1
|
Davies LT, Ganesen R, Toubia J, Hong S, Kumar KC S, Oehler MK, Ricciardelli C, Szili EJ, Robinson N, Pitman MR. Plasma-activated media selectively induces apoptotic death via an orchestrated oxidative stress pathway in high-grade serous ovarian cancer cells. Mol Oncol 2025; 19:1170-1187. [PMID: 39626867 PMCID: PMC11977661 DOI: 10.1002/1878-0261.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/25/2024] [Accepted: 11/07/2024] [Indexed: 04/09/2025] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most common and aggressive type of ovarian cancer. Due to a lack of an early detection test and overt symptoms, many patients are diagnosed at a late stage where metastasis makes treatment very challenging. Furthermore, the current standard treatment for HGSOC patients, consisting of debulking surgery and platinum-taxane chemotherapy, reduces quality of life due to debilitating side-effects. Sadly, 80-90% of patients diagnosed with advanced stage ovarian cancer will die due to treatment resistance. As such, novel therapeutic strategies for HGSOC that are both more effective and less toxic are urgently required. Here we describe the assessment of cold atmospheric pressure (CAP) gas discharge technology as a novel treatment strategy in pre-clinical models of HGSOC. Plasma-activated media (PAM) was generated using cell growth media. HGSOC cell lines, patient ascites cells and primary tissue explants were tested for their response to PAM via analysis of cell viability, cell death and oxidative stress assays. Our data show that PAM treatment can be more effective than standard carboplatin chemotherapy at selectively targeting ovarian cancer cells in primary patient samples. Further, we also observed PAM to induce apoptosis in HGSOC cancer cell lines via induction of oxidative stress and mitochondrial-mediated apoptosis. These findings suggest that PAM is a viable therapeutic strategy to test in in vivo models of ovarian cancer, with a view to develop an intraperitoneal PAM-based therapy for HGSOC patients. Our studies validate the ability of PAM to selectively target tumour tissue and ascites cells. This work supports the development of PAM towards in vivo validation and translation into clinical practice.
Collapse
Affiliation(s)
- Lorena T. Davies
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideAustralia
| | - Raja Ganesen
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideAustralia
| | - John Toubia
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideAustralia
| | - Sung‐Ha Hong
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
| | - Sushil Kumar KC
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
| | - Martin K. Oehler
- Reproductive Cancer Research Group; Discipline of Obstetrics and Gynaecology, Adelaide Medical SchoolThe University of AdelaideAustralia
- Robinson Research InstituteAdelaideAustralia
- Department of Gynaecological OncologyRoyal Adelaide HospitalAustralia
| | - Carmela Ricciardelli
- Reproductive Cancer Research Group; Discipline of Obstetrics and Gynaecology, Adelaide Medical SchoolThe University of AdelaideAustralia
- Robinson Research InstituteAdelaideAustralia
| | - Endre J. Szili
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
| | - Nirmal Robinson
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideAustralia
- Adelaide Medical SchoolThe University of AdelaideAustralia
| | - Melissa R. Pitman
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideAustralia
- Robinson Research InstituteAdelaideAustralia
- School of Biological SciencesThe University of AdelaideAustralia
| |
Collapse
|
2
|
Holanda AGA, Francelino LEC, de Moura CEB, Alves Junior C, Matera JM, de Queiroz GF. Cold Atmospheric Plasma in Oncology: A Review and Perspectives on Its Application in Veterinary Oncology. Animals (Basel) 2025; 15:968. [PMID: 40218360 PMCID: PMC11987927 DOI: 10.3390/ani15070968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Cold atmospheric plasma (CAP) is emerging as an innovative approach for cancer treatment because of its selectivity for malignant cells and absence of significant adverse effects. While modern oncological therapies face challenges such as tumor heterogeneity and treatment resistance, CAP presents itself as a low-cost and environmentally sustainable alternative. Its mechanisms of action involve reactive oxygen and nitrogen species (RONS), UV radiation, and electromagnetic fields, which induce cell death. Preclinical and clinical studies have demonstrated the efficacy of CAP, with devices such as dielectric barrier discharge (DBD) and the plasma jet developed to minimize damage to healthy cells. Some CAP devices are already approved for clinical use, showing safety and efficacy. However, the standardization of treatments remains a challenge due to the variety of devices and parameters used. Although CAP has shown promising cytotoxic effects in vitro and in animal models, especially in different cancer cell lines, further research, particularly in vivo and in veterinary medicine, is needed to optimize its clinical use and maximize its efficacy in combating cancer.
Collapse
Affiliation(s)
- André Gustavo Alves Holanda
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (A.G.A.H.); (J.M.M.)
| | - Luiz Emanuel Campos Francelino
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil; (L.E.C.F.); (C.E.B.d.M.)
| | - Carlos Eduardo Bezerra de Moura
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil; (L.E.C.F.); (C.E.B.d.M.)
| | - Clodomiro Alves Junior
- Department of Natural Sciences, Mathematics and Statistics, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil;
| | - Julia Maria Matera
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (A.G.A.H.); (J.M.M.)
| | - Genilson Fernandes de Queiroz
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil; (L.E.C.F.); (C.E.B.d.M.)
| |
Collapse
|
3
|
Zhang C, Liu H, Li X, Xiao N, Chen H, Feng H, Li Y, Yang Y, Zhang R, Zhao X, Du Y, Bai L, Ma R, Wan J. Cold atmospheric plasma enhances SLC7A11-mediated ferroptosis in non-small cell lung cancer by regulating PCAF mediated HOXB9 acetylation. Redox Biol 2024; 75:103299. [PMID: 39127016 PMCID: PMC11363999 DOI: 10.1016/j.redox.2024.103299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Lung cancer is a leading cause of cancer death worldwide, with high incidence and poor survival rates. Cold atmospheric plasma (CAP) technology has emerged as a promising therapeutic approach for cancer treatment, inducing oxidative stress in malignant tissues without causing thermal damage. However, the role of CAP in regulating lung cancer cell ferroptosis remains unclear. Here, we observed that CAP effectively suppressed the growth and migration abilities of lung cancer cells, with significantly increased ferroptotic cell death, lipid peroxidation, and decreased mitochondrial membrane potential. Mechanistically, CAP regulates SLC7A11-mediated cell ferroptosis by modulating HOXB9. SLC7A11, a potent ferroptosis suppressor, was markedly reduced by HOXB9 knockdown, while it was enhanced by overexpressing HOXB9. The luciferase and ChIP assays confirmed that HOXB9 can directly target SLC7A11 and regulate its gene transcription. Additionally, CAP enhanced the acetylation modification level of HOXB9 by promoting its interaction with acetyltransferase p300/CBP-associated factor (PCAF). Acetylated HOXB9 affects its protein ubiquitination modification level, which in turn affects its protein stability. Notably, the upregulation of SLC7A11 and HOXB9 mitigated the suppressive effects of CAP on ferroptosis status, cell proliferation, invasion, and migration in lung cancer cells. Furthermore, animal models have also confirmed that CAP can inhibit the progression of lung cancer in vivo. Overall, this study highlights the significance of the downregulation of the HOXB9/SLC7A11 axis by CAP treatment in inhibiting lung cancer, offering novel insights into the potential mechanisms and therapeutic strategies of CAP for lung cancer.
Collapse
Affiliation(s)
- Chenxing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohu Li
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nan Xiao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huanxiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haoran Feng
- Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruike Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangzhuan Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanmin Du
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Bai
- Department of General Surgery, Zhecheng People's Hospital, Shangqiu, Henan, China
| | - Ruonan Ma
- Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Tabassum S, Khan MN, Faiz N, Almas, Yaseen B, Ahmad I. Cold atmospheric plasma-activated medium for potential ovarian cancer therapy. Mol Biol Rep 2024; 51:834. [PMID: 39042272 DOI: 10.1007/s11033-024-09795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Cold atmospheric plasma (CAP) has emerged as an innovative tool with broad medical applications, including ovarian cancer (OC) treatment. By bringing CAP in close proximity to liquids such as water or cell culture media, solutions containing reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated, called plasma-activated media (PAM). In this systematic review, we conduct an in-depth analysis of studies focusing on PAM interactions with biological substrates. We elucidate the diverse mechanisms involved in the activation of different media and the complex network of chemical reactions underlying the generation and consumption of the prominent reactive species. Furthermore, we highlight the promises of PAM in advancing biomedical applications, such as its stability for extended periods under appropriate storage conditions. We also examine the application of PAM as an anti-cancer and anti-metastatic treatment for OC, with a particular emphasis on its ability to induce apoptosis via distinct signaling pathways, inhibit cell growth, suppress cell motility, and enhance the therapeutic effects of chemotherapy. Finally, the future outlook of PAM therapy in biomedical applications is speculated, with emphasis on the safety issues relevant to clinical translation.
Collapse
Affiliation(s)
- Shazia Tabassum
- Department of Obstetrics and Gynaecology, Hayatabad Medical Complex, Peshawar, Pakistan
| | | | | | - Almas
- Abdul Wali Khan University, Mardan, Pakistan
| | - Bushra Yaseen
- Department of Gynaecology, Khyber Teaching Hospital, Peshawar, Pakistan
| | - Iftikhar Ahmad
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan.
| |
Collapse
|
5
|
Park JY, Bae JH, Lee S. Characteristics of Aqueous Chemical Species Generation in Plasma-Facing Liquid Systems Using Helium Jet Plasma. ChemistryOpen 2024; 13:e202300213. [PMID: 38801324 PMCID: PMC11230930 DOI: 10.1002/open.202300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Plasma-facing liquids (PFLs) facilitate the storage of reactive O and N species (RONS), including H2O2 and NO2 -, which remain in the PFL after plasma treatment, and they can continuously influence the target immersed in the liquid. However, their behaviors and levels of generation and extinction depend strongly on the plasma characteristics and liquid condition. Therefore, understanding the effects of the liquid type on the plasma discharge characteristics and the RONS generated via plasma discharge is necessary. We compared the RONS generation and storage trends of deionized H2O and a high-conductivity PFL, RPMI 1640, which is a well-known cell culture medium commonly used to culture mammalian cells. RPMI 1640 acted as an electrode and enhanced the plasma discharge power by supplying abundant radicals and RONS. The production of gaseous hydroxyl radicals and NO markedly increased, which facilitated H2O2 and NO2 - production in the PFL for the first 200 s, and then the increase in the RONS concentration stagnated. With respect to storage, as the components within RMPI 1640 exhibited high reaction constants for their reactions with H2O2, H2O2 elimination was completed in <30 min. Unlike H2O2, the concentration of NO2 - in the PFL was unchanged.
Collapse
Affiliation(s)
- Joo Young Park
- Nano-Bio Convergence DivisionKorea Institute of Materials Science797 Changwondae-roChangwon51508Republic of Korea
| | - Jin Hee Bae
- Nano-Bio Convergence DivisionKorea Institute of Materials Science797 Changwondae-roChangwon51508Republic of Korea
- Present address: Department of Nuclear and Quantum EngineeringKorea Advanced Institute of Science and Technology291 Daehak-ro, Yuseong-guDaejeon34141Republic of Korea
| | - Seunghun Lee
- Nano-Bio Convergence DivisionKorea Institute of Materials Science797 Changwondae-roChangwon51508Republic of Korea
| |
Collapse
|
6
|
Wang P, Zhou R, Zhou R, Feng S, Zhao L, Li W, Lin J, Rajapakse A, Lee CH, Furnari FB, Burgess AW, Gunter JH, Liu G, Ostrikov KK, Richard DJ, Simpson F, Dai X, Thompson EW. Epidermal growth factor potentiates EGFR(Y992/1173)-mediated therapeutic response of triple negative breast cancer cells to cold atmospheric plasma-activated medium. Redox Biol 2024; 69:102976. [PMID: 38052106 PMCID: PMC10746566 DOI: 10.1016/j.redox.2023.102976] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023] Open
Abstract
Cold atmospheric plasma (CAP) holds promise as a cancer-specific treatment that selectively kills various types of malignant cells. We used CAP-activated media (PAM) to utilize a range of the generated short- and long-lived reactive species. Specific antibodies, small molecule inhibitors and CRISPR/Cas9 gene-editing approaches showed an essential role for receptor tyrosine kinases, especially epidermal growth factor (EGF) receptor, in mediating triple negative breast cancer (TNBC) cell responses to PAM. EGF also dramatically enhanced the sensitivity and specificity of PAM against TNBC cells. Site-specific phospho-EGFR analysis, signal transduction inhibitors and reconstitution of EGFR-depleted cells with EGFR-mutants confirmed the role of phospho-tyrosines 992/1173 and phospholipase C gamma signaling in up-regulating levels of reactive oxygen species above the apoptotic threshold. EGF-triggered EGFR activation enhanced the sensitivity and selectivity of PAM effects on TNBC cells. The proposed approach based on the synergy of CAP and EGFR-targeted therapy may provide new opportunities to improve the clinical management of TNBC.
Collapse
Affiliation(s)
- Peiyu Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Rusen Zhou
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Shuo Feng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Liqian Zhao
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital of Southern Medical University, Guangzhou 510515, PR China
| | - Wenshao Li
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Jinyong Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Aleksandra Rajapakse
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Chia-Hwa Lee
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Frank B Furnari
- Department of Medicine, University of California San Diego, California 92093, USA
| | - Antony W Burgess
- Walter and Elisa Hall Institute, Melbourne, Victoria 3052, Australia
| | - Jennifer H Gunter
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Derek J Richard
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia; Cancer and Ageing Research Program, Woolloongabba, Queensland 4102, Australia
| | - Fiona Simpson
- Frazer Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Erik W Thompson
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
7
|
Golz AC, Bergemann C, Hildebrandt F, Emmert S, Nebe B, Rebl H. Selective adhesion inhibition and hyaluronan envelope reduction of dermal tumor cells by cold plasma-activated medium. Cell Adh Migr 2023; 17:1-19. [PMID: 37743639 PMCID: PMC10521339 DOI: 10.1080/19336918.2023.2260642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/06/2023] [Indexed: 09/26/2023] Open
Abstract
The sensitivity to cold plasma is specific to tumor cells while leaving normal tissue cells unaffected. This is the desired challenge in cancer therapy. Therefore, the focus of this work was a comparative study concerning the plasma sensitivity of dermal tumor cells (A-431) versus non-tumorigenic dermal cells (HaCaT) regarding their adhesion capacity. We found a selective inhibiting effect of plasma-activated medium on the adhesion of tumor cells while hardly affecting normal cells. We attributed this to a lower basal gene expression for the adhesion-relevant components CD44, hyaluronan synthase 2 (HAS2), HAS3, and the hyaluronidases in A431. Noteworthy, after plasma exposure, we revealed a significantly higher expression and synthesis of the hyaluronan envelope, the HAS3 gene, and the transmembrane adhesion receptors in non-tumorigenic HaCaTs.
Collapse
Affiliation(s)
- Anna-Christin Golz
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Claudia Bergemann
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Finja Hildebrandt
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Steffen Emmert
- Clinic and Polyclinic for Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany
| | - Barbara Nebe
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
8
|
Bekeschus S. Medical gas plasma technology: Roadmap on cancer treatment and immunotherapy. Redox Biol 2023; 65:102798. [PMID: 37556976 PMCID: PMC10433236 DOI: 10.1016/j.redox.2023.102798] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/11/2023] Open
Abstract
Despite continuous therapeutic progress, cancer remains an often fatal disease. In the early 2010s, first evidence in rodent models suggested promising antitumor action of gas plasma technology. Medical gas plasma is a partially ionized gas depositing multiple physico-chemical effectors onto tissues, especially reactive oxygen and nitrogen species (ROS/RNS). Today, an evergrowing body of experimental evidence suggests multifaceted roles of medical gas plasma-derived therapeutic ROS/RNS in targeting cancer alone or in combination with oncological treatment schemes such as ionizing radiation, chemotherapy, and immunotherapy. Intriguingly, gas plasma technology was recently unraveled to have an immunological dimension by inducing immunogenic cell death, which could ultimately promote existing cancer immunotherapies via in situ or autologous tumor vaccine schemes. Together with first clinical evidence reporting beneficial effects in cancer patients following gas plasma therapy, it is time to summarize the main concepts along with the chances and limitations of medical gas plasma onco-therapy from a biological, immunological, clinical, and technological point of view.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
9
|
van de Berg NJ, Nieuwenhuyzen-de Boer GM, Gao XS, Rijstenberg LL, van Beekhuizen HJ. Plasma Device Functions and Tissue Effects in the Female Pelvis-A Systematic Review. Cancers (Basel) 2023; 15:cancers15082386. [PMID: 37190314 DOI: 10.3390/cancers15082386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Medical use of (non-)thermal plasmas is an emerging field in gynaecology. However, data on plasma energy dispersion remain limited. This systematic review presents an overview of plasma devices, fields of effective application, and impact of use factors and device settings on tissues in the female pelvis, including the uterus, ovaries, cervix, vagina, vulva, colon, omentum, mesenterium, and peritoneum. A search of the literature was performed on 4 January 2023 in the Medline Ovid, Embase, Cochrane, Web of Science, and Google Scholar databases. Devices were classified as plasma-assisted electrosurgery (ES) using electrothermal energy, neutral argon plasma (NAP) using kinetic particle energy, or cold atmospheric plasma (CAP) using non-thermal biochemical reactions. In total, 8958 articles were identified, of which 310 were scanned, and 14 were included due to containing quantitative data on depths or volumes of tissues reached. Plasma-assisted ES devices produce a thermal effects depth of <2.4 mm. In turn, NAP effects remained superficial, <1.0 mm. So far, the depth and uniformity of CAP effects are insufficiently understood. These data are crucial to achieve complete treatment, reduce recurrence, and limit damage to healthy tissues (e.g., prevent perforations or preserve parenchyma). Upcoming and potentially high-gain applications are discussed, and deficits in current evidence are identified.
Collapse
Affiliation(s)
- Nick J van de Berg
- Department of Gynaecological Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Gatske M Nieuwenhuyzen-de Boer
- Department of Gynaecological Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Albert Schweitzer Hospital, 3318 AT Dordrecht, The Netherlands
| | - Xu Shan Gao
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - L Lucia Rijstenberg
- Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Heleen J van Beekhuizen
- Department of Gynaecological Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
10
|
Yoshikawa N, Nakamura K, Kajiyama H. Current understanding of Plasma-activated solutions for potential cancer therapy. Free Radic Res 2023:1-12. [PMID: 36944223 DOI: 10.1080/10715762.2023.2193308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Cancer therapy consists of multidisciplinary treatment combining surgery, chemotherapy, radiotherapy, and immunotherapy. Despite the elucidation of cancer mechanisms by comprehensive genomic and epigenomic analyses and the development of molecular therapy, drug resistance and severe side effects have presented challenges to the long-awaited development of new therapies. With the rapid technological advances in the last decade, there are now reports concerning potential applications of non-equilibrium atmospheric pressure plasma (NEAPP) in cancer therapy. Two approaches have been tried: direct irradiation with NEAPP (direct plasma) and the administration of a liquid (e.g., culture medium, saline, Ringer's lactate) activated by NEAPP (plasma-activated solutions: PAS). Direct plasma is a unique treatment method in which various active species, charged ions, and photons are delivered to the affected area, but the direct plasma approach has physical limitations related to the device used, such as a limited depth of reach and limited irradiation area. PAS is a liquid that contains reactive oxygen species generated by PAS, and it has been confirmed to have antitumor activity that functions in the same manner as direct plasma. This review introduces recent studies of PAS and informs researchers about the potential of PAS for cancer therapy.Key Policy HighlightsPotential applications of plasma-activated solutions (PAS) in cancer therapy are described.Plasma-activated species generated in PAS, its effect on tumor cells, contribution to non-malignant immune cells, selectivity and safety are presented.The proposed anti-tumor mechanisms of PAS to date are described.Efficacy and safety evaluations of PAS have been studied in experimental animal models, but no human studies have been conducted.
Collapse
Affiliation(s)
- Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine
| | - Kae Nakamura
- Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya, Nagoya
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine
| |
Collapse
|
11
|
Negi M, Kaushik N, Nguyen LN, Choi EH, Kaushik NK. Argon gas plasma-treated physiological solutions stimulate immunogenic cell death and eradicates immunosuppressive CD47 protein in lung carcinoma. Free Radic Biol Med 2023; 201:26-40. [PMID: 36907254 DOI: 10.1016/j.freeradbiomed.2023.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Cold atmospheric plasma-treated liquids (PTLs) exhibit selective toxicity toward tumor cells and are provoked by a cocktail of reactive oxygen and nitrogen species in such liquids. Compared to the gaseous phase, these reactive species are more persistent in the aqueous phase. This indirect plasma treatment method has gradually gathered interest in the discipline of plasma medicine to treat cancer. PTL's motivated effect on immunosuppressive proteins and immunogenic cell death (ICD) in solid cancer cells is still not explored. In this study, we aimed to induce immunomodulation by plasma-treated Ringer's lactate (PT-RL) and phosphate-buffered saline (PT-PBS) solutions for cancer treatment. PTLs induced minimum cytotoxicity in normal lung cells and inhibited cancer cell growth. ICD is confirmed by the enhanced expression of damage-associated molecular patterns (DAMPs). We evidenced that PTLs induce intracellular nitrogen oxide species accumulation and elevate immunogenicity in cancer cells owing to the production of pro-inflammatory cytokines, DAMPs, and reduced immunosuppressive protein CD47 expression. In addition, PTLs influenced A549 cells to elevate the organelles (mitochondria and lysosomes) in macrophages. Taken together, we have developed a therapeutic approach to potentially facilitate the selection of a suitable candidate for direct clinical applications.
Collapse
Affiliation(s)
- Manorma Negi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, South Korea.
| | - Linh Nhat Nguyen
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea; Laboratory of Plasma Technology, Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 100000, Vietnam
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea; Plasade Co. Ltd., 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea; Plasade Co. Ltd., 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897, South Korea.
| |
Collapse
|
12
|
Miebach L, Mohamed H, Wende K, Miller V, Bekeschus S. Pancreatic Cancer Cells Undergo Immunogenic Cell Death upon Exposure to Gas Plasma-Oxidized Ringers Lactate. Cancers (Basel) 2023; 15:319. [PMID: 36612315 PMCID: PMC9818580 DOI: 10.3390/cancers15010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Survival rates among patients with pancreatic cancer, the most lethal gastrointestinal cancer, have not improved compared to other malignancies. Early tumor dissemination and a supportive, cancer-promoting tumor microenvironment (TME) limit therapeutic options and consequently impede tumor remission, outlining an acute need for effective treatments. Gas plasma-oxidized liquid treatment showed promising preclinical results in other gastrointestinal and gynecological tumors by targeting the tumor redox state. Here, carrier solutions are enriched with reactive oxygen (ROS) and nitrogen (RNS) species that can cause oxidative distress in tumor cells, leading to a broad range of anti-tumor effects. Unfortunately, clinical relevance is often limited, as many studies have forgone the use of medical-grade solutions. This study investigated the efficacy of gas plasma-oxidized Ringer's lactate (oxRilac), a physiological solution often used in clinical practice, on two pancreatic cancer cell lines to induce tumor toxicity and provoke immunogenicity. Tumor toxicity of the oxRilac solutions was further confirmed in three-dimensional tumor spheroids monitored over 72 h and in ovo using stereomicroscope imaging of excised GFP-expressing tumors. We demonstrated that cell death signaling was induced in a dose-dependent fashion in both cell lines and was paralleled by the increased surface expression of key markers of immunogenic cell death (ICD). Nuclear magnetic resonance (NMR) spectroscopy analysis suggested putative reaction pathways that may cause the non-ROS related effects. In summary, our study suggests gas plasma-deposited ROS in clinically relevant liquids as an additive option for treating pancreatic cancers via immune-stimulating and cytotoxic effects.
Collapse
Affiliation(s)
- Lea Miebach
- Department of General, Thoraxic, Vascular, and Visceral Surgery, Greifswald University Medical Center, 17489 Greifswald, Germany
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Hager Mohamed
- Emergex Vaccines Holding Limited, Doylestown, PA 18902, USA
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Vandana Miller
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|
13
|
Extracellular Heat Shock Protein 27 Is Released by Plasma-Treated Ovarian Cancer Cells and Affects THP-1 Monocyte Activity. PLASMA 2022. [DOI: 10.3390/plasma5040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Heat shock protein 27 (Hsp27) is a cytoprotective molecule and is inducible via oxidative stress. Anti-cancer therapies, such as the recently investigated gas plasma, subject tumor cells to a plethora of reactive oxygen species (ROS). In ovarian tumor microenvironments (TME), immune cells such as monocytes and macrophages can be found in large numbers and are often associated with cancer progression. Therefore, we quantified extracellular Hsp27 of OVCAR-3 and SK-OV-3 cells after gas plasma exposure in vitro. We found Hsp27 to be significantly increased. Following this, we investigated the effects of Hsp27 on THP-1 monocytes. Live cell imaging of Hsp27-treated THP-1 cells showed decelerated cell numbers and a reduction in cell cluster sizes. In addition, reduced metabolic activity and proliferation were identified using flow cytometry. Mitochondrial ROS production decreased. Using multicolor flow cytometry, the expression profile of eight out of twelve investigated cell surface markers was significantly modulated in Hsp27-treated THP-1 cells. A significantly decreased release of IL18 accommodated this. Taken together, our results suggest an immunomodulatory effect of Hsp27 on THP-1 monocytes. These data call for further investigations on Hsp27’s impact on the interplay of ovarian cancer cells and monocytes/macrophages under oxidative stress conditions.
Collapse
|
14
|
Ahmed MM, Montaser SA, Elhadary A, Elaragi GGM. Another Concept of Cancer Interpretation in View of the Interaction between Plasma Radiation and DNA. CLINICAL CANCER INVESTIGATION JOURNAL 2022. [DOI: 10.51847/pms16qq3bk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Freund E, Bekeschus S. Gas Plasma-Oxidized Liquids for Cancer Treatment: Preclinical Relevance, Immuno-Oncology, and Clinical Obstacles. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3029982] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Rasouli M, Fallah N, Bekeschus S. Combining Nanotechnology and Gas Plasma as an Emerging Platform for Cancer Therapy: Mechanism and Therapeutic Implication. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2990326. [PMID: 34745414 PMCID: PMC8566074 DOI: 10.1155/2021/2990326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
Nanomedicine and plasma medicine are innovative and multidisciplinary research fields aiming to employ nanotechnology and gas plasma to improve health-related treatments. Especially cancer treatment has been in the focus of both approaches because clinical response rates with traditional methods that remain improvable for many types of tumor entities. Here, we discuss the recent progress of nanotechnology and gas plasma independently as well as in the concomitant modality of nanoplasma as multimodal platforms with unique capabilities for addressing various therapeutic issues in oncological research. The main features, delivery vehicles, and nexus between reactivity and therapeutic outcomes of nanoparticles and the processes, efficacy, and mechanisms of gas plasma are examined. Especially that the unique feature of gas plasma technology, the local and temporally controlled deposition of a plethora of reactive oxygen, and nitrogen species released simultaneously might be a suitable additive treatment to the use of systemic nanotechnology therapy approaches. Finally, we focus on the convergence of plasma and nanotechnology to provide a suitable strategy that may lead to the required therapeutic outcomes.
Collapse
Affiliation(s)
- Milad Rasouli
- Plasma Medicine Group, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Jalale-Al-Ahmad Ave, 1411713137 Tehran, Iran
- Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr. Mofatteh Ave, Tehran 15614, Iran
| | - Nadia Fallah
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, 49 Dr. Mofatteh Ave, 31979-37551 Tehran, Iran
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|
17
|
The Anticancer Efficacy of Plasma-Oxidized Saline (POS) in the Ehrlich Ascites Carcinoma Model In Vitro and In Vivo. Biomedicines 2021; 9:biomedicines9080932. [PMID: 34440136 PMCID: PMC8394252 DOI: 10.3390/biomedicines9080932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 01/31/2023] Open
Abstract
Cold physical plasma, a partially ionized gas rich in reactive oxygen species (ROS), is receiving increasing interest as a novel anticancer agent via two modes. The first involves its application to cells and tissues directly, while the second uses physical plasma-derived ROS to oxidize liquids. Saline is a clinically accepted liquid, and here we explored the suitability of plasma-oxidized saline (POS) as anticancer agent technology in vitro and in vivo using the Ehrlich Ascites Carcinoma (EAC) model. EAC mainly grows as a suspension in the peritoneal cavity of mice, making this model ideally suited to test POS as a putative agent against peritoneal carcinomatosis frequently observed with colon, pancreas, and ovarium metastasis. Five POS injections led to a reduction of the tumor burden in vivo as well as in a decline of EAC cell growth and an arrest in metabolic activity ex vivo. The treatment was accompanied by a decreased antioxidant capacity of Ehrlich tumor cells and increased lipid oxidation in the ascites supernatants, while no other side effects were observed. Oxaliplatin and hydrogen peroxide were used as controls and mediated better and worse outcomes, respectively, with the former but not the latter inducing profound changes in the inflammatory milieu among 13 different cytokines investigated in ascites fluid. Modulation of inflammation in the POS group was modest but significant. These results promote POS as a promising candidate for targeting peritoneal carcinomatosis and malignant ascites and suggest EAC to be a suitable and convenient model for analyzing innovative POS approaches and combination therapies.
Collapse
|
18
|
Pefani-Antimisiari K, Athanasopoulos DK, Marazioti A, Sklias K, Rodi M, de Lastic AL, Mouzaki A, Svarnas P, Antimisiaris SG. Synergistic effect of cold atmospheric pressure plasma and free or liposomal doxorubicin on melanoma cells. Sci Rep 2021; 11:14788. [PMID: 34285268 PMCID: PMC8292331 DOI: 10.1038/s41598-021-94130-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to investigate combined effects of cold atmospheric plasma (CAP) and the chemotherapeutic drug doxorubicin (DOX) on murine and human melanoma cells, and normal cells. In addition to free drug, the combination of CAP with a liposomal drug (DOX-LIP) was also studied for the first time. Thiazolyl blue tetrazolium bromide (MTT) and Trypan Blue exclusion assays were used to evaluate cell viability; the mechanism of cell death was evaluated by flow cytometry. Combined treatment effects on the clonogenic capability of melanoma cells, was also tested with soft agar colony formation assay. Furthermore the effect of CAP on the cellular uptake of DOX or DOX-LIP was examined. Results showed a strong synergistic effect of CAP and DOX or DOX-LIP on selectively decreasing cell viability of melanoma cells. CAP accelerated the apoptotic effect of DOX (or DOX-LIP) and dramatically reduced the aggressiveness of melanoma cells, as the combination treatment significantly decreased their anchorage independent growth. Moreover, CAP did not result in increased cellular uptake of DOX under the present experimental conditions. In conclusion, CAP facilitates DOX cytotoxic effects on melanoma cells, and affects their metastatic potential by reducing their clonogenicity, as shown for the first time.
Collapse
Affiliation(s)
| | - Dimitrios K Athanasopoulos
- High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, 26504, Rion, Greece
| | - Antonia Marazioti
- Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, 26504, Rion, Greece.
- FORTH/ICE-ΗΤ, Institute of Chemical Engineering Sciences, 26504, Rion, Greece.
| | - Kyriakos Sklias
- High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, 26504, Rion, Greece
| | - Maria Rodi
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26500, Patras, Greece
| | - Anne-Lise de Lastic
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26500, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26500, Patras, Greece
| | - Panagiotis Svarnas
- High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, 26504, Rion, Greece.
| | - Sophia G Antimisiaris
- Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, 26504, Rion, Greece
- FORTH/ICE-ΗΤ, Institute of Chemical Engineering Sciences, 26504, Rion, Greece
| |
Collapse
|
19
|
Differential Effect of Non-Thermal Plasma RONS on Two Human Leukemic Cell Populations. Cancers (Basel) 2021; 13:cancers13102437. [PMID: 34069922 PMCID: PMC8157554 DOI: 10.3390/cancers13102437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary As the number of investigations into the use of non-thermal plasma (NTP) for cancer treatment expands, it is becoming apparent that susceptibility of different cancer cells to NTP varies. We hypothesized that such differences could be attributed to the cell type-dependent interactions between NTP-generated reactive oxygen and nitrogen species (RONS) and the target cells. To test this hypothesis, we examined how two different human leukemic cell lines—Jurkat T lymphocytes and THP-1 monocytes—influence hydrogen peroxide and nitrite content in media after NTP exposure. We also assessed the potential of NTP to enhance immunogenicity in these cells and assayed phagocytosis of NTP-exposed leukemic cells by macrophages. Our results highlight the significance of target-mediated modulation of plasma chemical species in the development and clinical use of protocols involving plasma sources for use in cancer therapeutic application. Abstract Non-thermal plasma application to cancer cells is known to induce oxidative stress, cytotoxicity and indirect immunostimulatory effects on antigen presenting cells (APCs). The purpose of this study was to evaluate the responses of two leukemic cell lines—Jurkat T lymphocytes and THP-1 monocytes—to NTP-generated reactive oxygen and nitrogen species (RONS). Both cell types depleted hydrogen peroxide, but THP-1 cells neutralized it almost immediately. Jurkat cells transiently blunted the frequency-dependent increase in nitrite concentrations in contrast to THP-1 cells, which exhibited no immediate effect. A direct relationship between frequency-dependent cytotoxicity and mitochondrial superoxide was observed only in Jurkat cells. Jurkat cells were very responsive to NTP in their display of calreticulin and heat shock proteins 70 and 90. In contrast, THP-1 cells were minimally responsive or unresponsive. Despite no NTP-dependent decrease in cell surface display of CD47 in either cell line, both cell types induced migration of and phagocytosis by APCs. Our results demonstrate that cells modulate the RONS-mediated changes in liquid chemistry, and, importantly, the resultant immunomodulatory effects of NTP can be independent of NTP-induced cytotoxicity.
Collapse
|
20
|
Bengtson C, Bogaerts A. The Quest to Quantify Selective and Synergistic Effects of Plasma for Cancer Treatment: Insights from Mathematical Modeling. Int J Mol Sci 2021; 22:ijms22095033. [PMID: 34068601 PMCID: PMC8126141 DOI: 10.3390/ijms22095033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/30/2022] Open
Abstract
Cold atmospheric plasma (CAP) and plasma-treated liquids (PTLs) have recently become a promising option for cancer treatment, but the underlying mechanisms of the anti-cancer effect are still to a large extent unknown. Although hydrogen peroxide (H2O2) has been recognized as the major anti-cancer agent of PTL and may enable selectivity in a certain concentration regime, the co-existence of nitrite can create a synergistic effect. We develop a mathematical model to describe the key species and features of the cellular response toward PTL. From the numerical solutions, we define a number of dependent variables, which represent feasible measures to quantify cell susceptibility in terms of the H2O2 membrane diffusion rate constant and the intracellular catalase concentration. For each of these dependent variables, we investigate the regimes of selective versus non-selective, and of synergistic versus non-synergistic effect to evaluate their potential role as a measure of cell susceptibility. Our results suggest that the maximal intracellular H2O2 concentration, which in the selective regime is almost four times greater for the most susceptible cells compared to the most resistant cells, could be used to quantify the cell susceptibility toward exogenous H2O2. We believe our theoretical approach brings novelty to the field of plasma oncology, and more broadly, to the field of redox biology, by proposing new ways to quantify the selective and synergistic anti-cancer effect of PTL in terms of inherent cell features.
Collapse
|
21
|
Bekeschus S, Clemen R, Haralambiev L, Niessner F, Grabarczyk P, Weltmann KD, Menz J, Stope M, von Woedtke T, Gandhirajan R, Schmidt A. The Plasma-Induced Leukemia Cell Death is Dictated by the ROS Chemistry and the HO-1/CXCL8 Axis. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3020686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Clemen R, Freund E, Mrochen D, Miebach L, Schmidt A, Rauch BH, Lackmann J, Martens U, Wende K, Lalk M, Delcea M, Bröker BM, Bekeschus S. Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003395. [PMID: 34026437 PMCID: PMC8132054 DOI: 10.1002/advs.202003395] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/22/2021] [Indexed: 05/04/2023]
Abstract
Reactive oxygen species (ROS/RNS) are produced during inflammation and elicit protein modifications, but the immunological consequences are largely unknown. Gas plasma technology capable of generating an unmatched variety of ROS/RNS is deployed to mimic inflammation and study the significance of ROS/RNS modifications using the model protein chicken ovalbumin (Ova vs oxOva). Dynamic light scattering and circular dichroism spectroscopy reveal structural modifications in oxOva compared to Ova. T cells from Ova-specific OT-II but not from C57BL/6 or SKH-1 wild type mice presents enhanced activation after Ova addition. OxOva exacerbates this activation when administered ex vivo or in vivo, along with an increased interferon-gamma production, a known anti-melanoma agent. OxOva vaccination of wild type mice followed by inoculation of syngeneic B16F10 Ova-expressing melanoma cells shows enhanced T cell number and activation, decreased tumor burden, and elevated numbers of antigen-presenting cells when compared to their Ova-vaccinated counterparts. Analysis of oxOva using mass spectrometry identifies three hot spots regions rich in oxidative modifications that are associated with the increased T cell activation. Using Ova as a model protein, the findings suggest an immunomodulating role of multi-ROS/RNS modifications that may spur novel research lines in inflammation research and for vaccination strategies in oncology.
Collapse
Affiliation(s)
- Ramona Clemen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Eric Freund
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of GeneralVisceralThoracicand Vascular SurgeryUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Daniel Mrochen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of ImmunologyUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Lea Miebach
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of GeneralVisceralThoracicand Vascular SurgeryUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Anke Schmidt
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Bernhard H. Rauch
- Institute of Pharmacology (C_Dat)University Medicine GreifswaldFelix‐Hausdorff‐Str. 1Greifswald17489Germany
| | - Jan‐Wilm Lackmann
- CECAD proteomics facilityUniversity of CologneJoseph‐Stelzmann‐Str. 26Cologne50931Germany
| | - Ulrike Martens
- ZIK HIKEUniversity of GreifswaldFleischmannstr. 42–44Greifswald17489Germany
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Kristian Wende
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Michael Lalk
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Mihaela Delcea
- ZIK HIKEUniversity of GreifswaldFleischmannstr. 42–44Greifswald17489Germany
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Barbara M. Bröker
- Department of ImmunologyUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| |
Collapse
|
23
|
Bekeschus S, Liebelt G, Menz J, Berner J, Sagwal SK, Wende K, Weltmann KD, Boeckmann L, von Woedtke T, Metelmann HR, Emmert S, Schmidt A. Tumor cell metabolism correlates with resistance to gas plasma treatment: The evaluation of three dogmas. Free Radic Biol Med 2021; 167:12-28. [PMID: 33711420 DOI: 10.1016/j.freeradbiomed.2021.02.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/16/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Gas plasma is a partially ionized gas increasingly recognized for targeting cancer. Several hypotheses attempt to explain the link between plasma treatment and cytotoxicity in cancer cells, all focusing on cellular membranes that are the first to be exposed to plasma-generated reactive oxygen species (ROS). One proposes high levels of aquaporins, membrane transporters of water and hydrogen peroxide, to mark tumor cell line sensitivity to plasma treatment. A second focuses on membrane-expression of redox-related enzymes such as NADPH oxidases (NOX) that may modify or amplify the effects of plasma-derived ROS, fueling plasma-induced cancer cell death. Another hypothesis is that the decreased cholesterol content of tumor cell membranes sensitizes these to plasma-mediated oxidation and subsequently, cytotoxicity. Screening 33 surface molecules in 36 tumor cell lines in correlation to their sensitivity to plasma treatment, the expression of aquaporins or NOX members could not explain the sensitivity but were rather associated with treatment resistance. Correlation with transporter or enzyme activity was not tested. Analysis of cholesterol content confirmed the proposed positive correlation with treatment resistance. Strikingly, the strongest correlation was found for baseline metabolic activity (Spearman r = 0.76). Altogether, these data suggest tumor cell metabolism as a novel testable hypothesis to explain cancer cell resistance to gas plasma treatment for further elucidating this innovative field's chances and limitations in oncology.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| | - Grit Liebelt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Jonas Menz
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Sauerbruchstr, 17475, Greifswald, Germany
| | - Julia Berner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of Oral and Maxillofacial Surgery/Plastic Surgery, Greifswald University Medical Center, Sauerbruchstr, 17475, Greifswald, Germany
| | - Sanjeev Kumar Sagwal
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Klaus-Dieter Weltmann
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Lars Boeckmann
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute of Hygiene and Environmental Medicine, Greifswald University Medical Center, Walther-Rathenau-Str. 48A, 17489, Greifswald, Germany
| | - Hans-Robert Metelmann
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of Oral and Maxillofacial Surgery/Plastic Surgery, Greifswald University Medical Center, Sauerbruchstr, 17475, Greifswald, Germany
| | - Steffen Emmert
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| |
Collapse
|
24
|
Abstract
Nonthermal atmospheric pressure biocompatible plasma (NBP), alternatively called bio-cold plasma, is a partially ionized gas that consists of charged particles, neutral atoms and molecules, photons, an electric field, and heat. Recently, nonthermal plasma-based technology has been applied to bioscience, medicine, agriculture, food processing, and safety. Various plasma device configurations and electrode layouts has fast-tracked plasma applications in the treatment of biological and material surfaces. The NBP action mechanism may be related to the synergy of plasma constituents, such as ultraviolet radiation or a reactive species. Recently, plasma has been used in the inactivation of viruses and resistant microbes, such as fungal cells, bacteria, spores, and biofilms made by microbes. It has also been used to heal wounds, coagulate blood, degrade pollutants, functionalize material surfaces, kill cancers, and for dental applications. This review provides an outline of NBP devices and their applications in bioscience and medicine. We also discuss the role of plasma-activated liquids in biological applications, such as cancer treatments and agriculture. The individual adaptation of plasma to meet specific medical requirements necessitates real-time monitoring of both the plasma performance and the target that is treated and will provide a new paradigm of plasma-based therapeutic clinical systems.
Collapse
Affiliation(s)
- Eun H. Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| | - Han S. Uhm
- Canode # 702, 136-11 Tojeong-ro, Mapo-gu, Seoul, 04081 Republic of Korea
| | - Nagendra K. Kaushik
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| |
Collapse
|
25
|
Mahdikia H, Shokri B, Majidzadeh-A K. The Feasibility Study of Plasma-activated Water as a Physical Therapy to Induce Apoptosis in Melanoma Cancer Cells In-vitro. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:337-350. [PMID: 34903993 PMCID: PMC8653670 DOI: 10.22037/ijpr.2021.114493.14882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Low-temperature plasma (LTP) has demonstrated great potential in biomedicine, especially in cancer therapy in-vivo and in-vitro. Plasma activated water (PAW) as an indirect plasma therapy is a significant source of reactive oxygen and nitrogen species (RONS) which play an important role in apoptosis induction in cancer cells. In this study, Helium (He) plasma jet operating in 0.75 W and 20 kHz as dissipated power and frequency, respectively, is used as the cold plasma source. The electrical, thermal, and spectroscopic properties of (He) plasma jet and pH as well as the conductivity and temperature of PAW samples, are investigated. The concentration of hydrogen peroxide (H2O2), nitrite (NO2 -) and nitrate (NO- 3), which are produced in water as long-lived anticancer RONS, was measured 471.6, 7.9 and 93.5 μM, respectively after 6 min of plasma treatment. Alamar Blue and flow cytometry assays were employed to investigate the B16F10 cancer metabolic activity and apoptosis. These data support that cold atmospheric plasma (CAP) can produce a certain concentration of anti-cancer agents in water and induce apoptosis in melanoma cancer cells due to RONSs via activating the caspase 3 pathway.
Collapse
Affiliation(s)
- Hamed Mahdikia
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran.
- Tasnim Biotechnology Research Center (TBRC), AJA University of Medical Science, Tehran, Iran.
| | - Babak Shokri
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran.
- Department of Applied Physics, Shahid Beheshti University, Tehran, Iran.
| | - Keivan Majidzadeh-A
- Tasnim Biotechnology Research Center (TBRC), AJA University of Medical Science, Tehran, Iran.
- Genetics Department, Breast Cancer Research Center (BCRC), Motamed Cancer Institute (MCI), ACECR, Tehran, Iran.
| |
Collapse
|
26
|
Zubor P, Wang Y, Liskova A, Samec M, Koklesova L, Dankova Z, Dørum A, Kajo K, Dvorska D, Lucansky V, Malicherova B, Kasubova I, Bujnak J, Mlyncek M, Dussan CA, Kubatka P, Büsselberg D, Golubnitschaja O. Cold Atmospheric Pressure Plasma (CAP) as a New Tool for the Management of Vulva Cancer and Vulvar Premalignant Lesions in Gynaecological Oncology. Int J Mol Sci 2020; 21:ijms21217988. [PMID: 33121141 PMCID: PMC7663780 DOI: 10.3390/ijms21217988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Vulvar cancer (VC) is a specific form of malignancy accounting for 5–6% of all gynaecologic malignancies. Although VC occurs most commonly in women after 60 years of age, disease incidence has risen progressively in premenopausal women in recent decades. VC demonstrates particular features requiring well-adapted therapeutic approaches to avoid potential treatment-related complications. Significant improvements in disease-free survival and overall survival rates for patients diagnosed with post-stage I disease have been achieved by implementing a combination therapy consisting of radical surgical resection, systemic chemotherapy and/or radiotherapy. Achieving local control remains challenging. However, mostly due to specific anatomical conditions, the need for comprehensive surgical reconstruction and frequent post-operative healing complications. Novel therapeutic tools better adapted to VC particularities are essential for improving individual outcomes. To this end, cold atmospheric plasma (CAP) treatment is a promising option for VC, and is particularly appropriate for the local treatment of dysplastic lesions, early intraepithelial cancer, and invasive tumours. In addition, CAP also helps reduce inflammatory complications and improve wound healing. The application of CAP may realise either directly or indirectly utilising nanoparticle technologies. CAP has demonstrated remarkable treatment benefits for several malignant conditions, and has created new medical fields, such as “plasma medicine” and “plasma oncology”. This article highlights the benefits of CAP for the treatment of VC, VC pre-stages, and postsurgical wound complications. There has not yet been a published report of CAP on vulvar cancer cells, and so this review summarises the progress made in gynaecological oncology and in other cancers, and promotes an important, understudied area for future research. The paradigm shift from reactive to predictive, preventive and personalised medical approaches in overall VC management is also considered.
Collapse
Affiliation(s)
- Pavol Zubor
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
- OBGY Health & Care, Ltd., 010 01 Zilina, Slovakia
- Correspondence: or
| | - Yun Wang
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Alena Liskova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Lenka Koklesova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Zuzana Dankova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Anne Dørum
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Bibiana Malicherova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Ivana Kasubova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Jan Bujnak
- Department of Obstetrics and Gynaecology, Kukuras Michalovce Hospital, 07101 Michalovce, Slovakia;
| | - Milos Mlyncek
- Department of Obstetrics and Gynaecology, Faculty Hospital Nitra, Constantine the Philosopher University, 949 01 Nitra, Slovakia;
| | - Carlos Alberto Dussan
- Department of Surgery, Orthopaedics and Oncology, University Hospital Linköping, 581 85 Linköping, Sweden;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144 Doha, Qatar;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, Rheinische Friedrich-Wilhelms-Universität Bonn, 53105 Bonn, Germany;
| |
Collapse
|
27
|
Chen Z, Xu RG, Chen P, Wang Q. Potential Agricultural and Biomedical Applications of Cold Atmospheric Plasma-Activated Liquids With Self-Organized Patterns Formed at the Interface. IEEE TRANSACTIONS ON PLASMA SCIENCE 2020; 48:3455-3471. [DOI: 10.1109/tps.2020.3019995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
28
|
Privat-Maldonado A, Bogaerts A. Plasma in Cancer Treatment. Cancers (Basel) 2020; 12:cancers12092617. [PMID: 32937802 PMCID: PMC7564655 DOI: 10.3390/cancers12092617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/16/2023] Open
|
29
|
The Hyaluronan Pericellular Coat and Cold Atmospheric Plasma Treatment of Cells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In different tumors, high amounts of hyaluronan (HA) are correlated with tumor progression. Therefore, new tumor therapy strategies are targeting HA production and degradation. In plasma medicine research, antiproliferative and apoptosis-inducing effects on tumor cells were observed using cold atmospheric plasma (CAP) or plasma-activated media (PAM). Until now, the influence of PAM on the HA pericellular coat has not been the focus of research. PAM was generated by argon-plasma treatment of Dulbecco’s modified Eagle’s Medium via the kINPen®09 plasma jet. The HA expression on PAM-treated HaCaT cells was determined by flow cytometry and confocal laser scanning microscopy. Changes in the adhesion behavior of vital cells in PAM were observed by impedance measurement using the xCELLigence system. We found that PAM treatment impaired the HA pericellular coat of HaCaT cells. The time-dependent adhesion was impressively diminished. However, a disturbed HA coat alone was not the reason for the inhibition of cell adhesion because cells enzymatically treated with HAdase did not lose their adhesion capacity completely. Here, we showed for the first time that the plasma-activated medium (PAM) was able to influence the HA pericellular coat.
Collapse
|