1
|
Nousiainen R, Eloranta K, Saarela J, Hassinen A, Luck TJ, Cairo S, Indersie E, Potdar S, Feodoroff MJ, Lohi J, Paavolainen L, Wilson DB, Pietiäinen V, Heikinheimo M, Pihlajoki M. Functional screening identifies kinesin spindle protein inhibitor filanesib as a potential treatment option for hepatoblastoma. NPJ Precis Oncol 2025; 9:122. [PMID: 40281281 PMCID: PMC12032252 DOI: 10.1038/s41698-025-00915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Hepatoblastoma is a rare pediatric liver malignancy usually treated with surgery and chemotherapy. To explore new treatment options for hepatoblastoma, drug screening was performed using six cell models established from aggressive hepatoblastoma tumors and healthy pediatric primary hepatocytes. Of the 527 screened compounds, 98 demonstrated cancer-selective activity in at least one hepatoblastoma model. The kinesin spindle protein (KSP) inhibitor filanesib was effective in all models and was further evaluated. Filanesib induced G2/M arrest and apoptosis in hepatoblastoma cells at concentrations tolerable to primary hepatocytes. Prominent nuclear fragmentation was observed in filanesib-treated hepatoblastoma cells. Genes participating in cell cycle regulation were noted to be differentially expressed after filanesib treatment. Filanesib reduced the rate of tumor growth in 4/5 hepatoblastoma mice models. One of these models showed complete growth arrest. Our results suggest that filanesib is a potential candidate for hepatoblastoma treatment and should be investigated in future clinical trials.
Collapse
Affiliation(s)
- Ruth Nousiainen
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Katja Eloranta
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Antti Hassinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Tamara J Luck
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Stefano Cairo
- XenTech, Evry, France
- Champions Oncology, Hackensack, NJ, USA
- Istituto di Ricerca Pediatrica, Padova, Italy
| | | | - Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Michaela J Feodoroff
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Jouko Lohi
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lassi Paavolainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - David B Wilson
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Vilja Pietiäinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Markku Heikinheimo
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
| | - Marjut Pihlajoki
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
2
|
Zou RQ, Dai YS, Liu F, Yang SQ, Hu HJ, Li FY. Hepatobiliary organoid research: the progress and applications. Front Pharmacol 2025; 16:1473863. [PMID: 40008122 PMCID: PMC11850396 DOI: 10.3389/fphar.2025.1473863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Organoid culture has emerged as a forefront technology in the life sciences field. As "in vitro micro-organs", organoids can faithfully recapitulate the organogenesis process, and conserve the key structure, physiological function and pathological state of the original tissue or organ. Consequently, it is widely used in basic and clinical studies, becoming important preclinical models for studying diseases and developing therapies. Here, we introduced the definition and advantages of organoids and described the development and advances in hepatobiliary organoids research. We focus on applying hepatobiliary organoids in benign and malignant diseases of the liver and biliary tract, drug research, and regenerative medicine to provide valuable reference information for the application of hepatobiliary organoids. Despite advances in research and treatment, hepatobiliary diseases including carcinoma, viral hepatitis, fatty liver and bile duct defects have still been conundrums of the hepatobiliary field. It is necessary and crucial to study disease mechanisms, establish efficient and accurate research models and find effective treatment strategies. The organoid culture technology shed new light on solving these issues. However, the technology is not yet mature, and many hurdles still exist that need to be overcome. The combination with new technologies such as CRISPR-HOT, organ-on-a-chip may inject new vitality into future development.
Collapse
Affiliation(s)
- Rui-Qi Zou
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Shi Dai
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Liu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Si-Qi Yang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai-Jie Hu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fu-Yu Li
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Requena D, Medico JA, Soto-Ugaldi LF, Shirani M, Saltsman JA, Torbenson MS, Coffino P, Simon SM. Liver cancer multiomics reveals diverse protein kinase A disruptions convergently produce fibrolamellar hepatocellular carcinoma. Nat Commun 2024; 15:10887. [PMID: 39738196 PMCID: PMC11685927 DOI: 10.1038/s41467-024-55238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis. RNA-seq data of 1412 liver tumors from FLC, hepatocellular carcinoma, hepatoblastoma and intrahepatic cholangiocarcinoma are analyzed, obtaining transcriptomic signatures unrestricted by experimental processing methods. These signatures reveal which dysregulations are unique to specific tumors and which are common to all liver cancers. Moreover, the transcriptomic FLC signature identifies a unifying phenotype for all FLC tumors regardless of how PKA was activated. We study this signature at multi-omics and single-cell levels in the first spatial transcriptomic characterization of FLC, identifying the contribution of tumor, normal, stromal, and infiltrating immune cells. Additionally, we study FLC metastases, finding small differences from the primary tumors.
Collapse
Affiliation(s)
- David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Jack A Medico
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Luis F Soto-Ugaldi
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Mahsa Shirani
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - James A Saltsman
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | | | - Philip Coffino
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
4
|
Qureshi AA, Wehrle CJ, Ferreira-Gonzalez S, Jiao C, Hong H, Dadgar N, Arpi-Palacios J, Phong YP, Kim J, Sun K, Hashimoto K, Kwon DCH, Miller C, Leipzig N, Ma WW, Melenhorst J, Aucejo F, Schlegel A. Tumor organoids for primary liver cancers: A systematic review of current applications in diagnostics, disease modeling, and drug screening. JHEP Rep 2024; 6:101164. [PMID: 39583095 PMCID: PMC11584567 DOI: 10.1016/j.jhepr.2024.101164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 11/26/2024] Open
Abstract
Background & Aims Liver cancer-related deaths are projected to exceed one million annually by 2030. Existing therapies have significant limitations, including severe side effects and inconsistent efficacy. Innovative therapeutic approaches to address primary liver cancer (PLC) have led to the ongoing development of tumor-derived organoids. These are sophisticated three-dimensional structures capable of mimicking native tissue architecture and function in vitro, improving our ability to model in vivo homeostasis and disease. Methods This systematic review consolidates known literature on human and mouse liver organoids across all PLC subtypes, emphasizing diagnostic precision, disease modeling, and drug screening capabilities. Results Across all 39 included studies, organoids were most frequently patient-derived, closely followed by cancer cell line-derived. The literature concentrated on hepatocellular carcinoma and intrahepatic cholangiocarcinoma, while exploration of other subtypes was limited. These studies demonstrate a valuable role for PLC organoid cultures in biomarker discovery, disease modeling, and therapeutic exploration. Conclusions Encouraging advances such as organoid-on-a-chip and co-culturing systems hold promise for advancing treatment regimens for PLC. Standardizing in vitro protocols is crucial to integrate research breakthroughs into practical treatment strategies for PLC. Impact and implications This study provides an overview of the current understanding of tumor-derived organoids in primary liver cancers, emphasizing their potential in diagnostics, disease modeling, and drug screening. The scientific foundation rests on the organoids' ability to replicate the tumor microenvironment and genetic landscape, opening new avenues for personalized therapies. These insights are crucial for both researchers and clinicians, as patient-derived organoids can help identify biomarkers and therapeutic targets. Physicians and policymakers can harness these advances to drive progress in precision medicine, while recognizing the challenges involved in standardizing organoid models for clinical implementation.
Collapse
Affiliation(s)
- Ayesha A. Qureshi
- Nationwide Children's Hospital, Abigail Wexner Research Institute, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | | | - Sofia Ferreira-Gonzalez
- CIR Centre for Inflammation Research, University of Edinburgh, 5 Little France Drive Edinburgh, EH16 4UU, UK
| | - Chunbao Jiao
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hanna Hong
- Transplantation Center, Cleveland Clinic, OH, USA
| | - Neda Dadgar
- Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH, USA
- Translational Hematology & Oncology Research, Cleveland Clinic, Enterprise Cancer Institute, Cleveland, OH, USA
| | - Jorge Arpi-Palacios
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH, USA
| | - Yee Phoon Phong
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH, USA
| | - Jaekeun Kim
- Transplantation Center, Cleveland Clinic, OH, USA
| | - Keyue Sun
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | - Nic Leipzig
- The University of Akron, Department of Chemical, Biomolecular, and Corrosion Engineering, Akron, OH, USA
| | - Wen Wee Ma
- Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH, USA
| | - Jos Melenhorst
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH, USA
| | | | - Andrea Schlegel
- Transplantation Center, Cleveland Clinic, OH, USA
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
5
|
Kluiver TA, Lu Y, Schubert SA, Kraaier LJ, Ringnalda F, Lijnzaad P, DeMartino J, Megchelenbrink WL, Amo-Addae V, Eising S, de Faria FW, Münter D, van de Wetering M, Kerl K, Duiker E, van den Heuvel MC, de Meijer VE, de Kleine RH, Molenaar JJ, Margaritis T, Stunnenberg HG, de Krijger RR, Zsiros J, Clevers H, Peng WC. Divergent WNT signaling and drug sensitivity profiles within hepatoblastoma tumors and organoids. Nat Commun 2024; 15:8576. [PMID: 39567475 PMCID: PMC11579375 DOI: 10.1038/s41467-024-52757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 09/20/2024] [Indexed: 11/22/2024] Open
Abstract
Hepatoblastoma, the most prevalent pediatric liver cancer, almost always carries a WNT-activating CTNNB1 mutation, yet exhibits notable molecular heterogeneity. To characterize this heterogeneity and identify novel targeted therapies, we perform comprehensive analysis of hepatoblastomas and tumor-derived organoids using single-cell RNA-seq/ATAC-seq, spatial transcriptomics, and high-throughput drug profiling. We identify two distinct tumor epithelial signatures: hepatic 'fetal' and WNT-high 'embryonal', displaying divergent WNT signaling patterns. The fetal group is enriched for liver-specific WNT targets, while the embryonal group is enriched in canonical WNT target genes. Gene regulatory network analysis reveals enrichment of regulons related to hepatic functions such as bile acid, lipid and xenobiotic metabolism in the fetal subtype but not in the embryonal subtype. In addition, the dichotomous expression pattern of the transcription factors HNF4A and LEF1 allows for a clear distinction between the fetal and embryonal tumor cells. We also perform high-throughput drug screening using patient-derived tumor organoids and identify sensitivity to HDAC inhibitors. Intriguingly, embryonal and fetal tumor organoids are sensitive to FGFR and EGFR inhibitors, respectively, indicating a dependency on EGF/FGF signaling in hepatoblastoma tumorigenesis. In summary, our data uncover the molecular and drug sensitivity landscapes of hepatoblastoma and pave the way for the development of targeted therapies.
Collapse
Affiliation(s)
- Thomas A Kluiver
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Yuyan Lu
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
- Department of Hepatobiliary Surgery, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen, China
| | - Stephanie A Schubert
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Lianne J Kraaier
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Femke Ringnalda
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Jeff DeMartino
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Wouter L Megchelenbrink
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. De Crecchio 7, Naples, Italy
| | - Vicky Amo-Addae
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Selma Eising
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Flavia W de Faria
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Daniel Münter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Marc van de Wetering
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Evelien Duiker
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marius C van den Heuvel
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ruben H de Kleine
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Thanasis Margaritis
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Hendrik G Stunnenberg
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, the Netherlands
| | - József Zsiros
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, the Netherlands
- Pharma, Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands.
| |
Collapse
|
6
|
He YG, Wang Z, Li J, Xi W, Zhao CY, Huang XB, Zheng L. Pathologic complete response to conversion therapy in hepatocellular carcinoma using patient-derived organoids: A case report. World J Gastrointest Oncol 2024; 16:4506-4513. [PMID: 39554753 PMCID: PMC11551630 DOI: 10.4251/wjgo.v16.i11.4506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND For primary liver cancer, the key to conversion therapy depends on the effectiveness of drug treatment. Patient-derived tumor organoids have been demonstrated to improve the efficacy of conversion therapy by identifying individual-targeted effective drugs, but their clinical effects in liver cancer remain unknown. CASE SUMMARY We described a patient with hepatocellular carcinoma (HCC) who achieved pathologic complete response (pCR) to conversion therapy guided by the patient-derived organoid (PDO) drug sensitivity testing. Despite insufficiency of the remaining liver volume after hepatectomy, the patient obtained tumor reduction after treatment with the PDO-sensitive drugs and successfully underwent radical surgical resection. Postoperatively, pCR was observed. CONCLUSION PDOs contributes to screening sensitive drugs for HCC patients to realize the personalized treatment and improve the conversion therapy efficacy.
Collapse
Affiliation(s)
- Yong-Gang He
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Zheng Wang
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Jing Li
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Wang Xi
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Chong-Yu Zhao
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Xiao-Bing Huang
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Lu Zheng
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| |
Collapse
|
7
|
Luo X, Gong Y, Gong Z, Fan K, Suo T, Liu H, Ni X, Ni X, Abudureyimu M, Liu H. Liver and bile duct organoids and tumoroids. Biomed Pharmacother 2024; 178:117104. [PMID: 39024834 DOI: 10.1016/j.biopha.2024.117104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024] Open
Abstract
Organoids refer to 3D cultures established to recapitulate histology, pathology, architecture, and genetic traits of various organs and tissues in the body, thereby replacing 2D cell cultures, xenograft, and animal models. Organoids form a 3D in vitro mimic of original tissues like the liver and are derived from embryonic or adult tissue stem cells. Liver and bile duct tumor organoids, also called, tumoroids capture genetic diversity, cellular, and pathophysiological properties of original tumors. Moreover, co-culture techniques along with genetic modulation of organoids allow for using tumoroids in liver and bile duct cancer research and drug screening/testing. Therefore, tumoroids are promising platforms for studying liver and bile duct cancer, which paves the way for the new era of personalized therapies. In the current review, we aimed to discuss liver and bile duct organoids with special emphasis on tumoroids and their applications, advantages, and shortcomings.
Collapse
Affiliation(s)
- Xuanming Luo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Yuda Gong
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Zijun Gong
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Kun Fan
- Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Tao Suo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Han Liu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Xiaoling Ni
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Xiaojian Ni
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Miyesaier Abudureyimu
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.
| | - Houbao Liu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Hu X, Wei J, Liu P, Zheng Q, Zhang Y, Zhang Q, Yao J, Ni J. Organoid as a promising tool for primary liver cancer research: a comprehensive review. Cell Biosci 2024; 14:107. [PMID: 39192365 DOI: 10.1186/s13578-024-01287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Primary liver cancer (PLC) is one of the most common malignant gastrointestinal tumors worldwide. Limited by the shortage of liver transplantation donors and the heterogeneity of tumors, patients with liver cancer lack effective treatment options, which leads to rapid progression and metastasis. Currently, preclinical models of PLC fall short of clinical reality and are limited in their response to disease progression and the effectiveness of drug therapy. Organoids are in vitro three-dimensional cultured preclinical models with a high degree of heterogeneity that preserve the histomorphological and genomic features of primary tumors. Liver cancer organoids have been widely used for drug screening, new target discovery, and precision medicine; thus representing a promising tool to study PLC. Here, we summarize the progress of research on liver cancer organoids and their potential application as disease models. This review provides a comprehensive introduction to this emerging technology and offers new ideas for researchers to explore in the field of precision medicine.
Collapse
Affiliation(s)
- Xuekai Hu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Jiayun Wei
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Pinyan Liu
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Qiuxia Zheng
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yue Zhang
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Qichen Zhang
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Jia Yao
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
- The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, 730000, China.
- The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China.
| | - Jingman Ni
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
- School of Basic Medical Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, China.
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China.
| |
Collapse
|
9
|
Fang H, Xu H, Yu J, Cao H, Li L. Human Hepatobiliary Organoids: Recent Advances in Drug Toxicity Verification and Drug Screening. Biomolecules 2024; 14:794. [PMID: 39062508 PMCID: PMC11274902 DOI: 10.3390/biom14070794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Many drug and therapeutic modalities have emerged over the past few years. However, successful commercialization is dependent on their safety and efficacy evaluations. Several preclinical models are available for drug-screening and safety evaluations, including cellular- and molecular-level models, tissue and organoid models, and animal models. Organoids are three-dimensional cell cultures derived from primary tissues or stem cells that are structurally and functionally similar to the original organs and can self-renew, and they are used to establish various disease models. Human hepatobiliary organoids have been used to study the pathogenesis of diseases, such as hepatitis, liver fibrosis, hepatocellular carcinoma, primary sclerosing cholangitis and biliary tract cancer, as they retain the physiological and histological characteristics of the liver and bile ducts. Here, we review recent research progress in validating drug toxicity, drug screening and personalized therapy for hepatobiliary-related diseases using human hepatobiliary organoid models, discuss the challenges encountered in current research and evaluate the possible solutions.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Pathology and Pathophysiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
| | - Haoying Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
| | - Jiong Yu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, 79 Qingchun Rd., Hangzhou 310003, China
| | - Hongcui Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
| |
Collapse
|
10
|
Baptista LS, Mironov V, Koudan E, Amorim ÉA, Pampolha TP, Kasyanov V, Kovalev A, Senatov F, Granjeiro JM. Bioprinting Using Organ Building Blocks: Spheroids, Organoids, and Assembloids. Tissue Eng Part A 2024; 30:377-386. [PMID: 38062998 DOI: 10.1089/ten.tea.2023.0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Three-dimensional (3D) bioprinting, a promising advancement in tissue engineering technology, involves the robotic, layer-by-layer additive biofabrication of functional 3D tissue and organ constructs. This process utilizes biomaterials, typically hydrogels and living cells, following digital models. Traditional tissue engineering uses a classic triad of living cells, scaffolds, and physicochemical signals in bioreactors. A scaffold is a temporary, often biodegradable, support structure. Tissue engineering primarily falls into two categories: (i) scaffold based and (ii) scaffold free. The latter, scaffold-free 3D bioprinting, is gaining increasing popularity. Organ building blocks (OBB), capable of self-assembly and self-organization, such as tissue spheroids, organoids, and assembloids, have begun to be utilized in scaffold-free bioprinting. This article discusses the expanding range of OBB, presents the rapidly evolving collection of bioprinting and bioassembly methods using these OBB, and finally, outlines the advantages, challenges, and future perspectives of using OBB in organ printing.
Collapse
Affiliation(s)
- Leandra Santos Baptista
- Campus Duque de Caxias Prof Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality, and Technology (Inmetro), Rio de Janeiro, Brazil
- Laboratory of Eukaryotic Cell Biology, National Institute of Metrology, Quality and Technology (Inmetro), Rio de Janeiro, Brazil
| | - Vladimir Mironov
- Campus Duque de Caxias Prof Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elizaveta Koudan
- Center for Biomedical Engineering, National University of Science and Technology "MISIS," Moscow, Russia
| | - Érica Almeida Amorim
- Campus Duque de Caxias Prof Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Gcell 3D, Rio de Janeiro, Brazil
- Precision Medicine Research Center, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tathiana Proença Pampolha
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality, and Technology (Inmetro), Rio de Janeiro, Brazil
- Laboratory of Eukaryotic Cell Biology, National Institute of Metrology, Quality and Technology (Inmetro), Rio de Janeiro, Brazil
| | - Vladimir Kasyanov
- Joint Laboratory of Traumatology and Orthopaedics, Riga Stradins University, Riga, Latvia
| | - Alexei Kovalev
- Priorov Central National Institute of Traumatology and Orthopedics, Moscow, Russia
| | - Fedor Senatov
- Center for Biomedical Engineering, National University of Science and Technology "MISIS," Moscow, Russia
| | - José Mauro Granjeiro
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality, and Technology (Inmetro), Rio de Janeiro, Brazil
- Laboratory of Eukaryotic Cell Biology, National Institute of Metrology, Quality and Technology (Inmetro), Rio de Janeiro, Brazil
- Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói, Brazil
| |
Collapse
|
11
|
Lampis S, Galardi A, Di Paolo V, Di Giannatale A. Organoids as a new approach for improving pediatric cancer research. Front Oncol 2024; 14:1414311. [PMID: 38835365 PMCID: PMC11148379 DOI: 10.3389/fonc.2024.1414311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
A key challenge in cancer research is the meticulous development of models that faithfully emulates the intricacies of the patient scenario, with emphasis on preserving intra-tumoral heterogeneity and the dynamic milieu of the tumor microenvironment (TME). Organoids emerge as promising tool in new drug development, drug screening and precision medicine. Despite advances in the diagnoses and treatment of pediatric cancers, certain tumor subtypes persist in yielding unfavorable prognoses. Moreover, the prognosis for a significant portion of children experiencing disease relapse is dismal. To improve pediatric outcome many groups are focusing on the development of precision medicine approach. In this review, we summarize the current knowledge about using organoid system as model in preclinical and clinical solid-pediatric cancer. Since organoids retain the pivotal characteristics of primary parent tumors, they exert great potential in discovering novel tumor biomarkers, exploring drug-resistance mechanism and predicting tumor responses to chemotherapy, targeted therapy and immunotherapies. We also examine both the potential opportunities and existing challenges inherent organoids, hoping to point out the direction for future organoid development.
Collapse
Affiliation(s)
- Silvia Lampis
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Angela Galardi
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Virginia Di Paolo
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Angela Di Giannatale
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
12
|
Mao W, Li W, Hu X. Tumor hyperthermia research progress and application prospect in tumoroids (Review). Mol Clin Oncol 2024; 20:31. [PMID: 38476334 PMCID: PMC10928662 DOI: 10.3892/mco.2024.2729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Tumor hyperthermia is the fifth tumor treatment method after surgery, chemotherapy, radiotherapy and biological therapy, and is also one of the important adjuvant treatment methods for tumors. Hyperthermia can not only directly eliminate tumor cells, but also stimulate the antitumor immune response of the body, and improve the sensitivity of tumor tissues to radiotherapy and chemotherapy. An organoid is a tissue-specific cell cluster formed by 3D culture of various types of cells derived from target organ stem cells, which can reproduce the functions of target organs in vivo. At present, the research models of hepatocellular carcinoma (HCC) in vitro are mainly 2D culture cell line models, and there is no clinical report on tumor hyperthermia using HCC tumoroids. It was hypothesized that this will be a promising research direction.
Collapse
Affiliation(s)
- Wei Mao
- Department of General Surgery, Nanchang University Infectious Disease Hospital, Nanchang, Jiangxi 330002, P.R. China
| | - Wen Li
- Central Laboratory, Nanchang University Infectious Disease Hospital, Nanchang, Jiangxi 330002, P.R. China
| | - Xuguang Hu
- Department of Hepatobiliary Surgery, Organ Transplantation Center, Jiangxi Provincial People's Hospital, Donghu, Nanchang, Jiangxi 330001, P.R. China
| |
Collapse
|
13
|
Cornel AM, van der Sman L, van Dinter JT, Arrabito M, Dunnebach E, van Hoesel M, Kluiver TA, Lopes AP, Dautzenberg NMM, Dekker L, van Rijn JM, van den Beemt DAMH, Buhl JL, du Chatinier A, Barneh F, Lu Y, Lo Nigro L, Krippner-Heidenreich A, Sebestyén Z, Kuball J, Hulleman E, Drost J, van Heesch S, Heidenreich OT, Peng WC, Nierkens S. Targeting pediatric cancers via T-cell recognition of the monomorphic MHC class I-related protein MR1. J Immunother Cancer 2024; 12:e007538. [PMID: 38519054 PMCID: PMC10961533 DOI: 10.1136/jitc-2023-007538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 03/24/2024] Open
Abstract
Human leukocyte antigen (HLA) restriction of conventional T-cell targeting introduces complexity in generating T-cell therapy strategies for patients with cancer with diverse HLA-backgrounds. A subpopulation of atypical, major histocompatibility complex-I related protein 1 (MR1)-restricted T-cells, distinctive from mucosal-associated invariant T-cells (MAITs), was recently identified recognizing currently unidentified MR1-presented cancer-specific metabolites. It is hypothesized that the MC.7.G5 MR1T-clone has potential as a pan-cancer, pan-population T-cell immunotherapy approach. These cells are irresponsive to healthy tissue while conferring T-cell receptor(TCR) dependent, HLA-independent cytotoxicity to a wide range of adult cancers. Studies so far are limited to adult malignancies. Here, we investigated the potential of MR1-targeting cellular therapy strategies in pediatric cancer. Bulk RNA sequencing data of primary pediatric tumors were analyzed to assess MR1 expression. In vitro pediatric tumor models were subsequently screened to evaluate their susceptibility to engineered MC.7.G5 TCR-expressing T-cells. Targeting capacity was correlated with qPCR-based MR1 mRNA and protein overexpression. RNA expression of MR1 in primary pediatric tumors varied widely within and between tumor entities. Notably, embryonal tumors exhibited significantly lower MR1 expression than other pediatric tumors. In line with this, most screened embryonal tumors displayed resistance to MR1T-targeting in vitro MR1T susceptibility was observed particularly in pediatric leukemia and diffuse midline glioma models. This study demonstrates potential of MC.7.G5 MR1T-cell immunotherapy in pediatric leukemias and diffuse midline glioma, while activity against embryonal tumors was limited. The dismal prognosis associated with relapsed/refractory leukemias and high-grade brain tumors highlights the promise to improve survival rates of children with these cancers.
Collapse
Affiliation(s)
- Annelisa M Cornel
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Loutje van der Sman
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jip T van Dinter
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Marta Arrabito
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Center of Pediatric Hematology & Oncology, University of Catania, Catania, Italy
| | - Ester Dunnebach
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | | | - Thomas A Kluiver
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Ana P Lopes
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | | | - Linde Dekker
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jorik M van Rijn
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | | | - Juliane L Buhl
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Aimee du Chatinier
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Farnaz Barneh
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Yuyan Lu
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Luca Lo Nigro
- Center of Pediatric Hematology & Oncology, University of Catania, Catania, Italy
| | | | - Zsolt Sebestyén
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Jurgen Kuball
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
- Department of Hematology, UMC Utrecht, Utrecht, The Netherlands
| | - Esther Hulleman
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jarno Drost
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | | | - Olaf T Heidenreich
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Weng Chuan Peng
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Stefan Nierkens
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
14
|
Xue J, Lyu Q. Challenges and opportunities in rare cancer research in China. SCIENCE CHINA. LIFE SCIENCES 2024; 67:274-285. [PMID: 38036799 DOI: 10.1007/s11427-023-2422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/15/2023] [Indexed: 12/02/2023]
Abstract
Cancer is one of the major public health challenges in China. Rare cancers collectively account for a considerable proportion of all malignancies. The lack of awareness of rare cancers among healthcare professionals and the general public, the typically complex and delayed diagnosis, and limited access to clinical trials are key challenges. Recent years have witnessed an increase in funding for research related to rare cancers in China. In this review, we provide a comprehensive overview of rare cancers and summarize the status of research on rare cancers in China and overseas, including the trends of funding and publications. We also highlight the challenges and perspectives regarding rare cancers in China.
Collapse
Affiliation(s)
- Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Natural Science Foundation of China, Beijing, 100085, China
| | - Qunyan Lyu
- National Natural Science Foundation of China, Beijing, 100085, China.
| |
Collapse
|
15
|
Hernández-López P, van Diest E, Brazda P, Heijhuurs S, Meringa A, Hoorens van Heyningen L, Riillo C, Schwenzel C, Zintchenko M, Johanna I, Nicolasen MJT, Cleven A, Kluiver TA, Millen R, Zheng J, Karaiskaki F, Straetemans T, Clevers H, de Bree R, Stunnenberg HG, Peng WC, Roodhart J, Minguet S, Sebestyén Z, Beringer DX, Kuball J. Dual targeting of cancer metabolome and stress antigens affects transcriptomic heterogeneity and efficacy of engineered T cells. Nat Immunol 2024; 25:88-101. [PMID: 38012415 DOI: 10.1038/s41590-023-01665-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 09/29/2023] [Indexed: 11/29/2023]
Abstract
Few cancers can be targeted efficiently by engineered T cell strategies. Here, we show that γδ T cell antigen receptor (γδ TCR)-mediated cancer metabolome targeting can be combined with targeting of cancer-associated stress antigens (such as NKG2D ligands or CD277) through the addition of chimeric co-receptors. This strategy overcomes suboptimal γ9δ2 TCR engagement of αβ T cells engineered to express a defined γδ TCR (TEGs) and improves serial killing, proliferation and persistence of TEGs. In vivo, the NKG2D-CD28WT chimera enabled control only of liquid tumors, whereas the NKG2D-4-1BBCD28TM chimera prolonged persistence of TEGs and improved control of liquid and solid tumors. The CD277-targeting chimera (103-4-1BB) was the most optimal co-stimulation format, eradicating both liquid and solid tumors. Single-cell transcriptomic analysis revealed that NKG2D-4-1BBCD28TM and 103-4-1BB chimeras reprogram TEGs through NF-κB. Owing to competition with naturally expressed NKG2D in CD8+ TEGs, the NKG2D-4-1BBCD28TM chimera mainly skewed CD4+ TEGs toward adhesion, proliferation, cytotoxicity and less exhausted signatures, whereas the 103-4-1BB chimera additionally shaped the CD8+ subset toward a proliferative state.
Collapse
Affiliation(s)
- Patricia Hernández-López
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Eline van Diest
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Peter Brazda
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Sabine Heijhuurs
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Angelo Meringa
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lauren Hoorens van Heyningen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Caterina Riillo
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caroline Schwenzel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency (CCI) and Institute for Immunodeficiency, University Clinics and Medical Faculty, Freiburg, Germany
| | - Marina Zintchenko
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency (CCI) and Institute for Immunodeficiency, University Clinics and Medical Faculty, Freiburg, Germany
| | - Inez Johanna
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Mara J T Nicolasen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Astrid Cleven
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Thomas A Kluiver
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Rosemary Millen
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands
| | - Jiali Zheng
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Froso Karaiskaki
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Trudy Straetemans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands
- Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jeanine Roodhart
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency (CCI) and Institute for Immunodeficiency, University Clinics and Medical Faculty, Freiburg, Germany
| | - Zsolt Sebestyén
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Dennis X Beringer
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jürgen Kuball
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
- Department of Hematology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
16
|
Abstract
The fight against rare cancers faces myriad challenges, including missed or wrong diagnoses, lack of information and diagnostic tools, too few samples and too little funding. Yet many advances in cancer biology, such as the realization that there are tumour suppressor genes, have come from studying well-defined, albeit rare, cancers. Fibrolamellar hepatocellular carcinoma (FLC), a typically lethal liver cancer, mainly affects adolescents and young adults. FLC is both rare, 1 in 5 million, and problematic to diagnose. From the paucity of data, it was not known whether FLC was one cancer or a collection with similar phenotypes, or whether it was genetically inherited or the result of a somatic mutation. A personal journey through a decade of work reveals answers to these questions and a road map of steps and missteps in our fight against a rare cancer.
Collapse
|
17
|
Sun XC, Kong DF, Zhao J, Faber KN, Xia Q, He K. Liver organoids: established tools for disease modeling and drug development. Hepatol Commun 2023; 7:02009842-202304010-00019. [PMID: 36972388 PMCID: PMC10043560 DOI: 10.1097/hc9.0000000000000105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/17/2023] [Indexed: 03/29/2023] Open
Abstract
In the past decade, liver organoids have evolved rapidly as valuable research tools, providing novel insights into almost all types of liver diseases, including monogenic liver diseases, alcohol-associated liver disease, metabolic-associated fatty liver disease, various types of (viral) hepatitis, and liver cancers. Liver organoids in part mimic the microphysiology of the human liver and fill a gap in high-fidelity liver disease models to a certain extent. They hold great promise to elucidate the pathogenic mechanism of a diversity of liver diseases and play a crucial role in drug development. Moreover, it is challenging but opportunistic to apply liver organoids for tailored therapies of various liver diseases. The establishment, applications, and challenges of different types of liver organoids, for example, derived from embryonic, adult, or induced pluripotent stem cells, to model different liver diseases, are presented in this review.
Collapse
Affiliation(s)
- Xi-Cheng Sun
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - De-Fu Kong
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
18
|
Chen L, Wei X, Gu D, Xu Y, Zhou H. Human liver cancer organoids: Biological applications, current challenges, and prospects in hepatoma therapy. Cancer Lett 2023; 555:216048. [PMID: 36603689 DOI: 10.1016/j.canlet.2022.216048] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Liver cancer and disease are among the most socially challenging global health concerns. Although organ transplantation, surgical resection and anticancer drugs are the main methods for the treatment of liver cancer, there are still no proven cures owing to the lack of donor livers and tumor heterogeneity. Recently, advances in tumor organoid technology have attracted considerable attention as they can simulate the spatial constructs and pathophysiological characteristics of tumorigenesis and metastasis in a more realistic manner. Organoids may further contribute to the development of tailored therapies. Combining organoids with other emerging techniques, such as CRISPR-HOT, organ-on-a-chip, and 3D bioprinting, may further develop organoids and address their bottlenecks to create more practical models that generalize different tissue or organ interactions in tumor progression. In this review, we summarize the various methods in which liver organoids may be generated and describe their biological and clinical applications, present challenges, and prospects for their integration with emerging technologies. These rapidly developing liver organoids may become the focus of in vitro clinical model development and therapeutic research for liver diseases in the near future.
Collapse
Affiliation(s)
- Lichan Chen
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Xiafei Wei
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China.
| | - Dayong Gu
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Yong Xu
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Hongzhong Zhou
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Liver Organoids, Novel and Promising Modalities for Exploring and Repairing Liver Injury. Stem Cell Rev Rep 2023; 19:345-357. [PMID: 36199007 PMCID: PMC9534590 DOI: 10.1007/s12015-022-10456-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2022] [Indexed: 02/07/2023]
Abstract
The past decades have witnessed great advances in organoid technology. Liver is the biggest solid organ, performing multifaceted physiological functions. Nowadays, liver organoids have been applied in many fields including pharmaceutical research, precision medicine and disease models. Compared to traditional 2-dimensional cell line cultures and animal models, liver organoids showed the unique advantages. More importantly, liver organoids can well model the features of the liver and tend to be novel and promising modalities for exploring liver injury, thus finding potential treatment targets and repairing liver injury. In this review, we reviewed the history of the development of liver organoids and summarized the application of liver organoids and recent studies using organoids to explore and further repair the liver injury. These novel modalities could provide new insights about the process of liver injury.
Collapse
|
20
|
Xie C, Gu A, Khan M, Yao X, Chen L, He J, Yuan F, Wang P, Yang Y, Wei Y, Tang F, Su H, Chen J, Li J, Cen B, Xu Z. Opportunities and challenges of hepatocellular carcinoma organoids for targeted drugs sensitivity screening. Front Oncol 2023; 12:1105454. [PMID: 36686807 PMCID: PMC9853547 DOI: 10.3389/fonc.2022.1105454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Hepatocellular carcinoma is one of the malignancies worldwide with a high mortality rate and an increasing incidence. Molecular Targeted agents are its common first-line treatment. Organoid technology, as a cutting-edge technology, is gradually being applied in the development of therapeutic oncology. Organoid models can be used to perform sensitivity screening of targeted drugs to facilitate the development of innovative therapeutic agents for the treatment of hepatocellular carcinoma. The purpose of this review is to provide an overview of the opportunities and challenges of hepatocellular carcinoma organoids in targeted drug sensitivity testing as well as a future outlook.
Collapse
Affiliation(s)
- Cuiying Xie
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ancheng Gu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Muhammad Khan
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiangcao Yao
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Leping Chen
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiali He
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fumiao Yuan
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ping Wang
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yufan Yang
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yerong Wei
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fang Tang
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hualong Su
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiamin Chen
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinxia Li
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bohong Cen
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China,Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, China,*Correspondence: Bohong Cen, ; Zhongyuan Xu,
| | - Zhongyuan Xu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China,*Correspondence: Bohong Cen, ; Zhongyuan Xu,
| |
Collapse
|
21
|
Baptista LS, Porrini C, Kronemberger GS, Kelly DJ, Perrault CM. 3D organ-on-a-chip: The convergence of microphysiological systems and organoids. Front Cell Dev Biol 2022; 10:1043117. [PMID: 36478741 PMCID: PMC9720174 DOI: 10.3389/fcell.2022.1043117] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 07/29/2023] Open
Abstract
Medicine today faces the combined challenge of an increasing number of untreatable diseases and fewer drugs reaching the clinic. While pharmaceutical companies have increased the number of drugs in early development and entering phase I of clinical trials, fewer actually successfully pass phase III and launch into the market. In fact, only 1 out of every 9 drugs entering phase I will launch. In vitro preclinical tests are used to predict earlier and better the potential of new drugs and thus avoid expensive clinical trial phases. The most recent developments favor 3D cell culture and human stem cell biology. These 3D humanized models known as organoids better mimic the 3D tissue architecture and physiological cell behavior of healthy and disease models, but face critical issues in production such as small-scale batches, greater costs (when compared to monolayer cultures) and reproducibility. To become the gold standard and most relevant biological model for drug discovery and development, organoid technology needs to integrate biological culture processes with advanced microtechnologies, such as microphysiological systems based on microfluidics technology. Microphysiological systems, known as organ-on-a-chip, mimic physiological conditions better than conventional cell culture models since they can emulate perfusion, mechanical and other parameters crucial for tissue and organ physiology. In addition, they reduce labor cost and human error by supporting automated operation and reduce reagent use in miniaturized culture systems. There is thus a clear advantage in combining organoid culture with microsystems for drug development. The main objective of this review is to address the recent advances in organoids and microphysiological systems highlighting crucial technologies for reaching a synergistic strategy, including bioprinting.
Collapse
Affiliation(s)
- Leandra S. Baptista
- Eden Tech, Paris, France
- Universidade Federal do Rio de Janeiro, Campus UFRJ Duque de Caxias Prof Geraldo Cidade, Rio de Janeiro, Brazil
| | | | - Gabriela S. Kronemberger
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | |
Collapse
|
22
|
Song H, Bucher S, Rosenberg K, Tsui M, Burhan D, Hoffman D, Cho SJ, Rangaswami A, Breese M, Leung S, Ventura MVP, Sweet-Cordero EA, Huang FW, Nijagal A, Wang B. Single-cell analysis of hepatoblastoma identifies tumor signatures that predict chemotherapy susceptibility using patient-specific tumor spheroids. Nat Commun 2022; 13:4878. [PMID: 36008377 PMCID: PMC9411569 DOI: 10.1038/s41467-022-32473-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 08/02/2022] [Indexed: 11/22/2022] Open
Abstract
Pediatric hepatoblastoma is the most common primary liver cancer in infants and children. Studies of hepatoblastoma that focus exclusively on tumor cells demonstrate sparse somatic mutations and a common cell of origin, the hepatoblast, across patients. In contrast to the homogeneity these studies would suggest, hepatoblastoma tumors have a high degree of heterogeneity that can portend poor prognosis. In this study, we use single-cell transcriptomic techniques to analyze resected human pediatric hepatoblastoma specimens, and identify five hepatoblastoma tumor signatures that may account for the tumor heterogeneity observed in this disease. Notably, patient-derived hepatoblastoma spheroid cultures predict differential responses to treatment based on the transcriptomic signature of each tumor, suggesting a path forward for precision oncology for these tumors. In this work, we define hepatoblastoma tumor heterogeneity with single-cell resolution and demonstrate that patient-derived spheroids can be used to evaluate responses to chemotherapy.
Collapse
Affiliation(s)
- Hanbing Song
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94143, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Simon Bucher
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Liver Center, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Katherine Rosenberg
- The Liver Center, University of California, San Francisco, San Francisco, CA, 94143, USA
- Division of Pediatric Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Margaret Tsui
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94143, USA
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Liver Center, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Deviana Burhan
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Liver Center, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Daniel Hoffman
- The Liver Center, University of California, San Francisco, San Francisco, CA, 94143, USA
- Division of Pediatric Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Soo-Jin Cho
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Pediatric Liver Center at UCSF Benioff Childrens' Hospitals, San Francisco, CA, 94143, USA
| | - Arun Rangaswami
- The Pediatric Liver Center at UCSF Benioff Childrens' Hospitals, San Francisco, CA, 94143, USA
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Marcus Breese
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Stanley Leung
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - María V Pons Ventura
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - E Alejandro Sweet-Cordero
- The Pediatric Liver Center at UCSF Benioff Childrens' Hospitals, San Francisco, CA, 94143, USA
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Franklin W Huang
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| | - Amar Nijagal
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94143, USA.
- The Liver Center, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Division of Pediatric Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA.
- The Pediatric Liver Center at UCSF Benioff Childrens' Hospitals, San Francisco, CA, 94143, USA.
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA.
| | - Bruce Wang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA.
- The Liver Center, University of California, San Francisco, San Francisco, CA, 94143, USA.
- The Pediatric Liver Center at UCSF Benioff Childrens' Hospitals, San Francisco, CA, 94143, USA.
| |
Collapse
|
23
|
Narayan NJC, Requena D, Lalazar G, Ramos-Espiritu L, Ng D, Levin S, Shebl B, Wang R, Hammond WJ, Saltsman JA, Gehart H, Torbenson MS, Clevers H, LaQuaglia MP, Simon SM. Human liver organoids for disease modeling of fibrolamellar carcinoma. Stem Cell Reports 2022; 17:1874-1888. [PMID: 35803261 PMCID: PMC9391427 DOI: 10.1016/j.stemcr.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare, often lethal, liver cancer affecting adolescents and young adults, for which there are no approved therapeutics. The development of therapeutics is hampered by a lack of in vitro models. Organoids have shown utility as a model system for studying many diseases. In this study, tumor tissue and the adjacent non-tumor liver were obtained at the time of surgery. The tissue was dissociated and grown as organoids. We developed 21 patient-derived organoid lines: 12 from metastases, three from the liver tumor and six from adjacent non-tumor liver. These patient-derived FLC organoids recapitulate the histologic morphology, immunohistochemistry, and transcriptome of the patient tumor. Patient-derived FLC organoids were used in a preliminary high-throughput drug screen to show proof of concept for the identification of therapeutics. This model system has the potential to improve our understanding of this rare cancer and holds significant promise for drug testing and development.
Collapse
Affiliation(s)
- Nicole J C Narayan
- Pediatric Surgical Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Gadi Lalazar
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Lavoisier Ramos-Espiritu
- High Throughput and Spectroscopy Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Denise Ng
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Solomon Levin
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Bassem Shebl
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ruisi Wang
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - William J Hammond
- Pediatric Surgical Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - James A Saltsman
- Pediatric Surgical Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Helmuth Gehart
- Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, the Netherlands
| | - Michael S Torbenson
- Department of Laboratory Medicine and Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Hans Clevers
- Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, the Netherlands
| | - Michael P LaQuaglia
- Pediatric Surgical Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
24
|
Meister MT, Groot Koerkamp MJA, de Souza T, Breunis WB, Frazer‐Mendelewska E, Brok M, DeMartino J, Manders F, Calandrini C, Kerstens HHD, Janse A, Dolman MEM, Eising S, Langenberg KPS, van Tuil M, Knops RRG, van Scheltinga ST, Hiemcke‐Jiwa LS, Flucke U, Merks JHM, van Noesel MM, Tops BBJ, Hehir‐Kwa JY, Kemmeren P, Molenaar JJ, van de Wetering M, van Boxtel R, Drost J, Holstege FCP. Mesenchymal tumor organoid models recapitulate rhabdomyosarcoma subtypes. EMBO Mol Med 2022; 14:e16001. [PMID: 35916583 PMCID: PMC9549731 DOI: 10.15252/emmm.202216001] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
Rhabdomyosarcomas (RMS) are mesenchyme-derived tumors and the most common childhood soft tissue sarcomas. Treatment is intense, with a nevertheless poor prognosis for high-risk patients. Discovery of new therapies would benefit from additional preclinical models. Here, we describe the generation of a collection of 19 pediatric RMS tumor organoid (tumoroid) models (success rate of 41%) comprising all major subtypes. For aggressive tumors, tumoroid models can often be established within 4-8 weeks, indicating the feasibility of personalized drug screening. Molecular, genetic, and histological characterization show that the models closely resemble the original tumors, with genetic stability over extended culture periods of up to 6 months. Importantly, drug screening reflects established sensitivities and the models can be modified by CRISPR/Cas9 with TP53 knockout in an embryonal RMS model resulting in replicative stress drug sensitivity. Tumors of mesenchymal origin can therefore be used to generate organoid models, relevant for a variety of preclinical and clinical research questions.
Collapse
Affiliation(s)
- Michael T Meister
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | - Marian J A Groot Koerkamp
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | - Terezinha de Souza
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | - Willemijn B Breunis
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Department of Oncology and Children's Research CenterUniversity Children's Hospital ZürichZürichSwitzerland
| | - Ewa Frazer‐Mendelewska
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | - Mariël Brok
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | - Jeff DeMartino
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | - Freek Manders
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | - Camilla Calandrini
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | | | - Alex Janse
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - M Emmy M Dolman
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Children's Cancer Institute, Lowy Cancer CentreUNSW SydneyKensingtonNSWAustralia,School of Women's and Children's Health, Faculty of MedicineUNSW SydneyKensingtonNSWAustralia
| | - Selma Eising
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | - Marc van Tuil
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Rutger R G Knops
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | | | - Uta Flucke
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | - Max M van Noesel
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | | | - Patrick Kemmeren
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Center for Molecular MedicineUMC Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Marc van de Wetering
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | - Frank C P Holstege
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Center for Molecular MedicineUMC Utrecht and Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
25
|
Wu PV, Rangaswami A. Current Approaches in Hepatoblastoma-New Biological Insights to Inform Therapy. Curr Oncol Rep 2022; 24:1209-1218. [PMID: 35438389 DOI: 10.1007/s11912-022-01230-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW As the most common pediatric primary liver cancer with rising incidence, hepatoblastoma remains challenging to treat. Here, we review the current understanding of the biology of hepatoblastoma and discuss how recent advances may lead to new treatment modalities. RECENT FINDINGS Standard chemotherapy regimens including cisplatin, in addition to surgery, have led to high cure rates among patients with low stage hepatoblastoma; however, metastatic and relapsed disease continue to have poor outcomes. Recent genomics and functional studies in cell lines and mouse models have established a central role for the Wnt/β-catenin pathway in tumorigenesis. Targeted agents and immunotherapy approaches are emerging as potential treatment avenues. With recent gains in knowledge of the genomic and transcriptomic landscape of hepatoblastoma, new therapeutic mechanisms can now be explored to improve outcomes for metastatic and relapsed hepatoblastoma and to reduce the toxicity of current treatments.
Collapse
Affiliation(s)
- Peng V Wu
- Division of Hematology/Oncology/Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, 1000 Welch Rd. Suite 300, Palo Alto, CA, 94304, USA
| | - Arun Rangaswami
- Division of Hematology/Oncology, Department of Pediatrics, University of California San Francisco, 550 16th St., 3rd Floor, San Francisco, CA, 94158, USA.
| |
Collapse
|
26
|
Al Shihabi A, Davarifar A, Nguyen HTL, Tavanaie N, Nelson SD, Yanagawa J, Federman N, Bernthal N, Hornicek F, Soragni A. Personalized chordoma organoids for drug discovery studies. SCIENCE ADVANCES 2022; 8:eabl3674. [PMID: 35171675 PMCID: PMC8849332 DOI: 10.1126/sciadv.abl3674] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/21/2021] [Indexed: 05/03/2023]
Abstract
Chordomas are rare tumors of notochordal origin, most commonly arising in the sacrum or skull base. Chordomas are considered insensitive to conventional chemotherapy, and their rarity complicates running timely and adequately powered trials to identify effective treatments. Therefore, there is a need for discovery of novel therapeutic approaches. Patient-derived organoids can accelerate drug discovery and development studies and predict patient responses to therapy. In this proof-of-concept study, we successfully established organoids from seven chordoma tumor samples obtained from five patients presenting with tumors in different sites and stages of disease. The organoids recapitulated features of the original parent tumors and inter- as well as intrapatient heterogeneity. High-throughput screenings performed on the organoids highlighted targeted agents such as PI3K/mTOR, EGFR, and JAK2/STAT3 inhibitors among the most effective molecules. Pathway analysis underscored how the NF-κB and IGF-1R pathways are sensitive to perturbations and potential targets to pursue for combination therapy of chordoma.
Collapse
Affiliation(s)
- Ahmad Al Shihabi
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ardalan Davarifar
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Huyen Thi Lam Nguyen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nasrin Tavanaie
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Scott D. Nelson
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jane Yanagawa
- Division of Thoracic Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Noah Federman
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Francis Hornicek
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alice Soragni
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
27
|
Wang J, Feng X, Li Z, Chen Y, Huang W. Patient-derived organoids as a model for tumor research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:259-326. [PMID: 35595351 DOI: 10.1016/bs.pmbts.2022.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer represents a leading cause of death, despite the rapid progress of cancer research, leading to urgent need for accurate preclinical model to further study of tumor mechanism and accelerate translational applications. Cancer cell lines cannot fully recapitulate tumors of different patients due to the lack of tumor complexity and specification, while the high technical difficulty, long time, and substantial cost of patient-derived xenograft model makes it unable to be used extensively for all types of tumors and large-scale drug screening. Patient-derived organoids can be established rapidly with a high success rate from many tumors, and precisely replicate the key histopathological, genetic, and phenotypic features, as well as therapeutic response of patient tumor. Therefore, they are extensively used in cancer basic research, biobanking, disease modeling and precision medicine. The combinations of cancer organoids with other advanced technologies, such as 3D bio-printing, organ-on-a-chip, and CRISPR-Cas9, contributes to the more complete replication of complex tumor microenvironment and tumorigenesis. In this review, we discuss the various methods of the establishment and the application of patient-derived organoids in diverse tumors as well as the limitations and future prospects of these models. Further advances of tumor organoids are expected to bridge the huge gap between bench and bedside and provide the unprecedented opportunities to advance cancer research.
Collapse
Affiliation(s)
- Jia Wang
- The First Affiliated Hospital of Shantou University, Shantou University Medical College, Shantou, China
| | - Xiaoying Feng
- The First Affiliated Hospital of Shantou University, Shantou University Medical College, Shantou, China
| | - Zhichao Li
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, China; International Cancer Center of Shenzhen University, Shenzhen, China
| | - Yongsong Chen
- The First Affiliated Hospital of Shantou University, Shantou University Medical College, Shantou, China
| | - Weiren Huang
- The First Affiliated Hospital of Shantou University, Shantou University Medical College, Shantou, China; Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, China; International Cancer Center of Shenzhen University, Shenzhen, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
28
|
Wu PV, Nusse R. 3D Culture of Primary Patient-Derived Hepatoblastoma Tumoroids. Methods Mol Biol 2022; 2544:259-267. [PMID: 36125725 DOI: 10.1007/978-1-0716-2557-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hepatoblastoma, the most common primary liver malignancy in children, remains poorly understood due in part to a relative lack of methods to expand tumor cells in culture and a paucity of robust experimental models. Here, we describe a method to obtain primary tumor cells from patients with hepatoblastoma and to propagate the cells in 3D culture as tumor organoids, or "tumoroids". We further detail methods to prepare the tumoroids for whole-mount and cross-sectional imaging as well as to perform lentiviral transduction.
Collapse
Affiliation(s)
- Peng V Wu
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
29
|
McEachron TA, Helman LJ. Recent Advances in Pediatric Cancer Research. Cancer Res 2021; 81:5783-5799. [PMID: 34561271 DOI: 10.1158/0008-5472.can-21-1191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Over the past few years, the field of pediatric cancer has experienced a shift in momentum, and this has led to new and exciting findings that have relevance beyond pediatric malignancies. Here we present the current status of key aspects of pediatric cancer research. We have focused on genetic and epigenetic drivers of disease, cellular origins of different pediatric cancers, disease models, the tumor microenvironment, and cellular immunotherapies.
Collapse
Affiliation(s)
| | - Lee J Helman
- Osteosarcoma Institute, Dallas, Texas
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
30
|
Luce E, Messina A, Caillaud A, Si-Tayeb K, Cariou B, Bur E, Dubart-Kupperschmitt A, Duclos-Vallée JC. [Hepatic organoids: What are the challenges?]. Med Sci (Paris) 2021; 37:902-909. [PMID: 34647879 DOI: 10.1051/medsci/2021119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The study and understanding of liver organogenesis have allowed the development of protocols for pluripotent stem cells differentiation to overcome the lack of primary cells, providing an almost unlimited source of liver cells. However, as their differentiation in conventional 2D culture systems has shown serious limits, hepatic organoids derived from human pluripotent stem cells represent a promising alternative. These complex and organized structures, containing one or more cell types, make it possible to recapitulate in vitro some of the organ functions, thus enabling numerous applications such as the study of the liver development, the mass production of functional liver cells for transplantation or the development of bioartificial livers, as well as the in vitro modeling of hepatic pathologies allowing high throughput applications in drug screening or toxicity studies. Economic and ethical issues must also be taken into account before using these organoids in therapeutic applications.
Collapse
Affiliation(s)
- Eléanor Luce
- Inserm UMRS 1193, Université Paris-Saclay, 12-14 avenue Paul Vaillant Couturier, F-94800 Villejuif, France - Fédération hospitalo-universitaire Hépatinov, hôpital Paul Brousse, F-94800 Villejuif, France
| | - Antonietta Messina
- Inserm UMRS 1193, Université Paris-Saclay, 12-14 avenue Paul Vaillant Couturier, F-94800 Villejuif, France - Fédération hospitalo-universitaire Hépatinov, hôpital Paul Brousse, F-94800 Villejuif, France
| | - Amandine Caillaud
- Université de Nantes, CHU Nantes, CNRS, Inserm, Institut du thorax, F-44000 Nantes, France
| | - Karim Si-Tayeb
- Université de Nantes, CHU Nantes, CNRS, Inserm, Institut du thorax, F-44000 Nantes, France
| | - Bertrand Cariou
- Université de Nantes, CHU Nantes, CNRS, Inserm, Institut du thorax, F-44000 Nantes, France
| | - Etienne Bur
- Fédération hospitalo-universitaire Hépatinov, hôpital Paul Brousse, F-94800 Villejuif, France - Institut français de BioFabrication, hôpital Paul Brousse, F-94800 Villejuif, France
| | - Anne Dubart-Kupperschmitt
- Inserm UMRS 1193, Université Paris-Saclay, 12-14 avenue Paul Vaillant Couturier, F-94800 Villejuif, France - Fédération hospitalo-universitaire Hépatinov, hôpital Paul Brousse, F-94800 Villejuif, France - Institut français de BioFabrication, hôpital Paul Brousse, F-94800 Villejuif, France
| | - Jean-Charles Duclos-Vallée
- Inserm UMRS 1193, Université Paris-Saclay, 12-14 avenue Paul Vaillant Couturier, F-94800 Villejuif, France - Fédération hospitalo-universitaire Hépatinov, hôpital Paul Brousse, F-94800 Villejuif, France - Institut français de BioFabrication, hôpital Paul Brousse, F-94800 Villejuif, France
| |
Collapse
|
31
|
Luo HL, Liu HY, Chang YL, Su YL, Huang CC, Lin XJ, Chuang YC. Extracorporeal Shock Wave Enhances the Cisplatin Efficacy by Improving Tissue Infiltration and Cellular Uptake in an Upper Urinary Tract Cancer Animal and Human-Derived Organoid Model. Cancers (Basel) 2021; 13:cancers13184558. [PMID: 34572785 PMCID: PMC8471724 DOI: 10.3390/cancers13184558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Upper urinary tract urothelial carcinoma (UTUC) is a relatively rare cancer with a poor prognosis if diagnosed at an advanced stage. Although cisplatin-based chemotherapy is a common treatment strategy, it has a limited response rate. Shock wave lithotripsy is a common treatment for upper urinary tract stones. Low-energy shock waves (LESWs) temporarily increase tissue permeability and enhance drug penetration to the targeted tissue. However, no study has investigated the efficacy of the combination of shock wave lithotripsy and chemotherapy in UTUC. Hence, in this study, we aimed to identify the potential application of the combination of LESW and chemotherapy in UTUC. We evaluated the synergistic effects of LESW and cisplatin in vitro, in vivo, and in patient-derived organoid (PDO) models. Compared with cisplatin alone, the combination treatment caused more significant tumour suppression in vitro and in animal models, without increased toxicity. Histological examination showed that compared with animals treated with cisplatin alone, those who received the combination treatment showed more deteriorated cell arrangement and cell oedema. Moreover, LESW improved the cytotoxicity of cisplatin in the preclinical PDO model of UTUC. Thus, LESW combined with cisplatin is a potential new antitumour strategy for improving the treatment response in locally advanced UTUC.
Collapse
Affiliation(s)
- Hao-Lun Luo
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-L.L.); (H.-Y.L.); (Y.-L.C.); (X.-J.L.)
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hui-Ying Liu
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-L.L.); (H.-Y.L.); (Y.-L.C.); (X.-J.L.)
| | - Yin-Lun Chang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-L.L.); (H.-Y.L.); (Y.-L.C.); (X.-J.L.)
| | - Yu-Li Su
- Department of Hematology and Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Chun-Chieh Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Xin-Jie Lin
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-L.L.); (H.-Y.L.); (Y.-L.C.); (X.-J.L.)
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yao-Chi Chuang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-L.L.); (H.-Y.L.); (Y.-L.C.); (X.-J.L.)
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: ; Tel.: +886-7-7317123 (ext. 8094); Fax: +886-7-7354309
| |
Collapse
|
32
|
Bondoc A, Glaser K, Jin K, Lake C, Cairo S, Geller J, Tiao G, Aronow B. Identification of distinct tumor cell populations and key genetic mechanisms through single cell sequencing in hepatoblastoma. Commun Biol 2021; 4:1049. [PMID: 34497364 PMCID: PMC8426487 DOI: 10.1038/s42003-021-02562-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatoblastoma (HB) is the most common primary liver malignancy of childhood, and molecular investigations are limited and effective treatment options for chemoresistant disease are lacking. There is a knowledge gap in the investigation of key driver cells of HB in tumor. Here we show single cell ribonucleic acid sequencing (scRNAseq) analysis of human tumor, background liver, and patient derived xenograft (PDX) to demonstrate gene expression patterns within tumor and to identify intratumor cell subtype heterogeneity to define differing roles in pathogenesis based on intracellular signaling in pediatric HB. We have identified a driver tumor cell cluster in HB by genetic expression which can be examined to define disease mechanism and treatments. Identification of both critical mechanistic pathways combined with unique cell populations provide the basis for discovery and investigation of novel treatment strategies in vitro and in vivo.
Collapse
Affiliation(s)
- Alexander Bondoc
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA.
| | - Kathryn Glaser
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Kang Jin
- Division of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati, Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
| | - Charissa Lake
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Stefano Cairo
- Research and Development Unit, XenTech, Genopole-Campus 3, Fontaine, France
- Istituto di Ricerca Pediatrica (IRP), Corso Stati Uniti, Padua, Italy
| | - James Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory Tiao
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Bruce Aronow
- Division of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati, Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
33
|
Barbet V, Broutier L. Future Match Making: When Pediatric Oncology Meets Organoid Technology. Front Cell Dev Biol 2021; 9:674219. [PMID: 34327198 PMCID: PMC8315550 DOI: 10.3389/fcell.2021.674219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Unlike adult cancers that frequently result from the accumulation in time of mutational “hits” often linked to lifestyle, childhood cancers are emerging as diseases of dysregulated development through massive epigenetic alterations. The ability to reconstruct these differences in cancer models is therefore crucial for better understanding the uniqueness of pediatric cancer biology. Cancer organoids (i.e., tumoroids) represent a promising approach for creating patient-derived in vitro cancer models that closely recapitulate the overall pathophysiological features of natural tumorigenesis, including intra-tumoral heterogeneity and plasticity. Though largely applied to adult cancers, this technology is scarcely used for childhood cancers, with a notable delay in technological transfer. However, tumoroids could provide an unprecedented tool to unravel the biology of pediatric cancers and improve their therapeutic management. We herein present the current state-of-the-art of a long awaited and much needed matchmaking.
Collapse
Affiliation(s)
- Virginie Barbet
- Childhood Cancer & Cell Death (C3), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Laura Broutier
- Childhood Cancer & Cell Death (C3), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| |
Collapse
|
34
|
Wood LD, Ewald AJ. Organoids in cancer research: a review for pathologist-scientists. J Pathol 2021; 254:395-404. [PMID: 33886125 DOI: 10.1002/path.5684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
The use of three-dimensional (3D) culture models for cancer research has expanded greatly in recent years, with studies in almost every tumor type addressing a wide variety of research questions. Multiple distinct 3D culture approaches are now available, each with its own advantages and disadvantages, as well as most effective applications. In this review, we focus on one of these 3D culture models, organoids, in which multicellular units are isolated from primary or metastatic tumors and cultured in extracellular matrix gels. Organoids can be studied in acute cultures for short times after isolation, or passaged and biobanked for long-term use. We define this model system and describe some key studies in which organoid culture models were used to investigate cellular strategies and molecular mechanisms driving cancer initiation and progression, highlighting research questions for which this model is particularly well suited. In addition, as interest in implementing organoid systems continues to expand, we discuss key considerations in developing a new organoid research program. Our goal is to demonstrate the power and utility of organoid models and provide guidance for investigators who are considering implementation of these models in their own research programs. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Laura D Wood
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew J Ewald
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
35
|
Marsee A, Roos FJM, Verstegen MMA, Gehart H, de Koning E, Lemaigre F, Forbes SJ, Peng WC, Huch M, Takebe T, Vallier L, Clevers H, van der Laan LJW, Spee B. Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell 2021; 28:816-832. [PMID: 33961769 PMCID: PMC11699540 DOI: 10.1016/j.stem.2021.04.005] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatic, pancreatic, and biliary (HPB) organoids are powerful tools for studying development, disease, and regeneration. As organoid research expands, the need for clear definitions and nomenclature describing these systems also grows. To facilitate scientific communication and consistent interpretation, we revisit the concept of an organoid and introduce an intuitive classification system and nomenclature for describing these 3D structures through the consensus of experts in the field. To promote the standardization and validation of HPB organoids, we propose guidelines for establishing, characterizing, and benchmarking future systems. Finally, we address some of the major challenges to the clinical application of organoids.
Collapse
Affiliation(s)
- Ary Marsee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Floris J M Roos
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Helmuth Gehart
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Eelco de Koning
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, the Netherlands; Leiden University Medical Center, Department of Medicine, Leiden, the Netherlands
| | - Frédéric Lemaigre
- Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Stuart J Forbes
- MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, and Center for Stem Cell, and Organoid Medicine (CuSTOM), Cincinnati Children Hospital Medical Center, Cincinnati, OH, USA; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, Cambridgeshire, UK; Department of Surgery, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Center, Cambridge, UK
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
36
|
Verduin M, Hoeben A, De Ruysscher D, Vooijs M. Patient-Derived Cancer Organoids as Predictors of Treatment Response. Front Oncol 2021; 11:641980. [PMID: 33816288 PMCID: PMC8012903 DOI: 10.3389/fonc.2021.641980] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Patient-derived cancer organoids have taken a prominent role in pre-clinical and translational research and have been generated for most common solid tumors. Cancer organoids have been shown to retain key genetic and phenotypic characteristics of their tissue of origin, tumor subtype and maintain intratumoral heterogeneity and therefore have the potential to be used as predictors for individualized treatment response. In this review, we highlight studies that have used cancer organoids to compare the efficacy of standard-of-care and targeted combination treatments with clinical patient response. Furthermore, we review studies using cancer organoids to identify new anti-cancer treatments using drug screening. Finally, we discuss the current limitations and improvements needed to understand the full potential of cancer organoids as avatars for clinical management of cancer therapy.
Collapse
Affiliation(s)
- Maikel Verduin
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Marc Vooijs
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
37
|
Amatruda JF. Modeling the developmental origins of pediatric cancer to improve patient outcomes. Dis Model Mech 2021; 14:14/2/dmm048930. [PMID: 33619212 PMCID: PMC7927656 DOI: 10.1242/dmm.048930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the treatment of children and adolescents with cancer, multimodal approaches combining surgery, chemotherapy and radiation can cure most patients, but may cause lifelong health problems in survivors. Current therapies only modestly reflect increased knowledge about the molecular mechanisms of these cancers. Advances in next-generation sequencing have provided unprecedented cataloging of genetic aberrations in tumors, but understanding how these genetic changes drive cellular transformation, and how they can be effectively targeted, will require multidisciplinary collaboration and preclinical models that are truly representative of the in vivo environment. Here, I discuss some of the key challenges in pediatric cancer from my perspective as a physician-scientist, and touch on some promising new approaches that have the potential to transform our understanding of these diseases. Summary: This Perspective discusses the special features that make it challenging to develop new therapies for pediatric cancers, and the ways in which collaboration centered on improved models can meet these challenges.
Collapse
Affiliation(s)
- James F Amatruda
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| |
Collapse
|