1
|
Barta A, Vanwonterghem L, Lavaud M, Molton F, Micouin G, Bulin AL, Banyasz A, Coll JL, Loiseau F, Hurbin A, Lanoë PH. Monomer Versus Dimer of Cationic Ir(III) Complexes for Photodynamic Therapy by Two-Photon Activation: A Comparative Study. ACS APPLIED BIO MATERIALS 2025. [PMID: 40272165 DOI: 10.1021/acsabm.5c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Iridium(III) complexes have been recognized as promising candidates for two-photon sensitized photodynamic therapy (PDT). In this context, we report on the study of two complexes: a monomer (IrL1) and a dimer (Ir2L2). Both complexes possess 2-phenylpyridine cyclometallating ligands and a pyridylbenzimidazole derivative as an ancillary ligand. In the dimer, the two Ir(III) centers are connected by a non-conjugated bridged bis(pyridylbenzimidazole). We compare the photophysical properties of these complexes. Both display phosphorescent emission in the orange-red part of the visible spectrum, with emissions centered at 610 nm for IrL1 and 625 nm for Ir2L2, both exhibiting quantum yields of ∼24%. However, Ir2L2 proves to be much brighter than the monomer, making the dimer four times brighter than IrL1. This trend is consistent under two-photon excitation (TPE), and the singlet oxygen generation quantum yields, with the dimer displaying a figure of merit (σTPA × ΦΔ) of 40, compared to only 5 for the monomer. Both complexes generate intracellular ROS and exhibit strong phototoxicity upon blue light activation (λ = 420 nm), achieving submicromolar IC50 values in HT29 and A549 cell lines after 24 h of incubation. Moreover, with TPE (λ = 800 nm), both complexes also generate intracellular ROS and induce cancer cell death.
Collapse
Affiliation(s)
- Agoston Barta
- Univ. Grenoble Alpes, CNRS, DCM, Grenoble 38000, France
| | - Laetitia Vanwonterghem
- Univ. Grenoble Alpes, INSERM U1209, Institute for Advanced Biosciences CNRS UMR5309, Grenoble 38000, France
| | - Matéo Lavaud
- Univ. Grenoble Alpes, INSERM U1209, Institute for Advanced Biosciences CNRS UMR5309, Grenoble 38000, France
| | | | - Guillaume Micouin
- Laboratoire de Chimie École Normale Supérieure de Lyon ENS, CNRS, UCBL UMR 5182, 46 Allée d'Italie, Lyon 69364, France
| | - Anne-Laure Bulin
- Univ. Grenoble Alpes, INSERM U1209, Institute for Advanced Biosciences CNRS UMR5309, Grenoble 38000, France
| | - Akos Banyasz
- Laboratoire de Chimie École Normale Supérieure de Lyon ENS, CNRS, UCBL UMR 5182, 46 Allée d'Italie, Lyon 69364, France
| | - Jean-Luc Coll
- Univ. Grenoble Alpes, INSERM U1209, Institute for Advanced Biosciences CNRS UMR5309, Grenoble 38000, France
| | | | - Amandine Hurbin
- Univ. Grenoble Alpes, INSERM U1209, Institute for Advanced Biosciences CNRS UMR5309, Grenoble 38000, France
| | | |
Collapse
|
2
|
Hu Y, Gao T, Wang X, Zhang Q, Wang S, Liu P, Guan L. Effect of glucose-insulin-potassium on lactate levels at the end of surgery in patients undergoing cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy: study protocol for a randomized controlled trial. Trials 2024; 25:708. [PMID: 39438970 PMCID: PMC11515742 DOI: 10.1186/s13063-024-08161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/07/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION Cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (CRS/HIPEC) has been established as an effective treatment for peritoneal cancer (PC). However, this kind of combination therapy is associated with a high lactate level. Moreover, studies have suggested that the rate of complications early after surgery directly increased with elevated lactate levels. Glucose-insulin-potassium (GIP), a potent cardioprotective intervention, has been demonstrated to adjust blood glucose (BG) levels and reduce lactate levels. However, the insulin-glucose ratio should be adjusted according to the surgery performed. Here, we aimed to evaluate the advantages of using modified GIP during CRS/HIPEC to reduce the lactate level at the end of surgery and further reduce the incidence of early postoperative complications. METHODS AND ANALYSIS The modified GIP versus conventional management during surgery study is a single-center, randomized, single-blinded outcome assessment clinical trial of 80 patients with PC who are between 18 and 64 years old and undergoing CRS/HIPEC. Participants will be randomly allocated to receive modified GIP or conventional treatment (1:1). The primary outcome will be the plasma lactate level at the end of surgery. The secondary outcomes will include the highest levels and fluctuation ranges of lactate and BG during surgery, extubation time, APACHE-II score 24 h after surgery, postoperative defecation and exhaust time, postoperative lactate clearance time, postoperative liver and kidney function, incidence of complications within 7 days after surgery, length of intensive care unit stay (LIS), length of hospital stay (LHS), and total cost of hospitalization. ETHICS AND DISSEMINATION The trial protocol was approved by the Scientific Research Ethics Committee of Beijing Shijitan Hospital Affiliated with Capital Medical University, approval number sjtky11-1x-2022(118). The results will be published in international peer-reviewed journals. TRIAL REGISTRATION ChiCTR2200057258. Registered on March 5, 2022.
Collapse
Affiliation(s)
- Yanting Hu
- Department of Anaesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Teng Gao
- Department of Anaesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Peking University Health Science Center, Beijing, China
| | | | - Qing Zhang
- Department of Anaesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Shaoheng Wang
- Department of Anaesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Pengfei Liu
- Department of Anaesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Lei Guan
- Department of Anaesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
3
|
Yu R, Hang Y, Tsai HI, Wang D, Zhu H. Iron metabolism: backfire of cancer cell stemness and therapeutic modalities. Cancer Cell Int 2024; 24:157. [PMID: 38704599 PMCID: PMC11070091 DOI: 10.1186/s12935-024-03329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Cancer stem cells (CSCs), with their ability of self-renewal, unlimited proliferation, and multi-directional differentiation, contribute to tumorigenesis, metastasis, recurrence, and resistance to conventional therapy and immunotherapy. Eliminating CSCs has long been thought to prevent tumorigenesis. Although known to negatively impact tumor prognosis, research revealed the unexpected role of iron metabolism as a key regulator of CSCs. This review explores recent advances in iron metabolism in CSCs, conventional cancer therapies targeting iron biochemistry, therapeutic resistance in these cells, and potential treatment options that could overcome them. These findings provide important insights into therapeutic modalities against intractable cancers.
Collapse
Affiliation(s)
- Rong Yu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - Yinhui Hang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China.
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Dongqing Wang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China.
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China.
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
4
|
Yurttas C, Horvath P, Fischer I, Wagner S, Thiel K, Ladurner R, Königsrainer I, Königsrainer A, Schwab M, Beckert S, Löffler MW. Fluorescence-Guided Laparoscopy after Oral Hypericin Administration for Staging of Locally Advanced Gastric Cancer-A Pilot Study. J Clin Med 2024; 13:2422. [PMID: 38673695 PMCID: PMC11050884 DOI: 10.3390/jcm13082422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Laparoscopic staging is essential in gastric cancer (GC) to rule out peritoneal metastasis (PM). Hypericin, a plant-derived fluorescent compound, has been suggested to improve laparoscopic visualization of PM from GC. This prospective, single-arm, open-label clinical trial aimed to assess the feasibility and safety of oral hypericin administration as well as the suitability of fluorescence-guided laparoscopy (FGL) for improving the sensitivity and specificity of staging in GC patients (EudraCT-Number: 2015-005277-21; clinicaltrials.gov identifier: NCT-02840331). (2) Methods: GC patients received Laif® 900, an approved hypericin-containing phytopharmaceutical, once orally two to four hours before white light and ultraviolet light laparoscopy. The peritoneal cancer index was evaluated, biopsies taken and hypericin concentrations in serum and peritoneal tissue were determined by mass spectrometry. (3) Results: Between 2017 and 2021, out of 63 patients screened for eligibility, 50 patients were enrolled and treated per protocol. The study intervention was shown to be feasible and safe in all patients. Standard laparoscopy revealed suspicious lesions in 27 patients (54%), among whom 16 (59%) were diagnosed with PM. FGL identified suspicious areas in 25 patients (50%), among whom PM was confirmed in 13 cases (52%). Although hypericin concentrations in serum reached up to 5.64 ng/mL, no hypericin was detectable in peritoneal tissue biopsies. (4) Conclusions: FGL in patients with GC was shown to be feasible but futile in this study. Sufficient levels of hypericin should be ensured in target tissue prior to reassessing FGL with hypericin.
Collapse
Affiliation(s)
- Can Yurttas
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Philipp Horvath
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Department of General, Visceral and Thoracic Surgery, Landeskrankenhaus Feldkirch, Carinagasse 47, 6807 Feldkirch, Austria
| | - Imma Fischer
- Institute for Clinical Epidemiology and Applied Biometry, University Hospital Tübingen, Silcherstr. 5, 72076 Tübingen, Germany
| | - Silvia Wagner
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Karolin Thiel
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Department of General, Visceral, and Thoracic Surgery, Oberschwabenklinik, St. Elisabethen-Klinikum, Elisabethenstr. 15, 88212 Ravensburg, Germany
| | - Ruth Ladurner
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Ingmar Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Department of General, Visceral and Thoracic Surgery, Landeskrankenhaus Feldkirch, Carinagasse 47, 6807 Feldkirch, Austria
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Matthias Schwab
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076 Tübingen, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, Germany
- Departments of Pharmacy and Biochemistry, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Stefan Beckert
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Department of General and Visceral Surgery, Schwarzwald-Baar Klinikum, Klinikstr. 11, 78052 Villingen-Schwenningen, Germany
| | - Markus W. Löffler
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076 Tübingen, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Institute for Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Wei GX, Zhou YW, Li ZP, Qiu M. Application of artificial intelligence in the diagnosis, treatment, and recurrence prediction of peritoneal carcinomatosis. Heliyon 2024; 10:e29249. [PMID: 38601686 PMCID: PMC11004411 DOI: 10.1016/j.heliyon.2024.e29249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Peritoneal carcinomatosis (PC) is a type of secondary cancer which is not sensitive to conventional intravenous chemotherapy. Treatment strategies for PC are usually palliative rather than curative. Recently, artificial intelligence (AI) has been widely used in the medical field, making the early diagnosis, individualized treatment, and accurate prognostic evaluation of various cancers, including mediastinal malignancies, colorectal cancer, lung cancer more feasible. As a branch of computer science, AI specializes in image recognition, speech recognition, automatic large-scale data extraction and output. AI technologies have also made breakthrough progress in the field of peritoneal carcinomatosis (PC) based on its powerful learning capacity and efficient computational power. AI has been successfully applied in various approaches in PC diagnosis, including imaging, blood tests, proteomics, and pathological diagnosis. Due to the automatic extraction function of the convolutional neural network and the learning model based on machine learning algorithms, AI-assisted diagnosis types are associated with a higher accuracy rate compared to conventional diagnosis methods. In addition, AI is also used in the treatment of peritoneal cancer, including surgical resection, intraperitoneal chemotherapy, systemic chemotherapy, which significantly improves the survival of patients with PC. In particular, the recurrence prediction and emotion evaluation of PC patients are also combined with AI technology, further improving the quality of life of patients. Here we have comprehensively reviewed and summarized the latest developments in the application of AI in PC, helping oncologists to comprehensively diagnose PC and provide more precise treatment strategies for patients with PC.
Collapse
Affiliation(s)
- Gui-Xia Wei
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yu-Wen Zhou
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zhi-Ping Li
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Meng Qiu
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Yao Y, Wu T, Pan L, Yan S, Yu S, Chen S. The evaluation of four nano-formulations loaded-Elsinochrome A on characteristics and in vitro cytotoxicity effect. J Biomater Appl 2024; 38:834-847. [PMID: 38154025 DOI: 10.1177/08853282231225559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Elsinochrome A (EA) is a naturally occurring photosensitizer with potential applications in photodynamic therapy (PDT) for various malignancies. Despite its promising therapeutic properties, the poor solubility of EA hampers its effective utilization in clinical settings. To circumvent this limitation, we engineered four distinct nano-formulations: PLGA/EA nanoparticles (NPs), CMC-PLGA/EA NPs, mPEG-PCL/EA nanomicelles (NMs), and LHP-CHOL/EA nanoliposomes (NLs), all designed to enhance the solubility of EA. A comparative evaluation of these formulations, based on metrics such as particle size, Zeta potential, drug loading efficiency, and encapsulation efficiency, identified PLGA/EA NPs and mPEG-PCL/EA NMs as the most efficacious candidates. Subsequent in vitro investigations into the drug release kinetics under varying pH conditions and the impact on cell viability and apoptosis in A549 and MCF-7 cell lines were conducted. Remarkably, the maximum drug release for PLGA/EA NPs and mPEG-PCL/EA NMs was recorded at 62.5% and 70.8% in an acidic environment (pH 5.7), respectively. Upon exposure to 460 nm light, PLGA/EA NPs induced a significant reduction in A549 cell viability to 13.8% and an apoptosis rate of 93.8%, whereas mPEG-PCL/EA NMs elicited a decrease in MCF-7 cell viability to 12.8% and an apoptosis rate of 73.0%.
Collapse
Affiliation(s)
- Yuanyuan Yao
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Tianlong Wu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lili Pan
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuzhen Yan
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuqin Yu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuanglin Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
7
|
Olszowy M, Nowak-Perlak M, Woźniak M. Current Strategies in Photodynamic Therapy (PDT) and Photodynamic Diagnostics (PDD) and the Future Potential of Nanotechnology in Cancer Treatment. Pharmaceutics 2023; 15:1712. [PMID: 37376160 DOI: 10.3390/pharmaceutics15061712] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Photodynamic diagnostics (PDD) and photodynamic therapy (PDT) are well-established medical technologies used for the diagnosis and treatment of malignant neoplasms. They rely on the use of photosensitizers, light and oxygen to visualize or eliminate cancer cells. This review demonstrates the recent advancements in these modalities with the use of nanotechnology, including quantum dots as innovative photosensitizers or energy donors, liposomes and micelles. Additionally, this literature review explores the combination of PDT with radiotherapy, chemotherapy, immunotherapy, and surgery for treating various neoplasms. The article also focuses on the latest achievements in PDD and PDT enhancements, which seem to be very promising in the field of oncology.
Collapse
Affiliation(s)
- Marta Olszowy
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Martyna Nowak-Perlak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
8
|
Guo H, Xu W, Nomoto T, Kanamori K, Voon YM, Honda Y, Yamada N, Takemoto H, Matsui M, Nishiyama N. Polymeric ligands comprising sulfur-containing amino acids for targeting tumor-associated amino acid transporters. Biomaterials 2023; 293:121987. [PMID: 36584445 DOI: 10.1016/j.biomaterials.2022.121987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Various cancer cells overexpress L-type amino acid transporter 1 (LAT1) to take up a large number of neutral amino acids such as phenylalanine and methionine, and LAT1 transporter should be a promising target for cancer diagnosis and therapy. However, only a few studies reported drug delivery systems targeting LAT1 probably due to limited knowledge about the interaction between LAT1 and its substrate. Here, we developed polymers having methionine (Met)- or cysteine (Cys)-like structures on their side chains to examine their affinity with LAT1. While both the Met- and Cys-modified polymers exhibited efficient cellular uptake selectively in cancer cells, the Met-modified polymers exhibited higher cellular uptake efficiency in an LAT1-selective manner than the Cys-modified polymers. In the in vivo study, the intraperitoneally injected Met-modified polymers showed appreciable tumor-selective accumulation in the peritoneal dissemination model, and importantly, Met-modified polymers conjugated with photosensitizers exhibited significant therapeutic effects upon photoirradiation with reduced photochemical damage to normal organs. Our results may provide important knowledge about the polymer-LAT1 interaction, and the Met-modified polymers should offer a new concept for designing LAT1-targeting drug delivery systems.
Collapse
Affiliation(s)
- Haochen Guo
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Wen Xu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Takahiro Nomoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
| | - Kaito Kanamori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Yan Ming Voon
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Yuto Honda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Naoki Yamada
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Hiroyasu Takemoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Makoto Matsui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan; Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.
| |
Collapse
|
9
|
Kose S. Role of Computed Tomography in the Evaluation of Peritoneal Carcinomatosis. J Belg Soc Radiol 2023; 107:27. [PMID: 37064170 PMCID: PMC10103720 DOI: 10.5334/jbsr.2921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/23/2023] [Indexed: 04/18/2023] Open
Abstract
Peritoneal carcinomatosis (PC) refers to metastatic spread of tumor into the peritoneal cavity. Earlier, PC was thought to be associated with grave clinical outcome. However, various advances in treatment options including cytoreductive surgery and heated intraperitoneal chemotherapy or early post-operative chemotherapy can prolong survival of patients with peritoneal carcinomatosis. These treatment options are associated with high morbidity and mortality. The purpose of this article is to acquaint the radiologist about various appearances of peritoneal carcinomatosis in order to help clinicians in selecting candidates for surgery and avoid unnecessary potentially debilitating surgeries in patients with unresectable PC.
Collapse
Affiliation(s)
- Snehal Kose
- All India Institute of Medical Sciences, New Delhi, IN
| |
Collapse
|
10
|
Wang H, Ewetse MP, Ma C, Pu W, Xu B, He P, Wang Y, Zhu J, Chen H. The "Light Knife" for Gastric Cancer: Photodynamic Therapy. Pharmaceutics 2022; 15:pharmaceutics15010101. [PMID: 36678730 PMCID: PMC9860630 DOI: 10.3390/pharmaceutics15010101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Photodynamic therapy (PDT) has been used clinically to treat cancer for more than 40 years. Some solid tumors, including esophageal cancer, lung cancer, head and neck cancer, cholangiocarcinoma, and bladder cancer, have been approved for and managed with PDT in many countries globally. Notably, PDT for gastric cancer (GC) has been reported less and is not currently included in the clinical diagnosis and treatment guidelines. However, PDT is a potential new therapeutic modality used for the management of GC, and its outcomes and realization are more and more encouraging. PDT has a pernicious effect on tumors at the irradiation site and can play a role in rapid tumor shrinkage when GC is combined with cardiac and pyloric obstruction. Furthermore, because of its ability to activate the immune system, it still has a specific effect on systemic metastatic lesions, and the adverse reactions are mild. In this Review, we provide an overview of the current application progress of PDT for GC; systematically elaborate on its principle, mechanism, and the application of a new photosensitizer in GC; and focus on the efficacy of PDT in GC and the prospect of combined use with other therapeutic methods to provide a theoretical basis for clinical application.
Collapse
Affiliation(s)
- Haiyun Wang
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | | | - Chenhui Ma
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Weigao Pu
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Bo Xu
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Puyi He
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Yunpeng Wang
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Jingyu Zhu
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Hao Chen
- Department of Oncology Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumor, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Correspondence: ; Tel.: +86-0931-5190550
| |
Collapse
|
11
|
Effect of Photodynamic Therapy with Chlorin e6 on Canine Tumors. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122102. [PMID: 36556469 PMCID: PMC9782963 DOI: 10.3390/life12122102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
This work aims to prepare pure Chlorin e6 (Ce6) and establish Ce6-mediated photodynamic therapy (Ce6-PDT) as a better therapy option for canine tumors as well as mouse tumor models. Five dogs suffering from various cancers were treated with Ce6-PDT from one to several times. After receiving the Ce6 (2.5 mg/kg) for 3 h, tumors were illuminated superficially or interstitially with 660 nm light. Two dogs underwent Ce6-guided fluorescence imaging by photodynamic diagnosis (PDD). Cell proliferation and apoptosis were detected by the 4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and western blot assay, respectively. Ce6-PDT efficacy was also determined using melanoma and pancreatic cancer mouse models. Two veterinary patients with mammary carcinoma and histiocytic sarcoma had their tumors significantly diminished and showed improved health after receiving Ce6-PDT. Moreover, in the cases of canine tumors, the adjunctive use of Ce6-PDD revealed cancers that were not visible with white light viewing and provided a visual contrast from surrounding tissues. Also, in vivo, Ce6-PDT remarkably reduced melanoma and pancreatic tumors in the mouse model. These findings could pave the way for a better understanding of the underlying processes of Ce6-PDT, making it an effective and safe candidate for use in human and veterinary applications to abolish various cancers.
Collapse
|
12
|
Carigga Gutierrez NM, Pujol-Solé N, Arifi Q, Coll JL, le Clainche T, Broekgaarden M. Increasing cancer permeability by photodynamic priming: from microenvironment to mechanotransduction signaling. Cancer Metastasis Rev 2022; 41:899-934. [PMID: 36155874 DOI: 10.1007/s10555-022-10064-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
The dense cancer microenvironment is a significant barrier that limits the penetration of anticancer agents, thereby restraining the efficacy of molecular and nanoscale cancer therapeutics. Developing new strategies to enhance the permeability of cancer tissues is of major interest to overcome treatment resistance. Nonetheless, early strategies based on small molecule inhibitors or matrix-degrading enzymes have led to disappointing clinical outcomes by causing increased chemotherapy toxicity and promoting disease progression. In recent years, photodynamic therapy (PDT) has emerged as a novel approach to increase the permeability of cancer tissues. By producing excessive amounts of reactive oxygen species selectively in the cancer microenvironment, PDT increases the accumulation, penetration depth, and efficacy of chemotherapeutics. Importantly, the increased cancer permeability has not been associated to increased metastasis formation. In this review, we provide novel insights into the mechanisms by which this effect, called photodynamic priming, can increase cancer permeability without promoting cell migration and dissemination. This review demonstrates that PDT oxidizes and degrades extracellular matrix proteins, reduces the capacity of cancer cells to adhere to the altered matrix, and interferes with mechanotransduction pathways that promote cancer cell migration and differentiation. Significant knowledge gaps are identified regarding the involvement of critical signaling pathways, and to which extent these events are influenced by the complicated PDT dosimetry. Addressing these knowledge gaps will be vital to further develop PDT as an adjuvant approach to improve cancer permeability, demonstrate the safety and efficacy of this priming approach, and render more cancer patients eligible to receive life-extending treatments.
Collapse
Affiliation(s)
| | - Núria Pujol-Solé
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Qendresa Arifi
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Jean-Luc Coll
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Tristan le Clainche
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| | - Mans Broekgaarden
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| |
Collapse
|
13
|
Josserand V, Bernard C, Michy T, Guidetti M, Vollaire J, Coll JL, Hurbin A. Tumor-Specific Imaging with Angiostamp800 or Bevacizumab-IRDye 800CW Improves Fluorescence-Guided Surgery over Indocyanine Green in Peritoneal Carcinomatosis. Biomedicines 2022; 10:biomedicines10051059. [PMID: 35625796 PMCID: PMC9138305 DOI: 10.3390/biomedicines10051059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Complete surgical removal of lesions improves survival of peritoneal carcinomatosis and can be enhanced by intraoperative near-infrared fluorescence imaging. Indocyanine green (ICG) is the only near-infrared fluorescent dye approved for clinical use, but it lacks specificity for tumor cells, highlighting the need for tumor-selective targeting agents. We compared the tumor-specific near-infrared fluorescent probes Bevacizumab-IRDye 800CW and Angiostamp800, which target tumor angiogenesis and cancer cells, to ICG for fluorescence-guided surgery in peritoneal carcinomatosis of ovarian origin. The probes were administered to mice with orthotopic peritoneal carcinomatosis prior to conventional and fluorescence-guided surgery. The influence of neoadjuvant chemotherapy was also assessed. Conventional surgery removed 88.0 ± 1.2% of the total tumor load in mice. Fluorescence-guided surgery allowed the resection of additional nodules, enhancing the total tumor burden resection by 9.8 ± 0.7%, 8.5 ± 0.8%, and 3.9 ± 1.2% with Angiostamp800, Bevacizumab-IRDye 800CW and ICG, respectively. Interestingly, among the resected nodules, 15% were false-positive with ICG, compared to only 1.4% with Angiostamp800 and 3.5% with Bevacizumab-IRDye 800CW. Furthermore, conventional surgery removed only 69.0 ± 3.9% of the total tumor burden after neoadjuvant chemotherapy. Fluorescence-guided surgery with Angiostamp800 and Bevacizumab-IRDye 800CW increased the total tumor burden resection to 88.7 ± 4.3%, whereas ICG did not improve surgery at all. Bevacizumab-IRDye 800CW and Angiostamp800 better detect ovarian tumors and metastases than the clinically used fluorescent tracer ICG, and can help surgeons completely remove tumors, especially after surgery neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Véronique Josserand
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale INSERM U1209, Centre National de la Recherche Scientifique CNRS UMR5309, Université Grenoble Alpes, F-38000 Grenoble, France; (V.J.); (C.B.); (T.M.); (M.G.); (J.V.); (J.-L.C.)
| | - Claire Bernard
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale INSERM U1209, Centre National de la Recherche Scientifique CNRS UMR5309, Université Grenoble Alpes, F-38000 Grenoble, France; (V.J.); (C.B.); (T.M.); (M.G.); (J.V.); (J.-L.C.)
- Centre Hospitalier Universitaire Grenoble Alpes, Université Grenoble Alpes, F-38000 Grenoble, France
| | - Thierry Michy
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale INSERM U1209, Centre National de la Recherche Scientifique CNRS UMR5309, Université Grenoble Alpes, F-38000 Grenoble, France; (V.J.); (C.B.); (T.M.); (M.G.); (J.V.); (J.-L.C.)
- Centre Hospitalier Universitaire Grenoble Alpes, Université Grenoble Alpes, F-38000 Grenoble, France
| | - Mélanie Guidetti
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale INSERM U1209, Centre National de la Recherche Scientifique CNRS UMR5309, Université Grenoble Alpes, F-38000 Grenoble, France; (V.J.); (C.B.); (T.M.); (M.G.); (J.V.); (J.-L.C.)
| | - Julien Vollaire
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale INSERM U1209, Centre National de la Recherche Scientifique CNRS UMR5309, Université Grenoble Alpes, F-38000 Grenoble, France; (V.J.); (C.B.); (T.M.); (M.G.); (J.V.); (J.-L.C.)
| | - Jean-Luc Coll
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale INSERM U1209, Centre National de la Recherche Scientifique CNRS UMR5309, Université Grenoble Alpes, F-38000 Grenoble, France; (V.J.); (C.B.); (T.M.); (M.G.); (J.V.); (J.-L.C.)
| | - Amandine Hurbin
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale INSERM U1209, Centre National de la Recherche Scientifique CNRS UMR5309, Université Grenoble Alpes, F-38000 Grenoble, France; (V.J.); (C.B.); (T.M.); (M.G.); (J.V.); (J.-L.C.)
- Correspondence:
| |
Collapse
|
14
|
Bortot B, Apollonio M, Baj G, Andolfi L, Zupin L, Crovella S, di Giosia M, Cantelli A, Saporetti R, Ulfo L, Petrosino A, Di Lorenzo G, Romano F, Ricci G, Mongiat M, Danielli A, Calvaresi M, Biffi S. Advanced photodynamic therapy with an engineered M13 phage targeting EGFR: Mitochondrial localization and autophagy induction in ovarian cancer cell lines. Free Radic Biol Med 2022; 179:242-251. [PMID: 34808331 DOI: 10.1016/j.freeradbiomed.2021.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 01/02/2023]
Abstract
Photodynamic therapy (PDT) is a potential synergistic approach to chemotherapy for treating ovarian cancer, the most lethal gynecologic malignancy. Here we used M13 bacteriophage as a targeted vector for the efficient photodynamic killing of SKOV3 and COV362 cells. The M13 phage was refactored (M13r) to display an EGFR binding peptide in its tip that is frequently overexpressed in ovarian cancer. The refactored phage was conjugated with chlorin e6 (Ce6), one of the most widely used photosensitizers (M13r-Ce6). The new platform, upon irradiation, generated ROS by type I mechanism and showed activity in killing SKOV3 and COV362 cells even at concentrations in which Ce6 alone was ineffective. A microscopy analysis demonstrated an enhanced cellular uptake of M13r-Ce6 compared to free Ce6 and its mitochondrial localization. Western blot analysis revealed significant downregulation in the expression of EGFR in cells exposed to M13r-Ce6 after PDT. Following PDT treatment, autophagy induction was supported by an increased expression of LC3II, along with a raised autophagic fluorescent signal, as observed by fluorescence microscopy analysis for autophagosome visualization. As a conclusion we have herein proposed a bacteriophage-based receptor targeted photodynamic therapy for EGFR-positive ovarian cancer.
Collapse
Affiliation(s)
- Barbara Bortot
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Maura Apollonio
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Gabriele Baj
- BRAIN Center for Neuroscience, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Laura Andolfi
- Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali IOM-CNR, Trieste, Italy
| | - Luisa Zupin
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Sergio Crovella
- Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha, Qatar
| | - Matteo di Giosia
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Andrea Cantelli
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Roberto Saporetti
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Annapaola Petrosino
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Giovanni Di Lorenzo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Federico Romano
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, Bologna, Italy.
| | - Stefania Biffi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.
| |
Collapse
|
15
|
Double-PEGylated Cyclopeptidic Photosensitizer Prodrug Improves Drug Uptake from In Vitro to Hen's Egg Chorioallantoic Membrane Model. Molecules 2021; 26:molecules26206241. [PMID: 34684822 PMCID: PMC8540087 DOI: 10.3390/molecules26206241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
Cyclopeptidic photosensitizer prodrugs (cPPPs) are compounds designed to specifically target overexpressed hydrolases such as serine proteases, resulting in their specific activation in close proximity to tumor cells. In this study, we explored a series of conjugates that can be selectively activated by the urokinase plasminogen activator (uPA). They differ from each other by their pheophorbide a (Pha) loading, their number of PEG chains and the eventual presence of black hole quenchers (BHQ3). The involvement of a peptidic linker between the drugs and the cyclopeptidic carrier allows specific cleavage by uPA. Restoration of the photophysical activity was observed in vitro on A549 lung and MCF7 breast cancer cells that exhibited an increase in red fluorescence emission up to 5.1-fold and 7.8-fold, respectively for uPA-cPPQ2+2/5. While these cPPP conjugates do not show dark toxicity, they revealed their phototoxic potential in both cell lines at 5 µM of Phaeq and a blue light fluence of 12.7 J/cm2 that resulted in complete cell death with almost all conjugates. This suggests, in addition to the promising use for cancer diagnosis, a use as a PDT agent. Intravenous injection of tetrasubstituted conjugates in fertilized hen eggs bearing a lung cancer nodule (A549) showed that a double PEGylation was favorable for the selective accumulation of the unquenched Pha moieties in the tumor nodules. Indeed, the diPEGylated uPA-cPPP4/52 induced a 5.2-fold increase in fluorescence, while the monoPEGylated uPA-cPPP4/5 or uPA-cPPQ2+2/5 led to a 0.4-fold increase only.
Collapse
|
16
|
Simelane NWN, Kruger CA, Abrahamse H. Targeted Nanoparticle Photodynamic Diagnosis and Therapy of Colorectal Cancer. Int J Mol Sci 2021; 22:9779. [PMID: 34575942 PMCID: PMC8466279 DOI: 10.3390/ijms22189779] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is an aggressive cancer that remains a challenge to diagnose and treat. Photodynamic diagnosis (PDD) and therapy (PDT) are novel alternative techniques, which can enhance early diagnosis, as well as elicit tumor cell death. This is accomplished through photosensitizer (PS) mediated fluorescence and cytotoxic reactive oxygen species activation upon laser light irradiation excitation at specific low and high range wavelengths, respectively. However, the lack of PS target tumor tissue specificity often hampers these techniques. This study successfully fabricated a bioactive nanoconjugate, ZnPcS4-AuNP-S-PEG5000-NH2-Anti-GCC mAb (BNC), based upon a polyethylene glycol-gold nanoparticle, which was multi-functionalized with a fluorescent PDT metalated zinc phthalocyanine PS, and specific anti-GCC targeting antibodies, to overcome CRC PDD and PDT challenges. The BNC was found to be stable and showed selectively improved subcellular accumulation within targeted CRC for improved PDD and PDT outcomes in comparison to healthy in vitro cultured cells. Additionally, the BNC reported significantly higher late apoptotic PDT-induced CRC cell death rates (34% ***) when compared to PDT PS administration alone (15% *). These results indicated that the improved PDD and PDT outcomes were due to the specific PS accumulation in CRC cells through nanoparticle carriage and bioactive anti-GCC targeting.
Collapse
Affiliation(s)
| | - Cherie Ann Kruger
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa; (N.W.N.S.); (H.A.)
| | | |
Collapse
|
17
|
Ma CH, Yang J, Mueller JL, Huang HC. Intratumoral Photosensitizer Delivery and Photodynamic Therapy. ACTA ACUST UNITED AC 2021; 11. [PMID: 34484435 DOI: 10.1142/s179398442130003x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Photodynamic therapy (PDT) is a two-step procedure that involves the administration of special drugs, commonly called photosensitizers, followed by the application of certain wavelengths of light. The light activates these photosensitizers to produce reactive molecular species that induce cell death in tissues. There are numerous factors to consider when selecting the appropriate photosensitizer administration route, such as which part of the body is being targeted, the pharmacokinetics of photosensitizers, and the formulation of photosensitizers. While intravenous, topical, and oral administration of photosensitizers are widely used in preclinical and clinical applications of PDT, other administration routes, such as intraperitoneal, intra-arterial, and intratumoral injections, are gaining traction for their potential in treating advanced diseases and reducing off-target toxicities. With recent advances in targeted nanotechnology, biomaterials, and light delivery systems, the exciting possibilities of targeted photosensitizer delivery can be fully realized for preclinical and clinical applications. Further, in light of the growing burden of cancer mortality in low and middle-income countries and development of low-cost light sources and photosensitizers, PDT could be used to treat cancer patients in low-income settings. This short article introduces aspects of interfaces of intratumoral photosensitizer injections and nano-biomaterials for PDT applications in both high-income and low-income settings but does not present a comprehensive review due to space limitations.
Collapse
Affiliation(s)
- Chen-Hua Ma
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jeffrey Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jenna L Mueller
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
18
|
Alectinib treatment improves photodynamic therapy in cancer cell lines of different origin. BMC Cancer 2021; 21:971. [PMID: 34461853 PMCID: PMC8404354 DOI: 10.1186/s12885-021-08667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Photodynamic therapy with a photosensitizer such as protoporphyrin-IX, a light sensitive metabolite of heme synthesis, is a highly selective treatment for various carcinomas. In previous studies, we found a significant down regulation of the relevant enzyme ferrochelatase in gastrointestinal carcinomas leading to an accumulation of protoporphyrin-IX within the tumor cells. Recent studies showed that a novel anti-cancer drug, Alectinib, an orally available, highly selective, potent second-generation inhibitor of anaplastic lymphoma tyrosinkinase binds to ferrochelatase. Therefore, we were interested to see whether Alectinib treatment might lead to an accumulation of protoporphyrin IX. Methods Tumor cells of different origin were cultured, treated with LED-light and Alectinib. Results were gained by flow cytometry, immunohistochemistry and western blotting. Apoptosis was determined by flow cytometric analysis of Annexin V-FITC stained cells. In addition, cells were counterstained with propidium iodide to distinguish early apoptotic cells and late apoptotic/necrotic cells. Results Here, we report that photodynamic treatment of tumor cell lines of different origin in combination with Alectinib increased protoporphyrin-IX specific fluorescence and concomitantly cell death. Conclusions The usage of Alectinib could be another step for enhancing the effectiveness of photodynamic therapy. Further experiments will show whether photodynamic therapy in combination with Alectinib could be a new strategy for the treatment of e.g. peritoneal disseminated carcinomas. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08667-x.
Collapse
|
19
|
Enhanced Stability of Indocyanine Green by Encapsulation in Zein-Phosphatidylcholine Hybrid Nanoparticles for Use in the Phototherapy of Cancer. Pharmaceutics 2021; 13:pharmaceutics13030305. [PMID: 33652884 PMCID: PMC7996753 DOI: 10.3390/pharmaceutics13030305] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 01/10/2023] Open
Abstract
Indocyanine green (ICG) is a clinically approved near-infrared dye that has shown promise as a photosensitizer for the phototherapy of cancer. However, its chemical instability in an aqueous solution has limited its clinical application. Encapsulating ICG in liposomes, phosphatidylcholine nanoparticles (PC-NP), has shown partial effectiveness in stabilizing it. Prompted by our recent finding that the zein-phosphatidylcholine hybrid nanoparticles (Z/PC-NP) provide an advanced drug carrier compared to PC-NP, we herein investigated the potential of Z/PC-NP as an improved ICG formulation. Dynamic light scattering analysis, transmission electron microscopy, and Fourier-transform infrared spectroscopy studies showed that ICG was encapsulated in Z/PC-NP without hampering the high colloidal stability of the Z/PC-NP. During storage, the Z/PC-NP almost completely inhibited the ICG aggregation, whereas the PC-NP did so partially. The Z/PC-NP also more effectively blocked the ICG degradation compared to the PC-NP. The phototoxicity of ICG encapsulated in Z/PC-NP on cancer cells was twofold higher than that in the PC-NP. The ICG encapsulated in Z/PC-NP, but not in PC-NP, maintained its photocytotoxicity after four-day storage. These findings highlight the promising potential of Z/PC-NP as an ICG formulation that provides a higher stabilization effect than PC-NP.
Collapse
|