1
|
Yang S, Hu Y, Cui M, Xu Q, Han X, Chang X, Zheng Q, Xiao J, Chen T, Li P, Dai M, Zhao Y. Microbiome, metabolome, and ionome profiling of cyst fluids reveals heterogeneity in pancreatic cystic neoplasms. Cancer Lett 2025; 623:217730. [PMID: 40252823 DOI: 10.1016/j.canlet.2025.217730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
Pancreatic cystic neoplasms (PCNs) carry variable malignant potential, requiring precise clinical management. However, the heterogeneity and progression of PCNs remain poorly understood. This study analyzed the microbiome, metabolome, and ionome profiles of cyst fluids from 188 patients, including 165 with PCNs and 23 with other cyst types, using PacBio full-length 16S/ITS sequencing, LC-MS/MS, and ICP-MS. Bioinformatic analyses were performed, and metabolic enzyme and endoplasmic reticulum (ER) stress-related gene expression were examined using the PAAD TCGA dataset. PCNs were classified into distinct histopathological subtypes, including mucinous cystic lesions (MCLs) and serous cystic lesions (SCLs). MCLs demonstrated lower microbial diversity compared to SCLs, indicating microbial instability. Streptococcus and Staphylococcus were identified as key taxa in intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs), respectively. MCLs exhibited metabolic shifts towards lipid metabolism, while IPMNs showed distinct metabolic profiles potentially reflecting inflammation-related metabolic reprogramming. Ionic diversity varied among subtypes, with MCLs showing reduced diversity and IPMNs presenting broader ionic profiles. Palmitic acid (PA), a metabolite linked to Streptococcus, may contribute to pro-inflammatory metabolic alterations in IPMN. Our preliminary experiments demonstrated that co-culturing Streptococcus orails (S. orails) with ASAN-PaCa cells promoted their proliferation, accompanied by an elevation of PA levels in the supernatant. This integrative microbiome-metabolome-ionome analysis highlights histopathological heterogeneity among PCNs. While mechanistic associations remain to be fully defined, mucinous lesions may be more susceptible to microbe-driven metabolic disruption, with Streptococcus-associated lipid alterations as a potential contributing factor.
Collapse
Affiliation(s)
- Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing 100730, China
| | - Ya Hu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing 100730, China
| | - Ming Cui
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing 100730, China
| | - Qiang Xu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing 100730, China
| | - Xianlin Han
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing 100730, China
| | - Xiaoyan Chang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Qingyuan Zheng
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing 100730, China
| | - Jinheng Xiao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing 100730, China
| | - Tianqi Chen
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Pengyu Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing 100730, China
| | - Menghua Dai
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing 100730, China.
| | - Yupei Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
2
|
Conte M, Carofiglio M, Vander Pol RS, Wood A, Hernandez N, Joubert A, Caffey C, Chua CYX, Grattoni A, Cauda V. Acoustically Driven Hybrid Nanocrystals for In Vivo Pancreatic Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11873-11887. [PMID: 39960802 PMCID: PMC11873934 DOI: 10.1021/acsami.4c21975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/28/2025]
Abstract
New treatment strategies are urgently needed for pancreatic ductal adenocarcinoma (PDAC), which is one of the deadliest tumors nowadays. PDAC is marked by hypoxia, intrinsic chemoresistance, a "cold" tumor microenvironment, and dense desmoplastic stroma, which hinders drug penetration. This study investigates the combined effect of iron-doped, lipid-coated zinc oxide nanoparticles enhanced with a fluorescent sonosensitizer and local ultrasound stimulation in treating PDAC. Nanoparticles were synthesized and coated by lipids, and their physiochemical properties were characterized by assessing reproducibility, stability, and efficient inclusion of the sonosensitizer. In vitro, sonosensitizer-enhanced nanoconstructs were tested on a KPC murine PDAC cell line in combination with ultrasound to evaluate their cytotoxicity and assess their efficacy. In vivo, NPs were further coupled with AlexaFluor 700 to allow their localization over time, and the nanoconstructs were intratumorally administered to a subcutaneous murine PDAC model to enhance local bioavailability and tumor visualization and minimize off-target effects of systemic delivery. Biodistribution, efficacy, flow cytometry, and survival studies were carried out on different cohorts of mice. The sonosensitizer-enhanced nanoconstructs, combined with ultrasound, triggered significant reactive oxygen species (ROS) production, reducing the KPC cell viability. In vivo, the antitumor efficacy was particularly pronounced with ultrasound stimulation, demonstrating a synergistic interaction between the nanoparticles and ultrasound. Moreover, increased immune cell infiltration, enhanced cancer cell apoptosis, and prolonged survival of the treated animals were achieved. These findings highlight the potential of a synergistic therapeutic approach combining lipid-coated sonosensitizer-loaded nanoparticles and ultrasound stimulation as an effective therapy for PDAC and in situ monitoring.
Collapse
Affiliation(s)
- Marzia Conte
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca
degli Abruzzi 24, 10129 Turin, Italy
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Marco Carofiglio
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca
degli Abruzzi 24, 10129 Turin, Italy
| | - Robin Shae Vander Pol
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Anthony Wood
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Nathanael Hernandez
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Ashley Joubert
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Camden Caffey
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Corrine Ying Xuan Chua
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Alessandro Grattoni
- Department
of Nanomedicine, Houston Methodist Research
Institute, Houston, Texas 77030, United States
- Department
of Surgery, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department
of Radiation Oncology, Houston Methodist
Research Institute, Houston, Texas 77030, United States
| | - Valentina Cauda
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca
degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
3
|
Antony A, Mukherjee S, Bi Y, Collisson EA, Nagaraj M, Murlidhar M, Wallace MB, Goenka AH. AI-Driven insights in pancreatic cancer imaging: from pre-diagnostic detection to prognostication. Abdom Radiol (NY) 2024:10.1007/s00261-024-04775-x. [PMID: 39738571 DOI: 10.1007/s00261-024-04775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related deaths in the United States, largely due to its poor five-year survival rate and frequent late-stage diagnosis. A significant barrier to early detection even in high-risk cohorts is that the pancreas often appears morphologically normal during the pre-diagnostic phase. Yet, the disease can progress rapidly from subclinical stages to widespread metastasis, undermining the effectiveness of screening. Recently, artificial intelligence (AI) applied to cross-sectional imaging has shown significant potential in identifying subtle, early-stage changes in pancreatic tissue that are often imperceptible to the human eye. Moreover, AI-driven imaging also aids in the discovery of prognostic and predictive biomarkers, essential for personalized treatment planning. This article uniquely integrates a critical discussion on AI's role in detecting visually occult PDAC on pre-diagnostic imaging, addresses challenges of model generalizability, and emphasizes solutions like standardized datasets and clinical workflows. By focusing on both technical advancements and practical implementation, this article provides a forward-thinking conceptual framework that bridges current gaps in AI-driven PDAC research.
Collapse
Affiliation(s)
- Ajith Antony
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Yan Bi
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Eric A Collisson
- Department of Medical Oncology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Madhu Nagaraj
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Michael B Wallace
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Ajit H Goenka
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Moreno P, Ohara Y, Craig AJ, Liu H, Yang S, Dorsey TH, Zhang L, Panigrahi G, Cawley H, Azizian A, Gaedcke J, Ghadimi M, Hanna N, Hussain SP. ADRA2A promotes the classical/progenitor subtype and reduces disease aggressiveness of pancreatic cancer. Carcinogenesis 2024; 45:845-856. [PMID: 39136088 PMCID: PMC11584292 DOI: 10.1093/carcin/bgae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) manifests diverse molecular subtypes, including the classical/progenitor and basal-like/squamous subtypes, with the latter known for its aggressiveness. We employed integrative transcriptome and metabolome analyses to identify potential genes contributing to the molecular subtype differentiation and its metabolic features. Our comprehensive analysis revealed that adrenoceptor alpha 2A (ADRA2A) was downregulated in the basal-like/squamous subtype, suggesting its potential role as a candidate suppressor of this subtype. Reduced ADRA2A expression was significantly associated with a high frequency of lymph node metastasis, higher pathological grade, advanced disease stage, and decreased survival among PDAC patients. In vitro experiments demonstrated that ADRA2A transgene expression and ADRA2A agonist inhibited PDAC cell invasion. Additionally, ADRA2A-high condition downregulated the basal-like/squamous gene expression signature, while upregulating the classical/progenitor gene expression signature in our PDAC patient cohort and PDAC cell lines. Metabolome analysis conducted on the PDAC cohort and cell lines revealed that elevated ADRA2A levels were associated with suppressed amino acid and carnitine/acylcarnitine metabolism, which are characteristic metabolic profiles of the classical/progenitor subtype. Collectively, our findings suggest that heightened ADRA2A expression induces transcriptome and metabolome characteristics indicative of classical/progenitor subtype with decreased disease aggressiveness in PDAC patients. These observations introduce ADRA2A as a candidate for diagnostic and therapeutic targeting in PDAC.
Collapse
Affiliation(s)
- Paloma Moreno
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Yuuki Ohara
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Amanda J Craig
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Huaitian Liu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Shouhui Yang
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Tiffany H Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Lin Zhang
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Gatikrushna Panigrahi
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Helen Cawley
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Azadeh Azizian
- Städtisches Klinikum Karlsruhe, Moltkestraße 90, 76133 Karlsruhe, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Jochen Gaedcke
- Städtisches Klinikum Karlsruhe, Moltkestraße 90, 76133 Karlsruhe, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Nader Hanna
- Division of General and Oncologic Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States
- Division of Surgical Oncology, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - S Perwez Hussain
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
5
|
Klatte DCF, Weston A, Ma Y, Sledge H, Bali A, Bolan C, Engels M, van Hooft JE, van Leerdam ME, Ouni A, Wallace MB, Bi Y. Temporal Trends in Body Composition and Metabolic Markers Prior to Diagnosis of Pancreatic Ductal Adenocarcinoma. Clin Gastroenterol Hepatol 2024; 22:1830-1838.e9. [PMID: 38703880 DOI: 10.1016/j.cgh.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND & AIMS Changes in body composition and metabolic factors may serve as biomarkers for the early detection of pancreatic ductal adenocarcinoma (PDAC). The aim of this study was to capture the longitudinal changes in body composition and metabolic factors before diagnosis of PDAC. METHODS We performed a retrospective cohort study in which all patients (≥18 years) diagnosed with PDAC from 2002 to 2021 were identified. We collected all abdominal computed tomography scans and 10 different blood-based biomarkers up to 36 months before diagnosis. We applied a fully automated abdominal segmentation algorithm previously developed by our group for 3-dimensional quantification of body composition on computed tomography scans. Longitudinal trends of body composition and blood-based biomarkers before PDAC diagnosis were estimated using linear mixed models, compared across different time windows, and visualized using spline regression. RESULTS We included 1690 patients in body composition analysis, of whom 516 (30.5%) had ≥2 prediagnostic computed tomography scans. For analysis of longitudinal trends of blood-based biomarkers, 3332 individuals were included. As an early manifestation of PDAC, we observed a significant decrease in visceral and subcutaneous adipose tissue (β = -1.94 [95% confidence interval (CI), -2.39 to -1.48] and β = -2.59 [95% CI, -3.17 to -2.02]) in area (cm2)/height (m2) per 6 months closer to diagnosis, accompanied by a decrease in serum lipids (eg, low-density lipoprotein [β = -2.83; 95% CI, -3.31 to -2.34], total cholesterol [β = -2.69; 95% CI, -3.18 to -2.20], and triglycerides [β = -1.86; 95% CI, -2.61 to -1.11]), and an increase in blood glucose levels. Loss of muscle tissue and bone volume was predominantly observed in the last 6 months before diagnosis. CONCLUSIONS This study identified significant alterations in a variety of soft tissue and metabolic markers that occur in the development of PDAC. Early recognition of these metabolic changes may provide an opportunity for early detection.
Collapse
Affiliation(s)
- Derk C F Klatte
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Alexander Weston
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida
| | - Yaohua Ma
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida
| | - Hanna Sledge
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida
| | - Aman Bali
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida
| | - Candice Bolan
- Department of Radiology, Mayo Clinic, Jacksonville, Florida
| | - Megan Engels
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique E van Leerdam
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands; Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ahmed Ouni
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida
| | - Michael B Wallace
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida
| | - Yan Bi
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
6
|
Aventaggiato M, Arcangeli T, Vernucci E, Barreca F, Sansone L, Pellegrini L, Pontemezzo E, Valente S, Fioravanti R, Russo MA, Mai A, Tafani M. Pharmacological Activation of SIRT3 Modulates the Response of Cancer Cells to Acidic pH. Pharmaceuticals (Basel) 2024; 17:810. [PMID: 38931477 DOI: 10.3390/ph17060810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer cells modulate their metabolism, creating an acidic microenvironment that, in turn, can favor tumor progression and chemotherapy resistance. Tumor cells adopt strategies to survive a drop in extracellular pH (pHe). In the present manuscript, we investigated the contribution of mitochondrial sirtuin 3 (SIRT3) to the adaptation and survival of cancer cells to a low pHe. SIRT3-overexpressing and silenced breast cancer cells MDA-MB-231 and human embryonic kidney HEK293 cells were grown in buffered and unbuffered media at pH 7.4 and 6.8 for different times. mRNA expression of SIRT3 and CAVB, was measured by RT-PCR. Protein expression of SIRT3, CAVB and autophagy proteins was estimated by western blot. SIRT3-CAVB interaction was determined by immunoprecipitation and proximity ligation assays (PLA). Induction of autophagy was studied by western blot and TEM. SIRT3 overexpression increases the survival of both cell lines. Moreover, we demonstrated that SIRT3 controls intracellular pH (pHi) through the regulation of mitochondrial carbonic anhydrase VB (CAVB). Interestingly, we obtained similar results by using MC2791, a new SIRT3 activator. Our results point to the possibility of modulating SIRT3 to decrease the response and resistance of tumor cells to the acidic microenvironment and ameliorate the effectiveness of anticancer therapy.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Tania Arcangeli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Enza Vernucci
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Federica Barreca
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Luigi Sansone
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
- Laboratory of Cellular and Molecular Pathology, IRCCS San Raffaele Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Laura Pellegrini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Elena Pontemezzo
- European Hospital, New Fertility Group, Center for Reproductive Medicine, Via Portuense 700, 00149 Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Matteo Antonio Russo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
- Laboratory of Cellular and Molecular Pathology, IRCCS San Raffaele Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
7
|
STICKLER SANDRA, RATH BARBARA, HAMILTON GERHARD. Targeting KRAS in pancreatic cancer. Oncol Res 2024; 32:799-805. [PMID: 38686056 PMCID: PMC11055996 DOI: 10.32604/or.2024.045356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/11/2023] [Indexed: 05/02/2024] Open
Abstract
Pancreatic cancer has a dismal prognosis due to late detection and lack of efficient therapies. The Kirsten rat sarcoma virus (KRAS) oncogene is mutated in up to 90% of all pancreatic ductal adenocarcinomas (PDACs) and constitutes an attractive target for therapy. However, the most common KRAS mutations in PDAC are G12D (44%), G12V (34%) and G12R (20%) that are not amenable to treatment by KRAS G12C-directed cysteine-reactive KRAS inhibitors such as Sotorasib and Adagrasib that exhibit clinical efficacy in lung cancer. KRAS G12C mutant pancreatic cancer has been treated with Sotorasib but this mutation is detected only in 2%-3% of PDAC. Recently, the KRAS G12D-directed MRTX1133 inhibitor has entered clinical trials and more of such inhibitors are in development. The other KRAS mutations may be targeted indirectly via inhibition of the cognate guanosine exchange factor (GEF) Son of Sevenless 1 that drives KRAS. These agents seem to provide the means to target the most frequent KRAS mutations in PDAC and to improve patient outcomes.
Collapse
Affiliation(s)
- SANDRA STICKLER
- Institute of Pharmacology, Medical University of Vienna, Vienna, A-1090, Austria
| | - BARBARA RATH
- Institute of Pharmacology, Medical University of Vienna, Vienna, A-1090, Austria
| | - GERHARD HAMILTON
- Institute of Pharmacology, Medical University of Vienna, Vienna, A-1090, Austria
| |
Collapse
|
8
|
Murthy D, Attri KS, Shukla SK, Thakur R, Chaika NV, He C, Wang D, Jha K, Dasgupta A, King RJ, Mulder SE, Souchek J, Gebregiworgis T, Rai V, Patel R, Hu T, Rana S, Kollala SS, Pacheco C, Grandgenett PM, Yu F, Kumar V, Lazenby AJ, Black AR, Ulhannan S, Jain A, Edil BH, Klinkebiel DL, Powers R, Natarajan A, Hollingsworth MA, Mehla K, Ly Q, Chaudhary S, Hwang RF, Wellen KE, Singh PK. Cancer-associated fibroblast-derived acetate promotes pancreatic cancer development by altering polyamine metabolism via the ACSS2-SP1-SAT1 axis. Nat Cell Biol 2024; 26:613-627. [PMID: 38429478 PMCID: PMC11021164 DOI: 10.1038/s41556-024-01372-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
The ability of tumour cells to thrive in harsh microenvironments depends on the utilization of nutrients available in the milieu. Here we show that pancreatic cancer-associated fibroblasts (CAFs) regulate tumour cell metabolism through the secretion of acetate, which can be blocked by silencing ATP citrate lyase (ACLY) in CAFs. We further show that acetyl-CoA synthetase short-chain family member 2 (ACSS2) channels the exogenous acetate to regulate the dynamic cancer epigenome and transcriptome, thereby facilitating cancer cell survival in an acidic microenvironment. Comparative H3K27ac ChIP-seq and RNA-seq analyses revealed alterations in polyamine homeostasis through regulation of SAT1 gene expression and enrichment of the SP1-responsive signature. We identified acetate/ACSS2-mediated acetylation of SP1 at the lysine 19 residue that increased SP1 protein stability and transcriptional activity. Genetic or pharmacologic inhibition of the ACSS2-SP1-SAT1 axis diminished the tumour burden in mouse models. These results reveal that the metabolic flexibility imparted by the stroma-derived acetate enabled cancer cell survival under acidosis via the ACSS2-SP1-SAT1 axis.
Collapse
Affiliation(s)
- Divya Murthy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kuldeep S Attri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surendra K Shukla
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ravi Thakur
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nina V Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Chunbo He
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dezhen Wang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kanupriya Jha
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Aneesha Dasgupta
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ryan J King
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott E Mulder
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joshua Souchek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Teklab Gebregiworgis
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Vikant Rai
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rohit Patel
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tuo Hu
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sai Sundeep Kollala
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Camila Pacheco
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vikas Kumar
- Department of Cell Biology, Genetics and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Audrey J Lazenby
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susanna Ulhannan
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Barish H Edil
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David L Klinkebiel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kamiya Mehla
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Quan Ly
- Department of Surgical Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Rosa F Hwang
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
9
|
Cheng P, Ming S, Cao W, Wu J, Tian Q, Zhu J, Wei W. Recent advances in sonodynamic therapy strategies for pancreatic cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1945. [PMID: 38403882 DOI: 10.1002/wnan.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Pancreatic cancer, a prevalent malignancy of the digestive system, has a poor 5-year survival rate of around 10%. Although numerous minimally invasive alternative treatments, including photothermal therapy and photodynamic therapy, have shown effectiveness compared with traditional surgical procedures, radiotherapy, and chemotherapy. However, the application of these alternative treatments is constrained by their depth of penetration, making it challenging to treat pancreatic cancer situated deep within the tissue. Sonodynamic therapy (SDT) has emerged as a promising minimally invasive therapy method that is particularly potent against deep-seated tumors such as pancreatic cancer. However, the unique characteristics of pancreatic cancer, including a dense surrounding matrix, high reductivity, and a hypoxic tumor microenvironment, impede the efficient application of SDT. Thus, to guide the evolution of SDT for pancreatic cancer therapy, this review addresses these challenges, examines current strategies for effective SDT enhancement for pancreatic cancer, and investigates potential future advances to boost clinical applicability. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuai Ming
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Cao
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jixiao Wu
- School of Materials and Chemistry, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Qiwei Tian
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jing Zhu
- School of Materials and Chemistry, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Wei Wei
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
10
|
Ruiz CF, Garcia C, Jacox JB, Lawres L, Muzumdar MD. Decoding the obesity-cancer connection: lessons from preclinical models of pancreatic adenocarcinoma. Life Sci Alliance 2023; 6:e202302228. [PMID: 37648285 PMCID: PMC10474221 DOI: 10.26508/lsa.202302228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Obesity is a metabolic state of energy excess and a risk factor for over a dozen cancer types. Because of the rising worldwide prevalence of obesity, decoding the mechanisms by which obesity promotes tumor initiation and early progression is a societal imperative and could broadly impact human health. Here, we review results from preclinical models that link obesity to cancer, using pancreatic adenocarcinoma as a paradigmatic example. We discuss how obesity drives cancer development by reprogramming the pretumor or tumor cell and its micro- and macro-environments. Specifically, we describe evidence for (1) altered cellular metabolism, (2) hormone dysregulation, (3) inflammation, and (4) microbial dysbiosis in obesity-driven pancreatic tumorigenesis, denoting variables that confound interpretation of these studies, and highlight remaining gaps in knowledge. Recent advances in preclinical modeling and emerging unbiased analytic approaches will aid in further unraveling the complex link between obesity and cancer, informing novel strategies for prevention, interception, and therapy in pancreatic adenocarcinoma and other obesity-associated cancers.
Collapse
Affiliation(s)
- Christian F Ruiz
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Cathy Garcia
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Jeremy B Jacox
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Medicine (Section of Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Lawres
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Mandar D Muzumdar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Medicine (Section of Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Bandi DSR, Sarvesh S, Farran B, Nagaraju GP, El-Rayes BF. Targeting the metabolism and immune system in pancreatic ductal adenocarcinoma: Insights and future directions. Cytokine Growth Factor Rev 2023; 71-72:26-39. [PMID: 37407355 DOI: 10.1016/j.cytogfr.2023.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), presents a challenging landscape due to its complex nature and the highly immunosuppressive tumor microenvironment (TME). This immunosuppression severely limits the effectiveness of immune-based therapies. Studies have revealed the critical role of immunometabolism in shaping the TME and influencing PDAC progression. Genetic alterations, lysosomal dysfunction, gut microbiome dysbiosis, and altered metabolic pathways have been shown to modulate immunometabolism in PDAC. These metabolic alterations can significantly impact immune cell functions, including T-cells, myeloid-derived suppressor cells (MDSCs), and macrophages, evading anti-tumor immunity. Advances in immunotherapy offer promising avenues for overcoming immunosuppressive TME and enhancing patient outcomes. This review highlights the challenges and opportunities for future research in this evolving field. By exploring the connections between immunometabolism, genetic alterations, and the microbiome in PDAC, it is possible to tailor novel approaches capable of improving immunotherapy outcomes and addressing the limitations posed by immunosuppressive TME. Ultimately, these insights may pave the way for improved treatment options and better outcomes for PDAC patients.
Collapse
Affiliation(s)
- Dhana Sekhar Reddy Bandi
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Sujith Sarvesh
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
12
|
Michálková L, Horník Š, Sýkora J, Setnička V, Bunganič B. Prediction of Pathologic Change Development in the Pancreas Associated with Diabetes Mellitus Assessed by NMR Metabolomics. J Proteome Res 2023. [PMID: 37018516 DOI: 10.1021/acs.jproteome.3c00047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Nuclear magnetic resonance (NMR) metabolomics was used for identification of metabolic changes in pancreatic cancer (PC) blood plasma samples when compared to healthy controls or diabetes mellitus patients. An increased number of PC samples enabled a subdivision of the group according to individual PC stages and the construction of predictive models for finer classification of at-risk individuals recruited from patients with recently diagnosed diabetes mellitus. High-performance values of orthogonal partial least squares (OPLS) discriminant analysis were found for discrimination between individual PC stages and both control groups. The discrimination between early and metastatic stages was achieved with only 71.5% accuracy. A predictive model based on discriminant analyses between individual PC stages and the diabetes mellitus group identified 12 individuals out of 59 as at-risk of development of pathological changes in the pancreas, and four of them were classified as at moderate risk.
Collapse
Affiliation(s)
- Lenka Michálková
- Institute of Chemical Process Fundamentals of the CAS, 165 00 Prague 6, Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic
| | - Štěpán Horník
- Institute of Chemical Process Fundamentals of the CAS, 165 00 Prague 6, Czech Republic
| | - Jan Sýkora
- Laboratory of NMR Spectroscopy, University of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic
| | - Vladimír Setnička
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic
| | - Bohuš Bunganič
- Department of Internal Medicine, 1st Faculty of Medicine of Charles University and Military University Hospital, 169 02 Prague 6, Czech Republic
| |
Collapse
|
13
|
Padinharayil H, Rai V, George A. Mitochondrial Metabolism in Pancreatic Ductal Adenocarcinoma: From Mechanism-Based Perspectives to Therapy. Cancers (Basel) 2023; 15:1070. [PMID: 36831413 PMCID: PMC9954550 DOI: 10.3390/cancers15041070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the fourteenth most common malignancy, is a major contributor to cancer-related death with the utmost case fatality rate among all malignancies. Functional mitochondria, regardless of their complex ecosystem relative to normal cells, are essential in PDAC progression. Tumor cells' potential to produce ATP as energy, despite retaining the redox potential optimum, and allocating materials for biosynthetic activities that are crucial for cell growth, survival, and proliferation, are assisted by mitochondria. The polyclonal tumor cells with different metabolic profiles may add to carcinogenesis through inter-metabolic coupling. Cancer cells frequently possess alterations in the mitochondrial genome, although they do not hinder metabolism; alternatively, they change bioenergetics. This can further impart retrograde signaling, educate cell signaling, epigenetic modifications, chromatin structures, and transcription machinery, and ultimately satisfy cancer cellular and nuclear demands. To maximize the tumor microenvironment (TME), tumor cells remodel nearby stromal cells and extracellular matrix. These changes initiate polyclonality, which is crucial for growth, stress response, and metastasis. Here, we evaluate all the intrinsic and extrinsic pathways drawn by mitochondria in carcinogenesis, emphasizing the perspectives of mitochondrial metabolism in PDAC progression and treatment.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| |
Collapse
|
14
|
Zhao R, Ren S, Li C, Guo K, Lu Z, Tian L, He J, Zhang K, Cao Y, Liu S, Li D, Wang Z. Biomarkers for pancreatic cancer based on tissue and serum metabolomics analysis in a multicenter study. Cancer Med 2023; 12:5158-5171. [PMID: 36161527 PMCID: PMC9972159 DOI: 10.1002/cam4.5296] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Early detection of pancreatic ductal adenocarcinoma (PDAC) may improve the prognosis of patients. This study was to identify metabolic features of PDAC and to discover early detection biomarkers for PDAC by tissue and serum metabolomics analysis. METHODS We conducted nontargeted metabolomics analysis in tissue samples of 51 PDAC tumors, 40 noncancerous pancreatic tissues (NT), and 14 benign pancreatic neoplasms (BP) as well as serum samples from 80 patients with PDAC, 36 with BP, and 48 healthy controls (Ctr). The candidate metabolites identified from the initial analysis were further quantified using targeted analysis in serum samples of an independent cohort of 22 early stage PDAC, 27 BP, and 27 Ctr subjects. Unconditional binary logistic regression analysis was used to construct the optimal model for PDAC diagnosis. RESULTS Upregulated levels of fatty acids and lipids and downregulated amino acids were observed in tissue and serum samples of PDAC patients. Proline, creatine, and palmitic acid were identified as a panel of potential biomarkers to distinguish PDAC from BP and Ctr (odds ratio = 2.17, [95% confidence interval 1.34-3.53]). The three markers showed area under the receiver-operating characteristic curves (AUCs) of 0.854 and 0.865, respectively, for the comparison of PDAC versus Ctr and PDAC versus BP. The AUCs were 0.830 and 0.852 in the validation set and were improved to 0.949 and 0.909 when serum carbohydrate antigen 19-9 (CA19-9) was added to the model. CONCLUSION The novel metabolite biomarker panel identified in this study exhibited promising performance in distinguishing PDAC from BP or Ctr, especially in combination with CA19-9.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Radiology, Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Shuai Ren
- Department of Radiology, Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Changyin Li
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Kai Guo
- Department of Radiology, Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Zipeng Lu
- Pancreas CenterThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Lei Tian
- Pancreas CenterThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Kai Zhang
- Pancreas CenterThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Yingying Cao
- Department of Radiology, Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Shijia Liu
- Department of Pharmacy, Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Donghui Li
- Department of Gastrointestinal Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Zhongqiu Wang
- Department of Radiology, Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
15
|
Lauria G, Curcio R, Lunetti P, Tiziani S, Coppola V, Dolce V, Fiermonte G, Ahmed A. Role of Mitochondrial Transporters on Metabolic Rewiring of Pancreatic Adenocarcinoma: A Comprehensive Review. Cancers (Basel) 2023; 15:411. [PMID: 36672360 PMCID: PMC9857038 DOI: 10.3390/cancers15020411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Pancreatic cancer is among the deadliest cancers worldwide and commonly presents as pancreatic ductal adenocarcinoma (PDAC). Metabolic reprogramming is a hallmark of PDAC. Glucose and glutamine metabolism are extensively rewired in order to fulfil both energetic and synthetic demands of this aggressive tumour and maintain favorable redox homeostasis. The mitochondrial pyruvate carrier (MPC), the glutamine carrier (SLC1A5_Var), the glutamate carrier (GC), the aspartate/glutamate carrier (AGC), and the uncoupling protein 2 (UCP2) have all been shown to influence PDAC cell growth and progression. The expression of MPC is downregulated in PDAC and its overexpression reduces cell growth rate, whereas the other four transporters are usually overexpressed and the loss of one or more of them renders PDAC cells unable to grow and proliferate by altering the levels of crucial metabolites such as aspartate. The aim of this review is to comprehensively evaluate the current experimental evidence about the function of these carriers in PDAC metabolic rewiring. Dissecting the precise role of these transporters in the context of the tumour microenvironment is necessary for targeted drug development.
Collapse
Affiliation(s)
- Graziantonio Lauria
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Rosita Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Paola Lunetti
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
- Department of Oncology, Dell Medical School, LiveSTRONG Cancer Institutes, The University of Texas at Austin, Austin, TX 78723, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Fiermonte
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Amer Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| |
Collapse
|
16
|
Pilotti E, Cassetti T, Mirante VG, Sereni G, Rossi PG, Sassatelli R. Exhaled breath condensate proteomic signatures potentially distinguish adenocarcinoma from benign cystic lesions of the pancreas. Curr Res Transl Med 2022; 70:103361. [PMID: 35963150 DOI: 10.1016/j.retram.2022.103361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/26/2022] [Accepted: 07/29/2022] [Indexed: 01/31/2023]
Affiliation(s)
| | - Tiziana Cassetti
- Department of Oncology and Advanced Technologies, Gastroenterology and Digestive Endoscopy Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Vincenzo G Mirante
- Department of Oncology and Advanced Technologies, Gastroenterology and Digestive Endoscopy Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Giuliana Sereni
- Department of Oncology and Advanced Technologies, Gastroenterology and Digestive Endoscopy Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Paolo Giorgi Rossi
- Epidemiology Unit, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Romano Sassatelli
- Department of Oncology and Advanced Technologies, Gastroenterology and Digestive Endoscopy Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
17
|
Carneiro TJ, Pinto J, Serrao EM, Barros AS, Brindle KM, Gil AM. Metabolic profiling of induced acute pancreatitis and pancreatic cancer progression in a mutant Kras mouse model. Front Mol Biosci 2022; 9:937865. [PMID: 36090050 PMCID: PMC9452780 DOI: 10.3389/fmolb.2022.937865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Untargeted Nuclear Magnetic Resonance (NMR) metabolomics of polar extracts from the pancreata of a caerulin-induced mouse model of pancreatitis (Pt) and of a transgenic mouse model of pancreatic cancer (PCa) were used to find metabolic markers of Pt and to characterize the metabolic changes accompanying PCa progression. Using multivariate analysis a 10-metabolite metabolic signature specific to Pt tissue was found to distinguish the benign condition from both normal tissue and precancerous tissue (low grade pancreatic intraepithelial neoplasia, PanIN, lesions). The mice pancreata showed significant changes in the progression from normal tissue, through low-grade and high-grade PanIN lesions to pancreatic ductal adenocarcinoma (PDA). These included increased lactate production, amino acid changes consistent with enhanced anaplerosis, decreased concentrations of intermediates in membrane biosynthesis (phosphocholine and phosphoethanolamine) and decreased glycosylated uridine phosphates, reflecting activation of the hexosamine biosynthesis pathway and protein glycosylation.
Collapse
Affiliation(s)
- Tatiana J. Carneiro
- CICECO - Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Joana Pinto
- CICECO - Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Eva M. Serrao
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - António S. Barros
- CICECO - Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Kevin M. Brindle
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ana M. Gil
- CICECO - Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
18
|
Zeng X, Guo H, Liu Z, Qin Z, Cong Y, Ren N, Zhang Y, Zhang N. S100A11 activates the pentose phosphate pathway to induce malignant biological behaviour of pancreatic ductal adenocarcinoma. Cell Death Dis 2022; 13:568. [PMID: 35752610 PMCID: PMC9233679 DOI: 10.1038/s41419-022-05004-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/22/2022] [Accepted: 06/07/2022] [Indexed: 01/21/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most refractory malignancies and has a poor prognosis. In recent years, increasing evidence has shown that an imbalance of metabolism may contribute to unrestricted pancreatic tumour progression and that the pentose phosphate pathway (PPP) plays a pivotal role in cellular metabolism. S100A11 has been shown to regulate multiple biological functions related to the progression and metastasis of various cancer types. However, the exact mechanisms and prognostic value of S100A11 in PDAC remain unclear. Here, we found that S100A11 expression was increased in PDAC and significantly associated with worse prognosis and disease progression. Mechanistically, S100A11 knockdown suppressed the PPP by impairing nascent mRNA synthesis of TKT (transketolase). The current study also demonstrated that H3K4me3 at the -268/+77 region of the TKT promoter was required for its transcriptional activation and S100A11 promoted H3K4me3 loading to the TKT promoter by interacting with SMYD3 protein. Taking these findings together, this study provided new insights into the potential value of S100A11 for treating pancreatic cancer, suggesting that it could be a therapeutic target for PDAC patients.
Collapse
Affiliation(s)
- Xue Zeng
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, PR China
| | - Hong Guo
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, PR China
| | - Zhuang Liu
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, PR China
| | - Zilan Qin
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, PR China
| | - Yuyang Cong
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, PR China
| | - Naihan Ren
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, PR China
| | - Yuxiang Zhang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, PR China
| | - Na Zhang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, PR China.
| |
Collapse
|
19
|
Islam MM, Goertzen A, Singh PK, Saha R. Exploring the metabolic landscape of pancreatic ductal adenocarcinoma cells using genome-scale metabolic modeling. iScience 2022; 25:104483. [PMID: 35712079 PMCID: PMC9194136 DOI: 10.1016/j.isci.2022.104483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/08/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major research focus because of its poor therapy response and dismal prognosis. PDAC cells adapt their metabolism to the surrounding environment, often relying on diverse nutrient sources. Because traditional experimental techniques appear exhaustive to find a viable therapeutic strategy, a highly curated and omics-informed PDAC genome-scale metabolic model was reconstructed using patient-specific transcriptomics data. From the model-predictions, several new metabolic functions were explored as potential therapeutic targets in addition to the known metabolic hallmarks of PDAC. Significant downregulation in the peroxisomal beta oxidation pathway, flux modulation in the carnitine shuttle system, and upregulation in the reactive oxygen species detoxification pathway reactions were observed. These unique metabolic traits of PDAC were correlated with potential drug combinations targeting genes with poor prognosis in PDAC. Overall, this study provides a better understanding of the metabolic vulnerabilities in PDAC and will lead to novel effective therapeutic strategies.
Collapse
Affiliation(s)
- Mohammad Mazharul Islam
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Andrea Goertzen
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Pankaj K. Singh
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
20
|
Zakaria A, Al-Share B, Klapman JB, Dam A. The Role of Endoscopic Ultrasonography in the Diagnosis and Staging of Pancreatic Cancer. Cancers (Basel) 2022; 14:1373. [PMID: 35326524 PMCID: PMC8946253 DOI: 10.3390/cancers14061373] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related death and the second gastrointestinal cancer-related death in the United States. Early detection and accurate diagnosis and staging of pancreatic cancer are paramount in guiding treatment plans, as surgical resection can provide the only potential cure for this disease. The overall prognosis of pancreatic cancer is poor even in patients with resectable disease. The 5-year survival after surgical resection is ~10% in node-positive disease compared to ~30% in node-negative disease. The advancement of imaging studies and the multidisciplinary approach involving radiologists, gastroenterologists, advanced endoscopists, medical, radiation, and surgical oncologists have a major impact on the management of pancreatic cancer. Endoscopic ultrasonography is essential in the diagnosis by obtaining tissue (FNA or FNB) and in the loco-regional staging of the disease. The advancement in EUS techniques has made this modality a critical adjunct in the management process of pancreatic cancer. In this review article, we provide an overall description of the role of endoscopic ultrasonography in the diagnosis and staging of pancreatic cancer.
Collapse
Affiliation(s)
- Ali Zakaria
- Department of Gastroenterology-Advanced Endoscopy, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (J.B.K.); (A.D.)
| | - Bayan Al-Share
- Department of Hematology and Oncology, Karmanos Cancer Center, Wayne State University, Detroit, MI 48201, USA;
| | - Jason B. Klapman
- Department of Gastroenterology-Advanced Endoscopy, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (J.B.K.); (A.D.)
| | - Aamir Dam
- Department of Gastroenterology-Advanced Endoscopy, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (J.B.K.); (A.D.)
| |
Collapse
|
21
|
Li S, Xie K. Ductal metaplasia in pancreas. Biochim Biophys Acta Rev Cancer 2022; 1877:188698. [DOI: 10.1016/j.bbcan.2022.188698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
|
22
|
Liu M, Yang Y, Kang W, Liu Y, Tao X, Li X, Pan Y. Berberine inhibits pancreatic intraepithelial neoplasia by inhibiting glycolysis via the adenosine monophosphate -activated protein kinase pathway. Eur J Pharmacol 2022; 915:174680. [PMID: 34890544 DOI: 10.1016/j.ejphar.2021.174680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/28/2022]
Abstract
Most cases of pancreatic cancer develop in patients with chronic pancreatitis (CP). Berberine is natural product that exhibits anti-tumor effects in various types of cancer and is used in traditional Chinese medicine. In this study, we demonstrated that berberine inhibited the development of pancreatic intraepithelial neoplasia (PanIN) in an in vivo CP model and an in vitro acinar-to-ductal metaplasia model. As berberine may inhibit glycolysis during the development of PanIN, we measured indicators of glycolysis. Quantitative reverse transcription polymerase chain reaction and western blotting assays revealed that berberine activated the adenosine monophosphate-activated protein kinase (AMPK) pathway. This demonstrated that berberine suppressed glycolysis by targeting AMPK, a key metabolic sensor. Furthermore, berberine acted via the AMPK-hypoxia-inducible factor 1 alpha pathway to achieve suppression of PanIN. These findings show that berberine is a potential therapeutic candidate for preventing the progression of CP to PanIN.
Collapse
Affiliation(s)
- Mengmeng Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yongjie Yang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Wenli Kang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yingjie Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Xufeng Tao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Xiaona Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yue Pan
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China; Ningbo Institute of Dalian University of Technology, Ningbo, China.
| |
Collapse
|
23
|
The Impact of Biomarkers in Pancreatic Ductal Adenocarcinoma on Diagnosis, Surveillance and Therapy. Cancers (Basel) 2022; 14:cancers14010217. [PMID: 35008381 PMCID: PMC8750069 DOI: 10.3390/cancers14010217] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma is a leading cause of cancer death worldwide. Due to the frequently late diagnosis, early metastasis and high therapy resistance curation is rare and prognosis remains poor overall. To provide early diagnostic and therapeutic predictors, various molecules from blood, tissue and other origin e.g., saliva, urine and stool, have been identified as biomarkers. This review summarizes current trends in biomarkers for diagnosis and therapy of pancreatic ductal adenocarcinoma. Abstract Pancreatic ductal adenocarcinoma (PDAC) is still difficult to treat due to insufficient methods for early diagnosis and prediction of therapy response. Furthermore, surveillance after curatively intended surgery lacks adequate methods for timely detection of recurrence. Therefore, several molecules have been analyzed as predictors of recurrence or early detection of PDAC. Enhanced understanding of molecular tumorigenesis and treatment response triggered the identification of novel biomarkers as predictors for response to conventional chemotherapy or targeted therapy. In conclusion, progress has been made especially in the prediction of therapy response with biomarkers. The use of molecules for early detection and recurrence of PDAC is still at an early stage, but there are promising approaches in noninvasive biomarkers, composite panels and scores that can already ameliorate the current clinical practice. The present review summarizes the current state of research on biomarkers for diagnosis and therapy of pancreatic cancer.
Collapse
|
24
|
Zhang Z, Zhang HJ. Glycometabolic rearrangements-aerobic glycolysis in pancreatic ductal adenocarcinoma (PDAC): roles, regulatory networks, and therapeutic potential. Expert Opin Ther Targets 2021; 25:1077-1093. [PMID: 34874212 DOI: 10.1080/14728222.2021.2015321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Glycometabolic rearrangements (aerobic glycolysis) is a hallmark of pancreatic ductal adenocarcinoma (PDAC) and contributes to tumorigenesis and progression through numerous mechanisms. The targeting of aerobic glycolysis is recognized as a potential therapeutic strategy which offers the possibility of improving treatment outcomes for PDAC patients. AREAS COVERED In this review, the role of aerobic glycolysis and its regulatory networks in PDAC are discussed. The targeting of aerobic glycolysis in PDAC is examined, and its therapeutic potential is evaluated. The relevant literature published from 2001 to 2021 was searched in databases including PubMed, Scopus, and Embase. EXPERT OPINION Regulatory networks of aerobic glycolysis in PDAC are based on key factors such as c-Myc, hypoxia-inducible factor 1α, the mammalian target of rapamycin pathway, and non-coding RNAs. Experimental evidence suggests that modulators or inhibitors of aerobic glycolysis promote therapeutic effects in preclinical tumor models. Nevertheless, successful clinical translation of drugs that target aerobic glycolysis in PDAC is an obstacle. Moreover, it is necessary to identify the potential targets for future interventions from regulatory networks to design efficacious and safer agents.
Collapse
Affiliation(s)
- Zhong Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, People's Republic of China
| | - Hai-Jun Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
25
|
Suzuki T, Otsuka M, Seimiya T, Iwata T, Kishikawa T, Koike K. The biological role of metabolic reprogramming in pancreatic cancer. MedComm (Beijing) 2021; 1:302-310. [PMID: 34766124 PMCID: PMC8491225 DOI: 10.1002/mco2.37] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease and highly resistant to all forms of therapy. PDAC cells reprogram their metabolism extensively to promote their survival and growth. Reflecting the vital role of altered metabolism, experimental and clinical trials targeting the rewired metabolism are currently underway. In this review, we summarize the vital role of metabolic reprogramming in the development of PDAC and the future of novel therapeutic applications.
Collapse
Affiliation(s)
- Tatsunori Suzuki
- Department of Gastroenterology Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Takahiro Seimiya
- Department of Gastroenterology Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Takuma Iwata
- Department of Gastroenterology Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Takahiro Kishikawa
- Department of Gastroenterology Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Kazuhiko Koike
- Department of Gastroenterology Graduate School of Medicine The University of Tokyo Tokyo Japan
| |
Collapse
|
26
|
Pekarek L, Fraile-Martinez O, Garcia-Montero C, Alvarez-Mon MA, Acero J, Ruiz-Llorente L, García-Honduvilla N, Albillos A, Buján J, Alvarez-Mon M, Guijarro LG, Ortega MA. Towards an updated view on the clinical management of pancreatic adenocarcinoma: Current and future perspectives. Oncol Lett 2021; 22:809. [PMID: 34630716 PMCID: PMC8490971 DOI: 10.3892/ol.2021.13070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer has a dire prognosis and will represent the second leading cause of cancer death in the next 10 years. The multifactorial approach represents one of the main issues in controlling the extension of this neoplasm. In recent years, the characteristics of the tumor microenvironment, metastasis mechanisms and the relationship between immune system and neoplastic cells have been described, which has made it possible to understand the pathophysiology of pancreatic adenocarcinoma. Currently, there is a failure to provide an effective preventive method or early detection, so patients present with an advanced stage at the time of diagnosis. Despite numerous efforts, little progress has been made in clinical outcome and in improving survival in long term. Therefore, in the recent years, diverse diagnostic tests, treatments and possible approaches have been developed in the fields of radiotherapy, chemotherapy and surgery to find a combination of them that improves life expectancy in patients diagnosed with pancreatic cancer. At the moment, numerous clinical trials are being conducted to evaluate preventive diagnostic procedures such as serological markers or perfecting available imaging tests. On the other hand, implementation of immunotherapy is being studied in a neoplasm that has lagged in the application of this procedure since present possible treatments do not substantially improve quality of life. Therefore, the purpose of our study is to summarize the main progresses that have been made in the diagnosis, treatment and screening of this disease, explaining the limitations that have been observed and analyzing future prospects in the management of this illness.
Collapse
Affiliation(s)
- Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
| | - Miguel A. Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
| | - Julio Acero
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
| | - Lidia Ruiz-Llorente
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Department of Gastroenterology and Hepatology, Ramón y Cajal University Hospital, University of Alcalá, Ramón y Cajal Institute for Health Research, 28034 Madrid, Spain
- Biomedical Research Networking Center of Hepatic and Digestive Diseases, Institute of Health Carlos III, 28034 Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Biomedical Research Networking Center of Hepatic and Digestive Diseases, Institute of Health Carlos III, 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service and Internal Medicine, Prince of Asturias University Hospital, Alcala de Henares, 28806 Madrid, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service and Internal Medicine, Prince of Asturias University Hospital, Alcala de Henares, 28806 Madrid, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Prince of Asturias University Hospital, Alcala de Henares, 28806 Madrid, Spain
| |
Collapse
|
27
|
Hu T, Shukla SK, Vernucci E, He C, Wang D, King RJ, Jha K, Siddhanta K, Mullen NJ, Attri KS, Murthy D, Chaika NV, Thakur R, Mulder SE, Pacheco CG, Fu X, High RR, Yu F, Lazenby A, Steegborn C, Lan P, Mehla K, Rotili D, Chaudhary S, Valente S, Tafani M, Mai A, Auwerx J, Verdin E, Tuveson D, Singh PK. Metabolic Rewiring by Loss of Sirt5 Promotes Kras-Induced Pancreatic Cancer Progression. Gastroenterology 2021; 161:1584-1600. [PMID: 34245764 PMCID: PMC8546779 DOI: 10.1053/j.gastro.2021.06.045] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS SIRT5 plays pleiotropic roles via post-translational modifications, serving as a tumor suppressor, or an oncogene, in different tumors. However, the role SIRT5 plays in the initiation and progression of pancreatic ductal adenocarcinoma (PDAC) remains unknown. METHODS Published datasets and tissue arrays with SIRT5 staining were used to investigate the clinical relevance of SIRT5 in PDAC. Furthermore, to define the role of SIRT5 in the carcinogenesis of PDAC, we generated autochthonous mouse models with conditional Sirt5 knockout. Moreover, to examine the mechanistic role of SIRT5 in PDAC carcinogenesis, SIRT5 was knocked down in PDAC cell lines and organoids, followed by metabolomics and proteomics studies. A novel SIRT5 activator was used for therapeutic studies in organoids and patient-derived xenografts. RESULTS SIRT5 expression negatively regulated tumor cell proliferation and correlated with a favorable prognosis in patients with PDAC. Genetic ablation of Sirt5 in PDAC mouse models promoted acinar-to-ductal metaplasia, precursor lesions, and pancreatic tumorigenesis, resulting in poor survival. Mechanistically, SIRT5 loss enhanced glutamine and glutathione metabolism via acetylation-mediated activation of GOT1. A selective SIRT5 activator, MC3138, phenocopied the effects of SIRT5 overexpression and exhibited antitumor effects on human PDAC cells. MC3138 also diminished nucleotide pools, sensitizing human PDAC cell lines, organoids, and patient-derived xenografts to gemcitabine. CONCLUSIONS Collectively, we identify SIRT5 as a key tumor suppressor in PDAC, whose loss promotes tumorigenesis through increased noncanonic use of glutamine via GOT1, and that SIRT5 activation is a novel therapeutic strategy to target PDAC.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Aspartate Aminotransferase, Cytoplasmic/genetics
- Aspartate Aminotransferase, Cytoplasmic/metabolism
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Disease Progression
- Energy Metabolism/drug effects
- Enzyme Activation
- Enzyme Activators/pharmacology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Mutation
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/metabolism
- Signal Transduction
- Sirtuins/deficiency
- Sirtuins/genetics
- Tumor Burden
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Gemcitabine
- Mice
Collapse
Affiliation(s)
- Tuo Hu
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska; Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Surendra K Shukla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Enza Vernucci
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Chunbo He
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dezhen Wang
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ryan J King
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kanupriya Jha
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Kasturi Siddhanta
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nicholas J Mullen
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kuldeep S Attri
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Divya Murthy
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nina V Chaika
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ravi Thakur
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Scott E Mulder
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Camila G Pacheco
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Xiao Fu
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Robin R High
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Audrey Lazenby
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Clemens Steegborn
- University of Bayreuth, Department of Biochemistry, Bayreuth, Germany
| | - Ping Lan
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kamiya Mehla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Johan Auwerx
- Laboratory for Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California
| | - David Tuveson
- Cancer Center at Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Pankaj K Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
28
|
Jain A, Bhardwaj V. Therapeutic resistance in pancreatic ductal adenocarcinoma: Current challenges and future opportunities. World J Gastroenterol 2021; 27:6527-6550. [PMID: 34754151 PMCID: PMC8554400 DOI: 10.3748/wjg.v27.i39.6527] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related deaths in the United States. Although chemotherapeutic regimens such as gemcitabine+ nab-paclitaxel and FOLFIRINOX (FOLinic acid, 5-Fluroruracil, IRINotecan, and Oxaliplatin) significantly improve patient survival, the prevalence of therapy resistance remains a major roadblock in the success of these agents. This review discusses the molecular mechanisms that play a crucial role in PDAC therapy resistance and how a better understanding of these mechanisms has shaped clinical trials for pancreatic cancer chemotherapy. Specifically, we have discussed the metabolic alterations and DNA repair mechanisms observed in PDAC and current approaches in targeting these mechanisms. Our discussion also includes the lessons learned following the failure of immunotherapy in PDAC and current approaches underway to improve tumor's immunological response.
Collapse
Affiliation(s)
- Aditi Jain
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Vikas Bhardwaj
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
29
|
Wang S, Zheng Y, Yang F, Zhu L, Zhu XQ, Wang ZF, Wu XL, Zhou CH, Yan JY, Hu BY, Kong B, Fu DL, Bruns C, Zhao Y, Qin LX, Dong QZ. The molecular biology of pancreatic adenocarcinoma: translational challenges and clinical perspectives. Signal Transduct Target Ther 2021; 6:249. [PMID: 34219130 PMCID: PMC8255319 DOI: 10.1038/s41392-021-00659-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is an increasingly common cause of cancer mortality with a tight correspondence between disease mortality and incidence. Furthermore, it is usually diagnosed at an advanced stage with a very dismal prognosis. Due to the high heterogeneity, metabolic reprogramming, and dense stromal environment associated with pancreatic cancer, patients benefit little from current conventional therapy. Recent insight into the biology and genetics of pancreatic cancer has supported its molecular classification, thus expanding clinical therapeutic options. In this review, we summarize how the biological features of pancreatic cancer and its metabolic reprogramming as well as the tumor microenvironment regulate its development and progression. We further discuss potential biomarkers for pancreatic cancer diagnosis, prediction, and surveillance based on novel liquid biopsies. We also outline recent advances in defining pancreatic cancer subtypes and subtype-specific therapeutic responses and current preclinical therapeutic models. Finally, we discuss prospects and challenges in the clinical development of pancreatic cancer therapeutics.
Collapse
Affiliation(s)
- Shun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiao-Qiang Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhe-Fang Wang
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Xiao-Lin Wu
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Cheng-Hui Zhou
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Jia-Yan Yan
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Yuan Hu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Bo Kong
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - De-Liang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
- Key laboratory of whole-period monitoring and precise intervention of digestive cancer, Shanghai Municipal Health Commission (SMHC), Shanghai, China.
| |
Collapse
|
30
|
Stellate Cells Aid Growth-Permissive Metabolic Reprogramming and Promote Gemcitabine Chemoresistance in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13040601. [PMID: 33546284 PMCID: PMC7913350 DOI: 10.3390/cancers13040601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The great majority, more than 90%, of patients with pancreatic ductal adenocarcinoma (PDAC) die within less than five years after detection of the disease, despite recent treatment advances. The poor prognosis is related to late diagnosis, aggressive disease progression, and tumor resistance to conventional chemotherapy. PDAC tumor tissue is characterized by dense fibrosis and poor nutrient availability. A large portion of the tumor is made up of stromal fibroblasts, the pancreatic stellate cells (PSCs), which are known to contribute to tumor progression in several ways. PSCs have been shown to act as an alternate energy source, induce drug resistance, and inhibit drug availability in tumor cells, however, the underlying exact molecular mechanisms remain unknown. In this literature review, we discuss recent available knowledge about the contributions of PSCs to the overall progression of PDAC via changes in tumor metabolism and how this is linked to therapy resistance. Abstract Pancreatic ductal adenocarcinoma (PDAC), also known as pancreatic cancer (PC), is characterized by an overall poor prognosis and a five-year survival that is less than 10%. Characteristic features of the tumor are the presence of a prominent desmoplastic stromal response, an altered metabolism, and profound resistance to cancer drugs including gemcitabine, the backbone of PDAC chemotherapy. The pancreatic stellate cells (PSCs) constitute the major cellular component of PDAC stroma. PSCs are essential for extracellular matrix assembly and form a supportive niche for tumor growth. Various cytokines and growth factors induce activation of PSCs through autocrine and paracrine mechanisms, which in turn promote overall tumor growth and metastasis and induce chemoresistance. To maintain growth and survival in the nutrient-poor, hypoxic environment of PDAC, tumor cells fulfill their high energy demands via several unconventional ways, a process generally referred to as metabolic reprogramming. Accumulating evidence indicates that activated PSCs not only contribute to the therapy-resistant phenotype of PDAC but also act as a nutrient supplier for the tumor cells. However, the precise molecular links between metabolic reprogramming and an acquired therapy resistance in PDAC remain elusive. This review highlights recent findings indicating the importance of PSCs in aiding growth-permissive metabolic reprogramming and gemcitabine chemoresistance in PDAC.
Collapse
|
31
|
Chen X, Yi C, Yang MJ, Sun X, Liu X, Ma H, Li Y, Li H, Wang C, He Y, Chen G, Chen S, Yu L, Yu D. Metabolomics study reveals the potential evidence of metabolic reprogramming towards the Warburg effect in precancerous lesions. J Cancer 2021; 12:1563-1574. [PMID: 33532002 PMCID: PMC7847643 DOI: 10.7150/jca.54252] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Most tumors have an enhanced glycolysis flux, even when oxygen is available, called the aerobic glycolysis or the Warburg effect. Metabolic reprogramming promotes cancer progression, and is even related to the tumorigenesis. However, it is not clear whether the observed metabolic changes act as a driver or a bystander in cancer development. Methods: In this study, the metabolic characteristics of oral precancerous cells and cervical precancerous lesions were analyzed by metabolomics, and the expression of glycolytic enzymes in cervical precancerous lesions was evaluated by RT-PCR and Western blot analysis. Results: In total, 115 and 23 metabolites with reliable signals were identified in oral cells and cervical tissues, respectively. Based on the metabolome, oral precancerous cell DOK could be clearly separated from normal human oral epithelial cells (HOEC) and oral cancer cells. Four critical differential metabolites (pyruvate, glutamine, methionine and lysine) were identified between DOK and HOEC. Metabolic profiles could clearly distinguish cervical precancerous lesions from normal cervical epithelium and cervical cancer. Compared with normal cervical epithelium, the glucose consumption and lactate production increased in cervical precancerous lesions. The expression of glycolytic enzymes LDHA, HK II and PKM2 showed an increased tendency in cervical precancerous lesions compared with normal cervical epithelium. Conclusions: Our findings suggest that cell metabolism may be reprogrammed at the early stage of tumorigenesis, implying the contribution of metabolic reprogramming to the development of tumor.
Collapse
Affiliation(s)
- Xun Chen
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Chen Yi
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Man-Jun Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xueqi Sun
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Xubin Liu
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Hanyu Ma
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Yiming Li
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Hongyu Li
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Chao Wang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Yi He
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Guanhui Chen
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Shangwu Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Li Yu
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Dongsheng Yu
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| |
Collapse
|
32
|
Rai V, Agrawal S. Targets (Metabolic Mediators) of Therapeutic Importance in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:E8502. [PMID: 33198082 PMCID: PMC7697422 DOI: 10.3390/ijms21228502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), an extremely aggressive invasive cancer, is the fourth most common cause of cancer-related death in the United States. The higher mortality in PDAC is often attributed to the inability to detect it until it has reached advanced stages. The major challenge in tackling PDAC is due to its elusive pathology, minimal effectiveness, and resistance to existing therapeutics. The aggressiveness of PDAC is due to the capacity of tumor cells to alter their metabolism, utilize the diverse available fuel sources to adapt and grow in a hypoxic and harsh environment. Therapeutic resistance is due to the presence of thick stroma with poor angiogenesis, thus making drug delivery to tumor cells difficult. Investigating the metabolic mediators and enzymes involved in metabolic reprogramming may lead to the identification of novel therapeutic targets. The metabolic mediators of glucose, glutamine, lipids, nucleotides, amino acids and mitochondrial metabolism have emerged as novel therapeutic targets. Additionally, the role of autophagy, macropinocytosis, lysosomal transport, recycling, amino acid transport, lipid transport, and the role of reactive oxygen species has also been discussed. The role of various pro-inflammatory cytokines and immune cells in the pathogenesis of PDAC and the metabolites involved in the signaling pathways as therapeutic targets have been previously discussed. This review focuses on the therapeutic potential of metabolic mediators in PDAC along with stemness due to metabolic alterations and their therapeutic importance.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Swati Agrawal
- Department of Surgery, Creighton University School of Medicine, Omaha, NE 68178, USA;
| |
Collapse
|
33
|
Soliman GA, Shukla SK, Etekpo A, Gunda V, Steenson SM, Gautam N, Alnouti Y, Singh PK. The Synergistic Effect of an ATP-Competitive Inhibitor of mTOR and Metformin on Pancreatic Tumor Growth. Curr Dev Nutr 2020; 4:nzaa131. [PMID: 32908958 PMCID: PMC7467276 DOI: 10.1093/cdn/nzaa131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/11/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The mechanistic target of rapamycin complex 1 (mTORC1) is a nutrient-sensing pathway and a key regulator of amino acid and glucose metabolism. Dysregulation of the mTOR pathways is implicated in the pathogenesis of metabolic syndrome, obesity, type 2 diabetes, and pancreatic cancer. OBJECTIVES We investigated the impact of inhibition of mTORC1/mTORC2 and synergism with metformin on pancreatic tumor growth and metabolomics. METHODS Cell lines derived from pancreatic tumors of the KPC (KrasG12D/+; p53R172H/+; Pdx1-Cre) transgenic mice model were implanted into the pancreas of C57BL/6 albino mice (n = 10/group). Two weeks later, the mice were injected intraperitoneally with daily doses of 1) Torin 2 (mTORC1/mTORC2 inhibitor) at a high concentration (TH), 2) Torin 2 at a low concentration (TL), 3) metformin at a low concentration (ML), 4) a combination of Torin 2 and metformin at low concentrations (TLML), or 5) DMSO vehicle (control) for 12 d. Tissues and blood samples were collected for targeted xenometabolomics analysis, drug concentration, and cell signaling. RESULTS Metabolomic analysis of the control and treated plasma samples showed differential metabolite profiles. Phenylalanine was significantly elevated in the TLML group compared with the control (+426%, P = 0.0004), whereas uracil was significantly lower (-38%, P = 0.009). The combination treatment reduced tumor growth in the orthotopic mouse model. TLML significantly decreased pancreatic tumor volume (498 ± 104 mm3; 37%; P < 0.0004) compared with control (1326 ± 134 mm3; 100%), ML (853 ± 67 mm3; 64%), TL (745 ± 167 mm3; 54%), and TH (665 ± 182 mm3; 50%) (ANOVA and post hoc tests). TLML significantly decreased tumor weights (0.66 ± 0.08 g; 52%) compared with the control (1.28 ± 0.19 g; 100%) (P < 0.002). CONCLUSIONS The combination of mTOR dual inhibition by Torin 2 and metformin is associated with an altered metabolomic profile and a significant reduction in pancreatic tumor burden compared with single-agent therapy, and it is better tolerated.
Collapse
Affiliation(s)
- Ghada A Soliman
- Department of Environmental, Occupational, and Geospatial Health Sciences, CUNY Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Surendra K Shukla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Venugopal Gunda
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sharalyn M Steenson
- Department of Health Promotion, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pankaj K Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
34
|
Metabolic Reprogramming of Chemoresistant Cancer Cells and the Potential Significance of Metabolic Regulation in the Reversal of Cancer Chemoresistance. Metabolites 2020; 10:metabo10070289. [PMID: 32708822 PMCID: PMC7408410 DOI: 10.3390/metabo10070289] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/15/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is one of the hallmarks of tumors. Alterations of cellular metabolism not only contribute to tumor development, but also mediate the resistance of tumor cells to antitumor drugs. The metabolic response of tumor cells to various chemotherapy drugs can be analyzed by metabolomics. Although cancer cells have experienced metabolic reprogramming, the metabolism of drug resistant cancer cells has been further modified. Metabolic adaptations of drug resistant cells to chemotherapeutics involve redox, lipid metabolism, bioenergetics, glycolysis, polyamine synthesis and so on. The proposed metabolic mechanisms of drug resistance include the increase of glucose and glutamine demand, active pathways of glutaminolysis and glycolysis, promotion of NADPH from the pentose phosphate pathway, adaptive mitochondrial reprogramming, activation of fatty acid oxidation, and up-regulation of ornithine decarboxylase for polyamine production. Several genes are associated with metabolic reprogramming and drug resistance. Intervening regulatory points described above or targeting key genes in several important metabolic pathways may restore cell sensitivity to chemotherapy. This paper reviews the metabolic changes of tumor cells during the development of chemoresistance and discusses the potential of reversing chemoresistance by metabolic regulation.
Collapse
|