBioS4Rx (Epilepsy Bioinformatics Study for Antiepileptogenic Therapy) was to test potential therapies to prevent the development of PTE in the lateral fluid percussion injury (LFPI) rat model of TBI, in which rats were subjected to injury at the left parietal cortex. Sodium selenate has been reported to be antiepileptogenic post-TBI in rodent models by activating protein phosphatase 2A and reducing phosphorylated tau (p-tau) protein. We aimed to characterize the pharmacokinetics (PK) and brain uptake of sodium selenate using naïve control and LFPI rats. Rats received either a single bolus dose or a single bolus dose followed by a 7-day subcutaneous minipump infusion of sodium selenate. Sodium selenate and selenium concentrations in plasma and brain were analyzed and used for PK estimation and brain exposure assessment. Selenium concentrations rapidly increased after sodium selenate administration, demonstrating biotransformation from sodium selenate to selenium. Sodium selenate and selenium PK parameters were estimated using non-compartmental analysis. Sodium selenate clearance (CL/F) and volume of distribution (Vd/F) varied by dose and route of administration, suggesting differences in bioavailability and nonlinear pharmacokinetics at the doses tested. Brain-to-plasma partition coefficients (AUCbrain/AUCplasma) for sodium selenate and selenium were found to be 0.7-1.3 and 0.1-0.3 following single-dose injection, respectively, indicating active transport of sodium selenate across the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Chenxu Li
- College of Pharmacy, University of Minnesota Twin CitiesMinneapolisMinnesotaUSA
| | - Pablo M. Casillas‐Espinosa
- Department of MedicineThe Royal Melbourne Hospital, The University of MelbourneParkvilleVictoriaAustralia
- Department of NeuroscienceCentral Clinical School, Monash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe Alfred HospitalMelbourneVictoriaAustralia
| | - Patricia Grandizoli Saletti
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Tina Chi
- College of Pharmacy, University of Minnesota Twin CitiesMinneapolisMinnesotaUSA
| | - Glenn Yamakawa
- Department of NeuroscienceCentral Clinical School, Monash UniversityMelbourneVictoriaAustralia
| | - Juliana Silva
- Department of MedicineThe Royal Melbourne Hospital, The University of MelbourneParkvilleVictoriaAustralia
| | - Matt Hudson
- Department of MedicineThe Royal Melbourne Hospital, The University of MelbourneParkvilleVictoriaAustralia
- Department of NeuroscienceCentral Clinical School, Monash UniversityMelbourneVictoriaAustralia
| | - Wei Liu
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Nigel C. Jones
- Department of MedicineThe Royal Melbourne Hospital, The University of MelbourneParkvilleVictoriaAustralia
- Department of NeuroscienceCentral Clinical School, Monash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe Alfred HospitalMelbourneVictoriaAustralia
| | - Sandy R. Shultz
- Department of MedicineThe Royal Melbourne Hospital, The University of MelbourneParkvilleVictoriaAustralia
- Department of NeuroscienceCentral Clinical School, Monash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe Alfred HospitalMelbourneVictoriaAustralia
| | - Idrish Ali
- Department of MedicineThe Royal Melbourne Hospital, The University of MelbourneParkvilleVictoriaAustralia
- Department of NeuroscienceCentral Clinical School, Monash UniversityMelbourneVictoriaAustralia
| | - Usha Mishra
- College of Pharmacy, University of Minnesota Twin CitiesMinneapolisMinnesotaUSA
| | - James C. Cloyd
- College of Pharmacy, University of Minnesota Twin CitiesMinneapolisMinnesotaUSA
| | - Solomon L. Moshe ́
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
- Isabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Aristea S. Galanopoulou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
- Isabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Terence J. O'Brien
- Department of MedicineThe Royal Melbourne Hospital, The University of MelbourneParkvilleVictoriaAustralia
- Department of NeuroscienceCentral Clinical School, Monash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe Alfred HospitalMelbourneVictoriaAustralia
| | - Lisa D. Coles
- College of Pharmacy, University of Minnesota Twin CitiesMinneapolisMinnesotaUSA
| |
Collapse
|
8
|
May HG, Tsikonofilos K, Donat CK, Sastre M, Kozlov AS, Sharp DJ, Bruyns-Haylett M. EEG hyperexcitability and hyperconnectivity linked to GABAergic inhibitory interneuron loss following traumatic brain injury. Brain Commun 2024; 6:fcae385. [PMID: 39605970 PMCID: PMC11600960 DOI: 10.1093/braincomms/fcae385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/04/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Traumatic brain injury represents a significant global health burden and has the highest prevalence among neurological disorders. Even mild traumatic brain injury can induce subtle, long-lasting changes that increase the risk of future neurodegeneration. Importantly, this can be challenging to detect through conventional neurological assessment. This underscores the need for more sensitive diagnostic tools, such as electroencephalography, to uncover opportunities for therapeutic intervention. Progress in the field has been hindered by a lack of studies linking mechanistic insights at the microscopic level from animal models to the macroscale phenotypes observed in clinical imaging. Our study addresses this gap by investigating a rat model of mild blast traumatic brain injury using both immunohistochemical staining of inhibitory interneurons and translationally relevant electroencephalography recordings. Although we observed no pronounced effects immediately post-injury, chronic time points revealed broadband hyperexcitability and increased connectivity, accompanied by decreased density of inhibitory interneurons. This pattern suggests a disruption in the balance between excitation and inhibition, providing a crucial link between cellular mechanisms and clinical hallmarks of injury. Our findings have significant implications for the diagnosis, monitoring, and treatment of traumatic brain injury. The emergence of electroencephalography abnormalities at chronic time points, despite the absence of immediate effects, highlights the importance of long-term monitoring in traumatic brain injury patients. The observed decrease in inhibitory interneuron density offers a potential cellular mechanism underlying the electroencephalography changes and may represent a target for therapeutic intervention. This study demonstrates the value of combining cellular-level analysis with macroscale neurophysiological recordings in animal models to elucidate the pathophysiology of traumatic brain injury. Future research should focus on translating these findings to human studies and exploring potential therapeutic strategies targeting the excitation-inhibition imbalance in traumatic brain injury.
Collapse
Affiliation(s)
- Hazel G May
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Konstantinos Tsikonofilos
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Cornelius K Donat
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- Department of Medicinal Radiochemistry, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Andriy S Kozlov
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Michael Bruyns-Haylett
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Institut Quimic de Sarria, Universitat Ramon Llul, Barcelona 08017, Spain
- Department of Quantitative Methods, Institut Quimic de Sarria, Universitat Ramon Llul, Barcelona 08017, Spain
| |
Collapse
|
9
|
Qin L, Xiao L, Zhu H, Du Y, Tang Y, Feng L. Translocator protein (18 kDa) positron emission tomography imaging as a biomarker of neuroinflammation in epilepsy. Neurol Sci 2024; 45:5201-5211. [PMID: 38879831 DOI: 10.1007/s10072-024-07648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/11/2024] [Indexed: 10/13/2024]
Abstract
Increasing evidence indicate that neuroinflammation triggered by glial cells plays a significant role in epileptogenesis. To this effect, the overexpression of translocator protein 18 kDa (TSPO) in activated microglia and astrocytes has been identified as an inflammatory biomarker in epilepsy. It is now possible to quantify neuroinflammation using non-invasive positron emission tomography (PET) imaging of TSPO. With the advancement of radiotracers, TSPO PET has become an innovative tool in elucidating the "neuroinflammatory machinery" of drug-resistant epilepsy. Furthermore, TSPO PET has demonstrated potential in detecting MRI-negative epileptogenic zones (EZ) and provided an innovative perspective in epileptic medical treatment. This manuscript presents a comprehensive exploration of the neuroinflammatory mechanisms of epilepsy, alongside a thorough review of TSPO PET studies conducted in clinical and preclinical settings. The primary objective is to deepen our understanding of epilepsy progression and to establish TSPO PET as an effective monitoring tool for treatment efficacy.
Collapse
Affiliation(s)
- Li Qin
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Haoyue Zhu
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yangsa Du
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Li Feng
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University (Jiangxi Branch), Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
10
|
Ngadimon IW, Mohan D, Shaikh MF, Khoo CS, Tan HJ, Chamhuri NS, Cheong WL, Aledo-Serrano A, Yong LL, Lee YM, Fadzil F, Thanabalan J. Incidence and predictors of posttraumatic epilepsy and cognitive impairment in patients with traumatic brain injury: A retrospective cohort study in Malaysia. Epilepsia 2024; 65:1962-1974. [PMID: 38752783 DOI: 10.1111/epi.18007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVE Posttraumatic epilepsy (PTE) significantly impacts morbidity and mortality, yet local PTE data remain scarce. In addition, there is a lack of evidence on cognitive comorbidity in individuals with PTE in the literature. We sought to identify potential PTE predictors and evaluate cognitive comorbidity in patients with PTE. METHODS A 2-year retrospective cohort study was employed, in which adults with a history of admission for traumatic brain injury (TBI) in 2019 and 2020 were contacted. Three hundred one individuals agreed to participate, with a median follow-up time of 30.75 months. The development of epilepsy was ascertained using a validated tool and confirmed by our neurologists during visits. Clinical psychologists assessed the patients' cognitive performance. RESULTS The 2-year cumulative incidence of PTE was 9.3% (95% confidence interval [CI] 5.9-12.7). The significant predictors of PTE were identified as a previous history of brain injury [hazard ratio [HR] 4.025, p = .021], and intraparenchymal hemorrhage (HR: 2.291, p = .036), after adjusting for other confounders. TBI patients with PTE performed significantly worse on the total ACE-III cognitive test (73.5 vs 87.0, p = .018), CTMT (27.5 vs 33.0, p = .044), and PSI (74.0 vs 86.0, p = .006) than TBI patients without PTE. A significantly higher percentage of individuals in the PTE group had cognitive impairment, compared to the non-PTE group based on ACE-III (53.6% vs 46.4%, p = .001) and PSI (70% vs 31.7%, p = .005) scores at 2 years post-TBI follow-up. SIGNIFICANCE This study emphasizes the link between TBI and PTE and the chance of developing cognitive impairment in the future. Clinicians can target interventions to prevent PTE by identifying specific predictors, which helps them make care decisions and develop therapies to improve patients' quality of life.
Collapse
Affiliation(s)
- Irma Wati Ngadimon
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Devi Mohan
- Global Public Health, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- School of Public Health, The University of Queensland, Brisbane, Queensland, Australia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, Australia
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Ching Soong Khoo
- Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Neurology Unit, Department of Medicine, Hospital Canselor Tuanku Muhriz, Kuala Lumpur, Malaysia
| | - Hui Jan Tan
- Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Neurology Unit, Department of Medicine, Hospital Canselor Tuanku Muhriz, Kuala Lumpur, Malaysia
| | - Nor Syazwani Chamhuri
- Neurology Unit, Department of Medicine, Hospital Canselor Tuanku Muhriz, Kuala Lumpur, Malaysia
| | - Wing Loong Cheong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Angel Aledo-Serrano
- Synaptia Epilepsy Center, Vithas La Milagrosa University Hospital, Madrid, Spain
| | - Li Ling Yong
- Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yu Mey Lee
- Hospital Pakar Kanak-Kanak, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Farizal Fadzil
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jegan Thanabalan
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Rodriguez S, Sharma S, Tiarks G, Peterson Z, Jackson K, Thedens D, Wong A, Keffala-Gerhard D, Mahajan VB, Ferguson PJ, Newell EA, Glykys J, Nickl-Jockschat T, Bassuk AG. Neuroprotective effects of naltrexone in a mouse model of post-traumatic seizures. Sci Rep 2024; 14:13507. [PMID: 38867062 PMCID: PMC11169394 DOI: 10.1038/s41598-024-63942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Traumatic Brain Injury (TBI) induces neuroinflammatory response that can initiate epileptogenesis, which develops into epilepsy. Recently, we identified anti-convulsive effects of naltrexone, a mu-opioid receptor (MOR) antagonist, used to treat drug addiction. While blocking opioid receptors can reduce inflammation, it is unclear if post-TBI seizures can be prevented by blocking MORs. Here, we tested if naltrexone prevents neuroinflammation and/or seizures post-TBI. TBI was induced by a modified Marmarou Weight-Drop (WD) method on 4-week-old C57BL/6J male mice. Mice were placed in two groups: non-telemetry assessing the acute effects or in telemetry monitoring for interictal events and spontaneous seizures both following TBI and naltrexone. Molecular, histological and neuroimaging techniques were used to evaluate neuroinflammation, neurodegeneration and fiber track integrity at 8 days and 3 months post-TBI. Peripheral immune responses were assessed through serum chemokine/cytokine measurements. Our results show an increase in MOR expression, nitro-oxidative stress, mRNA expression of inflammatory cytokines, microgliosis, neurodegeneration, and white matter damage in the neocortex of TBI mice. Video-EEG revealed increased interictal events in TBI mice, with 71% mice developing post-traumatic seizures (PTS). Naltrexone treatment ameliorated neuroinflammation, neurodegeneration, reduced interictal events and prevented seizures in all TBI mice, which makes naltrexone a promising candidate against PTS, TBI-associated neuroinflammation and epileptogenesis in a WD model of TBI.
Collapse
Affiliation(s)
- Saul Rodriguez
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Shaunik Sharma
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Grant Tiarks
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Zeru Peterson
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Kyle Jackson
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Daniel Thedens
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Angela Wong
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - David Keffala-Gerhard
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Vinit B Mahajan
- Department of Ophthalmology, Stanford University, Palo Alto, CA, USA
| | - Polly J Ferguson
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Elizabeth A Newell
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Joseph Glykys
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Alexander G Bassuk
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
- Department of Neurology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
12
|
Ravizza T, Scheper M, Di Sapia R, Gorter J, Aronica E, Vezzani A. mTOR and neuroinflammation in epilepsy: implications for disease progression and treatment. Nat Rev Neurosci 2024; 25:334-350. [PMID: 38531962 DOI: 10.1038/s41583-024-00805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
Epilepsy remains a major health concern as anti-seizure medications frequently fail, and there is currently no treatment to stop or prevent epileptogenesis, the process underlying the onset and progression of epilepsy. The identification of the pathological processes underlying epileptogenesis is instrumental to the development of drugs that may prevent the generation of seizures or control pharmaco-resistant seizures, which affect about 30% of patients. mTOR signalling and neuroinflammation have been recognized as critical pathways that are activated in brain cells in epilepsy. They represent a potential node of biological convergence in structural epilepsies with either a genetic or an acquired aetiology. Interventional studies in animal models and clinical studies give strong support to the involvement of each pathway in epilepsy. In this Review, we focus on available knowledge about the pathophysiological features of mTOR signalling and the neuroinflammatory brain response, and their interactions, in epilepsy. We discuss mitigation strategies for each pathway that display therapeutic effects in experimental and clinical epilepsy. A deeper understanding of these interconnected molecular cascades could enhance our strategies for managing epilepsy. This could pave the way for new treatments to fill the gaps in the development of preventative or disease-modifying drugs, thus overcoming the limitations of current symptomatic medications.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Mirte Scheper
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rossella Di Sapia
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Jan Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy.
| |
Collapse
|
13
|
Pease M, Gupta K, Moshé SL, Correa DJ, Galanopoulou AS, Okonkwo DO, Gonzalez-Martinez J, Shutter L, Diaz-Arrastia R, Castellano JF. Insights into epileptogenesis from post-traumatic epilepsy. Nat Rev Neurol 2024; 20:298-312. [PMID: 38570704 DOI: 10.1038/s41582-024-00954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Post-traumatic epilepsy (PTE) accounts for 5% of all epilepsies. The incidence of PTE after traumatic brain injury (TBI) depends on the severity of injury, approaching one in three in groups with the most severe injuries. The repeated seizures that characterize PTE impair neurological recovery and increase the risk of poor outcomes after TBI. Given this high risk of recurrent seizures and the relatively short latency period for their development after injury, PTE serves as a model disease to understand human epileptogenesis and trial novel anti-epileptogenic therapies. Epileptogenesis is the process whereby previously normal brain tissue becomes prone to recurrent abnormal electrical activity, ultimately resulting in seizures. In this Review, we describe the clinical course of PTE and highlight promising research into epileptogenesis and treatment using animal models of PTE. Clinical, imaging, EEG and fluid biomarkers are being developed to aid the identification of patients at high risk of PTE who might benefit from anti-epileptogenic therapies. Studies in preclinical models of PTE have identified tractable pathways and novel therapeutic strategies that can potentially prevent epilepsy, which remain to be validated in humans. In addition to improving outcomes after TBI, advances in PTE research are likely to provide therapeutic insights that are relevant to all epilepsies.
Collapse
Affiliation(s)
- Matthew Pease
- Department of Neurosurgery, Indiana University, Bloomington, IN, USA.
| | - Kunal Gupta
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Solomon L Moshé
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Paediatrics, Albert Einstein College of Medicine, New York, NY, USA
| | - Daniel J Correa
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
| | - Aristea S Galanopoulou
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - David O Okonkwo
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Lori Shutter
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
14
|
Costa B, Vale N. Virus-Induced Epilepsy vs. Epilepsy Patients Acquiring Viral Infection: Unravelling the Complex Relationship for Precision Treatment. Int J Mol Sci 2024; 25:3730. [PMID: 38612542 PMCID: PMC11011490 DOI: 10.3390/ijms25073730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The intricate relationship between viruses and epilepsy involves a bidirectional interaction. Certain viruses can induce epilepsy by infecting the brain, leading to inflammation, damage, or abnormal electrical activity. Conversely, epilepsy patients may be more susceptible to viral infections due to factors, such as compromised immune systems, anticonvulsant drugs, or surgical interventions. Neuroinflammation, a common factor in both scenarios, exhibits onset, duration, intensity, and consequence variations. It can modulate epileptogenesis, increase seizure susceptibility, and impact anticonvulsant drug pharmacokinetics, immune system function, and brain physiology. Viral infections significantly impact the clinical management of epilepsy patients, necessitating a multidisciplinary approach encompassing diagnosis, prevention, and treatment of both conditions. We delved into the dual dynamics of viruses inducing epilepsy and epilepsy patients acquiring viruses, examining the unique features of each case. For virus-induced epilepsy, we specify virus types, elucidate mechanisms of epilepsy induction, emphasize neuroinflammation's impact, and analyze its effects on anticonvulsant drug pharmacokinetics. Conversely, in epilepsy patients acquiring viruses, we detail the acquired virus, its interaction with existing epilepsy, neuroinflammation effects, and changes in anticonvulsant drug pharmacokinetics. Understanding this interplay advances precision therapies for epilepsy during viral infections, providing mechanistic insights, identifying biomarkers and therapeutic targets, and supporting optimized dosing regimens. However, further studies are crucial to validate tools, discover new biomarkers and therapeutic targets, and evaluate targeted therapy safety and efficacy in diverse epilepsy and viral infection scenarios.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| |
Collapse
|
15
|
Liu R, Sun L, Shi X, Li C, Guo X, Wang Y, Wang X, Zhang K, Wang Y, Wang Q, Wu J. Increased Expression of K Na1.2 Channel by MAPK Pathway Regulates Neuronal Activity Following Traumatic Brain Injury. Neurochem Res 2024; 49:427-440. [PMID: 37875713 DOI: 10.1007/s11064-023-04044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
Recent studies have indicated that functional abnormalities in the KNa1.2 channel are linked to epileptic encephalopathies. However, the role of KNa1.2 channel in traumatic brain injury (TBI) remains limited. We collected brain tissue from the TBI mice and patients with post-traumatic epilepsy (PTE) to determine changes in KNa1.2 channel following TBI. We also investigated whether the MAPK pathway, which was activated by the released cytokines after injury, regulated KNa1.2 channel in in vitro. Finally, to elucidate the physiological significance of KNa1.2 channel in neuronal excitability, we utilized the null mutant-Kcnt2-/- mice and compared their behavior patterns, seizure susceptibility, and neuronal firing properties to wild type (WT) mice. TBI was induced in both Kcnt2-/- and WT mice to investigate any differences between the two groups under pathological condition. Our findings revealed that the expression of KNa1.2 channel was notably increased only during the acute phase following TBI, while no significant elevation was observed during the late phase. Furthermore, we identified the released cytokines and activated MAPK pathway in the neurons after TBI and confirmed that KNa1.2 channel was enhanced by the MAPK pathway via stimulation of TNF-α. Subsequently, compared to WT mice, neurons from Kcnt2-/- mice showed increased neuronal excitability and Kcnt2-/- mice displayed motor deficits and enhanced seizure susceptibility, which suggested that KNa1.2 channel may be neuroprotective. Therefore, this study suggests that enhanced KNa1.2 channel, facilitated by the inflammatory response, may exert a protective role in an acute phase of the TBI model.
Collapse
Affiliation(s)
- Ru Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
| | - Lei Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450008, Henan, China
| | - Xiaorui Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Ci Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Xi Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
| | - Yingting Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- Beijing Institute for Brain Disorders, Beijing, 100070, China
| | - Jianping Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China.
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
| |
Collapse
|
16
|
Chen L, Niu Q, Gao C, Du F. Celecoxib treatment alleviates cerebral injury in a rat model of post-traumatic epilepsy. PeerJ 2023; 11:e16555. [PMID: 38077432 PMCID: PMC10710164 DOI: 10.7717/peerj.16555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Background An important factor contributing to the development and occurrence of post-traumatic epilepsy (PTE) is neuroinflammation and oxidative stress. The effects of celecoxib include inhibiting inflammatory reactions and antioxidant stress and reducing seizures, making it a potential epilepsy treatment solution. Objective To observe the effect of celecoxib on early epilepsy in post-traumatic epilepsy rats. Methods: Twenty-four adult healthy male Sprague-Dawley rats were randomly assigned to three groups: sham-operated, PTE, and celecoxib. A rat model of PTE was established by injecting ferrous chloride into the right frontal cortex. Afterward, the behavior of rats was observed and recorded. 3.0T superconducting magnetic resonance imaging (MRI) was used to describe the changes in ADC values of the brain. HE and Nissl staining were also used to detect the damage to frontal lobe neurons. Furthermore, the expression of COX-2 protein in the right frontal lobe was detected by Western blot. Moreover, the contents of IL-1 and TNF-α in the right frontal lobe were detected by enzyme-linked immunosorbent assay. Results Compared with the PTE group, the degree of seizures in rats treated with celecoxib declined dramatically (P < 0.05). Celecoxib-treated rats had significant decreases in tissue structural damage and cell death in the brain. The results of the MRI showed that celecoxib reduced the peripheral edema zone and ADC value of the cortex around the damaged area of the right frontal lobe in the celecoxib-treatment group, which was significantly decreased compared with the PTE group (P < 0.05). Furthermore, celecoxib decreased the expression of COX-2, IL-1β, and TNF-α in brain tissue (P < 0.05). Conclusions In PTE rats, celecoxib significantly reduced brain damage and effectively reduced seizures. As a result of celecoxib's ability to inhibit inflammation, it can reduce the edema caused by injury in rat brain tissue.
Collapse
Affiliation(s)
- Lei Chen
- Department of Neurosurgery, The First People’s Hospital of Shizuishan, Shizuishan, Ningxia Hui Autonomous Region, China
| | - Qingsheng Niu
- Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Caibin Gao
- Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Fang Du
- Emergency and Critical Care Center, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
17
|
Almohaish S, Cook AM, Brophy GM, Rhoney DH. Personalized antiseizure medication therapy in critically ill adult patients. Pharmacotherapy 2023; 43:1166-1181. [PMID: 36999346 DOI: 10.1002/phar.2797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 04/01/2023]
Abstract
Precision medicine has the potential to have a significant impact on both drug development and patient care. It is crucial to not only provide prompt effective antiseizure treatment for critically ill patients after seizures start but also have a proactive mindset and concentrate on epileptogenesis and the underlying cause of the seizures or seizure disorders. Critical illness presents different treatment issues compared with the ambulatory population, which makes it challenging to choose the best antiseizure medications and to administer them at the right time and at the right dose. Since there is a paucity of information available on antiseizure medication dosing in critically ill patients, therapeutic drug monitoring is a useful tool for defining each patient's personal therapeutic range and assisting clinicians in decision-making. Use of pharmacogenomic information relating to pharmacokinetics, hepatic metabolism, and seizure etiology may improve safety and efficacy by individualizing therapy. Studies evaluating the clinical implementation of pharmacogenomic information at the point-of-care and identification of biomarkers are also needed. These studies may make it possible to avoid adverse drug reactions, maximize drug efficacy, reduce drug-drug interactions, and optimize medications for each individual patient. This review will discuss the available literature and provide future insights on precision medicine use with antiseizure therapy in critically ill adult patients.
Collapse
Affiliation(s)
- Sulaiman Almohaish
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Pharmacy Practice, Clinical Pharmacy College, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Aaron M Cook
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Gretchen M Brophy
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Denise H Rhoney
- Division of Practice Advancement and Clinical Education, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
18
|
Leung WL, Dill LK, Perucca P, O'Brien TJ, Casillas-Espinosa PM, Semple BD. Inherent Susceptibility to Acquired Epilepsy in Selectively Bred Rats Influences the Acute Response to Traumatic Brain Injury. J Neurotrauma 2023; 40:2174-2192. [PMID: 37221897 DOI: 10.1089/neu.2022.0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Traumatic brain injury (TBI) often causes seizures associated with a neuroinflammatory response and neurodegeneration. TBI responses may be influenced by differences between individuals at a genetic level, yet this concept remains understudied. Here, we asked whether inherent differences in one's vulnerability to acquired epilepsy would determine acute physiological and neuroinflammatory responses acutely after experimental TBI, by comparing selectively bred "seizure-prone" (FAST) rats with "seizure-resistant" (SLOW) rats, as well as control parental strains (Long Evans and Wistar rats). Eleven-week-old male rats received a moderate-to-severe lateral fluid percussion injury (LFPI) or sham surgery. Rats were assessed for acute injury indicators and neuromotor performance, and blood was serially collected. At 7 days post-injury, brains were collected for quantification of tissue atrophy by cresyl violet (CV) histology, and immunofluorescent staining of activated inflammatory cells. FAST rats showed an exacerbated physiological response acutely post-injury, with a 100% seizure rate and mortality within 24 h. Conversely, SLOW rats showed no acute seizures and a more rapid neuromotor recovery compared with controls. Brains from SLOW rats also showed only modest immunoreactivity for microglia/macrophages and astrocytes in the injured hemisphere compared with controls. Further, group differences were apparent between the control strains, with greater neuromotor deficits observed in Long Evans rats compared with Wistars post-TBI. Brain-injured Long Evans rats also showed the most pronounced inflammatory response to TBI across multiple brain regions, whereas Wistar rats showed the greatest extent of regional brain atrophy. These findings indicate that differential genetic predisposition to develop acquired epilepsy (i.e., FAST vs. SLOW rat strains) determines acute responses after experimental TBI. Differences in the neuropathological response to TBI between commonly used control rat strains is also a novel finding, and an important consideration for future study design. Our results support further investigation into whether genetic predisposition to acute seizures predicts the chronic outcomes after TBI, including the development of post-traumatic epilepsy.
Collapse
Affiliation(s)
- Wai Lam Leung
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- The Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Liu C, Zhao XM, Wang Q, Du TT, Zhang MX, Wang HZ, Li RP, Liang K, Gao Y, Zhou SY, Xue T, Zhang JG, Han CL, Shi L, Zhang LW, Meng FG. Astrocyte-derived SerpinA3N promotes neuroinflammation and epileptic seizures by activating the NF-κB signaling pathway in mice with temporal lobe epilepsy. J Neuroinflammation 2023; 20:161. [PMID: 37422673 DOI: 10.1186/s12974-023-02840-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
Impaired activation and regulation of the extinction of inflammatory cells and molecules in injured neuronal tissues are key factors in the development of epilepsy. SerpinA3N is mainly associated with the acute phase response and inflammatory response. In our current study, transcriptomics analysis, proteomics analysis, and Western blotting showed that the expression level of Serpin clade A member 3N (SerpinA3N) is significantly increased in the hippocampus of mice with kainic acid (KA)-induced temporal lobe epilepsy, and this molecule is mainly expressed in astrocytes. Notably, in vivo studies using gain- and loss-of-function approaches revealed that SerpinA3N in astrocytes promoted the release of proinflammatory factors and aggravated seizures. Mechanistically, RNA sequencing and Western blotting showed that SerpinA3N promoted KA-induced neuroinflammation by activating the NF-κB signaling pathway. In addition, co-immunoprecipitation revealed that SerpinA3N interacts with ryanodine receptor type 2 (RYR2) and promotes RYR2 phosphorylation. Overall, our study reveals a novel SerpinA3N-mediated mechanism in seizure-induced neuroinflammation and provides a new target for developing neuroinflammation-based strategies to reduce seizure-induced brain injury.
Collapse
Affiliation(s)
- Chong Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China
| | - Xue-Min Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Qiao Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China
| | - Ting-Ting Du
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Mo-Xuan Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China
| | - Hui-Zhi Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China
| | - Ren-Peng Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China
| | - Kun Liang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China
| | - Yuan Gao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China
| | - Si-Yu Zhou
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China
| | - Tao Xue
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Jian-Guo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Chun-Lei Han
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China.
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Lin Shi
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China.
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Liang-Wen Zhang
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Fan-Gang Meng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China.
- Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
20
|
Sui S, Sun J, Chen X, Fan F. Risk of Epilepsy Following Traumatic Brain Injury: A Systematic Review and Meta-analysis. J Head Trauma Rehabil 2023; 38:E289-E298. [PMID: 36730820 DOI: 10.1097/htr.0000000000000818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Limited evidence has explored the impact of traumatic brain injury (TBI) on posttraumatic epilepsy with control cohort for comparison. In addition, we could not find any review to identify the effect of TBI on the outcomes. Thus, we conducted this study to compare the risk of epilepsy between individuals with TBI and without TBI. METHODS Systematic and comprehensive search was carried out in the following databases and search engines: EMBASE, Cochrane, MEDLINE, ScienceDirect, and Google Scholar from 1954 until January 2022. The Newcastle Ottawa (NO) Scale was utilized to assess the risk of bias. Meta-analysis was carried out using the random-effects model, and pooled odds ratio (OR) along with 95% CI was reported. RESULTS In total, we included 10 studies satisfying inclusion criteria. Most studies had good to satisfactory quality. The pooled OR was 4.25 (95% CI, 1.77-10.25; I2 = 100%), indicating that the individuals with TBI had 4.25 times higher risk of having epilepsy than individuals without TBI, and this association was statistically significant ( P = .001). Subgroup analysis based on the years of follow-up revealed that the patients within 5 years post-TBI had the highest risk of epilepsy (pooled OR = 7.27; 95% CI, 3.61-14.64). CONCLUSION Individuals with TBI had a significantly higher risk of epilepsy than the individuals without TBI, irrespective of the duration of the injury. Hence, long-term follow-up of the individuals with TBI is necessary to prevent any adverse consequences.
Collapse
Affiliation(s)
- Songtao Sui
- Departments of Neurosurgery (Messrs Sui and Chen) and Pharmacy (Ms Fan), Qingdao West Coast New Area Central Hospital, Qingdao, Shandong Province, China; and Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China (Mr Sun)
| | | | | | | |
Collapse
|
21
|
Woo AM, Sontheimer H. Interactions between astrocytes and extracellular matrix structures contribute to neuroinflammation-associated epilepsy pathology. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1198021. [PMID: 39086689 PMCID: PMC11285605 DOI: 10.3389/fmmed.2023.1198021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 08/02/2024]
Abstract
Often considered the "housekeeping" cells of the brain, astrocytes have of late been rising to the forefront of neurodegenerative disorder research. Identified as crucial components of a healthy brain, it is undeniable that when astrocytes are dysfunctional, the entire brain is thrown into disarray. We offer epilepsy as a well-studied neurological disorder in which there is clear evidence of astrocyte contribution to diseases as evidenced across several different disease models, including mouse models of hippocampal sclerosis, trauma associated epilepsy, glioma-associated epilepsy, and beta-1 integrin knockout astrogliosis. In this review we suggest that astrocyte-driven neuroinflammation, which plays a large role in the pathology of epilepsy, is at least partially modulated by interactions with perineuronal nets (PNNs), highly structured formations of the extracellular matrix (ECM). These matrix structures affect synaptic placement, but also intrinsic neuronal properties such as membrane capacitance, as well as ion buffering in their immediate milieu all of which alters neuronal excitability. We propose that the interactions between PNNs and astrocytes contribute to the disease progression of epilepsy vis a vis neuroinflammation. Further investigation and alteration of these interactions to reduce the resultant neuroinflammation may serve as a potential therapeutic target that provides an alternative to the standard anti-seizure medications from which patients are so frequently unable to benefit.
Collapse
Affiliation(s)
- AnnaLin M. Woo
- Neuroscience Graduate Program, Neuroscience Department, University of Virginia, Charlottesville, VA, United States
| | - Harald Sontheimer
- Neuroscience Department, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
22
|
Chen W, Man X, Zhang Y, Yao G, Chen J. Medial prefrontal cortex oxytocin mitigates epilepsy and cognitive impairments induced by traumatic brain injury through reducing neuroinflammation in mice. Sci Rep 2023; 13:5214. [PMID: 36997619 PMCID: PMC10063625 DOI: 10.1038/s41598-023-32351-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/26/2023] [Indexed: 04/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a major risk factor to develop epilepsy and cognitive impairments. Neuropeptide oxytocin has been previously evidenced to produce antiepileptic effects. However, the involvement of central oxytocin in TBI-induced epileptic status and cognitive dysfunctions is not fully elucidated. In this study, we aim to investigate the role of oxytocin on a TBI model followed by seizure induction to clarify whether the epilepsy and cognitive deficits could be mitigated by oxytocin. TBI was established by weight drop and epileptic behaviors were induced by pentylenetetrazole (PTZ) injection in mice. Moreover, oxytocin was microinjected into the medial prefrontal cortex (mPFC) to observe the effects on the epilepsy and cognition. The blood-brain barrier (BBB) function and the neuroinflammation were measured by Evans Blue staining and enzyme-linked immunosorbent assays, respectively. Mice exposed to TBI demonstrate increased vulnerability to PTZ-mediated seizures and cognitive disturbances with a decrease in peripheral and brain oxytocin levels. Additionally, TBI reduces oxytocin, disrupts the BBB permeability and triggers neuroinflammation in mPFC in PTZ-treated mice. Intra-mPFC oxytocin simultaneously mitigates epilepsy and cognitive impairments. Finally, oxytocin restores BBB integrity and reduces mPFC inflammation in PTZ-treated TBI mice. These findings showed that intra-mPFC oxytocin suppressed the seizure vulnerability and cognitive deficits in TBI mice. The normalization of BBB integrity and inhibition of neuroinflammation may be involved in the antiepileptic and cognition-improved effects of oxytocin, suggesting that targeting inflammatory procedure in mPFC may decrease the risk to develop epilepsy and cognitive impairments in individuals previously experienced TBI.
Collapse
Affiliation(s)
- Wen Chen
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Rd, Lixia District, Jinan, 250013, Shandong, China.
| | - Xiaoxiao Man
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Rd, Lixia District, Jinan, 250013, Shandong, China
| | - Yu Zhang
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Rd, Lixia District, Jinan, 250013, Shandong, China
| | - Guangyan Yao
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Rd, Lixia District, Jinan, 250013, Shandong, China
| | - Jing Chen
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Rd, Lixia District, Jinan, 250013, Shandong, China
| |
Collapse
|
23
|
Baker TL, Uboldi AD, Tonkin CJ, Wright DK, Vo A, Wilson T, Mychasiuk R, McDonald SJ, Semple BD, Sun M, Shultz SR. Pre-existing Toxoplasma gondii infection increases susceptibility to pentylenetetrazol-induced seizures independent of traumatic brain injury in mice. Front Mol Neurosci 2023; 15:1079097. [PMID: 36683847 PMCID: PMC9849700 DOI: 10.3389/fnmol.2022.1079097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI), and neuroinflammation is implicated in increased seizure susceptibility and epileptogenesis. However, how common clinical factors, such as infection, may modify neuroinflammation and PTE development has been understudied. The neurotropic parasite, Toxoplasma gondii (T. gondii) incurably infects one-third of the world's population. Thus, many TBI patients have a pre-existing T. gondii infection at the time of injury. T. gondii infection results in chronic low-grade inflammation and altered signaling pathways within the brain, and preliminary clinical evidence suggest that it may be a risk factor for epilepsy. Despite this, no studies have considered how a pre-existing T. gondii infection may alter the development of PTE. Methods This study aimed to provide insight into this knowledge gap by assessing how a pre-existing T. gondii infection alters susceptibility to, and severity of, pentylenetetrazol (PTZ)-induced seizures (i.e., a surrogate marker of epileptogenesis/PTE) at a chronic stage of TBI recovery. We hypothesized that T. gondii will increase the likelihood and severity of seizures following PTZ administration, and that this would occur in the presence of intensified neuroinflammation. To test this, 6-week old male and female C57BL/6 Jax mice were intraperitoneally injected with 50,000 T. gondii tachyzoites or with the PBS vehicle only. At 12-weeks old, mice either received a severe TBI via controlled cortical impact or sham injury. At 18-weeks post-injury, mice were administered 40 mg/kg PTZ and video-recorded for evaluation of seizure susceptibility. Fresh cortical tissue was then collected for gene expression analyses. Results Although no synergistic effects were evident between infection and TBI, chronic T. gondii infection alone had robust effects on the PTZ-seizure response and gene expression of markers related to inflammatory, oxidative stress, and glutamatergic pathways. In addition to this, females were more susceptible to PTZ-induced seizures than males. While TBI did not impact PTZ responses, injury effects were evident at the molecular level. Discussion Our data suggests that a pre-existing T. gondii infection is an important modifier of seizure susceptibility independent of brain injury, and considerable attention should be directed toward delineating the mechanisms underlying this pro-epileptogenic factor.
Collapse
Affiliation(s)
- Tamara L. Baker
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Alessandro D. Uboldi
- Division of Infectious Disease and Immune Defense, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Christopher J. Tonkin
- Division of Infectious Disease and Immune Defense, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - David K. Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anh Vo
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Trevor Wilson
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia,Health Sciences, Vancouver Island University, Nanaimo, BC, Canada,*Correspondence: Sandy R. Shultz,
| |
Collapse
|
24
|
Zhao G, Fu Y, Yang C, Yang X, Hu X. Exploring the pathogenesis linking traumatic brain injury and epilepsy via bioinformatic analyses. Front Aging Neurosci 2022; 14:1047908. [PMID: 36438009 PMCID: PMC9686289 DOI: 10.3389/fnagi.2022.1047908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/28/2022] [Indexed: 07/25/2024] Open
Abstract
Traumatic brain injury (TBI) is a serious disease that could increase the risk of epilepsy. The purpose of this article is to explore the common molecular mechanism in TBI and epilepsy with the aim of providing a theoretical basis for the prevention and treatment of post-traumatic epilepsy (PTE). Two datasets of TBI and epilepsy in the Gene Expression Omnibus (GEO) database were downloaded. Functional enrichment analysis, protein-protein interaction (PPI) network construction, and hub gene identification were performed based on the cross-talk genes of aforementioned two diseases. Another dataset was used to validate these hub genes. Moreover, the abundance of infiltrating immune cells was evaluated through Immune Cell Abundance Identifier (ImmuCellAI). The common microRNAs (miRNAs) between TBI and epilepsy were acquired via the Human microRNA Disease Database (HMDD). The overlapped genes in cross-talk genes and target genes predicted through the TargetScan were obtained to construct the common miRNAs-mRNAs network. A total of 106 cross-talk genes were screened out, including 37 upregulated and 69 downregulated genes. Through the enrichment analyses, we showed that the terms about cytokine and immunity were enriched many times, particularly interferon gamma signaling pathway. Four critical hub genes were screened out for co-expression analysis. The miRNA-mRNA network revealed that three miRNAs may affect the shared interferon-induced genes, which might have essential roles in PTE. Our study showed the potential role of interferon gamma signaling pathway in pathogenesis of PTE, which may provide a promising target for future therapeutic interventions.
Collapse
Affiliation(s)
- Gengshui Zhao
- Department of Neurosurgery, The People’s Hospital of Hengshui City, Hengshui, China
| | - Yongqi Fu
- Department of Endocrinology, The People’s Hospital of Hengshui City, Hengshui, China
| | - Chao Yang
- Department of Orthopedics, The People’s Hospital of Hengshui City, Hengshui, China
| | - Xuehui Yang
- Department of Neurosurgery, The People’s Hospital of Hengshui City, Hengshui, China
| | - Xiaoxiao Hu
- Department of Neurosurgery, The People’s Hospital of Hengshui City, Hengshui, China
| |
Collapse
|
25
|
Jujuboside A Exhibits an Antiepileptogenic Effect in the Rat Model via Protection against Traumatic Epilepsy-Induced Oxidative Stress and Inflammatory Responses. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7792791. [PMID: 36118077 PMCID: PMC9481365 DOI: 10.1155/2022/7792791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 03/31/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022]
Abstract
Traumatic brain injuries (TBI) are the greatest source of death in trauma, and post-traumatic epilepsy (PTE) is one of the common complications of TBI. Oxidative stress and inflammatory responses play an important role in the process of PTE. Many studies have shown that Jujuboside A has powerful antioxidant and anti-inflammatory properties. However, it is not known whether Jujuboside A has an anti-epileptic effect. The influences of Jujuboside A in the experimental FeCl3-induced model of PTE were tested by estimating the grade of seizures and performing behavioral tests. Following that, we detected oxidative stress indicators and inflammatory factors. Additionally, western blotting was used to test the protein levels of signaling molecules in MAPK pathways. In this study, Jujuboside A was found to have improved the recognition deficiency and epilepsy syndromes in the experimental rat model. Moreover, oxidative stress and inflammatory responses induced by FeCl3 injection were relieved by Jujuboside A. In addition, Jujuboside A was found to be capable of reducing the increased expression of p-P38 and p-ERK1/2 caused by iron ions. Collectively, our results demonstrated that Jujuboside A exhibits an antiepileptogenic effect by alleviating oxidative stress and inflammatory responses via the p38 and ERK1/2 pathways.
Collapse
|
26
|
Prakash C, Tyagi J, Rabidas SS, Kumar V, Sharma D. Therapeutic Potential of Quercetin and its Derivatives in Epilepsy: Evidence from Preclinical Studies. Neuromolecular Med 2022:10.1007/s12017-022-08724-z. [PMID: 35951285 DOI: 10.1007/s12017-022-08724-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/18/2022] [Indexed: 10/15/2022]
Abstract
Quercetin is a polyphenolic bioactive compound highly enriched in dietary fruits, vegetables, nuts, and berries. Quercetin and its derivatives like rutin and hyperoside are known for their beneficial effects in various neurological conditions including epilepsy. The clinical studies of quercetin and its derivatives in relation to epilepsy are limited. This review provides the evidence of most recent knowledge of anticonvulsant properties of quercetin and its derivatives on preclinical studies. Additionally, the studies demonstrating antiseizure potential of various plants extracts enriched with quercetin and its derivatives has been included in this review. Herein, we have also discussed neuroprotective effect of these bioactive compound and presented underlying mechanisms responsible for anticonvulsant properties in brief. Finally, limitations of quercetin and its derivatives as antiseizure compounds as well as possible strategies to enhance efficacy have also been discussed.
Collapse
Affiliation(s)
- Chandra Prakash
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jyoti Tyagi
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shyam Sunder Rabidas
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Deepak Sharma
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
27
|
Yalcin SE, Sezik M, Yavuz A, Savran M, Asci H, Ozmen O. Combined Use of Magnesium Sulfate and Fingolimod for Antenatal Neuroprotection against Inflammation-Mediated Experimental Preterm Brain Injury in a Rat Model. Fetal Pediatr Pathol 2022; 41:603-615. [PMID: 34193008 DOI: 10.1080/15513815.2021.1945174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BackgroundWe compared the neuroprotective effects of Fingolimod (fng), a neuroprotective and anti-inflammatory drug, with that of magnesium sulfate (MgSO4), alone and in combination, in fetal rat whose mothers were exposed to endotoxin.MethodSeven groups of pregnant rats (28 total) were evaluated at 0.8 gestation - Group1 - saline only; 2 - endotoxin only; 3 - endotoxin + MgSO4; 4 - endotoxin + fng; 5 - endotoxin + MgSO4 + fng; 6 - saline + fng; 7 - saline + MgSO4 + fng. Preterm labor was induced 4 h after intraperitoneal endotoxin administration. Fetal brain samples were examined immunohistochemically using S100β, IL-6, and IL-10.ResultsEndotoxin caused increased expression of S100β, IL-6, and IL-10. Compared with MgSO4 alone, combined treatment was associated with lower expression of IL-10, IL-6 and S100 β.ConclusionFng decreases inflammatory markers after in-utero exposure to endotoxin, has a synergistic effect combined with MgSO4, and may be a candidate neuroprotective drug for inflammation-induced preterm brain injury.
Collapse
Affiliation(s)
- Serenat Eris Yalcin
- Department of Obstetrics and Gynecology, University of Health Sciences Antalya Training and Research Hospital, Antalya, Turkey
| | - Mekin Sezik
- Department of Obstetrics and Gynecology, Suleyman Demirel, University School of Medicine, SDU Campus, Cunur, Turkey
| | - And Yavuz
- Department of Obstetrics and Gynecology, University of Health Sciences Antalya Training and Research Hospital, Antalya, Turkey
| | - Mehtap Savran
- Department of Pharmacology, Suleyman Demirel, University School of Medicine, SDU Campus, Cunur, Turkey
| | - Halil Asci
- Department of Pharmacology, Suleyman Demirel, University School of Medicine, SDU Campus, Cunur, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
28
|
Sinha P, Verma B, Ganesh S. Age-Dependent Reduction in the Expression Levels of Genes Involved in Progressive Myoclonus Epilepsy Correlates with Increased Neuroinflammation and Seizure Susceptibility in Mouse Models. Mol Neurobiol 2022; 59:5532-5548. [PMID: 35732865 DOI: 10.1007/s12035-022-02928-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
Brain aging is characterized by a gradual decline in cellular homeostatic processes, thereby losing the ability to respond to physiological stress. At the anatomical level, the aged brain is characterized by degenerating neurons, proteinaceous plaques and tangles, intracellular deposition of glycogen, and elevated neuroinflammation. Intriguingly, such age-associated changes are also seen in neurodegenerative disorders suggesting that an accelerated aging process could be one of the contributory factors for the disease phenotype. Amongst these, the genetic forms of progressive myoclonus epilepsy (PME), resulting from loss-of-function mutations in genes, manifest symptoms that are common to age-associated disorders, and genes mutated in PME are involved in the cellular homeostatic processes. Intriguingly, the incidence and/or onset of epileptic seizures are known to increase with age, suggesting that physiological changes in the aged brain might contribute to increased susceptibility to seizures. We, therefore, hypothesized that the expression level of genes implicated in PME might decrease with age, thereby leading to a compromised neuronal response towards physiological stress and hence neuroinflammation in the aging brain. Using mice models, we demonstrate here that the expression level of PME genes shows an inverse correlation with age, neuroinflammation, and compromised heat shock response. We further show that the pharmacological suppression of neuroinflammation ameliorates seizure susceptibility in aged animals as well as in animal models for a PME. Taken together, our results indicate a functional role for the PME genes in normal brain aging and that neuroinflammation could be a major contributory player in susceptibility to seizures.
Collapse
Affiliation(s)
- Priyanka Sinha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh, Kanpur, 208016, India
| | - Bhupender Verma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh, Kanpur, 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh, Kanpur, 208016, India. .,Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
29
|
Zhang L, Li S, Tai Z, Yu C, Xu Z. Gut Microbes Regulate Innate Immunity and Epilepsy. Front Neurosci 2022; 16:870197. [PMID: 35720723 PMCID: PMC9198293 DOI: 10.3389/fnins.2022.870197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/13/2022] [Indexed: 12/03/2022] Open
Abstract
Epilepsy is a common chronic brain disease. There are many clinical methods to control epileptic seizures, such as anti-seizure medications (ASMs) or surgical removal of epileptogenic lesions. However, the pathophysiology of epilepsy is still unknown, making it difficult to control or prevent it. The host's immune system monitors gut microbes, interacts with microbes through pattern recognition receptors such as Toll-like receptors (TLRs) and NOD-like receptors (NLRs) expressed by innate immune cells, and activates immune responses in the body to kill pathogens and balance the relationship between microbes and host. In addition, inflammatory responses induced by the innate immune system are seen in animal models of epilepsy and temporal lobe epilepsy brain tissue to combat pathogens or injuries. This review summarizes the potential relationship between gut microbes, innate immunity, and epilepsy based on recent research to provide more hints for researchers to explore this field further.
Collapse
Affiliation(s)
- Linhai Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Shuang Li
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhenzhen Tai
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
30
|
Dohm-Hansen S, Donoso F, Lucassen PJ, Clarke G, Nolan YM. The gut microbiome and adult hippocampal neurogenesis: A new focal point for epilepsy? Neurobiol Dis 2022; 170:105746. [DOI: 10.1016/j.nbd.2022.105746] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
|
31
|
Giraldi L, Vinsløv Hansen J, Wohlfahrt J, Fugleholm K, Melbye M, Munch TN. Postoperative de novo epilepsy after craniotomy: a nationwide register-based cohort study. J Neurol Neurosurg Psychiatry 2022; 93:436-444. [PMID: 34845003 PMCID: PMC8921591 DOI: 10.1136/jnnp-2021-326968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/08/2021] [Indexed: 12/05/2022]
Abstract
BACKGROUND AND OBJECTIVES The risks of postoperative risk of epilepsy after a craniotomy is widely believed to be raised. A study is warranted to quantify the risks for any neurosurgical indication. In this unselected register-based nationwide cohort study with virtually complete follow-up, the short-term and long-term cumulative risks of postoperative de novo epilepsy for all major neurosurgical indications were estimated. METHODS The study was based on 8948 first-time craniotomy patients in Denmark 1 January 2005 to 31 December 2015 with follow-up until 31 December 2016. The patients were classified according to their underlying neurosurgical pathology. Patients with preoperative epilepsy were excluded. The postcraniotomy risks of de novo epilepsy were estimated using the Aalen-Johansen estimator in a multistate model. RESULTS The overall cumulative 1-year risk of postcraniotomy de novo epilepsy was 13.9% (95% CI 13.2 to 14.6). For patients with intracranial tumour the cumulative 1-year risk was 15.4% (95% CI 14.4 to 16.5), for spontaneous intracranial haemorrhage 11.3% (95% CI 10.1 to 12.6), for traumatic intracranial haemorrhage 11.1% (95% CI 9.6 to 12.9), for cerebral abscess 27.6% (95% CI 22.8 to 33.5) and for congenital malformations 3.8% (95% CI 1.3 to 11.7). The 6-month, 1-year and 5-year risks for all major indications by specific subtypes are provided. CONCLUSIONS The cumulative risk of de novo epilepsy following craniotomy is high for patients with any indication for craniotomy, as compared with the background population. The results provide comprehensive data to support future recommendations regarding prophylactic antiepileptic treatment and driving restrictions.
Collapse
Affiliation(s)
- Laura Giraldi
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Jan Wohlfahrt
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Kåre Fugleholm
- Department of Neurosurgery, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mads Melbye
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.,Center for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.,K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tina Nørgaard Munch
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark .,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Soltani Khaboushan A, Yazdanpanah N, Rezaei N. Neuroinflammation and Proinflammatory Cytokines in Epileptogenesis. Mol Neurobiol 2022; 59:1724-1743. [PMID: 35015252 DOI: 10.1007/s12035-022-02725-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023]
Abstract
Increasing evidence corroborates the fundamental role of neuroinflammation in the development of epilepsy. Proinflammatory cytokines (PICs) are crucial contributors to the inflammatory reactions in the brain. It is evidenced that epileptic seizures are associated with elevated levels of PICs, particularly interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), which underscores the impact of neuroinflammation and PICs on hyperexcitability of the brain and epileptogenesis. Since the pathophysiology of epilepsy is unknown, determining the possible roles of PICs in epileptogenesis could facilitate unraveling the pathophysiology of epilepsy. About one-third of epileptic patients are drug-resistant, and existing treatments only resolve symptoms and do not inhibit epileptogenesis; thus, treatment of epilepsy is still challenging. Accordingly, understanding the function of PICs in epilepsy could provide us with promising targets for the treatment of epilepsy, especially drug-resistant type. In this review, we outline the role of neuroinflammation and its primary mediators, including IL-1β, IL-1α, IL-6, IL-17, IL-18, TNF-α, and interferon-γ (IFN-γ) in the pathophysiology of epilepsy. Furthermore, we discuss the potential therapeutic targeting of PICs and cytokine receptors in the treatment of epilepsy.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
| |
Collapse
|
33
|
Sharma R, Casillas-Espinosa PM, Dill LK, Rewell SSJ, Hudson MR, O'Brien TJ, Shultz SR, Semple BD. Pediatric traumatic brain injury and a subsequent transient immune challenge independently influenced chronic outcomes in male mice. Brain Behav Immun 2022; 100:29-47. [PMID: 34808288 DOI: 10.1016/j.bbi.2021.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 01/30/2023] Open
Abstract
Traumatic brain injury (TBI) is a major contributor to death and disability worldwide. Children are at particularly high risk of both sustaining a TBI and experiencing serious long-term consequences, such as cognitive deficits, mental health problems and post-traumatic epilepsy. Severe TBI patients are highly susceptible to nosocomial infections, which are mostly acquired within the first week of hospitalization post-TBI. Yet the potential chronic impact of such acute infections following pediatric TBI remains unclear. In this study, we hypothesized that a peripheral immune challenge, such as lipopolysaccharide (LPS)-mimicking a hospital-acquired infection-would worsen inflammatory, neurobehavioral, and seizure outcomes after experimental pediatric TBI. To test this, three-week old male C57Bl/6J mice received a moderate controlled cortical impact or sham surgery, followed by 1 mg/kg i.p. LPS (or 0.9% saline vehicle) at 4 days TBI. Mice were randomized to four groups; sham-saline, sham-LPS, TBI-saline or TBI-LPS (n = 15/group). Reduced general activity and increased anxiety-like behavior were observed within 24 h in LPS-treated mice, indicating a transient sickness response. LPS-treated mice also exhibited a reduction in body weights, which persisted chronically. From 2 months post-injury, mice underwent a battery of tests for sensorimotor, cognitive, and psychosocial behaviors. TBI resulted in hyperactivity and spatial memory deficits, independent of LPS; whereas LPS resulted in subtle deficits in spatial memory retention. At 5 months post-injury, video-electroencephalographic recordings were obtained to evaluate both spontaneous seizure activity as well as the evoked seizure response to pentylenetetrazol (PTZ). TBI increased susceptibility to PTZ-evoked seizures; whereas LPS appeared to increase the incidence of spontaneous seizures. Post-mortem analyses found that TBI, but not LPS, resulted in robust glial reactivity and loss of cortical volume. A TBI × LPS interaction in hippocampal volume suggested that TBI-LPS mice had a subtle increase in ipsilateral hippocampus tissue loss; however, this was not reflected in neuronal cell counts. Both TBI and LPS independently had modest effects on chronic hippocampal gene expression. Together, contrary to our hypothesis, we observed minimal synergy between TBI and LPS. Instead, pediatric TBI and a subsequent transient immune challenge independently influenced chronic outcomes. These findings have implications for future preclinical modeling as well as acute post-injury patient management.
Collapse
Affiliation(s)
- Rishabh Sharma
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
| | - Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia
| | - Sarah S J Rewell
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia
| | - Matthew R Hudson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW To highlight recent developments in studying mechanisms by which the apolipoprotein E4 (APOE4) allele affects the metabolism of brain lipids and predisposes the brain to inflammation and Alzheimer's disease (AD) dementia. RECENT FINDINGS APOE4 activates Ca2+ dependent phospholipase A2 (cPLA2) leading to changes in arachidonic acid (AA), eicosapentaenoic acid and docosahexaenoic acid signaling cascades in the brain. Among these changes, the increased conversion of AA to eicosanoids associates with sustained and unresolved chronic brain inflammation. The effects of APOE4 on the brain differ by age, disease stage, nutritional status and can be uncovered by brain imaging studies of brain fatty acid uptake. Reducing cPLA2 expression in the dementia brain presents a viable strategy that awaits to be tested. SUMMARY Fatty acid brain imaging techniques can clarify how changes to brain polyunsaturated fatty acid metabolism during the various phases of AD and guide the development of small molecules to mitigate brain inflammation.
Collapse
Affiliation(s)
| | - Brandon Ebright
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy
| | - Hussein N Yassine
- Department of Neurology and Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
35
|
Mele C, Pagano L, Franciotta D, Caputo M, Nardone A, Aimaretti G, Marzullo P, Pingue V. Thyroid function in the subacute phase of traumatic brain injury: a potential predictor of post-traumatic neurological and functional outcomes. J Endocrinol Invest 2022; 45:379-389. [PMID: 34351610 PMCID: PMC8783844 DOI: 10.1007/s40618-021-01656-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/29/2021] [Indexed: 01/28/2023]
Abstract
PURPOSE That thyroid hormones exert pleiotropic effects and have a contributory role in triggering seizures in patients with traumatic brain injury (TBI) can be hypothesized. We aimed at investigating thyroid function tests as prognostic factors of the development of seizures and of functional outcome in TBI. METHODS This retrospective study enrolled 243 adult patients with a diagnosis of mild-to-severe TBI, consecutively admitted to our rehabilitation unit for a 6-month neurorehabilitation program. Data on occurrence of seizures, brain imaging, injury characteristics, associated neurosurgical procedures, neurologic and functional assessments, and death during hospitalization were collected at baseline, during the workup and on discharge. Thyroid function tests (serum TSH, fT4, and fT3 levels) were performed upon admission to neurorehabilitation. RESULTS Serum fT3 levels were positively associated with an increased risk of late post-traumatic seizures (LPTS) in post-TBI patients independent of age, sex and TBI severity (OR = 1.85, CI 95% 1.22-2.61, p < 0.01). Measured at admission, fT3 values higher than 2.76 pg/mL discriminated patients with late post-traumatic seizures from those without, with a sensitivity of 74.2% and a specificity of 60.9%. Independently from the presence of post-traumatic epilepsy and TBI severity, increasing TSH levels and decreasing fT3 levels were associated with worse neurological and functional outcome, as well as with higher risk of mortality within 6 months from the TBI event. CONCLUSIONS Serum fT3 levels assessed in the subacute phase post-TBI are associated with neurological and functional outcome as well as with the risk of seizure occurrence. Further studies are needed to investigate the mechanisms underlying these associations.
Collapse
Affiliation(s)
- C Mele
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - L Pagano
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - D Franciotta
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - M Caputo
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - A Nardone
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Neurorehabilitation and Spinal Unit, Istituti Clinici Scientifici Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| | - G Aimaretti
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - P Marzullo
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Division of General Medicine, IRCCS Istituto Auxologico Italiano, Ospedale San Giuseppe, Verbania, Italy
| | - V Pingue
- Neurorehabilitation and Spinal Unit, Istituti Clinici Scientifici Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| |
Collapse
|
36
|
Zubelić A, Vuletić J, Ašćerić M, Rašić-Marković A, Stanojlović O, Šutulović N, Hrnčić D. Basic characteristics of EEG epileptiform discharges triggered by lindane in a model of experimental prostatitis. MEDICINSKI PODMLADAK 2022. [DOI: 10.5937/mp73-34860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction: Chronic prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) is the most commonly diagnosed non-infectious prostatitis in urology. Studies have shown that CP/CPPS can induce neuroinflammation, which may result in CNS hyperexcitability and a tendency to develop epileptic seizures. Spike salvos are ictal EEG graph elements typical for the experimental model of lindane-induced seizures. There are a number of mathematical models for quantitative analysis of EEG, including the Fast Fourier Transform (FFT). It transforms the signal from time into the frequency domain, providing information on Power Spectral Densities (PSD). Aim: The aim of this study was to investigate the basic characteristics of epileptiform discharges induced by subconvulsive dose of lindane in rats, with experimentally induced CP/CPPS. Material and methods: CP/CPPS was induced by intraprostatic injection of 3% l-carrageenan in male Wistar albino rats. Animals with CP/CPPS were implanted with EEG registration electrodes, and then administered lindane (4 mg/kg, i.p, experimental group, n = 6 per group) or its solvent (DMSO, control group, n = 6 per group). An 8-channel EEG device was used in combination with software developed in the laboratory (NeuroSciLaBG). Ictal EEG epochs were extracted from the original signal and FFT analysis was performed to obtain information taking into account PSD in predefined frequency bands. Results: There was no ictal activity in the EEG of control animals. In experimental animals, ictal activity occurred and the mean duration of the ictal period was 2.06 s. FFT analysis revealed that the Alpha frequency range (7-15 Hz) was markedly dominant during ictal activity. Conclusion: The results of this study showed the characteristics of epileptiform discharges in animals with experimentally induced CP/CPPS. This study and animal model are suitable for future translational studies of the comorbidities of this syndrome.
Collapse
|
37
|
Bazhanova E, Kozlov A. Mechanisms of apoptosis in drug-resistant epilepsy. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:43-50. [DOI: 10.17116/jnevro202212205143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Prophylactic Activation of Shh Signaling Attenuates TBI-Induced Seizures in Zebrafish by Modulating Glutamate Excitotoxicity through Eaat2a. Biomedicines 2021; 10:biomedicines10010032. [PMID: 35052712 PMCID: PMC8773121 DOI: 10.3390/biomedicines10010032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022] Open
Abstract
Approximately 2 million individuals experience a traumatic brain injury (TBI) every year in the United States. Secondary injury begins within minutes after TBI, with alterations in cellular function and chemical signaling that contribute to excitotoxicity. Post-traumatic seizures (PTS) are experienced in an increasing number of TBI individuals that also display resistance to traditional anti-seizure medications (ASMs). Sonic hedgehog (Shh) is a signaling pathway that is upregulated following central nervous system damage in zebrafish and aids injury-induced regeneration. Using a modified Marmarou weight drop on adult zebrafish, we examined PTS following TBI and Shh modulation. We found that inhibiting Shh signaling by cyclopamine significantly increased PTS in TBI fish, prolonged the timeframe PTS was observed, and decreased survival across all TBI severities. Shh-inhibited TBI fish failed to respond to traditional ASMs, but were attenuated when treated with CNQX, which blocks ionotropic glutamate receptors. We found that the Smoothened agonist, purmorphamine, increased Eaat2a expression in undamaged brains compared to untreated controls, and purmorphamine treatment reduced glutamate excitotoxicity following TBI. Similarly, purmorphamine reduced PTS, edema, and cognitive deficits in TBI fish, while these pathologies were increased and/or prolonged in cyclopamine-treated TBI fish. However, the increased severity of TBI phenotypes with cyclopamine was reduced by cotreating fish with ceftriaxone, which induces Eaat2a expression. Collectively, these data suggest that Shh signaling induces Eaat2a expression and plays a role in regulating TBI-induced glutamate excitotoxicity and TBI sequelae.
Collapse
|
39
|
Physical Exercise as a Modulator of Vascular Pathology and Thrombin Generation to Improve Outcomes After Traumatic Brain Injury. Mol Neurobiol 2021; 59:1124-1138. [PMID: 34846694 DOI: 10.1007/s12035-021-02639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Disruption of the blood-brain barrier and occurrence of coagulopathy after traumatic brain injury (TBI) have important implications for multiple secondary injury processes. Given the extent of post-traumatic changes in neuronal function, significant alterations in some targets, such thrombin (a protease that plays a physiological role in maintaining blood coagulation), play an important role in TBI-induced pathophysiology. Despite the magnitude of thrombin in synaptic plasticity being concentration-dependent, the mechanisms underlying TBI have not been fully elucidated. The understanding of this post-injury neurovascular dysregulation is essential to establish scientific-based rehabilitative strategies. One of these strategies may be supporting physical exercise, considering its relevance in reducing damage after a TBI. However, there are caveats to consider when interpreting the effect of physical exercise on neurovascular dysregulation after TBI. To complete this picture, this review will describe how the interactions established between blood-borne factors (such as thrombin) and physical exercise alter the TBI pathophysiology.
Collapse
|
40
|
Mishra A, Bandopadhyay R, Singh PK, Mishra PS, Sharma N, Khurana N. Neuroinflammation in neurological disorders: pharmacotherapeutic targets from bench to bedside. Metab Brain Dis 2021; 36:1591-1626. [PMID: 34387831 DOI: 10.1007/s11011-021-00806-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is one of the host defensive mechanisms through which the nervous system protects itself from pathogenic and or infectious insults. Moreover, neuroinflammation occurs as one of the most common pathological outcomes in various neurological disorders, makes it the promising target. The present review focuses on elaborating the recent advancement in understanding molecular mechanisms of neuroinflammation and its role in the etiopathogenesis of various neurological disorders, especially Alzheimer's disease (AD), Parkinson's disease (PD), and Epilepsy. Furthermore, the current status of anti-inflammatory agents in neurological diseases has been summarized in light of different preclinical and clinical studies. Finally, possible limitations and future directions for the effective use of anti-inflammatory agents in neurological disorders have been discussed.
Collapse
Affiliation(s)
- Awanish Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India.
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India.
| | - Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Prabhakar Kumar Singh
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Pragya Shakti Mishra
- Department of Nuclear Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow, 226014, India
| | - Neha Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Navneet Khurana
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| |
Collapse
|
41
|
Ping X, Chai Z, Wang W, Ma C, White FA, Jin X. Blocking receptor for advanced glycation end products (RAGE) or toll-like receptor 4 (TLR4) prevents posttraumatic epileptogenesis in mice. Epilepsia 2021; 62:3105-3116. [PMID: 34535891 DOI: 10.1111/epi.17069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Effective treatment for the prevention of posttraumatic epilepsy is still not available. Here, we sought to determine whether blocking receptor for advanced glycation end products (RAGE) or toll-like receptor 4 (TLR4) signaling pathways would prevent posttraumatic epileptogenesis. METHODS In a mouse undercut model of posttraumatic epilepsy, daily injections of saline, RAGE monoclonal antibody (mAb), or TAK242, a TLR4 inhibitor, were made for 1 week. Their effects on seizure susceptibility and spontaneous epileptic seizures were evaluated with a pentylenetetrazol (PTZ) test in 2 weeks and with continuous video and wireless electroencephalography (EEG) monitoring between 2 and 6 weeks after injury, respectively. Seizure susceptibility after undercut in RAGE knockout mice was also evaluated with the PTZ test. The lesioned cortex was analyzed with immunohistology. RESULTS Undercut animals treated with RAGE mAb or TAK242 showed significantly higher seizure threshold than saline-treated undercut mice. Consistently, undercut injury in RAGE knockout mice did not cause a reduction in seizure threshold in the PTZ test. EEG and video recordings revealed a significant decrease in the cumulative spontaneous seizure events in the RAGE mAb- or TAK242-treated group (p < 0.001, when the RAGE mAb or TAK242 group is compared with the saline group). The lesioned cortical tissues of RAGE mAb- or TAK242-treated undercut group showed higher neuronal densities of Nissl staining and higher densities of glutamic acid decarboxylase 67-immunoreactive interneurons than the saline-treated undercut group. Immunostaining to GFAP and Iba-1 revealed lower densities of astrocytes and microglia in the cortex of the treatment groups, suggesting reduced glia activation. SIGNIFICANCE RAGE and TLR4 signaling are critically involved in posttraumatic epileptogenesis. Blocking these pathways early after traumatic brain injury is a promising strategy for preventing posttraumatic epilepsy.
Collapse
Affiliation(s)
- Xingjie Ping
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhi Chai
- Neurobiology Research Center, Shanxi Key Laboratory of Innovative Drugs for Serious Illness, College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Weiping Wang
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cungen Ma
- Neurobiology Research Center, Shanxi Key Laboratory of Innovative Drugs for Serious Illness, College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Fletcher A White
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Research and Development Services, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Xiaoming Jin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
42
|
Mechanisms of Drug Resistance in the Pathogenesis of Epilepsy: Role of Neuroinflammation. A Literature Review. Brain Sci 2021; 11:brainsci11050663. [PMID: 34069567 PMCID: PMC8161227 DOI: 10.3390/brainsci11050663] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a chronic neurological disorder characterized by recurring spontaneous seizures. Drug resistance appears in 30% of patients and it can lead to premature death, brain damage or a reduced quality of life. The purpose of the study was to analyze the drug resistance mechanisms, especially neuroinflammation, in the epileptogenesis. The information bases of biomedical literature Scopus, PubMed, Google Scholar and SciVerse were used. To obtain full-text documents, electronic resources of PubMed Central and Research Gate were used. The article examines the recent research of the mechanisms of drug resistance in epilepsy and discusses the hypotheses of drug resistance development (genetic, epigenetic, target hypothesis, etc.). Drug-resistant epilepsy is associated with neuroinflammatory, autoimmune and neurodegenerative processes. Neuroinflammation causes immune, pathophysiological, biochemical and psychological consequences. Focal or systemic unregulated inflammatory processes lead to the formation of aberrant neural connections and hyperexcitable neural networks. Inflammatory mediators affect the endothelium of cerebral vessels, destroy contacts between endothelial cells and induce abnormal angiogenesis (the formation of “leaky” vessels), thereby affecting the blood–brain barrier permeability. Thus, the analysis of pro-inflammatory and other components of epileptogenesis can contribute to the further development of the therapeutic treatment of drug-resistant epilepsy.
Collapse
|
43
|
Anwer F, Oliveri F, Kakargias F, Panday P, Arcia Franchini AP, Iskander B, Hamid P. Post-Traumatic Seizures: A Deep-Dive Into Pathogenesis. Cureus 2021; 13:e14395. [PMID: 33987052 PMCID: PMC8110294 DOI: 10.7759/cureus.14395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/09/2021] [Indexed: 11/05/2022] Open
Abstract
Post-traumatic seizures (PTS) have become an emerging challenge for neurologists worldwide with the rise of brain injuries. Trauma can lead to various outcomes, ranging from naive spasms to debilitating post-traumatic epilepsy (PTE). In this article, we will explore the pathogenesis of convulsions following a concussion. We will look at multiple studies to explain the various structural, metabolic, and inflammatory changes leading to seizures. Additionally, we will explore the association between severity and location of injury and PTE. PTE's pathophysiology is not entirely implicit, and we are still in the dark as to which anti-epileptic drugs will be useful in circumventing these attacks. The purpose of this narrative review is to explain the post-traumatic brain changes in detail so that such attacks can be either thwarted or treated more resourcefully in the future.
Collapse
Affiliation(s)
- Fatima Anwer
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Federico Oliveri
- Cardiology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Fotios Kakargias
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Priyanka Panday
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ana P Arcia Franchini
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Beshoy Iskander
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pousette Hamid
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
44
|
Kilinc E, Torun IE, Cetinkaya A, Tore F. Mast cell activation ameliorates pentylenetetrazole-induced seizures in rats: The potential role for serotonin. Eur J Neurosci 2021; 55:2912-2924. [PMID: 33565644 DOI: 10.1111/ejn.15145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Neuroinflammation plays a key role in the pathogenesis of epilepsy, but the underlying mechanisms are not well understood. Mast cells are multifunctional immune cells that are also activated by stress. The effects of activated mast cells on epileptogenesis are not yet known. This study investigated the effects and mechanisms of compound 48/80-stimulated mast cell activation on pentylenetetrazole-induced epileptic seizures in rats. Male Wistar rats were separated into seven groups (n = 12). Group-1(NS+PTZ) received intraperitoneal saline solution, while groups 2(C-48/80+PTZ-1), 3(C-48/80+PTZ-2), and 4(C-48/80+PTZ-3) received compound-48/80 at doses of 0.5, 1, and 2 mg/kg, respectively, 30 min before 45 mg/kg pentylenetetrazole administration. Similarly, Group-5(Cr+C-48/80+PTZ) received 10 mg/kg cromolyn plus 2 mg/kg compound-48/80 before pentylenetetrazole, and Group-6(MC Dep+C-48/80+PTZ) was exposed to a mast cell-depletion process, and then received 2 mg/kg compound-48/80. Group-7(5-HT+PTZ) received 10 mg/kg serotonin. Seizure stages were evaluated using Racine's scale. Compound-48/80 at 2 mg/kg induced anticonvulsive effects against pentylenetetrazole-induced seizures by extending onset-times of both myoclonic-jerk and generalized tonic-clonic seizures (p = 0.0001), and by shortening the duration of generalized tonic-clonic seizure (p = 0.008). These effects were reversed by cromolyn (p = 0.0001). These effects were not observed in mast cell-depleted rats. Similarly to compound 48/80, serotonin also exhibited anticonvulsive effects against seizures (p < 0.05). Compound 48/80 acts as an anticonvulsant by activating mast cells in a dose-dependent manner. The anticonvulsive effects of mast cell activation may be mediated by serotonin. Mast cell activation may therefore provide protective activity against seizures under appropriate circumstances.
Collapse
Affiliation(s)
- Erkan Kilinc
- Department of Physiology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | | | - Ayhan Cetinkaya
- Department of Physiology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Fatma Tore
- Department of Physiology, Istanbul Health and Technology University, Istanbul, Turkey
| |
Collapse
|
45
|
Tesfaye BA, Hailu HG, Zewdie KA, Ayza MA, Berhe DF. Montelukast: The New Therapeutic Option for the Treatment of Epilepsy. J Exp Pharmacol 2021; 13:23-31. [PMID: 33505173 PMCID: PMC7829127 DOI: 10.2147/jep.s277720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no definitive cure for epilepsy. The available medications relieve symptoms and reduce seizure attacks. The major challenge with the available antiepileptic medication is safety and affordability. The repurposing of montelukast for epilepsy can be an alternative medication with a better safety profile. Montelukast is a leukotriene receptor antagonist that binds to the cysteinyl leukotrienes (CysLT) receptors used in the treatment of bronchial asthma and seasonal allergies. Emerging evidence suggests that montelukast's anti-inflammatory effect can help to maintain BBB integrity. The drug has also neuroprotective and anti-oxidative activities to reduce seizure incidence and epilepsy. The present review summarizes the neuropharmacological actions of montelukast in epilepsy with an emphasis on the recent findings associated with CysLT and cell-specific effects.
Collapse
Affiliation(s)
- Bekalu Amare Tesfaye
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Haftom Gebregergs Hailu
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Kaleab Alemayehu Zewdie
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Muluken Altaye Ayza
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Derbew Fikadu Berhe
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
46
|
Roberts R, Authier S, Mellon RD, Morton M, Suzuki I, Tjalkens RB, Valentin JP, Pierson JB. Can We Panelize Seizure? Toxicol Sci 2021; 179:3-13. [PMID: 33165543 DOI: 10.1093/toxsci/kfaa167] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seizure liability remains a significant cause of attrition in drug discovery and development, leading to loss of competitiveness, delays, and increased costs. Current detection methods rely on observations made in in vivo studies intended to support clinical trials, such as tremors or other abnormal movements. These signs could be missed or misinterpreted; thus, definitive confirmation of drug-induced seizure requires a follow-up electroencephalogram study. There has been progress in in vivo detection of seizure using automated video systems that record and analyze animal movements. Nonetheless, it would be preferable to have earlier prediction of seizurogenic risk that could be used to eliminate liabilities early in discovery while there are options for medicinal chemists making potential new drugs. Attrition due to cardiac adverse events has benefited from routine early screening; could we reduce attrition due to seizure using a similar approach? Specifically, microelectrode arrays could be used to detect potential seizurogenic signals in stem-cell-derived neurons. In addition, there is clear evidence implicating neuronal voltage-gated and ligand-gated ion channels, GPCRs and transporters in seizure. Interactions with surrounding glial cells during states of stress or inflammation can also modulate ion channel function in neurons, adding to the challenge of seizure prediction. It is timely to evaluate the opportunity to develop an in vitro assessment of seizure linked to a panel of ion channel assays that predict seizure, with the aim of influencing structure-activity relationship at the design stage and eliminating compounds predicted to be associated with pro-seizurogenic state.
Collapse
Affiliation(s)
- Ruth Roberts
- ApconiX, Alderley Park, SK10 4TG, UK.,University of Birmingham, B15 2SD, UK
| | | | - R Daniel Mellon
- US Food and Drug Administration, Silver Spring, Maryland 20993
| | | | - Ikuro Suzuki
- Tohoku Institute of Technology, Sendai, 980-8577, Japan
| | - Ronald B Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Jean-Pierre Valentin
- UCB Biopharma SRL, Early Solutions, Development Science, Investigative Toxicology, Chemin du Foriest, B-1420, Braine-l'Alleud, Belgium
| | - Jennifer B Pierson
- Health and Environmental Sciences Institute, Washington, District of Columbia 20005
| |
Collapse
|
47
|
Antagonism of Macrophage Migration Inhibitory Factory (MIF) after Traumatic Brain Injury Ameliorates Astrocytosis and Peripheral Lymphocyte Activation and Expansion. Int J Mol Sci 2020; 21:ijms21207448. [PMID: 33050322 PMCID: PMC7589344 DOI: 10.3390/ijms21207448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) precedes the onset of epilepsy in up to 15–20% of symptomatic epilepsies and up to 5% of all epilepsy. Treatment of acquired epilepsies, including post-traumatic epilepsy (PTE), presents clinical challenges, including frequent resistance to anti-epileptic therapies. Considering that over 1.6 million Americans present with a TBI each year, PTE is an urgent clinical problem. Neuroinflammation is thought to play a major causative role in many of the post-traumatic syndromes, including PTE. Increasing evidence suggests that neuroinflammation facilitates and potentially contributes to seizure induction and propagation. The inflammatory cytokine, macrophage migration inhibitory factor (MIF), is elevated after TBI and higher levels of MIF correlate with worse post-traumatic outcomes. MIF was recently demonstrated to directly alter the firing dynamics of CA1 pyramidal neurons in the hippocampus, a structure critically involved in many types of seizures. We hypothesized that antagonizing MIF after TBI would be anti-inflammatory, anti-neuroinflammatory and neuroprotective. The results show that administering the MIF antagonist ISO1 at 30 min after TBI prevented astrocytosis but was not neuroprotective in the peri-lesion cortex. The results also show that ISO1 inhibited the TBI-induced increase in γδT cells in the gut, and the percent of B cells infiltrating into the brain. The ISO1 treatment also increased this population of B cells in the spleen. These findings are discussed with an eye towards their therapeutic potential for post-traumatic syndromes, including PTE.
Collapse
|
48
|
Yuan WH, Wang SJ. Posttraumatic epilepsy after traumatic brain injury and prophylactic administration of antiepileptic drugs. J Chin Med Assoc 2020; 83:885-886. [PMID: 32773580 PMCID: PMC7526581 DOI: 10.1097/jcma.0000000000000395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Wei-Hsin Yuan
- Division of Radiology, Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan, ROC
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Address correspondence: Dr. Wei-Hsin Yuan, Division of Radiology, Taipei Municipal Gan-Dau Hospital, 12, Lane 225, Zhi-Sing Road, Taipei 112, Taiwan, ROC. E-mail address: (W.-H. Yuan)
| | - Shuu-Jiun Wang
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
49
|
Role of Innate Immune Receptor TLR4 and its endogenous ligands in epileptogenesis. Pharmacol Res 2020; 160:105172. [PMID: 32871246 DOI: 10.1016/j.phrs.2020.105172] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
Abstract
Understanding the interplay between the innate immune system, neuroinflammation, and epilepsy might offer a novel perspective in the quest of exploring new treatment strategies. Due to the complex pathology underlying epileptogenesis, no disease-modifying treatment is currently available that might prevent epilepsy after a plausible epileptogenic insult despite the advances in pre-clinical and clinical research. Neuroinflammation underlies the etiopathogenesis of epilepsy and convulsive disorders with Toll-like receptor (TLR) signal transduction being highly involved. Among TLR family members, TLR4 is an innate immune system receptor and lipopolysaccharide (LPS) sensor that has been reported to contribute to epileptogenesis by regulating neuronal excitability. Herein, we discuss available evidence on the role of TLR4 and its endogenous ligands, the high mobility group box 1 (HMGB1) protein, the heat shock proteins (HSPs) and the myeloid related protein 8 (MRP8), in epileptogenesis and post-traumatic epilepsy (PTE). Moreover, we provide an account of the promising findings of TLR4 modulation/inhibition in experimental animal models with therapeutic impact on seizures.
Collapse
|
50
|
Tao Z, Chun-Yan H, Hua P, Bin-Bin Y, Xiaoping T. Phyllathin From Phyllanthus Amarus Ameliorates Epileptic Convulsion and Kindling Associated Post-Ictal Depression in Mice via Inhibition of NF-κB/TLR-4 Pathway. Dose Response 2020; 18:1559325820946914. [PMID: 32821254 PMCID: PMC7412921 DOI: 10.1177/1559325820946914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/14/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Epilepsy is a chronic, complex, unprovoked, and recurrent disorder of the nervous system that affected several people worldwide. Phyllanthus amarus (PA) has been documented to have neuroprotective potential. Aim To evaluate the potential of standardized extract of PA and its possible mechanism of action against the Pentylenetetrazol (PTZ)-induced convulsion and kindling associated post-ictal depression in experimental mice. Materials and Methods Phyllathin was isolated from methanolic extract of PA and well-characterized using HPTLC, ESI-MS/MS, and LC/MS. Phyllathin containing a standardized extract of PA (50, 100, and 200 mg/kg) was administered in convulsed and kindled mice, followed by an assessment of various parameters. Results The spectral analysis confirmed the molecular formula and weight of phyllanthin as C24H34O6 and 418.2342 Da. PA (100 and 200 mg/kg) significantly ameliorated PTZ-induced (p < 0.05) duration, onset of tonic-clonic convulsion, and mortality in mice. It also significantly attenuated (p < 0.05) PTZ-induced kindling in mice. Alteration in brain GABA, dopamine, and glutamate, Na+K+ATPase, Ca+2-ATPase activities, and oxido-nitrosative stress in kindled mice was significantly restored (p < 0.05) by PA treatment. It also significantly (p < 0.05) down-regulated brain mRNA expressions of NF-κB, TNF-α, IL-1β, COX-2, and TLR-4. Histological aberrations induced by PTZ in the brain of a kindled rat was significantly (p < 0.05) ameliorated by PA. Conclusion Phyllanthin containing a standardized extract of PA exerts its antiepileptic potential via balancing excitatory (glutamate) and inhibitory (GABA) brain monoamines, voltage-gated ion channels (Na+K+/Ca+2-ATPase) and inhibition of NF-κB/TLR-4 pathway to ameliorate neuroinflammation (TNF-α, IL-1β, and COX-2) in experimental mice.
Collapse
Affiliation(s)
- Zhang Tao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hu Chun-Yan
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peng Hua
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yang Bin-Bin
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tang Xiaoping
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|