1
|
Yang F, Zhao X, Xie H, Zhu Y, Wang Y, Zhou J. Occult epidermal growth factor receptor-mutant lung adenocarcinoma complicated by prostatic metastasis: a case report. Anticancer Drugs 2025; 36:521-524. [PMID: 40026143 PMCID: PMC12061367 DOI: 10.1097/cad.0000000000001710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 02/09/2025] [Indexed: 03/04/2025]
Abstract
Herein, we report a case of occult epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma complicated by prostatic metastasis. A 75-year-old male with >30 years of smoking history presented with lower back pain as the initial symptom. Respiratory symptoms, including cough and sputum production, were absent. PET-computed tomography revealed the presence of bone and prostatic metastases, without any lung abnormalities. Biopsies of the space-occupying bone and metastatic lesions suggested that the metastases originated from primary lung adenocarcinoma. Genetic testing indicated EGFR 21L858R(+). The patient had an abnormal serum carcinoembryonic antigen level but a normal prostate-specific antigen level. Following a multidisciplinary discussion, a diagnosis of occult primary lung adenocarcinoma complicated by bone and prostatic metastases (TxN0M1b, Stage IVB) was considered. Following targeted therapy with oral osimertinib, the patient achieved a partial response, with alleviation of pain symptoms alleviated and normalization of carcinoembryonic antigen levels. In the absence of tissue biopsy, such cases can often be misdiagnosed as prostate cancer complicated by multiple bone metastases. Hence, the present case highlights the importance of comprehensive diagnostic testing, including tissue biopsy, to accurately identify the underlying cause of metastatic disease.
Collapse
Affiliation(s)
- Fan Yang
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xing Zhao
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Hua Xie
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yajie Zhu
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jin Zhou
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Pirini F, Calzari L, Tedaldi G, Tebaldi M, Zampiga V, Cangini I, Danesi R, Ravegnani M, Arcangeli V, Passardi A, Petracci E, Bravaccini S, Marisi G, Viel A, Barana D, Pedroni M, Roncucci L, Calistri D, Gentilini D. Comprehensive genetic and epigenetic characterization of Lynch-like syndrome patients. Int J Cancer 2025. [PMID: 40259440 DOI: 10.1002/ijc.35451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/18/2025] [Accepted: 04/04/2025] [Indexed: 04/23/2025]
Abstract
Lynch-like syndrome (LLS) presents very similar clinicopathological characteristics to Lynch syndrome (LS) but the mechanism for cancer predisposition remains unknown. The present study aims to investigate the causal mechanism of LLS by a comprehensive genetic and epigenetic approach. Thirty-two LLS and 34 LS patients with colorectal cancer (CRC) fitting the Amsterdam and Bethesda criteria were included, along with 29 CRC sporadic patients, and analyzed for the presence of pathogenic variants in 94 genes associated with hereditary tumors. The cohorts were also characterized for the methylation profile and examined through a sample group analysis and a Stochastic Epigenetic Mutations (SEMs) analysis in comparison with 29 age-matched healthy controls. The multigene panel analysis revealed the presence of pathogenic variants in non-mismatch repair (MMR) genes and three variants classified as pathogenic/likely pathogenic possibly predisposing to LLS. The epigenetic analysis showed epivariations targeting genes associated with LS or DNA repair, most of them associated with the Fanconi Anemia pathway, which could explain the susceptibility to cancer. Our results highlight the need for using extended genetic and epigenetic analyses to understand the causal mechanism of LLS.
Collapse
Affiliation(s)
- Francesca Pirini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Luciano Calzari
- Bioinformatics and Statistical Genomic Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Gianluca Tedaldi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Tebaldi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Valentina Zampiga
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Ilaria Cangini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Rita Danesi
- Romagna Cancer Registry, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Mila Ravegnani
- Romagna Cancer Registry, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Valentina Arcangeli
- Romagna Cancer Registry, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alessandro Passardi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Elisabetta Petracci
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
- Faculty of Medicine and Surgery, University of Enna "Kore", Enna, Italy
| | - Giorgia Marisi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alessandra Viel
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Daniela Barana
- Oncology Unit, Local Health and Social Care Unit, ULSS8 Berica, Vicenza, Italy
| | - Monica Pedroni
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Roncucci
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Calistri
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Davide Gentilini
- Bioinformatics and Statistical Genomic Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Lin B, Chen Y, Li X, Lin Y, Zhou J, Yang H, Shen Y. Integrated analysis of FANCE expression and its regulatory role in the immune microenvironment of oral squamous cell carcinoma. Oncol Lett 2025; 29:160. [PMID: 39911149 PMCID: PMC11795162 DOI: 10.3892/ol.2025.14906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/06/2024] [Indexed: 02/07/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) presents a significant health challenge owing to its complex origin and limited treatment success. The precise function of Fanconi anemia complementation group E (FANCE), a key gene involved in DNA repair in OSCC, remains unclear. The present study performed bioinformatics analysis of The Cancer Genome Atlas dataset and cellular experiments to demonstrate that FANCE is significantly upregulated in OSCC. Enhanced FANCE expression was associated with poor survival outcome in patients with OSCC. Knockdown of FANCE inhibited OSCC cell proliferation and migration. Moreover, a negative correlation was observed between FANCE expression and immune cell markers. Collectively, these findings suggest that FANCE is a potential oncogene in OSCC and a prognostic biomarker that may play a role in modulating the OSCC microenvironment.
Collapse
Affiliation(s)
- Bo Lin
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong 518036, P.R. China
- Institute of Stomatology, Shenzhen Clinical Research Center for Oral Diseases, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Yuling Chen
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong 518036, P.R. China
- Institute of Stomatology, Shenzhen Clinical Research Center for Oral Diseases, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Xiaolian Li
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong 518036, P.R. China
- Institute of Stomatology, Shenzhen Clinical Research Center for Oral Diseases, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Yuntao Lin
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong 518036, P.R. China
- Institute of Stomatology, Shenzhen Clinical Research Center for Oral Diseases, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Jian Zhou
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong 518036, P.R. China
- Institute of Stomatology, Shenzhen Clinical Research Center for Oral Diseases, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Hongyu Yang
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong 518036, P.R. China
- Institute of Stomatology, Shenzhen Clinical Research Center for Oral Diseases, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Yuehong Shen
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong 518036, P.R. China
- Department of Oral and Maxillofacial Surgery, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong 518036, P.R. China
- Institute of Stomatology, Shenzhen Clinical Research Center for Oral Diseases, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
4
|
Pires C, Marques IJ, Saramago A, Moura MM, Pojo M, Cabrera R, Santos C, Rosário F, Lousa D, Vicente JB, Bandeiras TM, Teixeira MR, Leite V, Cavaco BM. Identification of novel candidate predisposing genes in familial nonmedullary thyroid carcinoma implicating DNA damage repair pathways. Int J Cancer 2025; 156:130-144. [PMID: 39251783 DOI: 10.1002/ijc.35159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
The genetic basis of nonsyndromic familial nonmedullary thyroid carcinoma (FNMTC) is still poorly understood, as the susceptibility genes identified so far only account for a small percentage of the genetic burden. Recently, germline mutations in DNA repair-related genes have been reported in cases with thyroid cancer. In order to clarify the genetic basis of FNMTC, 94 genes involved in hereditary cancer predisposition, including DNA repair genes, were analyzed in 48 probands from FNMTC families, through targeted next-generation sequencing (NGS). Genetic variants were selected upon bioinformatics analysis and in silico studies. Structural modeling and network analysis were also performed. In silico results of NGS data unveiled likely pathogenic germline variants in 15 families with FNMTC, in genes encoding proteins involved in DNA repair (ATM, CHEK2, ERCC2, BRCA2, ERCC4, FANCA, FANCD2, FANCF, and PALB2) and in the DICER1, FLCN, PTCH1, BUB1B, and RHBDF2 genes. Structural modeling predicted that most missense variants resulted in the disruption of networks of interactions between residues, with implications for local secondary and tertiary structure elements. Functional annotation and network analyses showed that the involved DNA repair proteins functionally interact with each other, within the same DNA repair pathway and across different pathways. MAPK activation was a common event in tumor progression. This study supports that rare germline variants in DNA repair genes may be accountable for FNMTC susceptibility, with potential future utility in patients' clinical management, and reinforces the relevance of DICER1 in disease etiology.
Collapse
Affiliation(s)
- Carolina Pires
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
- NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Inês J Marques
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
- NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Saramago
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Margarida M Moura
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Rafael Cabrera
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Catarina Santos
- Serviço de Genética, Instituto Português de Oncologia do Porto Francisco Gentil, Porto, Portugal
| | | | - Diana Lousa
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa, Oeiras, Portugal
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tiago M Bandeiras
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal
| | - Manuel R Teixeira
- Serviço de Genética, Instituto Português de Oncologia do Porto Francisco Gentil, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Valeriano Leite
- NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Branca M Cavaco
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| |
Collapse
|
5
|
Mosaad R, El-Kamah G, Eid M, Amr K. DNA phenotyping and mapping intragenic deletion mutations in Fanconi anemia: Patterns and diagnostic inferences. J Genet Eng Biotechnol 2024; 22:100435. [PMID: 39674648 PMCID: PMC11585679 DOI: 10.1016/j.jgeb.2024.100435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Fanconi anemia is a genetically heterogeneous recessive disorder distinguished by cytogenetic instability, hypersensitivity to DNA crosslinking agents, increased chromosomal breakage, and disturbed DNA repair. To date, Fanconi anemia complementation group (FANC) includes 23 FANC genes identified of which, FANCA gene is the most commonly mutated. The mutation spectrum of the FANCA gene is highly heterogeneous with large intragenic deletions due to Alu elements-mediated recombination. The study aimed to identify different deletion mutations on FANCA gene in Egyptian Fanconi anemia patients by multiplex ligation-dependent probe amplification (MLPA) technique to define the spectrum of FA molecular pathology as a step for disease control. The study included 80 FA patients (36 females and 44 males) whose ages ranged from 4 months to 17 years descending from unrelated consanguineous families referred to the Hereditary Blood Disorders Clinic, National Research Centre (NRC), Egypt. Patients were diagnosed with classical clinical presentation of FA and were confirmed by chromosomal breakage using Diepoxybutane (DEB). RESULTS The common clinical presentation in our FA patients were the presence of café au lait spots with hyperpigmentation in 65/80 (81%) followed by skeletal defects in 40/80 (50%). MLPA revealed a total of five different intragenic homozygous deletions of FANCA gene in 16 /80 (20%) patients, among them two deletion patterns were novel. CONCLUSION Molecular analysis using MLPA could detect pathogenic mutations in 20% of FA patients, our study generated considerable data on causative mutations that was used for genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Rehab Mosaad
- Molecular Genetics and Enzymology Dpt., Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Ghada El-Kamah
- Clinical Genetics Dpt., Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Maha Eid
- Cytogenetics Dpt., Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Khalda Amr
- Medical Molecular Genetics Dpt., Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| |
Collapse
|
6
|
Shumilova S, Danishevich A, Nikolaev S, Krasnov G, Ikonnikova A, Isaeva D, Surzhikov S, Zasedatelev A, Bodunova N, Nasedkina T. High- and Moderate-Risk Variants Among Breast Cancer Patients and Healthy Donors Enrolled in Multigene Panel Testing in a Population of Central Russia. Int J Mol Sci 2024; 25:12640. [PMID: 39684352 PMCID: PMC11641773 DOI: 10.3390/ijms252312640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Assessments of breast cancer (BC) risk in carriers of pathogenic variants identified by gene panel testing in different populations are highly in demand worldwide. We performed target sequencing of 78 genes involved in DNA repair in 860 females with BC and 520 age- and family history-matched controls from Central Russia. Among BC patients, 562/860 (65.3%) were aged 50 years or less at the time of diagnosis. In total, 190/860 (22%) BC patients were carriers of 198 pathogenic/likely pathogenic (P/LP) variants in 30 genes, while among controls, 32/520 (6.2%) carriers of P/LP variants in 17 genes were identified. The odds ratio [95% confidence interval] was 16.3 [4.0-66.7] for BRCA1; 12.0 [2.9-45.9] for BRCA2; and 7.3 [0.9-56.7] for ATM (p < 0.05). Previously undescribed BRCA1/2, ATM, and PALB2 variants, as well as novel recurrent mutations, were identified. The contribution to BC susceptibility of truncating variants in the genes BARD1, RAD50, RAD51C, NBEAL1 (p. E1155*), and XRCC2 (p. P32fs) was evaluated. The BLM, NBN, and MUTYH genes did not demonstrate associations with BC risk. Finding deleterious mutations in BC patients is important for diagnosis and management; in controls, it opens up the possibility of prevention and early diagnostics.
Collapse
Affiliation(s)
- Syuykum Shumilova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Anastasia Danishevich
- SBHI Moscow Clinical Scientific Center named after Loginov of Moscow Healthcare Department, 111123 Moscow, Russia; (A.D.); (S.N.); (D.I.); (N.B.)
| | - Sergey Nikolaev
- SBHI Moscow Clinical Scientific Center named after Loginov of Moscow Healthcare Department, 111123 Moscow, Russia; (A.D.); (S.N.); (D.I.); (N.B.)
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Anna Ikonnikova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Darya Isaeva
- SBHI Moscow Clinical Scientific Center named after Loginov of Moscow Healthcare Department, 111123 Moscow, Russia; (A.D.); (S.N.); (D.I.); (N.B.)
| | - Sergei Surzhikov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Alexander Zasedatelev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Natalia Bodunova
- SBHI Moscow Clinical Scientific Center named after Loginov of Moscow Healthcare Department, 111123 Moscow, Russia; (A.D.); (S.N.); (D.I.); (N.B.)
| | - Tatiana Nasedkina
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| |
Collapse
|
7
|
Wang C, Chen J, Wang Y, Luo N, Han T, Yin X, Song Y, Chen D, Gong J. Genetic and clinical characteristics of genetic tumor syndromes in the central nervous system cancers: Implications for clinical practice. iScience 2024; 27:111073. [PMID: 39493880 PMCID: PMC11530818 DOI: 10.1016/j.isci.2024.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/02/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Recognizing individuals with Genetic tumor syndromes (GTS) in the primary central nervous system (CNS) tumors is crucial for optimizing proper genetic counseling and improving therapeutics and clinical care. We retrospectively analyzed the GTS in a Chinese CNS tumor cohort and examined the molecular characteristics and their clinical significance for diagnostic and therapeutic purposes. Our study identified 34 categories of GTS in 258 patients with CNS tumors. The gene with the highest germline pathogenic or likely pathogenic mutation frequency was TP53, followed by MSH2, NF1, and BRCA2. The top five GTS in CNS tumors showed high genetic heterogeneity GTS analysis reclassifies CNS tumors as "NEC." 53.88% of patients diagnosed with GTS harbor potential precision oncology therapy target mutations. The results of our study deepen our understanding of CNS tumors, provide a reference direction for the future design of clinical trials, and further expect to improve disease entire process management in CNS tumors.
Collapse
Affiliation(s)
- Chuanwei Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, Shandong 250012, China
| | - Jian Chen
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Yanzhao Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, Shandong 250012, China
| | - Ningning Luo
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu 210000, China
| | - Tiantian Han
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu 210000, China
| | - Xiangyu Yin
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu 210000, China
| | - Yunjie Song
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu 210000, China
| | - Dongsheng Chen
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu 210000, China
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Center of Translational Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Jie Gong
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, Shandong 250012, China
| |
Collapse
|
8
|
McCarthy-Leo C, Baughan S, Dlugas H, Abraham P, Gibbons J, Baldwin C, Chung S, Feldman GL, Dyson G, Finley RL, Tainsky MA. Germline variant profiling of CHEK2 sequencing variants in breast cancer patients. Cancer Genet 2024; 288-289:10-19. [PMID: 39208550 DOI: 10.1016/j.cancergen.2024.08.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/17/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
The cell cycle checkpoint kinase 2 (CHEK2) is a tumor suppressor gene coding for a protein kinase with a role in the cell cycle and DNA repair pathways. Variants within CHEK2 are associated with an increased risk of developing breast, colorectal, prostate and several other types of cancer. Comprehensive genetic risk assessment leads to early detection of hereditary cancer and provides an opportunity for better survival. Multigene panel screening can identify the presence of pathogenic variants in hereditary cancer predisposition genes (HCPG), including CHEK2. Multigene panels, however, also result in large quantities of genetic data some of which cannot be interpreted and are classified as variants of uncertain significance (VUS). A VUS provides no information for use in medical management and leads to ambiguity in genetic counseling. In the absence of variant segregation data, in vitro functional analyses can be used to clarify variant annotations, aiding in accurate clinical management of patient risk and treatment plans. In this study, we performed whole exome sequencing (WES) to investigate the prevalence of germline variants in 210 breast cancer (BC) patients and conspicuously among the many variants in HCPGs that we found, we identified 16 individuals with non-synonymous or frameshift CHEK2 variants, sometimes along with additional variants within other BC susceptibility genes. Using this data, we investigated the prevalence of these CHEK2 variants in African American (AA) and Caucasian (CA) populations identifying the presence of two novel frameshift variants, c.1350delA (p.Val451Serfs*18) and c.1528delC (p.Gln510Argfs*3) and a novel missense variant, c262C>T (p.Pro88Ser). Along with the current clinical classifications, we assembled available experimental data and computational predictions of function for these CHEK2 variants, as well as explored the role these variants may play in polygenic risk assessment.
Collapse
Affiliation(s)
- Claire McCarthy-Leo
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Scott Baughan
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Hunter Dlugas
- Biostatistics and Bioinformatics Core, Karmanos Cancer Institute, Detroit, MI, United States
| | - Prisca Abraham
- Wayne State University School of Medicine, Detroit, MI, United States
| | - Janice Gibbons
- Wayne State University School of Medicine, Detroit, MI, United States
| | - Carolyn Baldwin
- Wayne State University School of Medicine, Detroit, MI, United States
| | - Sarah Chung
- Wayne State University School of Medicine, Detroit, MI, United States
| | - Gerald L Feldman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Gregory Dyson
- Biostatistics and Bioinformatics Core, Karmanos Cancer Institute, Detroit, MI, United States; Department of Oncology, Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Russell L Finley
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Michael A Tainsky
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States; Department of Oncology, Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
9
|
Szafron LA, Sobiczewski P, Dansonka-Mieszkowska A, Kupryjanczyk J, Szafron LM. An Analysis of Genetic Polymorphisms in 76 Genes Related to the Development of Ovarian Tumors of Different Aggressiveness. Int J Mol Sci 2024; 25:10876. [PMID: 39456660 PMCID: PMC11507582 DOI: 10.3390/ijms252010876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Borderline ovarian tumors (BOTS) are rare neoplasms of intermediate aggressiveness between cystadenomas and low-grade ovarian cancers (lgOvCa), which they share some molecular resemblances with. In contrast to the most frequent and well-described high-grade ovarian carcinomas (hgOvCa), the molecular background of BOTS and lgOvCa is less thoroughly characterized. Here, we aimed to analyze genetic variants in crucial tumor suppressors and oncogenes in BOTS (with or without the BRAF V600E mutation), lgOvCa, and hgOvCa in two gene panels using next-generation sequencing. Then, we verified the existence of selected polymorphisms by Sanger sequencing. Finally, Western blot analyses were carried out to check the impact of the selected polymorphisms on the expression of the corresponding proteins. Our study contributes to the molecular characterization of ovarian neoplasms, demonstrating divergent polymorphic patterns pointing to distinct signaling pathways engaged in their development. Certain mutations seem to play an important role in BOTS without the BRAF V600E variant (KRAS) and in lgOvCa (KRAS and NRAS), but not in hgOvCa. Additionally, based on multivariable regression analyses, potential biomarkers in BOTS (PARP1) and hgOvCa (FANCI, BRCA2, TSC2, FANCF) were identified. Noteworthy, for some of the analyzed genes, such as FANCI, FANCD2, and FANCI, FANCF, TSC2, the status of BRCA1/2 and TP53, respectively, turned out to be crucial. Our results shed new light on the similarities and differences in the polymorphic patterns between ovarian tumors of diverse aggressiveness. Furthermore, the biomarkers identified herein are of potential use as predictors of the prognosis and/or response to therapy.
Collapse
Affiliation(s)
- Laura A. Szafron
- Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Piotr Sobiczewski
- Department of Gynecological Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Agnieszka Dansonka-Mieszkowska
- Cancer Molecular and Genetic Diagnostics Department, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Jolanta Kupryjanczyk
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Lukasz M. Szafron
- Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| |
Collapse
|
10
|
Rai SK, Du W, Zhang J, Yu H, Deng Y, Fei P. Somatic gene mutations involved in DNA damage response/Fanconi anemia signaling are tissue- and cell-type specific in human solid tumors. Front Med (Lausanne) 2024; 11:1462810. [PMID: 39421870 PMCID: PMC11483370 DOI: 10.3389/fmed.2024.1462810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
With significant advancements in the study of DNA Damage Response (DDR) and Fanconi Anemia (FA) signaling, we previously introduced the term "FA signaling" to encompass "all signaling transductions involving one or more FA proteins." This network has now evolved into the largest cellular defense network, integrating over 30 key players, including ATM, ATR, BLM, HRR6, RAD18, FANCA, FANCB, FANCC, BRCA2, FANCD2, FANCE, FANCF, FANCG, FANCI, BRIP1, FANCL, FANCM, PALB2, RAD51C, SLX4, ERCC4, RAD51, BRCA1, UBE2T, XRCC2, MAD2L2, RFWD3, FAAP20, FAAP24, FAAP100, and CENPX. This system responds to both endogenous and exogenous cellular insults. However, the mutational signatures associated with this defense mechanism in non-FA human cancers have not been extensively explored. In this study, we report that different types of human cancers are characterized by distinct somatically mutated genes related to DDR/FA signaling, each accompanied by a unique spectrum of potential driver mutations. For example, in pan-cancer samples, ATM emerges as the most frequently mutated gene (5%) among the 31 genes analyzed, with the highest number of potential driver mutations (1714), followed by BRCA2 (4% with 970 putative driver mutations). However, this pattern is not universal across specific cancer types. For example, FANCT is the most frequently mutated gene in breast (14%) and liver (4%) cancers. In addition, the alteration frequency of DDR/FA signaling due to these mutations exceeds 70% in a subtype of prostate cancer, with each subtype of brain, breast, lung, and prostate cancers displaying distinct patterns of gene alteration frequency. Furthermore, these gene alteration patterns significantly impact patient survival and disease-free periods. Collectively, our findings not only enhance our understanding of cancer development and progression but also have significant implications for cancer patient care and prognosis, particularly in the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Sudhir Kumar Rai
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, United States
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Wei Du
- Division of Malignant Hematology and Medical Oncology, University of Pittsburgh School of Medicine, UPMC Hillma Cancer Center, Pittsburgh, PA, United States
| | - Jun Zhang
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Arizona Campus, Phoenix, AZ, United States
| | - Herbert Yu
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, United States
| | - Youping Deng
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, United States
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Peiwen Fei
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
11
|
Calabrese A, von Arx C, Tafuti AA, Pensabene M, De Laurentiis M. Prevention, diagnosis and clinical management of hereditary breast cancer beyond BRCA1/2 genes. Cancer Treat Rev 2024; 129:102785. [PMID: 38870570 DOI: 10.1016/j.ctrv.2024.102785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/18/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
The detection of germline pathogenic variants (gPVs) in BRCA1/2 and other breast cancer (BC) genes is rising exponentially thanks to the advent of multi-gene panel testing. This promising technology, coupled with the availability of specific therapies for BC BRCA-related, has increased the number of patients eligible for genetic testing. Implementing multi-gene panel testing for hereditary BC screening holds promise to maximise benefits for patients at hereditary risk of BC. These benefits range from prevention programs to antineoplastic-targeted therapies. However, the clinical management of these patients is complex and requires guidelines based on recent evidence. Furthermore, applying multi-gene panel testing into clinical practice increases the detection of variants of uncertain significance (VUSs). This augments the complexity of patients' clinical management, becoming an unmet need for medical oncologists. This review aims to collect updated evidence on the most common BC-related genes besides BRCA1/2, from their biological role in BC development to their potential impact in tailoring prevention and treatment strategies.
Collapse
Affiliation(s)
- A Calabrese
- Department Breast and Thoracic Oncology, Istituto Nazionale Tumori - IRCCS, 'Fondazione G. Pascale', Via Mariano Semmola, 53, 80131 Napoli, NA, Italy
| | - C von Arx
- Department Breast and Thoracic Oncology, Istituto Nazionale Tumori - IRCCS, 'Fondazione G. Pascale', Via Mariano Semmola, 53, 80131 Napoli, NA, Italy.
| | - A A Tafuti
- Department Breast and Thoracic Oncology, Istituto Nazionale Tumori - IRCCS, 'Fondazione G. Pascale', Via Mariano Semmola, 53, 80131 Napoli, NA, Italy
| | - M Pensabene
- Department Breast and Thoracic Oncology, Istituto Nazionale Tumori - IRCCS, 'Fondazione G. Pascale', Via Mariano Semmola, 53, 80131 Napoli, NA, Italy
| | - M De Laurentiis
- Department Breast and Thoracic Oncology, Istituto Nazionale Tumori - IRCCS, 'Fondazione G. Pascale', Via Mariano Semmola, 53, 80131 Napoli, NA, Italy
| |
Collapse
|
12
|
Soukupova J, Stastna B, Kanwal M, Hojny J, Zemankova P, Borecka M, Cerna L, Cerna M, Cerna M, Curtisova V, Dolezalova T, Duskova P, Foretova L, Havranek O, Horackova K, Hovhannisyan M, Hruskova L, Chvojka S, Janatova M, Janikova M, Jelinkova S, Just P, Kalousova M, Kleiblova P, Kosarova M, Koudova M, Kral J, Krausova M, Krutilkova V, Machackova E, Matejkova K, Michalovska R, Nehasil P, Nemcova B, Novotny J, Palek M, Pesek P, Safarikova M, Scheinost O, Springer D, Stolarova L, Stranecky V, Subrt I, Tavandzis S, Tureckova E, Vesela K, Vlckova Z, Vocka M, Zima T, Macurek L, Kleibl Z. A comprehensive study evaluating germline FANCG variants in predisposition to breast and ovarian cancer. Cancer Med 2024; 13:e70103. [PMID: 39149814 PMCID: PMC11327753 DOI: 10.1002/cam4.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/31/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Monoallelic germline pathogenic variants (GPVs) in five Fanconi anemia (FA) genes (BRCA1/FANCS, BRCA2/FANCD1, PALB2/FANCN, BRIP1/FANCJ, and RAD51C/FANCO) confer an increased risk of breast (BC) and/or ovarian (OC) cancer, but the role of GPVs in 17 other FA genes remains unclear. METHODS Here, we investigated the association of germline variants in FANCG/XRCC9 with BC and OC risk. RESULTS The frequency of truncating GPVs in FANCG did not differ between BC (20/10,204; 0.20%) and OC (8/2966; 0.27%) patients compared to controls (6/3250; 0.18%). In addition, only one out of five tumor samples showed loss-of-heterozygosity of the wild-type FANCG allele. Finally, none of the nine functionally tested rare recurrent missense FANCG variants impaired DNA repair activities (FANCD2 monoubiquitination and FANCD2 foci formation) upon DNA damage, in contrast to all tested FANCG truncations. CONCLUSION Our study suggests that heterozygous germline FANCG variants are unlikely to contribute to the development of BC or OC.
Collapse
Affiliation(s)
- Jana Soukupova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Barbora Stastna
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
- Laboratory of Cancer Cell BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Department of Biochemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Madiha Kanwal
- Laboratory of Cancer Cell BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jan Hojny
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Petra Zemankova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles UniversityPragueCzech Republic
| | - Marianna Borecka
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Leona Cerna
- Centre for Medical Genetics and Reproductive Medicine, GENNETPragueCzech Republic
| | - Marta Cerna
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Monika Cerna
- Institute of Medical Genetics, University Hospital PilsenPilsenCzech Republic
| | - Vaclava Curtisova
- Department of Medical GeneticsFaculty of Medicine and Dentistry, University Hospital Olomouc, Palacky UniversityOlomoucCzech Republic
| | - Tatana Dolezalova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Petra Duskova
- Hospital Ceske BudejoviceCeske BudejoviceCzech Republic
| | - Lenka Foretova
- Department of Cancer Epidemiology and GeneticsMasaryk Memorial Cancer InstituteBrnoCzech Republic
| | - Ondrej Havranek
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
- BIOCEV, First Faculty of MedicineCharles UniversityVestecCzech Republic
| | - Klara Horackova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Milena Hovhannisyan
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Lucie Hruskova
- Department of Medical GeneticsGHC GeneticsPragueCzech Republic
| | - Stepan Chvojka
- Centre for Medical Genetics and Reproductive Medicine, GENNETPragueCzech Republic
| | - Marketa Janatova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Maria Janikova
- Department of Medical GeneticsFaculty of Medicine and Dentistry, University Hospital Olomouc, Palacky UniversityOlomoucCzech Republic
| | - Sandra Jelinkova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Pavel Just
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Marta Kalousova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | | | - Monika Koudova
- Centre for Medical Genetics and Reproductive Medicine, GENNETPragueCzech Republic
| | - Jan Kral
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Michaela Krausova
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Vera Krutilkova
- Department of Medical Genetics, AGEL LaboratoriesAGEL Research and Training InstituteNovy JicinCzech Republic
| | - Eva Machackova
- Department of Cancer Epidemiology and GeneticsMasaryk Memorial Cancer InstituteBrnoCzech Republic
| | - Katerina Matejkova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
- Department of Genetics and Microbiology, Faculty of ScienceCharles University in PraguePragueCzech Republic
| | | | - Petr Nehasil
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles UniversityPragueCzech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Barbora Nemcova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Jan Novotny
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
- Institute for Clinical and Experimental MedicinePragueCzech Republic
| | - Matous Palek
- Laboratory of Cancer Cell BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Pavel Pesek
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Marketa Safarikova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | | | - Drahomira Springer
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Lenka Stolarova
- Laboratory of Cancer Cell BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Viktor Stranecky
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Ivan Subrt
- Institute of Medical Genetics, University Hospital PilsenPilsenCzech Republic
| | - Spiros Tavandzis
- Department of Medical Genetics, AGEL LaboratoriesAGEL Research and Training InstituteNovy JicinCzech Republic
| | - Eva Tureckova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Kamila Vesela
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Zdenka Vlckova
- Department of Medical GeneticsGHC GeneticsPragueCzech Republic
| | - Michal Vocka
- Department of Oncology, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Tomas Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Libor Macurek
- Laboratory of Cancer Cell BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles UniversityPragueCzech Republic
| | | |
Collapse
|
13
|
Ma MC, Lavi ES, Altwerger G, Lin ZP, Ratner ES. Predictive modeling of gene mutations for the survival outcomes of epithelial ovarian cancer patients. PLoS One 2024; 19:e0305273. [PMID: 38976671 PMCID: PMC11230535 DOI: 10.1371/journal.pone.0305273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
Epithelial ovarian cancer (EOC) has a low overall survival rate, largely due to frequent recurrence and acquiring resistance to platinum-based chemotherapy. EOC with homologous recombination (HR) deficiency has increased sensitivity to platinum-based chemotherapy because platinum-induced DNA damage cannot be repaired. Mutations in genes involved in the HR pathway are thought to be strongly correlated with favorable response to treatment. Patients with these mutations have better prognosis and an improved survival rate. On the other hand, mutations in non-HR genes in EOC are associated with increased chemoresistance and poorer prognosis. For this reason, accurate predictions in response to treatment and overall survival remain challenging. Thus, analyses of 360 EOC cases on NCI's The Cancer Genome Atlas (TCGA) program were conducted to identify novel gene mutation signatures that were strongly correlated with overall survival. We found that a considerable portion of EOC cases exhibited multiple and overlapping mutations in a panel of 31 genes. Using logistical regression modeling on mutational profiles and patient survival data from TCGA, we determined whether specific sets of deleterious gene mutations in EOC patients had impacts on patient survival. Our results showed that six genes that were strongly correlated with an increased survival time are BRCA1, NBN, BRIP1, RAD50, PTEN, and PMS2. In addition, our analysis shows that six genes that were strongly correlated with a decreased survival time are FANCE, FOXM1, KRAS, FANCD2, TTN, and CSMD3. Furthermore, Kaplan-Meier survival analysis of 360 patients stratified by these positive and negative gene mutation signatures corroborated that our regression model outperformed the conventional HR genes-based classification and prediction of survival outcomes. Collectively, our findings suggest that EOC exhibits unique mutation signatures beyond HR gene mutations. Our approach can identify a novel panel of gene mutations that helps improve the prediction of treatment outcomes and overall survival for EOC patients.
Collapse
Affiliation(s)
- Mirielle C Ma
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ethan S Lavi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Gary Altwerger
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Z Ping Lin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Elena S Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
14
|
Klarić ML, Marić T, Žunić L, Trgovec-Greif L, Rokić F, Fiolić A, Šorgić AM, Ježek D, Vugrek O, Jakovčević A, Barbalić M, Belužić R, Katušić Bojanac A. FANCM Gene Variants in a Male Diagnosed with Sertoli Cell-Only Syndrome and Diffuse Astrocytoma. Genes (Basel) 2024; 15:707. [PMID: 38927643 PMCID: PMC11202954 DOI: 10.3390/genes15060707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Azoospermia is a form of male infertility characterized by a complete lack of spermatozoa in the ejaculate. Sertoli cell-only syndrome (SCOS) is the most severe form of azoospermia, where no germ cells are found in the tubules. Recently, FANCM gene variants were reported as novel genetic causes of spermatogenic failure. At the same time, FANCM variants are known to be associated with cancer predisposition. We performed whole-exome sequencing on a male patient diagnosed with SCOS and a healthy father. Two compound heterozygous missense mutations in the FANCM gene were found in the patient, both being inherited from his parents. After the infertility assessment, the patient was diagnosed with diffuse astrocytoma. Immunohistochemical analyses in the testicular and tumor tissues of the patient and adequate controls showed, for the first time, not only the existence of a cytoplasmic and not nuclear pattern of FANCM in astrocytoma but also in non-mitotic neurons. In the testicular tissue of the SCOS patient, cytoplasmic anti-FANCM staining intensity appeared lower than in the control. Our case report raises a novel possibility that the infertile carriers of FANCM gene missense variants could also be prone to cancer development.
Collapse
Affiliation(s)
| | - Tihana Marić
- Department of Medical Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia;
- Center of Excellence for Reproductive and Regenerative medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.M.Š.); (D.J.)
| | - Lucija Žunić
- Genom Ltd., Ilica 190, 10000 Zagreb, Croatia; (M.L.K.); (L.Ž.); (A.F.); (M.B.)
| | - Lovro Trgovec-Greif
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.T.-G.); (F.R.); (O.V.)
| | - Filip Rokić
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.T.-G.); (F.R.); (O.V.)
| | - Ana Fiolić
- Genom Ltd., Ilica 190, 10000 Zagreb, Croatia; (M.L.K.); (L.Ž.); (A.F.); (M.B.)
| | - Ana Merkler Šorgić
- Center of Excellence for Reproductive and Regenerative medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.M.Š.); (D.J.)
| | - Davor Ježek
- Center of Excellence for Reproductive and Regenerative medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.M.Š.); (D.J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Oliver Vugrek
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.T.-G.); (F.R.); (O.V.)
| | - Antonia Jakovčević
- Department of Pathology, University Hospital Center Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
| | - Maja Barbalić
- Genom Ltd., Ilica 190, 10000 Zagreb, Croatia; (M.L.K.); (L.Ž.); (A.F.); (M.B.)
- Faculty of Science, University of Split, Rudjera Bošković 33, 21000 Split, Croatia
| | - Robert Belužić
- Laboratory for Metabolism and Aging, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Ana Katušić Bojanac
- Department of Medical Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia;
- Center of Excellence for Reproductive and Regenerative medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.M.Š.); (D.J.)
| |
Collapse
|
15
|
Barua D, Płecha M, Muszewska A. A minimal Fanconi Anemia complex in early diverging fungi. Sci Rep 2024; 14:9922. [PMID: 38688950 PMCID: PMC11061109 DOI: 10.1038/s41598-024-60318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Fanconi Anemia (FA) pathway resolves DNA interstrand cross links (ICL). The FA pathway was initially recognized in vertebrates, but was later confirmed in other animals and speculated in fungi. FA proteins FANCM, FANCL and FANCJ are present in Saccharomyces cerevisiae but, their mechanism of interaction to resolve ICL is still unclear. Unlike Dikarya, early diverging fungi (EDF) possess more traits shared with animals. We traced the evolutionary history of the FA pathway across Opisthokonta. We scanned complete proteomes for FA-related homologs to establish their taxonomic distribution and analyzed their phylogenetic trees. We checked transcription profiles of FA genes to test if they respond to environmental conditions and their genomic localizations for potential co-localization. We identified fungal homologs of the activation and ID complexes, 5 out of 8 core proteins, all of the endonucleases, and deubiquitination proteins. All fungi lack FANCC, FANCF and FANCG proteins responsible for post-replication repair and chromosome stability in animals. The observed taxonomic distribution can be attributed to a gradual degradation of the FA pathway from EDF to Dikarya. One of the key differences is that EDF have the ID complex recruiting endonucleases to the site of ICL. Moreover, 21 out of 32 identified FA genes are upregulated in response to different growth conditions. Several FA genes are co-localized in fungal genomes which also could facilitate co-expression. Our results indicate that a minimal FA pathway might still be functional in Mucoromycota with a gradual loss of components in Dikarya ancestors.
Collapse
Affiliation(s)
- Drishtee Barua
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Magdalena Płecha
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
16
|
Huang FD, Zhong YP, Sun GY, Xu QJ, Xing ZY, Chen KH, Liao LS, Dong MY. Fanconi Anemia Complementary Group A (FANCA) Facilitates the Occurrence and Progression of Liver Hepatocellular Carcinoma. Dig Dis Sci 2024; 69:1035-1054. [PMID: 38282187 DOI: 10.1007/s10620-024-08282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Liver hepatocellular carcinoma (LIHC) is a serious liver disease worldwide, and its pathogenesis is complicated. AIMS This study investigated the potential role of FANCA in the advancement and prognosis of LIHC. METHODS Public databases, quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blot (WB) and immunohistochemistry (IHC) were employed to measure FANCA expression between tumor and normal samples. The relationship between FANCA expression and prognosis of LIHC patients were examined. Functional enrichment of FANCA-related genes was performed. Furthermore, univariate and multivariate analyses were conducted to determine the independent prognosis value of FANCA in LIHC. Finally, influence of FANCA knockout on the proliferation, migration, and invasion of HepG2 cell was validated with cloning formation, CCK8, and Transwell assays. RESULTS Expression analysis presented that FANCA had high expression level in LIHC tissues and cells. Receiver operating characteristic (ROC) curve analysis showed that FANCA was of great diagnosis value in LIHC. Clinicopathological analysis revealed that FANCA was significantly greater expressed in the advanced stage than in the early stage of LIHC. Univariate, multivariate, and Kaplan-Meier survival analysis confirmed that high expression of FANCA was strongly associated with poor survival of LIHC patients. In addition, high level of FANCA in LIHC showed a negative association with immunoinfiltrated B cells, T cells, and stromal scores. Moreover, Knockout of FANCA significantly inhibited HepG2 cell proliferative activity, migration, and invasion ability. CONCLUSIONS Our data revealed that high level of FANCA was closely associated with LIHC malignant progression, suggesting its potential utility as a diagnostic, predictive indicator, and therapeutic target.
Collapse
Affiliation(s)
- Feng-Die Huang
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- The Key Laboratory of Molecular Pathology (for Hepatobiliary Diseases) of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yan-Ping Zhong
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Guang-Yu Sun
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Qi-Jiang Xu
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Zhi-Yong Xing
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Ke-Heng Chen
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Lu-Sheng Liao
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
- The Key Laboratory of Molecular Pathology (for Hepatobiliary Diseases) of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Ming-You Dong
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- The Key Laboratory of Molecular Pathology (for Hepatobiliary Diseases) of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| |
Collapse
|
17
|
Rosenblum LS, Auger SM, Zhu H, Zhou Z, Xin W, Reiner J, Wolf Z, Leach NT. Prenatal Testing for Variants in Genes Associated with Hereditary Cancer Risk: Laboratory Experience and Considerations. J Mol Diagn 2024; 26:202-212. [PMID: 38171482 DOI: 10.1016/j.jmoldx.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/29/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Prenatal molecular genetic testing for familial variants that cause inherited disorders has been performed for decades and is accepted as standard of care. However, the spectrum of genes considered for prenatal testing is expanding because of genetic testing for hereditary cancer risk (HCR) and inclusion of conditions with associated cancer risk in carrier screening panels. A few of these disorders, such as ataxia telangiectasia and Bloom syndrome, include increased cancer risk as part of the phenotype, already meet professional guidelines for prenatal testing, and may be associated with increased cancer risk in heterozygous carriers. In addition, recent studies implicate heterozygosity for variants in lysosomal storage disease genes in HCR etiology. Currently, there is no specific professional guidance regarding prenatal testing for HCR. To determine the prevalence of such testing, we reviewed 1345 consecutive prenatal specimens received in our laboratory for familial variant-specific testing and identified 65 (4.8%) with a known or likely HCR component, plus 210 (15.6%) for lysosomal storage disease. These specimens were classified into five distinct categories for clarity and to enable evaluation. Our experience assessing prenatal specimens for variants associated with HCR, with or without a constitutional phenotype, provides metrics for and contributes to the points to consider in prenatal testing for HCR.
Collapse
Affiliation(s)
- Lynne S Rosenblum
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts.
| | - Stephanie M Auger
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| | - Hui Zhu
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| | - Zhaoqing Zhou
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| | - Winnie Xin
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| | - Jennifer Reiner
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| | - Zena Wolf
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| | - Natalia T Leach
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| |
Collapse
|
18
|
Namikawa T, Tanaka T, Utsunomiya M, Yokota K, Munekage M, Maeda H, Kitagawa H, Kurioka Y, Satake H, Kobayashi M, Hanazaki K, Seo S. Gastric cancer with Fanconi anemia in adolescent and young adult patient diagnosed by comprehensive genome profiling using next-generation sequencing. Clin J Gastroenterol 2024; 17:12-17. [PMID: 37934348 DOI: 10.1007/s12328-023-01886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Recently, the results of gastric cancer treatment have improved; however, its characteristics in adolescents and young adults are not well known. We report the case of a patient with advanced gastric cancer, Fanconi anemia (FA), and primary biliary cholangitis. A 26-year-old woman visited a local physician complaining of epigastralgia. Esophagogastroduodenoscopy revealed edematous changes with poor distension and circumferential thickened folds with erosions in the gastric body. Biopsy results of the lesion specimens revealed poorly differentiated adenocarcinoma. Abdominal contrast-enhanced computed tomography revealed gastric wall with irregular thickness, several nodules in the peritoneal cavity, and a mass lesion in the right ovary. We diagnosed the patient with T4N2M1 stage IV gastric cancer accompanied by peritoneal and ovarian metastases and initiated nivolumab with S-1 plus oxaliplatin as the first-line treatment regimen. Because of immune-related adverse events after one course of systemic treatment, the regimen was changed to ramucirumab combined with nab-paclitaxel chemotherapy as the second-line treatment. After three cycles of weekly nab-paclitaxel with ramucirumab, the decreased platelet count did not recover, and her general condition gradually deteriorated. Comprehensive genome profiling using next-generation sequencing was performed to determine the feasibility of genotype-matched therapies. Alterations in FA complementation group A (FANCA) F1263del (49.1%) and E484Q (12.3%), which encode a key component of the multiprotein FA complex, were identified. The patient died 10 months after treatment initiation. In conclusion, when treating malignancies in adolescent and young adult patients, the genomic background should be considered.
Collapse
Affiliation(s)
- Tsutomu Namikawa
- Department of Surgery, Kochi Medical School, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan.
| | - Tomoki Tanaka
- Department of Surgery, Kochi Medical School, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Masato Utsunomiya
- Department of Surgery, Kochi Medical School, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Keiichiro Yokota
- Department of Surgery, Kochi Medical School, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Masaya Munekage
- Department of Surgery, Kochi Medical School, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Hiromichi Maeda
- Department of Surgery, Kochi Medical School, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Hiroyuki Kitagawa
- Department of Operating Room Management, Kochi Medical School Hospital, Nankoku, Japan
| | - Yusuke Kurioka
- Department of Medical Oncology, Kochi Medical School, Nankoku, Japan
| | - Hironaga Satake
- Department of Medical Oncology, Kochi Medical School, Nankoku, Japan
| | - Michiya Kobayashi
- Department of Human Health and Medical Sciences, Kochi Medical School, Nankoku, Japan
| | - Kazuhiro Hanazaki
- Integrated Center for Advanced Medical Technologies, Kochi Medical School Hospital, Nankoku, Japan
| | - Satoru Seo
- Department of Surgery, Kochi Medical School, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
19
|
Peng TW, Ma QF, Li J, Wang X, Zhang CH, Ma J, Li JY, Wang W, Zhu CL, Liu XH. HBV promotes its replication by up-regulating RAD51C gene expression. Sci Rep 2024; 14:2607. [PMID: 38297111 PMCID: PMC10831117 DOI: 10.1038/s41598-024-53047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/27/2024] [Indexed: 02/02/2024] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC), pegylated-interferon-α(PEG-IFNα) and long-term nucleos(t)ide analogs (NUCs) are mainly drugs used to treat HBV infection, but the effectiveness is unsatisfactory in different populations, the exploration of novel therapeutic approaches is necessary. RAD51C is associated with DNA damage repair and plays an important role in the development and progression of tumors. Early cDNA microarray results showed that RAD51C expression was significantly increased in HBV-infected HCC cells, however, the relationship between HBV infection and abnormal expression of RAD51C has not been reported. Therefore, we conducted RT-PCR, western blot, Co-immunoprecipitation(Co-IP), and immunofluorescence(IF) to detect HBV-RAD51C interaction in RAD51C overexpression or interfering HCC cells. Our results showed that RAD51C and HBV X protein(HBX) produced a direct interaction in the nucleus, the HBV infection of HCC cells promoted RAD51C expression, and the increased expression of RAD51C promoted HBV replication. This indicated that RAD51C is closely related to the occurrence and development of HCC caused by HBV infection, and may bring a breakthrough in the the prevention and treatment study of HCC.
Collapse
Affiliation(s)
- Ting-Wei Peng
- Department of Clinical Laboratory, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, 200135, China
| | - Qing-Feng Ma
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jie Li
- China Medical Tribune, Beijing, 100009, China
| | - Xue Wang
- Department of Clinical Laboratory, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, 200135, China
| | - Cong-Hui Zhang
- Department of Clinical Laboratory, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, 200135, China
| | - Junwen Ma
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jun-Yi Li
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Wei Wang
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, 430034, China.
| | - Cheng-Liang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Xing-Hui Liu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, 200135, China.
| |
Collapse
|
20
|
Boujemaa M, Nouira F, Jandoubi N, Mejri N, Bouaziz H, Charfeddine C, Ben Nasr S, Labidi S, El Benna H, Berrazega Y, Rachdi H, Daoud N, Benna F, Haddaoui A, Abdelhak S, Samir Boubaker M, Boussen H, Hamdi Y. Uncovering the clinical relevance of unclassified variants in DNA repair genes: a focus on BRCA negative Tunisian cancer families. Front Genet 2024; 15:1327894. [PMID: 38313678 PMCID: PMC10834681 DOI: 10.3389/fgene.2024.1327894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction: Recent advances in sequencing technologies have significantly increased our capability to acquire large amounts of genetic data. However, the clinical relevance of the generated data continues to be challenging particularly with the identification of Variants of Uncertain Significance (VUSs) whose pathogenicity remains unclear. In the current report, we aim to evaluate the clinical relevance and the pathogenicity of VUSs in DNA repair genes among Tunisian breast cancer families. Methods: A total of 67 unsolved breast cancer cases have been investigated. The pathogenicity of VUSs identified within 26 DNA repair genes was assessed using different in silico prediction tools including SIFT, PolyPhen2, Align-GVGD and VarSEAK. Effects on the 3D structure were evaluated using the stability predictor DynaMut and molecular dynamics simulation with NAMD. Family segregation analysis was also performed. Results: Among a total of 37 VUSs identified, 11 variants are likely deleterious affecting ATM, BLM, CHEK2, ERCC3, FANCC, FANCG, MSH2, PMS2 and RAD50 genes. The BLM variant, c.3254dupT, is novel and seems to be associated with increased risk of breast, endometrial and colon cancer. Moreover, c.6115G>A in ATM and c.592+3A>T in CHEK2 were of keen interest identified in families with multiple breast cancer cases and their familial cosegregation with disease has been also confirmed. In addition, functional in silico analyses revealed that the ATM variant may lead to protein immobilization and rigidification thus decreasing its activity. We have also shown that FANCC and FANCG variants may lead to protein destabilization and alteration of the structure compactness which may affect FANCC and FANCG protein activity. Conclusion: Our findings revealed that VUSs in DNA repair genes might be associated with increased cancer risk and highlight the need for variant reclassification for better disease management. This will help to improve the genetic diagnosis and therapeutic strategies of cancer patients not only in Tunisia but also in neighboring countries.
Collapse
Affiliation(s)
- Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Fatma Nouira
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, University of Tunis El Manar, Hamam, Tunisia
| | - Nouha Jandoubi
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Nesrine Mejri
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hanen Bouaziz
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Cherine Charfeddine
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- High Institute of Biotechnology of Sidi Thabet, Biotechpole of Sidi Thabet, University of Manouba, Ariana, Tunisia
| | - Sonia Ben Nasr
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Medical Oncology, Military Hospital of Tunis, Tunis, Tunisia
| | - Soumaya Labidi
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Houda El Benna
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Yosra Berrazega
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Haifa Rachdi
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Nouha Daoud
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Farouk Benna
- Radiation Oncology Department, Salah Azaiez Institute, Tunis, Tunisia
| | | | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mohamed Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Hamouda Boussen
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| |
Collapse
|
21
|
Alonso‐Luna O, Mercado‐Celis GE, Melendez‐Zajgla J, Barquera R, Zapata‐Tarres M, Juárez‐Villegas LE, Mendoza‐Caamal EC, Rey‐Helo E, Borges‐Yañez SA. Germline mutations in pediatric cancer cohort with mixed-ancestry Mexicans. Mol Genet Genomic Med 2024; 12:e2332. [PMID: 38093606 PMCID: PMC10767611 DOI: 10.1002/mgg3.2332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/11/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Childhood cancer is one of the primary causes of disease-related death in 5- to 14-year-old children and currently no prevention strategies exist to reduce the incidence of this disease. Childhood cancer has a larger hereditary component compared with cancer in adults. Few genetic studies have been conducted on children with cancer. Additionally, Latin American populations are underrepresented in genomic studies compared with other populations. Therefore, the aim of this study is to analyze germline mutations in a group of mixed-ancestry Mexican pediatric patients with solid and hematological cancers. METHODS We analyzed genetic variants from 40 Mexican childhood cancer patients and their relatives. DNA from saliva or blood samples was used for whole-exome sequencing. All variants were identified following GATK best practices. RESULTS We found that six patients (15%) were carriers of germline mutations in CDKN2A, CHEK2, DICER1, FANCA, MSH6, MUTYH, NF1, and SBDS cancer predisposition genes, and additional new variants predicted to be deleterious by in silico algorithms. A population genetics analysis detected five components consistent with the demographic models assumed for modern mixed-ancestry Mexicans. CONCLUSIONS This report identifies potential genetic risk factors and provides a better understanding of the underlying mechanisms of childhood cancer in this population.
Collapse
Grants
- 365882 Consejo Nacional de Ciencia y Tecnología, CONACyT, Mexico
- 253316 Consejo Nacional de Ciencia y Tecnología, CONACyT, Mexico
- Fundacion Carlos Slim as part of the inaugural phase of Slim Initiative in Genomic Medicine for the Americas, SIGMA
- Broad Institute of MIT and Harvard
- Instituto Nacional de Medicina Genomica (INMEGEN)
- Division de Estudios de Posgrado e Investigacion de la Facultad de Odontologia
- Programa de Maestria y Doctorado en Ciencias Medicas, Odontologicas y de la Salud, UNAM
- "Aqui nadie se rinde, ANSER (I.A.P)
- Max Planck Institute for Evolutionary Anthropology (MPI-EVA)
- Consejo Nacional de Ciencia y Tecnología, CONACyT, Mexico
- Max Planck Institute for Evolutionary Anthropology (MPI‐EVA)
Collapse
Affiliation(s)
- Oscar Alonso‐Luna
- Programa de Maestria y Doctorado en Ciencias Medicas, Odontologicas y de la SaludCiudad Universitaria, Universidad Nacional Autonoma de MexicoMexico CityMexico
| | | | - Jorge Melendez‐Zajgla
- Laboratorio de Genomica Funcional del CancerInstituto Nacional de Medicina GenomicaMexico CityMexico
| | - Rodrigo Barquera
- Department of ArchaeogeneticsMax Plank Institute for Evolutionary Anthropology (MPI‐EVA)LeipzigGermany
| | | | | | | | | | | |
Collapse
|
22
|
Horackova K, Janatova M, Kleiblova P, Kleibl Z, Soukupova J. Early-Onset Ovarian Cancer <30 Years: What Do We Know about Its Genetic Predisposition? Int J Mol Sci 2023; 24:17020. [PMID: 38069345 PMCID: PMC10707471 DOI: 10.3390/ijms242317020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Ovarian cancer (OC) is one of the leading causes of cancer-related deaths in women. Most patients are diagnosed with advanced epithelial OC in their late 60s, and early-onset adult OC diagnosed ≤30 years is rare, accounting for less than 5% of all OC cases. The most significant risk factor for OC development are germline pathogenic/likely pathogenic variants (GPVs) in OC predisposition genes (including BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, Lynch syndrome genes, or BRIP1), which contribute to the development of over 20% of all OC cases. GPVs in BRCA1/BRCA2 are the most prevalent. The presence of a GPV directs tailored cancer risk-reducing strategies for OC patients and their relatives. Identification of OC patients with GPVs can also have therapeutic consequences. Despite the general assumption that early cancer onset indicates higher involvement of hereditary cancer predisposition, the presence of GPVs in early-onset OC is rare (<10% of patients), and their heritability is uncertain. This review summarizes the current knowledge on the genetic predisposition to early-onset OC, with a special focus on epithelial OC, and suggests other alternative genetic factors (digenic, oligogenic, polygenic heritability, genetic mosaicism, imprinting, etc.) that may influence the development of early-onset OC in adult women lacking GPVs in known OC predisposition genes.
Collapse
Affiliation(s)
- Klara Horackova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (K.H.); (M.J.); (P.K.); (Z.K.)
| | - Marketa Janatova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (K.H.); (M.J.); (P.K.); (Z.K.)
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (K.H.); (M.J.); (P.K.); (Z.K.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (K.H.); (M.J.); (P.K.); (Z.K.)
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic
| | - Jana Soukupova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (K.H.); (M.J.); (P.K.); (Z.K.)
| |
Collapse
|
23
|
Velleuer E, Domínguez-Hüttinger E, Rodríguez A, Harris LA, Carlberg C. Concepts of multi-level dynamical modelling: understanding mechanisms of squamous cell carcinoma development in Fanconi anemia. Front Genet 2023; 14:1254966. [PMID: 38028610 PMCID: PMC10652399 DOI: 10.3389/fgene.2023.1254966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Fanconi anemia (FA) is a rare disease (incidence of 1:300,000) primarily based on the inheritance of pathogenic variants in genes of the FA/BRCA (breast cancer) pathway. These variants ultimately reduce the functionality of different proteins involved in the repair of DNA interstrand crosslinks and DNA double-strand breaks. At birth, individuals with FA might present with typical malformations, particularly radial axis and renal malformations, as well as other physical abnormalities like skin pigmentation anomalies. During the first decade of life, FA mostly causes bone marrow failure due to reduced capacity and loss of the hematopoietic stem and progenitor cells. This often makes hematopoietic stem cell transplantation necessary, but this therapy increases the already intrinsic risk of developing squamous cell carcinoma (SCC) in early adult age. Due to the underlying genetic defect in FA, classical chemo-radiation-based treatment protocols cannot be applied. Therefore, detecting and treating the multi-step tumorigenesis process of SCC in an early stage, or even its progenitors, is the best option for prolonging the life of adult FA individuals. However, the small number of FA individuals makes classical evidence-based medicine approaches based on results from randomized clinical trials impossible. As an alternative, we introduce here the concept of multi-level dynamical modelling using large, longitudinally collected genome, proteome- and transcriptome-wide data sets from a small number of FA individuals. This mechanistic modelling approach is based on the "hallmarks of cancer in FA", which we derive from our unique database of the clinical history of over 750 FA individuals. Multi-omic data from healthy and diseased tissue samples of FA individuals are to be used for training constituent models of a multi-level tumorigenesis model, which will then be used to make experimentally testable predictions. In this way, mechanistic models facilitate not only a descriptive but also a functional understanding of SCC in FA. This approach will provide the basis for detecting signatures of SCCs at early stages and their precursors so they can be efficiently treated or even prevented, leading to a better prognosis and quality of life for the FA individual.
Collapse
Affiliation(s)
- Eunike Velleuer
- Department of Cytopathology, Heinrich Heine University, Düsseldorf, Germany
- Center for Child and Adolescent Health, Helios Klinikum, Krefeld, Germany
| | - Elisa Domínguez-Hüttinger
- Departamento Düsseldorf Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad México, Mexico
| | - Alfredo Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad México, Mexico
- Instituto Nacional de Pediatría, Ciudad México, Mexico
| | - Leonard A. Harris
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, United States
- Cancer Biology Program, Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
24
|
Jeremian R, Xie P, Fotovati M, Lefrançois P, Litvinov IV. Gene-Environment Analyses in a UK Biobank Skin Cancer Cohort Identifies Important SNPs in DNA Repair Genes That May Help Prognosticate Disease Risk. Cancer Epidemiol Biomarkers Prev 2023; 32:1599-1607. [PMID: 37642678 PMCID: PMC10840669 DOI: 10.1158/1055-9965.epi-23-0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/12/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Despite well-established relationships between sun exposure and skin cancer pathogenesis/progression, specific gene-environment interactions in at-risk individuals remain poorly-understood. METHODS We leveraged a UK Biobank cohort of basal cell carcinoma (BCC, n = 17,221), cutaneous squamous cell carcinoma (cSCC, n = 2,331), melanoma in situ (M-is, n = 1,158), invasive melanoma (M-inv, n = 3,798), and healthy controls (n = 448,164) to quantify the synergistic involvement of genetic and environmental factors influencing disease risk. We surveyed 8,798 SNPs from 190 DNA repair genes, and 11 demographic/behavioral risk factors. RESULTS Clinical analysis identified darker skin (RR = 0.01-0.65) and hair (RR = 0.27-0.63) colors as protective factors. Eleven SNPs were significantly associated with BCC, three of which were also associated with M-inv. Gene-environment analysis yielded 201 SNP-environment interactions across 90 genes (FDR-adjusted q < 0.05). SNPs from the FANCA gene showed interactions with at least one clinical factor in all cancer groups, of which three (rs9926296, rs3743860, rs2376883) showed interaction with nearly every factor in BCC and M-inv. CONCLUSIONS We identified novel risk factors for keratinocyte carcinomas and melanoma, highlighted the prognostic value of several FANCA alleles among individuals with a history of sunlamp use and childhood sunburns, and demonstrated the importance of combining genetic and clinical data in disease risk stratification. IMPACT This study revealed genome-wide associations with important implications for understanding skin cancer risk in the context of the rapidly-evolving field of precision medicine. Major individual factors (including sex, hair and skin color, and sun protection use) were significant mediators for all skin cancers, interacting with >200 SNPs across four skin cancer types.
Collapse
Affiliation(s)
- Richie Jeremian
- Faculty of Medicine and Health Sciences, McGill University
- Department of Medicine, Division of Dermatology, Research Institute of the McGill University Health Centre (RI-MUHC) Montreal, Quebec
| | - Pingxing Xie
- Faculty of Medicine and Health Sciences, McGill University
- Department of Medicine, Division of Dermatology, Research Institute of the McGill University Health Centre (RI-MUHC) Montreal, Quebec
| | - Misha Fotovati
- Faculty of Medicine and Health Sciences, McGill University
- Department of Medicine, Division of Dermatology, Lady Davis Institute (LDI), Jewish General Hospital, Montreal, Quebec
| | - Philippe Lefrançois
- Faculty of Medicine and Health Sciences, McGill University
- Department of Medicine, Division of Dermatology, Lady Davis Institute (LDI), Jewish General Hospital, Montreal, Quebec
| | - Ivan V. Litvinov
- Faculty of Medicine and Health Sciences, McGill University
- Department of Medicine, Division of Dermatology, Research Institute of the McGill University Health Centre (RI-MUHC) Montreal, Quebec
| |
Collapse
|
25
|
Zhu QY, Li PC, Zhu YF, Pan JN, Wang R, Li XL, Ye WW, Ding XW, Wang XJ, Cao WM. A comprehensive analysis of Fanconi anemia genes in Chinese patients with high-risk hereditary breast cancer. J Cancer Res Clin Oncol 2023; 149:14303-14313. [PMID: 37566130 PMCID: PMC10590287 DOI: 10.1007/s00432-023-05236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Four Fanconi anemia (FA) genes (BRCA1, BRCA2, PALB2 and RAD51C) are defined as breast cancer (BC) susceptibility genes. Other FA genes have been inconsistently associated with BC. Thus, the role of other FA genes in BC should be explored in specific populations. METHODS Mutations in 16 FA genes were screened with a 98-gene panel sequencing assay in a cohort of 1481 Chinese patients with high-risk hereditary BC. The association between mutations and clinicopathological characteristics as well as prognosis was analyzed. The risk of BC in carriers of FA gene mutations was assessed in the Genome Aggregation Database and the Westlake Biobank for Chinese cohort. RESULTS A total of 2.57% (38/1481) BC patients were identified who had 12 other FA gene germline mutations. Among them, the most frequently mutated gene was FANCA (8/1481, 0.54%). These 38 patients carried 35 distinct pathogenic/likely pathogenic variants, of which 21 were novel. We found one rare FANCB deleterious variant (c.1327-3dupT) in our cohort. There was a statistically significant difference in lymph node status between FA gene mutation carriers and non-carriers (p = 0.041). We observed a trend that mutation carriers had larger tumor sizes, lower estrogen receptor (ER) and progesterone receptor (PR) positivity rates, and lower 3.5-year invasive disease-free survival (iDFS) and distant recurrence-free survival (DRFS) rates than non-carriers (tumor size > 2 cm: 51.43% vs. 45.63%; ER positivity rates: 51.43% vs. 60.81%; PR positivity rates: 48.57% vs. 55.16%; 3.5-year iDFS rates: 58.8% vs. 66.7%; 3.5-year DRFS rates: 58.8% vs. 68.8%). The frequency of the mutations in FANCD2, FANCM and BRIP1 trended to be higher among BC cases than that in controls (p = 0.055, 0.08 and 0.08, respectively). CONCLUSION This study comprehensively estimated the prevalence, clinicopathological characteristics, prognosis and risk of BC associated with deleterious variants in FA genes in Chinese high-risk hereditary BC patients. It enriches our understanding of the role of FA genes with BC.
Collapse
Affiliation(s)
- Qiao-Yan Zhu
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Pu-Chun Li
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China
- Wenzhou Medical University, Wenzhou, 325035, China
| | - Yi-Fan Zhu
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China
- Wenzhou Medical University, Wenzhou, 325035, China
| | - Jia-Ni Pan
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Rong Wang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China
| | - Xiao-Lin Li
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China
| | - Wei-Wu Ye
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China
| | - Xiao-Wen Ding
- Department of Tumor Surgery, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China
| | - Xiao-Jia Wang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China.
- Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
26
|
Kaljunen H, Taavitsainen S, Kaarijärvi R, Takala E, Paakinaho V, Nykter M, Bova GS, Ketola K. Fanconi anemia pathway regulation by FANCI in prostate cancer. Front Oncol 2023; 13:1260826. [PMID: 38023254 PMCID: PMC10643534 DOI: 10.3389/fonc.2023.1260826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Prostate cancer is one of the leading causes of death among men worldwide, and thus, research on the genetic factors enabling the formation of treatment-resistant cancer cells is crucial for improving patient outcomes. Here, we report a cell line-specific dependence on FANCI and related signaling pathways to counteract the effects of DNA-damaging chemotherapy in prostate cancer. Our results reveal that FANCI depletion results in significant downregulation of Fanconi anemia (FA) pathway members in prostate cancer cells, indicating that FANCI is an important regulator of the FA pathway. Furthermore, we found that FANCI silencing reduces proliferation in p53-expressing prostate cancer cells. This extends the evidence that inactivation of FANCI may convert cancer cells from a resistant state to an eradicable state under the stress of DNA-damaging chemotherapy. Our results also indicate that high expression of FA pathway genes correlates with poorer survival in prostate cancer patients. Moreover, genomic alterations of FA pathway members are prevalent in prostate adenocarcinoma patients; mutation and copy number information for the FA pathway genes in seven patient cohorts (N = 1,732 total tumor samples) reveals that 1,025 (59.2%) tumor samples have an alteration in at least one of the FA pathway genes, suggesting that genomic alteration of the pathway is a prominent feature in patients with the disease.
Collapse
Affiliation(s)
- Heidi Kaljunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sinja Taavitsainen
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Roosa Kaarijärvi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Eerika Takala
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Matti Nykter
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - G. Steven Bova
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Kirsi Ketola
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
27
|
Guijarro F, López-Guerra M, Morata J, Bataller A, Paz S, Cornet-Masana JM, Banús-Mulet A, Cuesta-Casanovas L, Carbó JM, Castaño-Díez S, Jiménez-Vicente C, Cortés-Bullich A, Triguero A, Martínez-Roca A, Esteban D, Gómez-Hernando M, Álamo Moreno JR, López-Oreja I, Garrote M, Risueño RM, Tonda R, Gut I, Colomer D, Díaz-Beya M, Esteve J. Germ line variants in patients with acute myeloid leukemia without a suspicion of hereditary hematologic malignancy syndrome. Blood Adv 2023; 7:5799-5811. [PMID: 37450374 PMCID: PMC10561046 DOI: 10.1182/bloodadvances.2023009742] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/04/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Germ line predisposition in acute myeloid leukemia (AML) has gained attention in recent years because of a nonnegligible frequency and an impact on management of patients and their relatives. Risk alleles for AML development may be present in patients without a clinical suspicion of hereditary hematologic malignancy syndrome. In this study we investigated the presence of germ line variants (GVs) in 288 genes related to cancer predisposition in 47 patients with available paired, tumor-normal material, namely bone marrow stroma cells (n = 29), postremission bone marrow (n = 17), and saliva (n = 1). These patients correspond to 2 broad AML categories with heterogeneous genetic background (AML myelodysplasia related and AML defined by differentiation) and none of them had phenotypic abnormalities, previous history of cytopenia, or strong cancer aggregation. We found 11 pathogenic or likely pathogenic variants, 6 affecting genes related to autosomal dominant cancer predisposition syndromes (ATM, DDX41, and CHEK2) and 5 related to autosomal recessive bone marrow failure syndromes (FANCA, FANCM, SBDS, DNAJC21, and CSF3R). We did not find differences in clinical characteristics nor outcome between carriers of GVs vs noncarriers. Further studies in unselected AML cohorts are needed to determine GV incidence and penetrance and, in particular, to clarify the role of ATM nonsense mutations in AML predisposition.
Collapse
Affiliation(s)
- Francesca Guijarro
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Monica López-Guerra
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Jordi Morata
- Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Alex Bataller
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Sara Paz
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
| | | | | | | | | | - Sandra Castaño-Díez
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Carlos Jiménez-Vicente
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Albert Cortés-Bullich
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Ana Triguero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Alexandra Martínez-Roca
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Daniel Esteban
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Marta Gómez-Hernando
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | - Irene López-Oreja
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Marta Garrote
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ruth M. Risueño
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Raúl Tonda
- Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Ivo Gut
- Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Dolors Colomer
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- University of Barcelona, Barcelona, Spain
| | - Marina Díaz-Beya
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Jordi Esteve
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Agiannitopoulos K, Pepe G, Tsaousis GN, Potska K, Bouzarelou D, Katseli A, Ntogka C, Meintani A, Tsoulos N, Giassas S, Venizelos V, Markopoulos C, Iosifidou R, Karageorgopoulou S, Christodoulou C, Natsiopoulos I, Papazisis K, Vasilaki-Antonatou M, Kabletsas E, Psyrri A, Ziogas D, Lalla E, Koumarianou A, Anastasakou K, Papadimitriou C, Ozmen V, Tansan S, Kaban K, Ozatli T, Eniu DT, Chiorean A, Blidaru A, Rinsma M, Papadopoulou E, Nasioulas G. Copy Number Variations (CNVs) Account for 10.8% of Pathogenic Variants in Patients Referred for Hereditary Cancer Testing. Cancer Genomics Proteomics 2023; 20:448-455. [PMID: 37643779 PMCID: PMC10464942 DOI: 10.21873/cgp.20396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND/AIM Germline copy number variation (CNV) is a type of genetic variant that predisposes significantly to inherited cancers. Today, next-generation sequencing (NGS) technologies have contributed to multi gene panel analysis in clinical practice. MATERIALS AND METHODS A total of 2,163 patients were screened for cancer susceptibility, using a solution-based capture method. A panel of 52 genes was used for targeted NGS. The capture-based approach enables computational analysis of CNVs from NGS data. We studied the performance of the CNV module of the commercial software suite SeqPilot (JSI Medical Systems) and of the non-commercial tool panelcn.MOPS. Additionally, we tested the performance of digital multiplex ligation-dependent probe amplification (digitalMLPA). RESULTS Pathogenic/likely pathogenic variants (P/LP) were identified in 464 samples (21.5%). CNV accounts for 10.8% (50/464) of pathogenic variants, referring to deletion/duplication of one or more exons of a gene. In patients with breast and ovarian cancer, CNVs accounted for 10.2% and 6.8% of pathogenic variants, respectively. In colorectal cancer patients, CNV accounted for 28.6% of pathogenic/likely pathogenic variants. CONCLUSION In silico CNV detection tools provide a viable and cost-effective method to identify CNVs from NGS experiments. CNVs constitute a substantial percentage of P/LP variants, since they represent up to one of every ten P/LP findings identified by NGS multigene analysis; therefore, their evaluation is highly recommended to improve the diagnostic yield of hereditary cancer analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Vahit Ozmen
- Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | | | | | - Dan Tudor Eniu
- Institutul Oncologic Prof. Dr. I. Chiricuta, Cluj, Romania
| | | | | | | | | | | |
Collapse
|
29
|
Hurník P, Putnová BM, Ševčíková T, Hrubá E, Putnová I, Škarda J, Havel M, Res O, Cvek J, Buchtová M, Štembírek J. Metastasising ameloblastoma or ameloblastic carcinoma? A case report with mutation analyses. BMC Oral Health 2023; 23:563. [PMID: 37573343 PMCID: PMC10423427 DOI: 10.1186/s12903-023-03259-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 07/27/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Ameloblastic carcinoma and metastasising ameloblastoma are rare epithelial odontogenic tumours with aggressive features. Distinguishing between these two lesions is often clinically difficult but necessary to predict tumour behaviour or to plan future therapy. Here, we provide a brief review of the literature available on these two types of lesions and present a new case report of a young man with an ameloblastoma displaying metastatic features. We also use this case to illustrate the similarities and differences between these two types of tumours and the difficulties of their differential diagnosis. CASE PRESENTATION Our histopathological analyses uncovered a metastasising tumour with features of ameloblastic carcinoma, which developed from the ameloblastoma. We profiled the gene expression of Wnt pathway members in ameloblastoma sample of this patient, because multiple molecules of this pathway are involved in the establishing of cell polarity, cell migration or for epithelial-mesenchymal transition during tumour metastasis to evaluate features of tumor behaviour. Indeed, we found upregulation of several cell migration-related genes in our patient. Moreover, we uncovered somatic mutation BRAF p.V600E with known pathological role in cancerogenesis and germline heterozygous FANCA p.S858R mutation, whose interpretation in this context has not been discussed yet. CONCLUSIONS In conclusion, we have uncovered a unique case of ameloblastic carcinoma associated with an alteration of Wnt signalling and the presence of BRAF mutation. Development of harmful state of our patient might be also supported by the germline mutation in one FANCA allele, however this has to be confirmed by further analyses.
Collapse
Affiliation(s)
- Pavel Hurník
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Institute of Clinical and Molecular Pathology and Medical Genetics, Faculty Hospital and Medical Faculty Ostrava, Ostrava, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Barbora Moldovan Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences, Brno, Czech Republic
| | - Tereza Ševčíková
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Eva Hrubá
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Iveta Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences, Brno, Czech Republic
| | - Josef Škarda
- Institute of Clinical and Molecular Pathology and Medical Genetics, Faculty Hospital and Medical Faculty Ostrava, Ostrava, Czech Republic
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Martin Havel
- Department of Nuclear Medicine, University Hospital Ostrava, Ostrava, Czech Republic
| | - Oldřich Res
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czech Republic
| | - Jakub Cvek
- Department of Oncology, Faculty of Medicine and University Hospital Ostrava, Ostrava, Czech Republic
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.
| | - Jan Štembírek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
30
|
Yang Y, Liu C, Zhuo ZL, Xie F, Wang K, Wang S, Zhao XT. Germline Mutations in 32 Cancer Susceptibility Genes by Next-Generation Sequencing among Breast Cancer Patients. Oncology 2023; 102:206-216. [PMID: 37517399 DOI: 10.1159/000532095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
INTRODUCTION BRCA1/2 germline mutations are the most well-known genetic determinants for breast cancer. However, the distribution of germline mutations in non-BRCA1/2 cancer susceptibility genes in Chinese breast cancer patients is unclear. The association between clinical characteristics and germline mutations remains to be explored. METHODS Consecutive breast cancer patients from Peking University People's Hospital were enrolled. Clinical characteristics were collected, and next-generation sequencing was performed using blood samples of participants to identify pathogenic/likely pathogenic (P/LP) germline mutations in 32 cancer susceptibility genes including homologous recombination repair (HRR) genes. RESULTS A total of 885 breast cancer patients underwent the detection of germline mutations. 107 P/LP germline mutations of 17 genes were identified in 116 breast cancer patients including 79 (8.9%) in BRCA1/2 and 40 (4.5%) in 15 non-BRCA1/2 genes. PALB2 was the most frequently mutated gene other than BRCA1/2 but still relatively rare (1.1%). There were 38 novel P/LP germline variants detected. P/LP germline mutations in BRCA1/2 were significantly associated with onset age (p < 0.001), the family history of breast/ovarian cancer (p = 0.010), and molecular subtype (p < 0.001), while being correlated with onset age (p < 0.001), site of breast tumor (p = 0.028), and molecular subtype (p < 0.001) in HRR genes. CONCLUSIONS The multiple-gene panel prominently increased the detection rate of P/LP germline mutations in 32 cancer susceptibility genes compared to BRCA1/2 alone. Onset younger than or equal to 45 years of age, bilateral and triple-negative breast cancer patients may be more likely to be recommended for detecting P/LP germline mutations in HRR genes.
Collapse
Affiliation(s)
- Yu Yang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chang Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhong-Ling Zhuo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Fei Xie
- Breast Center, Peking University People's Hospital, Beijing, China
| | - Ke Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shu Wang
- Breast Center, Peking University People's Hospital, Beijing, China
| | - Xiao-Tao Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
31
|
Lee NY, Hum M, Zihara S, Wang L, Myint MK, Lim DWT, Toh CK, Skanderup A, Samol J, Tan MH, Ang P, Lee SC, Tan EH, Lai GGY, Tan DSW, Yap YS, Lee ASG. Landscape of germline pathogenic variants in patients with dual primary breast and lung cancer. Hum Genomics 2023; 17:66. [PMID: 37461096 PMCID: PMC10353088 DOI: 10.1186/s40246-023-00510-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Cancer predisposition is most often studied in the context of single cancers. However, inherited cancer predispositions can also give rise to multiple primary cancers. Yet, there is a paucity of studies on genetic predisposition in multiple primary cancers, especially those outside of well-defined cancer predisposition syndromes. This study aimed to identify germline variants associated with dual primary cancers of the breast and lung. METHODS Exome sequencing was performed on germline DNA from 55 Singapore patients (52 [95%] never-smokers) with dual primaries in the breast and lung, confirmed by histopathology. Using two large control cohorts: the local SG10K_Health (n = 9770) and gnomAD non-cancer East Asians (n = 9626); and two additional local case cohorts of early-onset or familial breast cancer (n = 290), and lung cancer (n = 209), variants were assessed for pathogenicity in accordance with ACMG/AMP guidelines. In particular, comparisons were made with known pathogenic or likely pathogenic variants in the ClinVar database, pathogenicity predictions were obtained from in silico prediction software, and case-control association analyses were performed. RESULTS Altogether, we identified 19 pathogenic or likely pathogenic variants from 16 genes, detected in 17 of 55 (31%) patients. Six of the 19 variants were identified using ClinVar, while 13 variants were classified pathogenic or likely pathogenic using ACMG/AMP guidelines. The 16 genes include well-known cancer predisposition genes such as BRCA2, TP53, and RAD51D; but also lesser known cancer genes EXT2, WWOX, GATA2, and GPC3. Most of these genes are involved in DNA damage repair, reaffirming the role of impaired DNA repair mechanisms in the development of multiple malignancies. These variants warrant further investigations in additional populations. CONCLUSIONS We have identified both known and novel variants significantly enriched in patients with primary breast and lung malignancies, expanding the body of known cancer predisposition variants for both breast and lung cancer. These variants are mostly from genes involved in DNA repair, affirming the role of impaired DNA repair in the predisposition and development of multiple cancers.
Collapse
Affiliation(s)
- Ning-Yuan Lee
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Melissa Hum
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Sabna Zihara
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Lanying Wang
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Matthew K Myint
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Darren Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Programme (ONCO ACP), Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Chee-Keong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Anders Skanderup
- Genome Institute of Singapore, 60 Biopolis St, Singapore, 138672, Singapore
| | - Jens Samol
- Medical Oncology Department, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
- Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Min-Han Tan
- Lucence Diagnostics Pte Ltd, 211 Henderson Road, Singapore, 159552, Singapore
| | - Peter Ang
- Oncocare Cancer Centre, Gleneagles Medical Centre, 6 Napier Road, Singapore, 258499, Singapore
| | - Soo-Chin Lee
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
- Cancer Science Institute, Singapore (CSI), National University of Singapore, 14 Medical Dr, Singapore, 117599, Singapore
| | - Eng-Huat Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
- Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Gillianne G Y Lai
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Programme (ONCO ACP), Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Programme (ONCO ACP), Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- Genome Institute of Singapore, 60 Biopolis St, Singapore, 138672, Singapore
- Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Yoon-Sim Yap
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Programme (ONCO ACP), Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Ann S G Lee
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore.
- SingHealth Duke-NUS Oncology Academic Clinical Programme (ONCO ACP), Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore, 117593, Singapore.
| |
Collapse
|
32
|
Brewer T, Yehia L, Bazeley P, Eng C. Integrating somatic CNV and gene expression in breast cancers from women with PTEN hamartoma tumor syndrome. NPJ Genom Med 2023; 8:14. [PMID: 37407629 DOI: 10.1038/s41525-023-00361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
Women with germline PTEN variants (PTEN hamartoma tumor syndrome, PHTS) have up to 85% lifetime risk of female breast cancer (BC). We previously showed that PHTS-derived BCs are distinct from sporadic BCs both at the clinical and genomic levels. In this study, we examined somatic copy number variations (CNV) and transcriptome data to further characterize the somatic landscape of PHTS-derived BCs. We analyzed exome sequencing data from 44 BCs from women with PHTS for CNV. The control group comprised of 558 women with sporadic BCs from The Cancer Genome Atlas (TCGA) dataset. Here, we found that PHTS-derived BCs have several distinct CNV peaks compared to TCGA. Furthermore, RNA sequencing data revealed that PHTS-derived BCs have a distinct immunologic cell type signature, which points toward cancer immune evasion. Transcriptomic data also revealed PHTS-derived BCs with pathogenic germline PTEN variants appear to have vitamin E degradation as a key pathway associated with tumorigenesis. In conclusion, our study revealed distinct CNV x transcript features in PHTS-derived BCs, which further facilitate understanding of BC biology arising in the setting of germline PTEN mutations.
Collapse
Affiliation(s)
- Takae Brewer
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Peter Bazeley
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
33
|
Figlioli G, Billaud A, Wang Q, Bolla MK, Dennis J, Lush M, Kvist A, Adank MA, Ahearn TU, Antonenkova NN, Auvinen P, Behrens S, Bermisheva M, Bogdanova NV, Bojesen SE, Bonanni B, Brüning T, Camp NJ, Campbell A, Castelao JE, Cessna MH, Czene K, Devilee P, Dörk T, Eriksson M, Fasching PA, Flyger H, Gabrielson M, Gago-Dominguez M, García-Closas M, Glendon G, Gómez Garcia EB, González-Neira A, Grassmann F, Guénel P, Hahnen E, Hamann U, Hillemanns P, Hooning MJ, Hoppe R, Howell A, Humphreys K, Jakubowska A, Khusnutdinova EK, Kristensen VN, Lindblom A, Loizidou MA, Lubiński J, Mannermaa A, Maurer T, Mavroudis D, Newman WG, Obi N, Panayiotidis MI, Radice P, Rashid MU, Rhenius V, Ruebner M, Saloustros E, Sawyer EJ, Schmidt MK, Schmutzler RK, Shah M, Southey MC, Tomlinson I, Truong T, van Veen EM, Wendt C, Yang XR, Michailidou K, Dunning AM, Pharoah PDP, Easton DF, Andrulis IL, Evans DG, Hollestelle A, Chang-Claude J, Milne RL, Peterlongo P. Spectrum and Frequency of Germline FANCM Protein-Truncating Variants in 44,803 European Female Breast Cancer Cases. Cancers (Basel) 2023; 15:3313. [PMID: 37444426 DOI: 10.3390/cancers15133313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023] Open
Abstract
FANCM germline protein truncating variants (PTVs) are moderate-risk factors for ER-negative breast cancer. We previously described the spectrum of FANCM PTVs in 114 European breast cancer cases. In the present, larger cohort, we report the spectrum and frequency of four common and 62 rare FANCM PTVs found in 274 carriers detected among 44,803 breast cancer cases. We confirmed that p.Gln1701* was the most common PTV in Northern Europe with lower frequencies in Southern Europe. In contrast, p.Gly1906Alafs*12 was the most common PTV in Southern Europe with decreasing frequencies in Central and Northern Europe. We verified that p.Arg658* was prevalent in Central Europe and had highest frequencies in Eastern Europe. We also confirmed that the fourth most common PTV, p.Gln498Thrfs*7, might be a founder variant from Lithuania. Based on the frequency distribution of the carriers of rare PTVs, we showed that the FANCM PTVs spectra in Southwestern and Central Europe were much more heterogeneous than those from Northeastern Europe. These findings will inform the development of more efficient FANCM genetic testing strategies for breast cancer cases from specific European populations.
Collapse
Affiliation(s)
- Gisella Figlioli
- Genome Diagnostics Program, IFOM ETS-The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Amandine Billaud
- Genome Diagnostics Program, IFOM ETS-The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Anders Kvist
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden
| | - Muriel A Adank
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Family Cancer Clinic, 1066 CX Amsterdam, The Netherlands
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Natalia N Antonenkova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, 223040 Minsk, Belarus
| | - Päivi Auvinen
- Translational Cancer Research Area, University of Eastern Finland, 70210 Kuopio, Finland
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, 70210 Kuopio, Finland
- Department of Oncology, Cancer Center, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Natalia V Bogdanova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, 223040 Minsk, Belarus
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Stig E Bojesen
- Copenhagen General Population Study, Copenhagen University Hospital, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), 44789 Bochum, Germany
| | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, 36312 Vigo, Spain
| | | | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Henrik Flyger
- Department of Breast Surgery, Copenhagen University Hospital, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
| | - Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Manuela Gago-Dominguez
- Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS) Foundation, IDIS Cancer Genetics and Epidemiology Group, Genomic Medicine Group, Complejo Hospitalario Universitario de Santiago, SERGAS, 15706 Santiago de Compostela, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Gord Glendon
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON M5G 1X5, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Encarna B Gómez Garcia
- Department of Clinical Genetics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Medicine, Institute for Clinical Research and Systems Medicine, Health and Medical University, 14467 Potsdam, Germany
| | - Pascal Guénel
- CESP U1018, Inserm "Exposome, Heredity, Cancer and Health" Team, UVSQ, University Paris-Saclay, Gustave Roussy, 94805 Villejuif, France
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Ute Hamann
- German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, 69120 Heidelberg, Germany
| | - Peter Hillemanns
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, 72074 Tübingen, Germany
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
- Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0379 Oslo, Norway
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Maria A Loizidou
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, 70210 Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210 Kuopio, Finland
- Kuopio University Hospital, Biobank of Eastern Finland, 70210 Kuopio, Finland
| | - Tabea Maurer
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, 711 10 Heraklion, Greece
| | - William G Newman
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Nadia Obi
- University Medical Center Hamburg-Eppendorf, Institute for Medical Biometry and Epidemiology, 20246 Hamburg, Germany
| | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus
| | - Paolo Radice
- Unit of 'Predictive Medicine: Molecular Bases of Genetic Risk', Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), 20133 Milan, Italy
| | - Muhammad U Rashid
- German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, 69120 Heidelberg, Germany
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore 54000, Pakistan
| | - Valerie Rhenius
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | | | - Elinor J Sawyer
- King's College London, School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, London SE1 9RT, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3000, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia
| | - Ian Tomlinson
- Cancer Research Centre, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Thérèse Truong
- CESP U1018, Inserm "Exposome, Heredity, Cancer and Health" Team, UVSQ, University Paris-Saclay, Gustave Roussy, 94805 Villejuif, France
| | - Elke M van Veen
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Camilla Wendt
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, 118 83 Stockholm, Sweden
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA 90069, USA
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Antoinette Hollestelle
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM ETS-The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| |
Collapse
|
34
|
Bertola N, Regis S, Bruno S, Mazzarello AN, Serra M, Lupia M, Sabatini F, Corsolini F, Ravera S, Cappelli E. Effects of Deacetylase Inhibition on the Activation of the Antioxidant Response and Aerobic Metabolism in Cellular Models of Fanconi Anemia. Antioxidants (Basel) 2023; 12:antiox12051100. [PMID: 37237966 DOI: 10.3390/antiox12051100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Fanconi anemia (FA) is a rare genetic disease characterized by a dysfunctional DNA repair and an oxidative stress accumulation due to defective mitochondrial energy metabolism, not counteracted by endogenous antioxidant defenses, which appear down-expressed compared to the control. Since the antioxidant response lack could depend on the hypoacetylation of genes coding for detoxifying enzymes, we treated lymphoblasts and fibroblasts mutated for the FANC-A gene with some histone deacetylase inhibitors (HDACi), namely, valproic acid (VPA), beta-hydroxybutyrate (OHB), and EX527 (a Sirt1 inhibitor), under basal conditions and after hydrogen peroxide addition. The results show that VPA increased catalase and glutathione reductase expression and activity, corrected the metabolic defect, lowered lipid peroxidation, restored the mitochondrial fusion and fission balance, and improved mitomycin survival. In contrast, OHB, despite a slight increase in antioxidant enzyme expressions, exacerbated the metabolic defect, increasing oxidative stress production, probably because it also acts as an oxidative phosphorylation metabolite, while EX527 showed no effect. In conclusion, the data suggest that VPA could be a promising drug to modulate the gene expression in FA cells, confirming that the antioxidant response modulation plays a pivotal in FA pathogenesis as it acts on both oxidative stress levels and the mitochondrial metabolism and dynamics quality.
Collapse
Affiliation(s)
- Nadia Bertola
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy
| | - Stefano Regis
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy
| | | | - Martina Serra
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Michela Lupia
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Federica Sabatini
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Fabio Corsolini
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy
| | - Enrico Cappelli
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| |
Collapse
|
35
|
Vázquez-Romo R, Millan-Catalan O, Ruíz-García E, Martínez-Gutiérrez AD, Alvarado-Miranda A, Campos-Parra AD, López-Camarillo C, Jacobo-Herrera N, López-Urrutia E, Guardado-Estrada M, Cantú de León D, Pérez-Plasencia C. Pathogenic variant profile in DNA damage response genes correlates with metastatic breast cancer progression-free survival in a Mexican-mestizo population. Front Oncol 2023; 13:1146008. [PMID: 37182128 PMCID: PMC10174330 DOI: 10.3389/fonc.2023.1146008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
INTRODUCTION Metastatic breast cancer causes the most breast cancer-related deaths around the world, especially in countries where breast cancer is detected late into its development. Genetic testing for cancer susceptibility started with the BRCA 1 and 2 genes. Still, recent research has shown that variations in other members of the DNA damage response (DDR) are also associated with elevated cancer risk, opening new opportunities for enhanced genetic testing strategies. METHODS We sequenced BRCA1/2 and twelve other DDR genes from a Mexican-mestizo population of 40 metastatic breast cancer patients through semiconductor sequencing. RESULTS Overall, we found 22 variants -9 of them reported for the first time- and a strikingly high proportion of variations in ARID1A. The presence of at least one variant in the ARID1A, BRCA1, BRCA2, or FANCA genes was associated with worse progression-free survival and overall survival in our patient cohort. DISCUSSION Our results reflected the unique characteristics of the Mexican-mestizo population as the proportion of variants we found differed from that of other global populations. Based on these findings, we suggest routine screening for variants in ARID1A along with BRCA1/2 in breast cancer patients from the Mexican-mestizo population.
Collapse
Affiliation(s)
- Rafael Vázquez-Romo
- Departamento de Cirugía de Tumores Mamarios, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
| | - Oliver Millan-Catalan
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
| | - Erika Ruíz-García
- Laboratorio de Medicina Traslacional y Departamento de Tumores Gastrointestinales, Instituto Nacional de Cancerología, CDMX, Mexico
| | | | - Alberto Alvarado-Miranda
- Departamento de Cirugía de Tumores Mamarios, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
| | - Alma D. Campos-Parra
- Dirección de Investigación, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico
| | - Eduardo López-Urrutia
- Laboratorio de Genómica, Unidad de Biomedicina, FES-IZTACALA, UNAM, Tlalnepantla, Mexico
| | - Mariano Guardado-Estrada
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - David Cantú de León
- Dirección de Investigación, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
- Laboratorio de Genómica, Unidad de Biomedicina, FES-IZTACALA, UNAM, Tlalnepantla, Mexico
| |
Collapse
|
36
|
Mortensen Ó, Thomsen E, Lydersen LN, Apol KD, Weihe P, Steig BÁ, Andorsdóttir G, Als TD, Gregersen NO. FarGen: Elucidating the distribution of coding variants in the isolated population of the Faroe Islands. Eur J Hum Genet 2023; 31:329-337. [PMID: 36404349 PMCID: PMC9995356 DOI: 10.1038/s41431-022-01227-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/30/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
Here we present results from FarGen Phase I exomes. This dataset is based on the FarGen cohort, which consists of 1,541 individuals from the isolated population of the Faroe Islands. The purpose of this cohort is to serve as a reference catalog of coding variants, and to conduct population genetic studies to better understand the genetic contribution to various diseases in the Faroese population. The first whole-exome data set comprise 465 individuals and a total of 148,267 genetic variants were discovered. Principle Component Analysis indicates that the population is isolated and weakly structured. The distribution of variants in various functional classes was compared with populations in the gnomAD dataset; the results indicated that the proportions were consistent across the cohorts, but probably due to a small sample size, the FarGen dataset contained relatively few rare variants. We identified 19 variants that are classified as pathogenic or likely pathogenic in ClinVar; several of these variants are associated with monogenetic diseases with increased prevalence in the Faroe Islands. The results support previous studies, which indicate that the Faroe Islands is an isolated and weakly structured population. Future studies may elucidate the significance of the 19 pathogenic variants that were identified. The FarGen Phase I dataset is an important step for genetic research in the Faroese population, and the next phase of FarGen will increase the sample size and broaden the scope.
Collapse
Affiliation(s)
- Ólavur Mortensen
- The Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands
| | - Elisabet Thomsen
- The Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands
| | | | - Katrin D Apol
- The Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands
| | - Pál Weihe
- Department of Occupational Medicine and Public Health, National Hospital of the Faroe Islands Tórshavn, Tórshavn, Faroe Islands
| | - Bjarni Á Steig
- Medical Department, National Hospital of the Faroe Islands, Tórshavn, Faroe Islands
| | - Guðrið Andorsdóttir
- The Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands
- Centre of Health Science, Faculty of Health, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Thomas D Als
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Noomi O Gregersen
- The Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands.
- Centre of Health Science, Faculty of Health, University of the Faroe Islands, Tórshavn, Faroe Islands.
| |
Collapse
|
37
|
Suh E, Shin S, Ju HY, Yoo KH, Kim HY, Cho D, Kim SH, Kim HJ. The First Case of Acute Myeloid Leukemia With Underlying Fanconi Anemia due to FANCF Variants in Korea. Ann Lab Med 2023; 43:204-207. [PMID: 36281516 PMCID: PMC9618904 DOI: 10.3343/alm.2023.43.2.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/19/2022] [Accepted: 09/11/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Eunsang Suh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Seoul, Korea
| | - Sunghwan Shin
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Seoul, Korea
| | - Hee Young Ju
- Department of Pediatrics, Samsung Medical Center, Seoul, Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Seoul, Korea
| | - Hyun-Young Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Seoul, Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Seoul, Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Seoul, Korea,Corresponding author: Hee-Jin Kim, M.D., Ph.D. Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea Tel: +82-2-3410-2710, Fax: +82-2-3410-2719, E-mail:
| |
Collapse
|
38
|
Alenezi WM, Fierheller CT, Serruya C, Revil T, Oros KK, Subramanian DN, Bruce J, Spiegelman D, Pugh T, Campbell IG, Mes-Masson AM, Provencher D, Foulkes WD, Haffaf ZE, Rouleau G, Bouchard L, Greenwood CMT, Ragoussis J, Tonin PN. Genetic analyses of DNA repair pathway associated genes implicate new candidate cancer predisposing genes in ancestrally defined ovarian cancer cases. Front Oncol 2023; 13:1111191. [PMID: 36969007 PMCID: PMC10030840 DOI: 10.3389/fonc.2023.1111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
Not all familial ovarian cancer (OC) cases are explained by pathogenic germline variants in known risk genes. A candidate gene approach involving DNA repair pathway genes was applied to identify rare recurring pathogenic variants in familial OC cases not associated with known OC risk genes from a population exhibiting genetic drift. Whole exome sequencing (WES) data of 15 OC cases from 13 families tested negative for pathogenic variants in known OC risk genes were investigated for candidate variants in 468 DNA repair pathway genes. Filtering and prioritization criteria were applied to WES data to select top candidates for further analyses. Candidates were genotyped in ancestry defined study groups of 214 familial and 998 sporadic OC or breast cancer (BC) cases and 1025 population-matched controls and screened for additional carriers in 605 population-matched OC cases. The candidate genes were also analyzed in WES data from 937 familial or sporadic OC cases of diverse ancestries. Top candidate variants in ERCC5, EXO1, FANCC, NEIL1 and NTHL1 were identified in 5/13 (39%) OC families. Collectively, candidate variants were identified in 7/435 (1.6%) sporadic OC cases and 1/566 (0.2%) sporadic BC cases versus 1/1025 (0.1%) controls. Additional carriers were identified in 6/605 (0.9%) OC cases. Tumour DNA from ERCC5, NEIL1 and NTHL1 variant carriers exhibited loss of the wild-type allele. Carriers of various candidate variants in these genes were identified in 31/937 (3.3%) OC cases of diverse ancestries versus 0-0.004% in cancer-free controls. The strategy of applying a candidate gene approach in a population exhibiting genetic drift identified new candidate OC predisposition variants in DNA repair pathway genes.
Collapse
Affiliation(s)
- Wejdan M. Alenezi
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Medical Laboratory Technology, Taibah University, Medina, Saudi Arabia
| | - Caitlin T. Fierheller
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Corinne Serruya
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Timothée Revil
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill Genome Centre, McGill University, Montreal, QC, Canada
| | - Kathleen K. Oros
- Lady Davis Institute for Medical Research of the Jewish General Hospital, Montreal, QC, Canada
| | - Deepak N. Subramanian
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Jeffrey Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Dan Spiegelman
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Trevor Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Ian G. Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
- Departement of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Diane Provencher
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
- Division of Gynecologic Oncology, Université de Montréal, Montreal, QC, Canada
| | - William D. Foulkes
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Lady Davis Institute for Medical Research of the Jewish General Hospital, Montreal, QC, Canada
- Department of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Zaki El Haffaf
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
- Service de Médecine Génique, Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Guy Rouleau
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medical Biology, Centres intégrés universitaires de santé et de services sociaux du Saguenay-Lac-Saint-Jean hôpital Universitaire de Chicoutimi, Saguenay, QC, Canada
- Centre de Recherche du Centre hospitalier l’Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Celia M. T. Greenwood
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research of the Jewish General Hospital, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill Genome Centre, McGill University, Montreal, QC, Canada
| | - Patricia N. Tonin
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- *Correspondence: Patricia N. Tonin,
| |
Collapse
|
39
|
Rashid MU, Muhammad N, Shehzad U, Khan FA, Loya A, Hamann U. Prevalence of FANCM germline variants in BRCA1/2 negative breast and/or ovarian cancer patients from Pakistan. Fam Cancer 2023; 22:31-41. [PMID: 35802266 DOI: 10.1007/s10689-022-00304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/18/2022] [Indexed: 01/12/2023]
Abstract
The Fanconi anemia complementation group M (FANCM) gene is a potential candidate for breast/ovarian cancer susceptibility in European populations. Here, we examined the contribution of FANCM germline variants to hereditary breast and/or ovarian cancer in Pakistan. Comprehensive FANCM variant screening was performed in 201 BRCA1 and BRCA2 (BRCA1/2) negative Pakistani patients with and without triple-negative breast cancer (TNBC) and/or ovarian cancer, using denaturing high-performance liquid chromatography analysis (DHPLC) followed by DNA sequencing. Novel variants were tested for their potential effect on protein function using in silico tools. Reverse transcription (RT)-PCR analysis of RNA extracted from one deletion/insertion (delins) variant (p.K1780delinsNGIT) carrier and three non-carriers was performed to evaluate the impact of this variant on splicing. Furthermore, potentially functional variants were evaluated in 200 healthy female controls. A missense variant (p.V1857M) was identified in a 50-year-old TNBC patient with a family history of breast cancer. It was also identified in the index patient´s daughter, who was diagnosed with osteosarcoma at 15 years of age. Further, one delins variant (p.K1780delinsNGIT) was identified in a 45-year-old non-TNBC patient, but not detected in her brother, who was diagnosed with Hodgkin's lymphoma at 38 years of age. Based on in silico and RNA analyses, p.V1857M and p.K1780delinsNGIT were predicted as variants of uncertain significance (VUS), respectively. Both variants were absent in 200 healthy controls. Our findings suggest a marginal contribution of FANCM variants to hereditary breast/ovarian cancer in Pakistan, which need to be confirmed in larger studies.
Collapse
Affiliation(s)
- Muhammad Usman Rashid
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7A, Block R3, Johar Town, Lahore, 54000, Punjab, Pakistan.
| | - Noor Muhammad
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7A, Block R3, Johar Town, Lahore, 54000, Punjab, Pakistan
| | - Umara Shehzad
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7A, Block R3, Johar Town, Lahore, 54000, Punjab, Pakistan
| | - Faiz Ali Khan
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7A, Block R3, Johar Town, Lahore, 54000, Punjab, Pakistan
| | - Asif Loya
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
40
|
Zhang L, Hao C, Han B, Zeng G, Han L, Cao C, Liu H, Zhong Z, Zhao X, Wang J, Zhang Q. RMI2
is a novel prognostic and predictive biomarker for breast cancer. Cancer Med 2022; 12:8331-8350. [PMID: 36533385 PMCID: PMC10134310 DOI: 10.1002/cam4.5533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/14/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND RecQ-mediated genome instability 2 (RMI2) maintains genome stability by promoting DNA damage repair. It has been reported to accelerate the progression of several tumors. However, the functional mechanism of RMI2 in breast cancer remains unclear. METHODS Gene expression profiles were obtained from TCGA, GTEx, and GEO databases. The expression of RMI2 and its prognostic value in breast cancer was explored. In addition, we calculated pooled standardized mean deviation (SMD) and performed a summary receiver operating characteristic (sROC) curve analysis to further determine RMI2 expression status and diagnostic significance. The functions and related signaling pathways were investigated based on GO and KEGG analyses. The PPI network was constructed by combining the STRING database and Cytoscape software. Subsequently, in vitro assays were conducted to detect the effect of RMI2 on the proliferation and migration of breast cancer cells. RESULTS The expression of RMI2 was markedly upregulated in breast cancer tissues relative to that in normal tissues. Moreover, pooled SMD further confirmed the overexpression of RMI2 in breast cancer (SMD = 1.29, 95% confidence interval (CI): 1.18-1.41, p = 0.000). The sROC curve analysis result suggested that RMI2 had a relatively high diagnostic ability in breast cancer (AUC = 0.87, 95% CI: 0.84-0.90). High RMI2 expression was associated with poor prognosis. GO and KEGG analyses revealed that RMI2 was closely related to cell adhesion, various enzyme activities, and PI3K/AKT signaling pathway. PPI analysis showed that RMI2 had interactions with proteins involved in DNA damage repair. knockdown of RMI2 remarkably inhibited the proliferation and migration of breast cancer cells, while overexpression of RMI2 exerted the opposite effects. Furthermore, we identified that RMI2 accelerates the proliferation and migration of breast cancer cells via activation of the PI3K/AKT pathway. CONCLUSION The results suggest that RMI2 is a potential diagnostic and prognostic biomarker associated with cell proliferation and migration, and may be used as a novel therapeutic target for breast cancer in the future.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Medical Oncology Harbin Medical University Cancer Hospital Harbin China
| | - Chuncheng Hao
- Department of Head and Neck Radiation Oncology Harbin Medical University Cancer Hospital Harbin China
| | - Baojuan Han
- Department of Medical Oncology Harbin Medical University Cancer Hospital Harbin China
| | - Guangchun Zeng
- Department of Pathology Harbin Medical University Cancer Hospital Harbin China
| | - Lili Han
- Department of Orthopedic Surgery, The First Hospital of Suihua Suihua China
| | - Cong Cao
- Department of Medical Oncology Harbin Medical University Cancer Hospital Harbin China
| | - Hui Liu
- Department of Head and Neck Radiation Oncology Harbin Medical University Cancer Hospital Harbin China
| | - Zhenbin Zhong
- Department of Head and Neck Radiation Oncology Harbin Medical University Cancer Hospital Harbin China
| | - Xue Zhao
- Department of Head and Neck Radiation Oncology Harbin Medical University Cancer Hospital Harbin China
| | - Jingxuan Wang
- Department of Medical Oncology Harbin Medical University Cancer Hospital Harbin China
| | - Qingyuan Zhang
- Department of Medical Oncology Harbin Medical University Cancer Hospital Harbin China
| |
Collapse
|
41
|
Li W, Yu M, Zhang J, Huang J, Lin Z, Chen J, Jiang G, Lin X. High expression levels of FANCI correlate with worse prognosis and promote tumor growth of lung adenocarcinoma partly via suppression of M1 macrophages. Gene 2022; 851:147053. [DOI: 10.1016/j.gene.2022.147053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
|
42
|
Brewer T, Yehia L, Bazeley P, Eng C. Exome sequencing reveals a distinct somatic genomic landscape in breast cancer from women with germline PTEN variants. Am J Hum Genet 2022; 109:1520-1533. [PMID: 35931053 PMCID: PMC9388380 DOI: 10.1016/j.ajhg.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
Germline PTEN variants (PTEN hamartoma tumor syndrome [PHTS]) confer up to 85% lifetime risk of female breast cancer (BC). BCs arising in PHTS are clinically distinct from sporadic BCs, including younger age of onset, multifocality, and an increased risk of second primary BCs. Yet, there is no previous investigation into the underlying genomic landscape of this entity. We sought to address the hypothesis that BCs arising in PHTS have a distinct genomic landscape compared to sporadic counterparts. We performed and analyzed exome sequencing data from 44 women with germline PTEN variants who developed BCs. The control cohort comprised of 497 women with sporadic BCs from The Cancer Genome Atlas (TCGA) dataset. We demonstrate that PHTS-derived BCs have a distinct somatic mutational landscape compared to the sporadic counterparts, namely second somatic hits in PTEN, distinct mutational signatures, and increased genomic instability. The PHTS group had a significantly higher frequency of somatic PTEN variants compared to TCGA (22.7% versus 5.6%; odds ratio [OR] 4.93; 95% confidence interval [CI] 2.21 to 10.98; p < 0.001) and a lower mutational frequency in PIK3CA (22.7% versus 33.4%; OR 0.59; 95% CI 0.28 to 1.22; p = 0.15). Somatic variants in PTEN and PIK3CA were mutually exclusive in PHTS (p = 0.01) but not in TCGA. Our findings have important implications for the personalized management of PTEN-related BCs, especially in the context of more accessible genetic testing.
Collapse
Affiliation(s)
- Takae Brewer
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Peter Bazeley
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA,Corresponding author
| |
Collapse
|
43
|
Mutated FANCA Gene Role in the Modulation of Energy Metabolism and Mitochondrial Dynamics in Head and Neck Squamous Cell Carcinoma. Cells 2022; 11:cells11152353. [PMID: 35954197 PMCID: PMC9425438 DOI: 10.3390/cells11152353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Fanconi Anaemia (FA) is a rare recessive genetic disorder characterized by a defective DNA repair mechanism. Although aplastic anaemia is the principal clinical sign in FA, patients develop a head and neck squamous cell carcinoma (HNSCC) with a frequency 500–700 folds higher than the general population, which appears more aggressive, with survival of under two years. Since FA gene mutations are also associated with a defect in the aerobic metabolism and an increased oxidative stress accumulation, this work aims to evaluate the effect of FANCA mutation on the energy metabolism and the relative mitochondrial quality control pathways in an HNSCC cellular model. Energy metabolism and cellular antioxidant capacities were evaluated by oximetric, luminometric, and spectrophotometric assays. The dynamics of the mitochondrial network, the quality of mitophagy and autophagy, and DNA double-strand damage were analysed by Western blot analysis. Data show that the HNSCC cellular model carrying the FANCA gene mutation displays an altered electron transport between respiratory Complexes I and III that does not depend on the OxPhos protein expression. Moreover, FANCA HNSCC cells show an imbalance between fusion and fission processes and alterations in autophagy and mitophagy pathways. Together, all these alterations associated with the FANCA gene mutation cause cellular energy depletion and a metabolic switch to glycolysis, exacerbating the Warburg effect in HNSCC cells and increasing the growth rate. In addition, the altered DNA repair due to the FANCA mutation causes a higher accumulation of DNA damage in the HNSCC cellular model. In conclusion, changes in energy metabolism and mitochondrial dynamics could explain the strict correlation between HNSCC and FA genes, helping to identify new therapeutic targets.
Collapse
|
44
|
Sukhanova M, Obeidin F, Streich L, Alexiev BA. Inflammatory leiomyosarcoma/rhabdomyoblastic tumor: a report of two cases with novel genetic findings. Genes Chromosomes Cancer 2022; 61:653-661. [PMID: 35655404 PMCID: PMC9545443 DOI: 10.1002/gcc.23072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/01/2022] Open
Abstract
Inflammatory leiomyosarcoma (ILMS) is a malignant neoplasm showing smooth muscle differentiation, a prominent inflammatory infiltrate, and near‐haploidization. These tumors have significant pathologic and genetic overlap with the recently described “inflammatory rhabdomyoblastic tumor (IRT),” suggesting that ILMS and IRT may belong to one entity. Herein, we describe two cases of ILMS/IRT with attention to new cytogenetic and sequencing findings. The tumors were composed of sheets and fascicles of variably pleomorphic tumor cells showing spindled and epithelioid to rhabdoid morphology and a prominent histiocyte‐rich inflammatory infiltrate typical of ILMS/IRT. In case 1, chromosomal microarray analysis showed a near‐haploid pattern with loss of heterozygosity resulting from loss of one copy of all autosomes except for chromosomes 5, 20, 21, and 22. Case 2 showed areas with high‐grade rhabdomyosarcomatous transformation. In this case, the low‐grade tumor component revealed a hyper‐diploid pattern with loss of heterozygosity for most of autosomes but with a normal diploid copy number state except for chromosomes 5, 20, and 22, which showed a relative gain. The high‐grade tumor component showed a similar pattern of copy‐neutral loss of heterozygosity with additional abnormalities, including mosaic segmental gains at 1p, 5p, 8q, 9p, 20q, and segmental loss at 8p. Next‐generation sequencing identified sequence variants in NF1, TP53, SMARCA4, KRAS, and MSH6. MSH6 variant was confirmed as germline, consistent with the diagnosis of hereditary nonpolyposis colorectal cancer (HNPCC) syndrome in one of our study patients and suggestive that ILMS/IRT might be part of the HNPCC cancer spectrum.
Collapse
Affiliation(s)
- Madina Sukhanova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, 251 East Huron St, Chicago, Illinois, United States
| | - Farres Obeidin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, 251 East Huron St, Chicago, Illinois, United States
| | - Lukas Streich
- Department of Pathology, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, 251 East Huron St, Chicago, Illinois, United States
| | - Borislav A Alexiev
- Department of Pathology, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, 251 East Huron St, Chicago, Illinois, United States
| |
Collapse
|
45
|
Toss A, Quarello P, Mascarin M, Banna GL, Zecca M, Cinieri S, Peccatori FA, Ferrari A. Cancer Predisposition Genes in Adolescents and Young Adults (AYAs): a Review Paper from the Italian AYA Working Group. Curr Oncol Rep 2022; 24:843-860. [PMID: 35320498 PMCID: PMC9170630 DOI: 10.1007/s11912-022-01213-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The present narrative systematic review summarizes current knowledge on germline gene mutations predisposing to solid tumors in adolescents and young adults (AYAs). RECENT FINDINGS AYAs with cancer represent a particular group of patients with specific challenging characteristics and yet unmet needs. A significant percentage of AYA patients carry pathogenic or likely pathogenic variants (PV/LPVs) in cancer predisposition genes. Nevertheless, knowledge on spectrum, frequency, and clinical implications of germline variants in AYAs with solid tumors is limited. The identification of PV/LPV in AYA is especially critical given the need for appropriate communicative strategies, risk of second primary cancers, need for personalized long-term surveillance, potential reproductive implications, and cascade testing of at-risk family members. Moreover, these gene alterations may potentially provide novel biomarkers and therapeutic targets that are lacking in AYA patients. Among young adults with early-onset phenotypes of malignancies typically presenting at later ages, the increased prevalence of germline PV/LPVs supports a role for genetic counseling and testing irrespective of tumor type.
Collapse
Affiliation(s)
- Angela Toss
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Quarello
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Turin, Italy
- Department of Public Health and Paediatric Sciences, University of Torino, Turin, Italy
| | - Maurizio Mascarin
- AYA Oncology and Pediatric Radiotherapy Unit, Centro di Riferimento Oncologico IRCCS, Aviano, Italy
| | - Giuseppe Luigi Banna
- Candiolo Cancer Institute, FPO-IRCCS, SP142, km 3.95, 10060, Candiolo, Turin, Italy.
| | - Marco Zecca
- Department of Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Saverio Cinieri
- Medical Oncology Unit and Breast Unit Ospedale Perrino ASL, Brindisi, Italy
| | - Fedro Alessandro Peccatori
- Fertility and Procreation Unit, Gynecologic Oncology Program, European Institute of Oncology IRCCS, Milan, Italy
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| |
Collapse
|
46
|
Badra Fajardo N, Taraviras S, Lygerou Z. Fanconi anemia proteins and genome fragility: unraveling replication defects for cancer therapy. Trends Cancer 2022; 8:467-481. [DOI: 10.1016/j.trecan.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
47
|
Fidalgo F, Torrezan GT, de Sá BCS, Barros BDDF, Moredo LF, Valieris R, de Souza SJ, Duprat JP, Krepischi ACV, Carraro DM. Family-based whole-exome sequencing identifies rare variants potentially related to cutaneous melanoma predisposition in Brazilian melanoma-prone families. PLoS One 2022; 17:e0262419. [PMID: 35085295 PMCID: PMC8794197 DOI: 10.1371/journal.pone.0262419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 12/25/2021] [Indexed: 11/19/2022] Open
Abstract
Genetic predisposition accounts for nearly 10% of all melanoma cases and has been associated with a dozen moderate- to high-penetrance genes, including CDKN2A, CDK4, POT1 and BAP1. However, in most melanoma-prone families, the genetic etiology of cancer predisposition remains undetermined. The goal of this study was to identify rare genomic variants associated with cutaneous melanoma susceptibility in melanoma-prone families. Whole-exome sequencing was performed in 2 affected individuals of 5 melanoma-prone families negative for mutations in CDKN2A and CDK4, the major cutaneous melanoma risk genes. A total of 288 rare coding variants shared by the affected relatives of each family were identified, including 7 loss-of-function variants. By performing in silico analyses of gene function, biological pathways, and variant pathogenicity prediction, we underscored the putative role of several genes for melanoma risk, including previously described genes such as MYO7A and WRN, as well as new putative candidates, such as SERPINB4, HRNR, and NOP10. In conclusion, our data revealed rare germline variants in melanoma-prone families contributing with a novel set of potential candidate genes to be further investigated in future studies.
Collapse
Affiliation(s)
- Felipe Fidalgo
- Genomics and Molecular Biology Group, International Research Center/CIPE, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Giovana Tardin Torrezan
- Genomics and Molecular Biology Group, International Research Center/CIPE, A.C.Camargo Cancer Center, São Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, Brazil
| | | | | | | | - Renan Valieris
- Laboratory of Bioinformatics and Computational Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Sandro J. de Souza
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, Brazil
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Dirce Maria Carraro
- Genomics and Molecular Biology Group, International Research Center/CIPE, A.C.Camargo Cancer Center, São Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, Brazil
| |
Collapse
|
48
|
Gianni P, Matenoglou E, Geropoulos G, Agrawal N, Adnani H, Zafeiropoulos S, Miyara SJ, Guevara S, Mumford JM, Molmenti EP, Giannis D. The Fanconi anemia pathway and Breast Cancer: A comprehensive review of clinical data. Clin Breast Cancer 2022; 22:10-25. [PMID: 34489172 DOI: 10.1016/j.clbc.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
The development of breast cancer depends on several risk factors, including environmental, lifestyle and genetic factors. Despite the evolution of DNA sequencing techniques and biomarker detection, the epidemiology and mechanisms of various breast cancer susceptibility genes have not been elucidated yet. Dysregulation of the DNA damage response causes genomic instability and increases the rate of mutagenesis and the risk of carcinogenesis. The Fanconi Anemia (FA) pathway is an important component of the DNA damage response and plays a critical role in the repair of DNA interstrand crosslinks and genomic stability. The FA pathway involves 22 recognized genes and specific mutations have been identified as the underlying defect in the majority of FA patients. A thorough understanding of the function and epidemiology of these genes in breast cancer is critical for the development and implementation of individualized therapies that target unique tumor profiles. Targeted therapies (PARP inhibitors) exploiting the FA pathway gene defects have been developed and have shown promising results. This narrative review summarizes the current literature on the involvement of FA genes in sporadic and familial breast cancer with a focus on clinical data derived from large cohorts.
Collapse
Affiliation(s)
- Panagiota Gianni
- Department of Internal Medicine III, Hematology, Oncology, Palliative Medicine, Rheumatology and Infectious Diseases, University Hospital Ulm, Germany
| | - Evangelia Matenoglou
- Medical School, Aristotle University of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Geropoulos
- Thoracic Surgery Department, University College London Hospitals NHS Foundation Trust, London
| | - Nirav Agrawal
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Harsha Adnani
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Stefanos Zafeiropoulos
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Santiago J Miyara
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Sara Guevara
- Department of Surgery, North Shore University Hospital, Manhasset, New York, NY
| | - James M Mumford
- Department of Family Medicine, Glen Cove Hospital, Glen Cove, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Ernesto P Molmenti
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Department of Surgery, North Shore University Hospital, Manhasset, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Dimitrios Giannis
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY.
| |
Collapse
|
49
|
Vergani E, Frigerio S, Dugo M, Devecchi A, Feltrin E, De Cecco L, Vallacchi V, Cossa M, Di Guardo L, Manoukian S, Peissel B, Ferrari A, Gallino G, Maurichi A, Rivoltini L, Sensi M, Rodolfo M. Genetic Variants and Somatic Alterations Associated with MITF-E318K Germline Mutation in Melanoma Patients. Genes (Basel) 2021; 12:1440. [PMID: 34573422 PMCID: PMC8469310 DOI: 10.3390/genes12091440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
The MITF-E318K variant has been implicated in genetic predisposition to cutaneous melanoma. We addressed the occurrence of MITF-E318K and its association with germline status of CDKN2A and MC1R genes in a hospital-based series of 248 melanoma patients including cohorts of multiple, familial, pediatric, sporadic and melanoma associated with other tumors. Seven MITF-E318K carriers were identified, spanning every group except the pediatric patients. Three carriers showed mutated CDKN2A, five displayed MC1R variants, while the sporadic carrier revealed no variants. Germline/tumor whole exome sequencing for this carrier revealed germline variants of unknown significance in ATM and FANCI genes and, in four BRAF-V600E metastases, somatic loss of the MITF wild-type allele, amplification of MITF-E318K and deletion of a 9p21.3 chromosomal region including CDKN2A and MTAP. In silico analysis of tumors from MITF-E318K melanoma carriers in the TCGA Pan-Cancer-Atlas dataset confirmed the association with BRAF mutation and 9p21.3 deletion revealing a common genetic pattern. MTAP was the gene deleted at homozygous level in the highest number of patients. These results support the utility of both germline and tumor genome analysis to define tumor groups providing enhanced information for clinical strategies and highlight the importance of melanoma prevention programs for MITF-E318K patients.
Collapse
Affiliation(s)
- Elisabetta Vergani
- Unit of Immunotherapy, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (E.V.); (S.F.); (V.V.); (L.R.)
| | - Simona Frigerio
- Unit of Immunotherapy, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (E.V.); (S.F.); (V.V.); (L.R.)
| | - Matteo Dugo
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy; (M.D.); (A.D.); (L.D.C.); (M.S.)
| | - Andrea Devecchi
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy; (M.D.); (A.D.); (L.D.C.); (M.S.)
| | - Erika Feltrin
- CRIBI Biotechnology Center, Via Bassi 58/B, 35131 Padua, Italy;
| | - Loris De Cecco
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy; (M.D.); (A.D.); (L.D.C.); (M.S.)
| | - Viviana Vallacchi
- Unit of Immunotherapy, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (E.V.); (S.F.); (V.V.); (L.R.)
| | - Mara Cossa
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
| | - Lorenza Di Guardo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
| | - Siranoush Manoukian
- Unit of Medical Genetics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (S.M.); (B.P.)
| | - Bernard Peissel
- Unit of Medical Genetics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (S.M.); (B.P.)
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
| | - Gianfrancesco Gallino
- Melanoma and Sarcoma Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (G.G.); (A.M.)
| | - Andrea Maurichi
- Melanoma and Sarcoma Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (G.G.); (A.M.)
| | - Licia Rivoltini
- Unit of Immunotherapy, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (E.V.); (S.F.); (V.V.); (L.R.)
| | - Marialuisa Sensi
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy; (M.D.); (A.D.); (L.D.C.); (M.S.)
| | - Monica Rodolfo
- Unit of Immunotherapy, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (E.V.); (S.F.); (V.V.); (L.R.)
| |
Collapse
|
50
|
Comprehensive germline-genomic and clinical profiling in 160 unselected children and adolescents with cancer. Eur J Hum Genet 2021; 29:1301-1311. [PMID: 33840814 PMCID: PMC8385053 DOI: 10.1038/s41431-021-00878-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/05/2021] [Accepted: 03/25/2021] [Indexed: 02/02/2023] Open
Abstract
In childhood cancer, the frequency of cancer-associated germline variants and their inheritance patterns are not thoroughly investigated. Moreover, the identification of children carrying a genetic predisposition by clinical means remains challenging. In this single-center study, we performed trio whole-exome sequencing and comprehensive clinical evaluation of a prospectively enrolled cohort of 160 children with cancer and their parents. We identified in 11/160 patients a pathogenic germline variant predisposing to cancer and a further eleven patients carried a prioritized VUS with a strong association to the cancerogenesis of the patient. Through clinical screening, 51 patients (31.3%) were identified as suspicious for an underlying cancer predisposition syndrome (CPS), but only in ten of those patients a pathogenic variant could be identified. In contrast, one patient with a classical CPS and ten patients with prioritized VUS were classified as unremarkable in the clinical work-up. Taken together, a monogenetic causative variant was detected in 13.8% of our patients using WES. Nevertheless, the still unclarified clinical suspicious cases emphasize the need to consider other genetic mechanisms including new target genes, structural variants, or polygenic interactions not previously associated with cancer predisposition.
Collapse
|