1
|
Stanger AMP, Arnone M, Hanns P, Kimmich LM, Kübler J, Gekeler S, Görsch ES, Kramer L, Baer M, Schroeder JC, Mills TS, Konantz M, Rudat SS, Lengerke C. Recipient sex and donor leukemic cell characteristics determine leukemogenesis in patient-derived models. Haematologica 2025; 110:1115-1125. [PMID: 39781615 PMCID: PMC12050927 DOI: 10.3324/haematol.2023.284647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
In acute myeloid leukemia (AML), leukemogenesis depends on cell-intrinsic genetic aberrations and, therefore, studies on AML require investigations in an in vivo setting as provided by patient-derived xenograft (PDX) models. Here we report that, next to leukemic cell characteristics, recipient sex strongly influences the outgrowth of AML cells in PDX models, with females being much better repopulated than males in primary as well as secondary transplantation assays. Testosterone may be the more important player since, strikingly, better engraftment was seen in castrated male recipients than in control ones, while ovariectomy did not significantly impair engraftment in females. Shorter time to engraftment and mouse survival were observed in cases with adverse molecular risk, and respectively with a high ratio of FLT3-ITD mutated AML cells. Furthermore, cases of adverse-risk AML showed higher percentages of phenotypic leukemic stem cells, suggesting impaired differentiation capacity in these AML subtypes. Overall, we achieved successful repopulation with 14/23 (61%) favorable-risk, 18/30 (60%) intermediate-risk and 4/8 (50%) adverse-risk AML cases in female recipient PDX models. Our data identify recipient sex as an important experimental confounder in leukemia PDX models, and the contribution of the sex hormones to leukemogenesis as an intriguing, underexplored area for research.
Collapse
Affiliation(s)
- Anna M P Stanger
- University Clinic Tübingen, Department for Internal Medicine II, University of Tübingen, Tübingen
| | - Marlon Arnone
- University Clinic Tübingen, Department for Internal Medicine II, University of Tübingen, Tübingen
| | - Pauline Hanns
- University of Basel and University Hospital Basel, Department Biomedicine, Basel
| | - Lucca M Kimmich
- University Clinic Tübingen, Department for Internal Medicine II, University of Tübingen, Tübingen
| | - Jessica Kübler
- University Clinic Tübingen, Department for Internal Medicine II, University of Tübingen, Tübingen
| | - Sarah Gekeler
- University Clinic Tübingen, Department for Internal Medicine II, University of Tübingen, Tübingen
| | - Elsa S Görsch
- University Clinic Tübingen, Department for Internal Medicine II, University of Tübingen, Tübingen
| | - Lea Kramer
- University Clinic Tübingen, Department for Internal Medicine II, University of Tübingen, Tübingen
| | - Marcelle Baer
- University of Basel and University Hospital Basel, Department Biomedicine, Basel
| | - Jan C Schroeder
- University Clinic Tübingen, Department for Internal Medicine II, University of Tübingen, Tübingen
| | - Taylor S Mills
- University Clinic Tübingen, Department for Internal Medicine II, University of Tübingen, Tübingen
| | - Martina Konantz
- University of Basel and University Hospital Basel, Department Biomedicine, Basel
| | - Saskia S Rudat
- University Clinic Tübingen, Department for Internal Medicine II, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and University Hospital Tübingen
| | - Claudia Lengerke
- University Clinic Tübingen, Department for Internal Medicine II, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and University Hospital Tübingen.
| |
Collapse
|
2
|
Lecornec N, Duchmann M, Itzykson R. Single-cell sequencing applications in acute myeloid leukemia. Leuk Lymphoma 2025; 66:175-189. [PMID: 39496597 DOI: 10.1080/10428194.2024.2422833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of malignancies with poor prognosis. AML result from the proliferation of immature myeloid cells blocked at a variable stage of differentiation. Beyond inter-patient heterogeneity, AMLs are characterized by genetic and phenotypic intra-patient heterogeneity. Despite major advances in deciphering AML biology with bulk sequencing studies, pivotal questions remain unanswered. Analyses at the single-cell level could thus transform our understanding of these neoplasms. We review recent progresses in single-cell sequencing technologies from cell processing to bioinformatic pipelines. We next discuss how single-cell applications have helped understand the genetic and functional intra-leukemic heterogeneity, emphasizing aspects related to leukemic stem cells, clonal evolution and measurable residual disease (MRD) monitoring. We finally delineate how single-cell technologies could be implemented in routine clinical practice to improve patient management.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Single-Cell Analysis/methods
- Neoplasm, Residual/genetics
- Neoplasm, Residual/diagnosis
- Biomarkers, Tumor/genetics
- High-Throughput Nucleotide Sequencing/methods
- Clonal Evolution
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/metabolism
- Computational Biology/methods
- Prognosis
Collapse
Affiliation(s)
- Nicolas Lecornec
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Université Paris Cité, Paris, France
- Département d'Immuno-Hématologie Pédiatrique, Hôpital Robert-Debré, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Matthieu Duchmann
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Université Paris Cité, Paris, France
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Raphael Itzykson
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Université Paris Cité, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
3
|
Bouzriba C, Chavez Alvarez AC, Ouellette V, Gagné-Boulet M, Hamel-Côté G, Bastien D, Laverdière I, Fortin S. N-Phenyl ureidobenzenesulfonates, a novel class of human dihydroorotate dehydrogenase inhibitors inducing differentiation and apoptosis in acute myeloid leukemia cells. Biomed Pharmacother 2024; 181:117717. [PMID: 39637752 DOI: 10.1016/j.biopha.2024.117717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
N-Phenyl ureidobenzensulfonates (PUB-SOs) are a novel family of dihydroorotate dehydrogenase (DHODH) inhibitors. Herein, we investigate the potential of PUB-SOs to induce acute myeloid leukemia (AML) cell differentiation and apoptosis. To that end, we screened our chemolibrary to select the most potent PUB-SOs based on their antiproliferative activity and their ability to arrest the cell progression of AML cells in the S phase. The most promising PUB-SOs show antiproliferative activity in the range of 0.13-23 µM against THP-1, MOLM-13 and HL-60 AML cells. Moreover, those PUB-SOs arrested the cell cycle progression in the S phase. In addition, molecular docking studies evidenced their potential to bind in the brequinar-binding site located on DHODH which was confirmed using the DHODH inhibition assay showing that PUB-SOs are potent DHODH inhibitors (half maximal inhibitory concentration (IC50) = 7.7-1000 nM). Our results also show that selected PUB-SOs induced the differentiation of THP-1 and HL-60 cells into cluster of differentiation (CD) 11b+/CD14+ phenotypes, up to 74 % and 50 %, respectively. They also promoted CD11b+ differentiation in MOLM-13 cells (up to 44 %). Additionally, the prototypical PUB-SOs SFOM-0046 induced lactate dehydrogenase (LDH) release, mitochondrial stress and mitochondrial membrane potential loss in MOLM-13 cell line. Furthermore, SFOM-0046 induced apoptosis in MOLM-13 cells, which was confirmed by the increase of annexin V/propidium iodide (PI) and caspase 3/7 positive cells. In summary, our results highlight PUB-SOs as a novel family of DHODH inhibitors inducing both cell differentiation and apoptosis in AML cells, underscoring their potential as therapeutic agents for AML treatment.
Collapse
Affiliation(s)
- Chahrazed Bouzriba
- Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada; Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC G1L 3L5, Canada.
| | - Atziri Corin Chavez Alvarez
- Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada; Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC G1L 3L5, Canada; Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, 2725 Chemin Ste-Foy, Québec, QC G1V 4G5, Canada
| | - Vincent Ouellette
- Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada; Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC G1L 3L5, Canada
| | - Mathieu Gagné-Boulet
- Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada; Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC G1L 3L5, Canada
| | - Geneviève Hamel-Côté
- Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC G1L 3L5, Canada
| | - Dominic Bastien
- Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Centre hospitalier de l'Université Laval CHUL, 2705 Blvd Laurier, Québec, QC G1V 4G2, Canada
| | - Isabelle Laverdière
- Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada; Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Centre hospitalier de l'Université Laval CHUL, 2705 Blvd Laurier, Québec, QC G1V 4G2, Canada
| | - Sébastien Fortin
- Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada; Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC G1L 3L5, Canada.
| |
Collapse
|
4
|
Atar D, Ruoff L, Mast AS, Krost S, Moustafa-Oglou M, Scheuermann S, Kristmann B, Feige M, Canak A, Wolsing K, Schlager L, Schilbach K, Zekri L, Ebinger M, Nixdorf D, Subklewe M, Schulte J, Lengerke C, Jeremias I, Werchau N, Mittelstaet J, Lang P, Handgretinger R, Schlegel P, Seitz CM. Rational combinatorial targeting by adapter CAR-T-cells (AdCAR-T) prevents antigen escape in acute myeloid leukemia. Leukemia 2024; 38:2183-2195. [PMID: 39095503 PMCID: PMC11436361 DOI: 10.1038/s41375-024-02351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Targeting AML by chimeric antigen receptor T-cells (CAR-T) is challenging due to the promiscuous expression of AML-associated antigens in healthy hematopoiesis and high degree of inter- and intratumoral heterogeneity. Here, we present single-cell expression data of AML-associated antigens in 30 primary pediatric AML samples. We identified CD33, CD38, CD371, IL1RAP and CD123 as the most frequently expressed. Notably, high variability was observed not only across the different patient samples but also among leukemic cells of the same patient suggesting the necessity of multiplexed targeting approaches. To address this need, we utilized our modular Adapter CAR (AdCAR) platform, enabling precise qualitative and quantitative control over CAR-T-cell function. We show highly efficient and target-specific activity for newly generated adapter molecules (AMs) against CD33, CD38, CD123, CD135 and CD371, both in vitro and in vivo. We reveal that inherent intratumoral heterogeneity in antigen expression translates into antigen escape and therapy failure to monotargeted CAR-T therapy. Further, we demonstrate in PDX models that rational combinatorial targeting by AdCAR-T-cells can cure heterogenic disease. In conclusion, we elucidate the clinical relevance of heterogeneity in antigen expression in pediatric AML and present a novel concept for precision immunotherapy by combinatorial targeting utilizing the AdCAR platform.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Animals
- Mice
- Child
- Xenograft Model Antitumor Assays
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Daniel Atar
- Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
| | - Lara Ruoff
- Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
| | - Anna-Sophia Mast
- Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
| | - Simon Krost
- Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
| | - Moustafa Moustafa-Oglou
- Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
| | - Sophia Scheuermann
- Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
- Excellence cluster iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tübingen, Tübingen, Germany
| | - Beate Kristmann
- Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
| | - Maximilian Feige
- Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
| | - Aysegül Canak
- Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
| | - Kathrin Wolsing
- Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
| | - Lennart Schlager
- Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
| | - Karin Schilbach
- Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
| | - Latifa Zekri
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, IFIZ Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Martin Ebinger
- Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tübingen, Tübingen, Germany
| | - Daniel Nixdorf
- Department of Medicine III, University Hospital, LMU, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Johannes Schulte
- Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
| | - Claudia Lengerke
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
| | - Niels Werchau
- R&D Department, Miltenyi Biotec B.V. & CO. KG, Bergisch Gladbach, Germany
| | - Joerg Mittelstaet
- R&D Department, Miltenyi Biotec B.V. & CO. KG, Bergisch Gladbach, Germany
| | - Peter Lang
- Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
- Excellence cluster iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
| | - Patrick Schlegel
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Christian M Seitz
- Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany.
- Excellence cluster iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Tübingen, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tübingen, Tübingen, Germany.
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
5
|
Pinto CM, Bertolucci CM, Severino AR, Dos Santos Tosi JF, Ikoma-Colturato MRV. Immunophenotypic markers for the evaluation of minimal/measurable residual disease in acute megakaryoblastic leukemia. Hematol Transfus Cell Ther 2024; 46:542-548. [PMID: 38008596 PMCID: PMC11451363 DOI: 10.1016/j.htct.2023.09.2364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 11/28/2023] Open
Abstract
Acute megakaryoblastic leukemia is characterized by heterogeneous biology and clinical behavior. Immunophenotypic characteristics include the expression of megakaryocytic differentiation markers (e.g. CD41, CD42a, CD42b, CD61) associated with immaturity markers (CD34, CD117, HLA-DR) and myeloid markers (e.g. CD13, CD33) and even with lymphoid cross-lineage markers (e.g. CD7, CD56). Although the diagnostic immunophenotype has already been well described, given the rarity of the disease, its immunophenotypic heterogeneity and post-therapeutic instability, there is no consensus on the combination of monoclonal markers to detect minimal/measurable residual disease (MRD). Currently, MRD is an important tool for assessing treatment efficacy and prognostic risk. In this study, we evaluated the immunophenotypic profile of MRD in a retrospective cohort of patients diagnosed with acute megakaryoblastic leukemia, to identify which markers, positive or negative, were more stable after treatment and which could be useful for MRD evaluation. The expression profile of each marker was evaluated in sequential MRD samples. In conclusion, the markers evaluated in this study can be combined in an MRD immunophenotypic panel to investigate for megakaryoblastic leukemia. Although this study is retrospective and some data are missing, the information obtained may contribute to prospective studies to validate more specific strategies in the detection of MRD in acute megakaryoblastic leukemia.
Collapse
|
6
|
Hayatigolkhatmi K, Valzelli R, El Menna O, Minucci S. Epigenetic alterations in AML: Deregulated functions leading to new therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:27-75. [PMID: 39179348 DOI: 10.1016/bs.ircmb.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Acute myeloid leukemia (AML) results in disruption of the hematopoietic differentiation process. Crucial progress has been made, and new therapeutic strategies for AML have been developed. Induction chemotherapy, however, remains the main option for the majority of AML patients. Epigenetic dysregulation plays a central role in AML pathogenesis, supporting leukemogenesis and maintenance of leukemic stem cells. Here, we provide an overview of the intricate interplay of altered epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, in AML development. We explore the role of epigenetic regulators, such as DNMTs, HMTs, KDMs, and HDACs, in mediating gene expression patterns pushing towards leukemic cell transformation. Additionally, we discuss the impact of cytogenetic lesions on epigenomic remodeling and the potential of targeting epigenetic vulnerabilities as a therapeutic strategy. Understanding the epigenetic landscape of AML offers insights into novel therapeutic avenues, including epigenetic modifiers and particularly their use in combination therapies, to improve treatment outcomes and overcome drug resistance.
Collapse
Affiliation(s)
- Kourosh Hayatigolkhatmi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Riccardo Valzelli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Oualid El Menna
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Hemato-Oncology, Università Statale di Milano, Milan, Italy.
| |
Collapse
|
7
|
Li N, Zhang H, Bai H, Lu K. Development and validation of an LC-MS/MS method for ruxolitinib quantification: advancing personalized therapy in hematologic malignancies. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12905. [PMID: 39007093 PMCID: PMC11239354 DOI: 10.3389/jpps.2024.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024]
Abstract
Background Hematologic malignancies such as leukemia and lymphoma present treatment challenges due to their genetic and molecular heterogeneity. Ruxolitinib, a Janus kinase (JAK) inhibitor, has demonstrated efficacy in managing these cancers. However, optimal therapeutic outcomes are contingent upon maintaining drug levels within a therapeutic window, highlighting the necessity for precise drug monitoring. Methods We developed a sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify ruxolitinib in human plasma, improving upon traditional methods in specificity, sensitivity, and efficiency. The process involved the use of advanced chromatographic techniques and robust mass spectrometric conditions to ensure high accuracy and minimal matrix effects. The study was conducted using samples from 20 patients undergoing treatment, with calibration standards ranging from 10 to 2000 ng/mL. Results The method displayed linearity (R 2 > 0.99) across the studied range and proved highly selective with no significant interference observed. The method's precision and accuracy met FDA guidelines, with recovery rates consistently exceeding 85%. Clinical application demonstrated significant variability in ruxolitinib plasma levels among patients, reinforcing the need for individualized dosing schedules. Conclusion The validated LC-MS/MS method offers a reliable and efficient tool for the therapeutic drug monitoring of ruxolitinib, facilitating personalized treatment approaches in hematologic malignancies. This approach promises to enhance patient outcomes by optimizing dosing to reduce toxicity and improve efficacy.
Collapse
Affiliation(s)
- Na Li
- Mass Spectrometry Research Institute, Beijing Gobroad Hospital, Beijing, China
- Mass Spectrometry Research Institute, Beijing Gobroad Healthcare Group, Beijing, China
| | - Huiying Zhang
- Mass Spectrometry Research Institute, Beijing Gobroad Hospital, Beijing, China
- Mass Spectrometry Research Institute, Beijing Gobroad Healthcare Group, Beijing, China
| | | | - Kaizhi Lu
- Mass Spectrometry Research Institute, Beijing Gobroad Hospital, Beijing, China
- Mass Spectrometry Research Institute, Beijing Gobroad Healthcare Group, Beijing, China
| |
Collapse
|
8
|
Pan Y, Zeng W, Nie X, Chen H, Xie C, Guo S, Xu D, Chen Y. Immunotherapy-relevance of a candidate prognostic score for Acute Myeloid Leukemia. Heliyon 2024; 10:e32154. [PMID: 38961904 PMCID: PMC11219318 DOI: 10.1016/j.heliyon.2024.e32154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Background Acute Myeloid Leukemia (AML) exhibits a wide array of phenotypic manifestations, progression patterns, and heterogeneous responses to immunotherapies, suggesting involvement of complex immunobiological mechanisms. This investigation aimed to develop an integrated prognostic model for AML by incorporating cancer driver genes, along with clinical and phenotypic characteristics of the disease, and to assess its implications for immunotherapy responsiveness. Methods Critical oncogenic driver genes linked to survival were identified by screening primary effector and corresponding gene pairs using data from The Cancer Genome Atlas (TCGA), through univariate Cox proportional hazard regression analysis. This was independently verified using dataset GSE37642. Primary effector genes were further refined using LASSO regression. Transcriptomic profiling was quantified using multivariate Cox regression, and the derived prognostic score was subsequently validated. Finally, a multivariate Cox regression model was developed, incorporating the transcriptomic score along with clinical parameters such as age, gender, and French-American-British (FAB) classification subtype. The 'Accurate Prediction Model of AML Overall Survival Score' (APMAO) was developed and subsequently validated. Investigations were conducted into functional pathway enrichment, alterations in the gene mutational landscape, and the extent of immune cell infiltration associated with varying APMAO scores. To further investigate the potential of APMAO scores as a predictive biomarker for responsiveness to cancer immunotherapy, we conducted a series of analyses. These included examining the expression profiles of genes related to immune checkpoints, the interferon-gamma signaling pathway, and m6A regulation. Additionally, we explored the relationship between these gene expression patterns and the Tumor Immune Dysfunction and Exclusion (TIDE) dysfunction scores. Results Through the screening of 95 cancer genes associated with survival and 313 interacting gene pairs, seven genes (ACSL6, MAP3K1, CHIC2, HIP1, PTPN6, TFEB, and DAXX) were identified, leading to the derivation of a transcriptional score. Age and the transcriptional score were significant predictors in Cox regression analysis and were integral to the development of the final APMAO model, which exhibited an AUC greater than 0.75 and was successfully validated. Notable differences were observed in the distribution of the transcriptional score, age, cytogenetic risk categories, and French-American-British (FAB) classification between high and low APMAO groups. Samples with high APMAO scores demonstrated significantly higher mutation rates and pathway enrichments in NFKB, TNF, JAK-STAT, and NOTCH signaling. Additionally, variations in immune cell infiltration and immune checkpoint expression, activation of the interferon-γ pathway, and expression of m6A regulators were noted, including a negative correlation between CD160, m6A expression, and APMAO scores. Conclusion The combined APMAO score integrating transcriptional and clinical parameters demonstrated robust prognostic performance in predicting AML survival outcomes. It was linked to unique phenotypic characteristics, distinctive immune and mutational profiles, and patterns of expression for markers related to immunotherapy sensitivity. These observations suggest the potential for facilitating precision immunotherapy and advocate for its exploration in upcoming clinical trials.
Collapse
Affiliation(s)
- Yiyun Pan
- Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
- Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Wen Zeng
- Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Xiaoming Nie
- Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Hailong Chen
- Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Chuanhua Xie
- Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Shouju Guo
- Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Dechang Xu
- Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Yijian Chen
- Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
9
|
Hybel TE, Jensen SH, Rodrigues MA, Hybel TE, Pedersen MN, Qvick SH, Enemark MH, Bill M, Rosenberg CA, Ludvigsen M. Imaging Flow Cytometry and Convolutional Neural Network-Based Classification Enable Discrimination of Hematopoietic and Leukemic Stem Cells in Acute Myeloid Leukemia. Int J Mol Sci 2024; 25:6465. [PMID: 38928171 PMCID: PMC11203419 DOI: 10.3390/ijms25126465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous blood cancer with a dismal prognosis. It emanates from leukemic stem cells (LSCs) arising from the genetic transformation of hematopoietic stem cells (HSCs). LSCs hold prognostic value, but their molecular and immunophenotypic heterogeneity poses challenges: there is no single marker for identifying all LSCs across AML samples. We hypothesized that imaging flow cytometry (IFC) paired with artificial intelligence-driven image analysis could visually distinguish LSCs from HSCs based solely on morphology. Initially, a seven-color IFC panel was employed to immunophenotypically identify LSCs and HSCs in bone marrow samples from five AML patients and ten healthy donors, respectively. Next, we developed convolutional neural network (CNN) models for HSC-LSC discrimination using brightfield (BF), side scatter (SSC), and DNA images. Classification using only BF images achieved 86.96% accuracy, indicating significant morphological differences. Accuracy increased to 93.42% when combining BF with DNA images, highlighting differences in nuclear morphology, although DNA images alone were inadequate for accurate HSC-LSC discrimination. Model development using SSC images revealed minor granularity differences. Performance metrics varied substantially between AML patients, indicating considerable morphologic variations among LSCs. Overall, we demonstrate proof-of-concept results for accurate CNN-based HSC-LSC differentiation, instigating the development of a novel technique within AML monitoring.
Collapse
Affiliation(s)
- Trine Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Sofie Hesselberg Jensen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | | | - Thomas Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
| | - Maya Nautrup Pedersen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Signe Håkansson Qvick
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
| | - Marie Hairing Enemark
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Marie Bill
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Carina Agerbo Rosenberg
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| |
Collapse
|
10
|
Ikoma-Colturato MRV, Severino AR, Dos Santos Tosi JF, Bertolucci CM, Cuoco YMN, de Mattos ER, Colturato I, Silva FBR, de Souza MP, Simione AJ, Colturato VAR. Clinical validation of a 10-color flow cytometry panel to detect measurable residual disease in acute myeloid leukemia. Leuk Res 2024; 140:107482. [PMID: 38552548 DOI: 10.1016/j.leukres.2024.107482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 05/06/2024]
Affiliation(s)
| | | | | | | | | | | | - Iago Colturato
- Bone Marrow Transplantation Service, Hospital Amaral Carvalho - Jau - São Paulo, Brazil
| | | | - Mair Pedro de Souza
- Bone Marrow Transplantation Service, Hospital Amaral Carvalho - Jau - São Paulo, Brazil
| | - Anderson João Simione
- Bone Marrow Transplantation Service, Hospital Amaral Carvalho - Jau - São Paulo, Brazil
| | | |
Collapse
|
11
|
Schauner R, Cress J, Hong C, Wald D, Ramakrishnan P. Single cell and bulk RNA expression analyses identify enhanced hexosamine biosynthetic pathway and O-GlcNAcylation in acute myeloid leukemia blasts and stem cells. Front Immunol 2024; 15:1327405. [PMID: 38601153 PMCID: PMC11004450 DOI: 10.3389/fimmu.2024.1327405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Acute myeloid leukemia (AML) is the most common acute leukemia in adults with an overall poor prognosis and high relapse rate. Multiple factors including genetic abnormalities, differentiation defects and altered cellular metabolism contribute to AML development and progression. Though the roles of oxidative phosphorylation and glycolysis are defined in AML, the role of the hexosamine biosynthetic pathway (HBP), which regulates the O-GlcNAcylation of cytoplasmic and nuclear proteins, remains poorly defined. Methods We studied the expression of the key enzymes involved in the HBP in AML blasts and stem cells by RNA sequencing at the single-cell and bulk level. We performed flow cytometry to study OGT protein expression and global O-GlcNAcylation. We studied the functional effects of inhibiting O-GlcNAcylation on transcriptional activation in AML cells by Western blotting and real time PCR and on cell cycle by flow cytometry. Results We found higher expression levels of the key enzymes in the HBP in AML as compared to healthy donors in whole blood. We observed elevated O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA) expression in AML stem and bulk cells as compared to normal hematopoietic stem and progenitor cells (HSPCs). We also found that both AML bulk cells and stem cells show significantly enhanced OGT protein expression and global O-GlcNAcylation as compared to normal HSPCs, validating our in silico findings. Gene set analysis showed substantial enrichment of the NF-κB pathway in AML cells expressing high OGT levels. Inhibition of O-GlcNAcylation decreased NF-κB nuclear translocation and the expression of selected NF-κB-dependent genes controlling cell cycle. It also blocked cell cycle progression suggesting a link between enhanced O-GlcNAcylation and NF-κB activation in AML cell survival and proliferation. Discussion Our study suggests the HBP may prove a potential target, alone or in combination with other therapeutic approaches, to impact both AML blasts and stem cells. Moreover, as insufficient targeting of AML stem cells by traditional chemotherapy is thought to lead to relapse, blocking HBP and O-GlcNAcylation in AML stem cells may represent a novel promising target to control relapse.
Collapse
Affiliation(s)
- Robert Schauner
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, United States
| | - Jordan Cress
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Changjin Hong
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, United States
| | - David Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Parameswaran Ramakrishnan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| |
Collapse
|
12
|
Agrawal‐Singh S, Bagri J, Sakakini N, Huntly BJP. A guide to epigenetics in leukaemia stem cells. Mol Oncol 2023; 17:2493-2506. [PMID: 37872885 PMCID: PMC10701772 DOI: 10.1002/1878-0261.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/11/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
Leukaemia stem cells (LSCs) are the critical seed for the growth of haematological malignancies, driving the clonal expansion that enables disease initiation, relapse and often resistance. Specifically, they display inherent phenotypic and epigenetic plasticity resulting in complex heterogenic diseases. In this review, we discuss the key principles of deregulation of epigenetic processes that shape this disease evolution. We consider measures to define and quantify clonal heterogeneity, combining information from recent studies assessing mutational, transcriptional and epigenetic landscapes at single cell resolution in myeloid neoplasms (MN). We highlight the importance of integrating epigenetic and genetic information to better understand inter- and intra-patient heterogeneity and discuss how this understanding further informs evolution and progression trajectories and subsequent clinical response in MN. Under this topic, we also discuss efforts to identify mechanisms of resistance, by longitudinal analyses of patient samples. Finally, we highlight how we might target these aberrant epigenetic processes for better therapeutic outcomes and to potentially eradicate LSCs.
Collapse
Affiliation(s)
- Shuchi Agrawal‐Singh
- Department of Haematology, Jeffrey Cheah Biomedical CentreUniversity of CambridgeUK
- Cambridge Stem Cell InstituteUniversity of CambridgeUK
| | - Jaana Bagri
- Department of Haematology, Jeffrey Cheah Biomedical CentreUniversity of CambridgeUK
- Cambridge Stem Cell InstituteUniversity of CambridgeUK
| | - Nathalie Sakakini
- Department of Haematology, Jeffrey Cheah Biomedical CentreUniversity of CambridgeUK
- Cambridge Stem Cell InstituteUniversity of CambridgeUK
| | - Brian J. P. Huntly
- Department of Haematology, Jeffrey Cheah Biomedical CentreUniversity of CambridgeUK
- Cambridge Stem Cell InstituteUniversity of CambridgeUK
- Haematology ServiceCambridge University HospitalsUK
| |
Collapse
|
13
|
Knorr K, Rahman J, Erickson C, Wang E, Monetti M, Li Z, Ortiz-Pacheco J, Jones A, Lu SX, Stanley RF, Baez M, Fox N, Castro C, Marino AE, Jiang C, Penson A, Hogg SJ, Mi X, Nakajima H, Kunimoto H, Nishimura K, Inoue D, Greenbaum B, Knorr D, Ravetch J, Abdel-Wahab O. Systematic evaluation of AML-associated antigens identifies anti-U5 SNRNP200 therapeutic antibodies for the treatment of acute myeloid leukemia. NATURE CANCER 2023; 4:1675-1692. [PMID: 37872381 PMCID: PMC10733148 DOI: 10.1038/s43018-023-00656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
Despite recent advances in the treatment of acute myeloid leukemia (AML), there has been limited success in targeting surface antigens in AML, in part due to shared expression across malignant and normal cells. Here, high-density immunophenotyping of AML coupled with proteogenomics identified unique expression of a variety of antigens, including the RNA helicase U5 snRNP200, on the surface of AML cells but not on normal hematopoietic precursors and skewed Fc receptor distribution in the AML immune microenvironment. Cell membrane localization of U5 snRNP200 was linked to surface expression of the Fcγ receptor IIIA (FcγIIIA, also known as CD32A) and correlated with expression of interferon-regulated immune response genes. Anti-U5 snRNP200 antibodies engaging activating Fcγ receptors were efficacious across immunocompetent AML models and were augmented by combination with azacitidine. These data provide a roadmap of AML-associated antigens with Fc receptor distribution in AML and highlight the potential for targeting the AML cell surface using Fc-optimized therapeutics.
Collapse
Affiliation(s)
- Katherine Knorr
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA
| | - Jahan Rahman
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caroline Erickson
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mara Monetti
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhuoning Li
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juliana Ortiz-Pacheco
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Jones
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA
| | - Sydney X Lu
- Stanford University School of Medicine, Stanford, CA, USA
| | - Robert F Stanley
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Baez
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA
| | - Nina Fox
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cynthia Castro
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alessandra E Marino
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA
| | - Caroline Jiang
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA
| | - Alex Penson
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon J Hogg
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaoli Mi
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hiroyoshi Kunimoto
- Department of Stem Cell and Immune Regulation, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Benjamin Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David Knorr
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA
| | - Jeffrey Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA.
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
14
|
Klaihmon P, Luanpitpong S, Kang X, Issaragrisil S. Anti-TIM3 chimeric antigen receptor-natural killer cells from engineered induced pluripotent stem cells effectively target acute myeloid leukemia cells. Cancer Cell Int 2023; 23:297. [PMID: 38012684 PMCID: PMC10680184 DOI: 10.1186/s12935-023-03153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a clonal malignant disorder which originates from a small number of leukemia-initiating cells or leukemic stem cells (LSCs)-the subpopulation that is also the root cause of relapsed/refractory AML. Chimeric antigen receptor (CAR)-T cell therapy has proved successful at combating certain hematologic malignancies, but has several hurdles that limit its widespread applications. CAR-natural killer (NK) cells do not carry the risk of inducing graft-versus-host disease (GvHD) frequently associated with allogeneic T cells, thereby overcoming time-consuming, autologous cell manufacturing, and have relatively safer clinical profiles than CAR-T cells. The present study aimed to generate anti-TIM3 CAR-NK cells targeting LSCs from a clonal master induced pluripotent stem cells engineered with the third-generation anti-TIM3 CAR. METHODS A clonal master umbilical cord blood NK-derived induced pluripotent stem cell (iPSC) line, MUSIi013-A, was used as a starting cells for engineering of an anti-TIM3 CAR harboring TIM3 scFv fragment (clone TSR-022), CD28, 4-1BB, and CD3ζ signaling (CAR-TIM3). The established CAR-TIM3 iPSCs were further differentiated under serum- and feeder-free conditions into functional CAR-TIM3 NK cells and tested for its anti-tumor activity against various TIM3-positive AML cells. RESULTS We successfully established a single-cell clone of CAR-TIM3 iPSCs, as validated by genomic DNA sequencing as well as antibody and antigen-specific detection. We performed thorough iPSC characterization to confirm its retained pluripotency and differentiation capacity. The established CAR-TIM3 iPSCs can be differentiated into CAR-TIM3 NK-like cells, which were further proven to have enhanced anti-tumor activity against TIM3-positive AML cells with minimal effect on TIM3-negative cells when compared with wild-type (WT) NK-like cells from parental iPSCs. CONCLUSIONS iPSCs engineered with CARs, including the established single-cell clone CAR-TIM3 iPSCs herein, are potential alternative cell source for generating off-the-shelf CAR-NK cells as well as other CAR-immune cells. The feasibility of differentiation of functional CAR-TIM3 NK cells under serum- and feeder-free conditions support that Good Manufacturing Practice (GMP)-compliant protocols can be further established for future clinical applications.
Collapse
Affiliation(s)
- Phatchanat Klaihmon
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Blood Products and Cellular Immunotherapy Research Group, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Xing Kang
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand.
- BDMS Center of Excellence for Hematology, Wattanosoth Cancer Hospital, Bangkok, Thailand.
| |
Collapse
|
15
|
Zhang Y, Jiang S, He F, Tian Y, Hu H, Gao L, Zhang L, Chen A, Hu Y, Fan L, Yang C, Zhou B, Liu D, Zhou Z, Su Y, Qin L, Wang Y, He H, Lu J, Xiao P, Hu S, Wang QF. Single-cell transcriptomics reveals multiple chemoresistant properties in leukemic stem and progenitor cells in pediatric AML. Genome Biol 2023; 24:199. [PMID: 37653425 PMCID: PMC10472599 DOI: 10.1186/s13059-023-03031-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Cancer patients can achieve dramatic responses to chemotherapy yet retain resistant tumor cells, which ultimately results in relapse. Although xenograft model studies have identified several cellular and molecular features that are associated with chemoresistance in acute myeloid leukemia (AML), to what extent AML patients exhibit these properties remains largely unknown. RESULTS We apply single-cell RNA sequencing to paired pre- and post-chemotherapy whole bone marrow samples obtained from 13 pediatric AML patients who had achieved disease remission, and distinguish AML clusters from normal cells based on their unique transcriptomic profiles. Approximately 50% of leukemic stem and progenitor populations actively express leukemia stem cell (LSC) and oxidative phosphorylation (OXPHOS) signatures, respectively. These clusters have a higher chance of tolerating therapy and exhibit an enhanced metabolic program in response to treatment. Interestingly, the transmembrane receptor CD69 is highly expressed in chemoresistant hematopoietic stem cell (HSC)-like populations (named the CD69+ HSC-like subpopulation). Furthermore, overexpression of CD69 results in suppression of the mTOR signaling pathway and promotion of cell quiescence and adhesion in vitro. Finally, the presence of CD69+ HSC-like cells is associated with unfavorable genetic mutations, the persistence of residual tumor cells in chemotherapy, and poor outcomes in independent pediatric and adult public AML cohorts. CONCLUSIONS Our analysis reveals leukemia stem cell and OXPHOS as two major chemoresistant features in human AML patients. CD69 may serve as a potential biomarker in defining a subpopulation of chemoresistant leukemia stem cells. These findings have important implications for targeting residual chemo-surviving AML cells.
Collapse
Affiliation(s)
- Yongping Zhang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Shuting Jiang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuhong He
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Tian
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Haiyang Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Gao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Lin Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aili Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixin Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Liyan Fan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Chun Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Bi Zhou
- SuZhou Hospital of Anhui Medical University, Suzhou, China
| | - Dan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Zihan Zhou
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanxun Su
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Qin
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Hailong He
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Jun Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Peifang Xiao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China.
| | - Qian-Fei Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Madaci L, Gard C, Nin S, Venton G, Rihet P, Puthier D, Loriod B, Costello R. The Contribution of Multiplexing Single Cell RNA Sequencing in Acute Myeloid Leukemia. Diseases 2023; 11:96. [PMID: 37489448 PMCID: PMC10366847 DOI: 10.3390/diseases11030096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
Decades ago, the treatment for acute myeloid leukemia relied on cytarabine and anthracycline. However, advancements in medical research have introduced targeted therapies, initially employing monoclonal antibodies such as ant-CD52 and anti-CD123, and subsequently utilizing specific inhibitors that target molecular mutations like anti-IDH1, IDH2, or FLT3. The challenge lies in determining the role of these therapeutic options, considering the inherent tumor heterogeneity associated with leukemia diagnosis and the clonal drift that this type of tumor can undergo. Targeted drugs necessitate an examination of various therapeutic targets at the individual cell level rather than assessing the entire population. It is crucial to differentiate between the prognostic value and therapeutic potential of a specific molecular target, depending on whether it is found in a terminally differentiated cell with limited proliferative potential or a stem cell with robust capabilities for both proliferation and self-renewal. However, this cell-by-cell analysis is accompanied by several challenges. Firstly, the scientific aspect poses difficulties in comparing different single cell analysis experiments despite efforts to standardize the results through various techniques. Secondly, there are practical obstacles as each individual cell experiment incurs significant financial costs and consumes a substantial amount of time. A viable solution lies in the ability to process multiple samples simultaneously, which is a distinctive feature of the cell hashing technique. In this study, we demonstrate the applicability of the cell hashing technique for analyzing acute myeloid leukemia cells. By comparing it to standard single cell analysis, we establish a strong correlation in various parameters such as quality control, gene expression, and the analysis of leukemic blast markers in patients. Consequently, this technique holds the potential to become an integral part of the biological assessment of acute myeloid leukemia, contributing to the personalized and optimized management of the disease, particularly in the context of employing targeted therapies.
Collapse
Affiliation(s)
- Lamia Madaci
- TAGC, INSERM, UMR1090, Aix Marseille University, Parc Scientifique de Luminy, 13009 Marseille, France
| | - Charlyne Gard
- TAGC, INSERM, UMR1090, Aix Marseille University, Parc Scientifique de Luminy, 13009 Marseille, France
| | - Sébastien Nin
- TAGC, INSERM, UMR1090, Aix Marseille University, Parc Scientifique de Luminy, 13009 Marseille, France
| | - Geoffroy Venton
- TAGC, INSERM, UMR1090, Aix Marseille University, Parc Scientifique de Luminy, 13009 Marseille, France
- Hematology and Cellular Therapy Department, Conception Hospital, 13005 Marseille, France
| | - Pascal Rihet
- TAGC, INSERM, UMR1090, Aix Marseille University, Parc Scientifique de Luminy, 13009 Marseille, France
| | - Denis Puthier
- TAGC, INSERM, UMR1090, Aix Marseille University, Parc Scientifique de Luminy, 13009 Marseille, France
| | - Béatrice Loriod
- TAGC, INSERM, UMR1090, Aix Marseille University, Parc Scientifique de Luminy, 13009 Marseille, France
| | - Régis Costello
- TAGC, INSERM, UMR1090, Aix Marseille University, Parc Scientifique de Luminy, 13009 Marseille, France
- Hematology and Cellular Therapy Department, Conception Hospital, 13005 Marseille, France
| |
Collapse
|
17
|
Ivanov D, Milosevic Feenstra JD, Sadovnik I, Herrmann H, Peter B, Willmann M, Greiner G, Slavnitsch K, Hadzijusufovic E, Rülicke T, Dahlhoff M, Hoermann G, Machherndl‐Spandl S, Eisenwort G, Fillitz M, Sliwa T, Krauth M, Bettelheim P, Sperr WR, Koller E, Pfeilstöcker M, Gisslinger H, Keil F, Kralovics R, Valent P. Phenotypic characterization of disease-initiating stem cells in JAK2- or CALR-mutated myeloproliferative neoplasms. Am J Hematol 2023; 98:770-783. [PMID: 36814396 PMCID: PMC10952374 DOI: 10.1002/ajh.26889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Myeloproliferative neoplasms (MPN) are characterized by uncontrolled expansion of myeloid cells, disease-related mutations in certain driver-genes including JAK2, CALR, and MPL, and a substantial risk to progress to secondary acute myeloid leukemia (sAML). Although behaving as stem cell neoplasms, little is known about disease-initiating stem cells in MPN. We established the phenotype of putative CD34+ /CD38- stem cells and CD34+ /CD38+ progenitor cells in MPN. A total of 111 patients with MPN suffering from polycythemia vera, essential thrombocythemia, or primary myelofibrosis (PMF) were examined. In almost all patients tested, CD34+ /CD38- stem cells expressed CD33, CD44, CD47, CD52, CD97, CD99, CD105, CD117, CD123, CD133, CD184, CD243, and CD274 (PD-L1). In patients with PMF, MPN stem cells often expressed CD25 and sometimes also CD26 in an aberrant manner. MPN stem cells did not exhibit substantial amounts of CD90, CD273 (PD-L2), CD279 (PD-1), CD366 (TIM-3), CD371 (CLL-1), or IL-1RAP. The phenotype of CD34+ /CD38- stem cells did not change profoundly during progression to sAML. The disease-initiating capacity of putative MPN stem cells was confirmed in NSGS mice. Whereas CD34+ /CD38- MPN cells engrafted in NSGS mice, no substantial engraftment was produced by CD34+ /CD38+ or CD34- cells. The JAK2-targeting drug fedratinib and the BRD4 degrader dBET6 induced apoptosis and suppressed proliferation in MPN stem cells. Together, MPN stem cells display a unique phenotype, including cytokine receptors, immune checkpoint molecules, and other clinically relevant target antigens. Phenotypic characterization of neoplastic stem cells in MPN and sAML should facilitate their enrichment and the development of stem cell-eradicating (curative) therapies.
Collapse
Affiliation(s)
- Daniel Ivanov
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| | | | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| | - Harald Herrmann
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Department of Radiation OncologyMedical University of ViennaViennaAustria
| | - Barbara Peter
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| | - Michael Willmann
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Department for Companion Animals, Clinical Unit for Internal MedicineUniversity of Veterinary Medicine ViennaViennaAustria
| | - Georg Greiner
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
- Ihr Labor, Medical Diagnostic LaboratoriesViennaAustria
| | - Katharina Slavnitsch
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Institute of in vivo and in vitro ModelsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Emir Hadzijusufovic
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Department for Companion Animals, Clinical Unit for Internal MedicineUniversity of Veterinary Medicine ViennaViennaAustria
| | - Thomas Rülicke
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Department of Biomedical SciencesUniversity of Veterinary Medicine ViennaViennaAustria
| | - Maik Dahlhoff
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Institute of in vivo and in vitro ModelsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- MLL Munich Leukemia LaboratoryMunichGermany
| | - Sigrid Machherndl‐Spandl
- Hospital Ordensklinikum Elisabethinen LinzLinzAustria
- Johannes Kepler University, Medical FacultyLinzAustria
| | - Gregor Eisenwort
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Third Medical Department for Hematology and OncologyHanusch Hospital ViennaViennaAustria
| | - Michael Fillitz
- Third Medical Department for Hematology and OncologyHanusch Hospital ViennaViennaAustria
| | - Thamer Sliwa
- Third Medical Department for Hematology and OncologyHanusch Hospital ViennaViennaAustria
| | - Maria‐Theresa Krauth
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| | | | - Wolfgang R. Sperr
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| | - Elisabeth Koller
- Third Medical Department for Hematology and OncologyHanusch Hospital ViennaViennaAustria
| | - Michael Pfeilstöcker
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Third Medical Department for Hematology and OncologyHanusch Hospital ViennaViennaAustria
| | - Heinz Gisslinger
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| | - Felix Keil
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Third Medical Department for Hematology and OncologyHanusch Hospital ViennaViennaAustria
| | - Robert Kralovics
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| |
Collapse
|
18
|
Brahmbhatt J, Kumar SP, Bhadresha K, Patel M, Rawal R. Targeting leukemic stem cell subpopulation in AML using phytochemicals: An in-silico and in-vitro approach. Comput Biol Med 2023; 155:106644. [PMID: 36774886 DOI: 10.1016/j.compbiomed.2023.106644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
It has been indicated that leukemic stem cells (LSCs), a subset of leukaemia cells, are responsible for therapy resistance and relapse in acute myeloid leukaemia (AML). Therefore, the current study aimed to discover an LSC biomarker in AML patients and identify a natural compound that may target the same. By performing the different gene expression analyses, we identified 12 up-regulated and 192 down-regulated genes in LSCs of AML compared to normal bone marrow-derived HSCs. Further STRING interaction, GO enrichment and KEGG pathway analysis were carried out to top hub genes. Wilms' tumour-1 (WT1) transcription factor was pointed out as the top hub gene and a potential biomarker for LSCs in AML. For the targeted inhibition of WT1, we performed screening and stimulation of potential natural compounds. The results revealed Gallic acid (GA) and Chlorogenic acid (CA) as promising WT1 inhibitors. In-vitro validation of cytotoxic effects of both GA and CA on THP-1 and HL-60 cell lines suggested that both these compounds inhibited cell proliferation. Still, GA has a more cytotoxic effect compared to CA. Next, we performed cell cycle analysis and apoptosis analysis and found that both compounds arrested cells in G0/G1 phase and induced apoptosis in both cell lines. Surprisingly, a significant decrease in colony formation and cell migration was also observed. However, GA gave more promising results in all cellular assays than CA. Furthermore, we studied the mRNA expression of WT1 and BCL2, which are transcriptionally activated by it. We found that GA significantly downregulated both these genes compared to CA. Our results suggested that GA is a potential inhibitor of WT1 and might be an excellent anti-LSCs natural drug for AML patients.
Collapse
Affiliation(s)
- Jpan Brahmbhatt
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Sivakumar Prasanth Kumar
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Kinjal Bhadresha
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Maulikkumar Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Rakesh Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, 380009, India.
| |
Collapse
|
19
|
Quist EM, Choudhary S, Lang R, Tokarz DA, Hoenerhoff M, Nagel J, Everitt JI. Proceedings of the 2022 National Toxicology Program Satellite Symposium. Toxicol Pathol 2022; 50:836-857. [PMID: 36165586 PMCID: PMC9678128 DOI: 10.1177/01926233221124825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 2022 annual National Toxicology Program Satellite Symposium, entitled "Pathology Potpourri," was held in Austin, Texas at the Society of Toxicologic Pathology's 40th annual meeting during a half-day session on Sunday, June 19. The goal of this symposium was to present and discuss challenging diagnostic pathology and/or nomenclature issues. This article presents summaries of the speakers' talks along with select images that were used by the audience for voting and discussion. Various lesions and topics covered during the symposium included induced and spontaneous neoplastic and nonneoplastic lesions in the mouse lung, spontaneous lesions in the reproductive tract of a female cynomolgus macaque, induced vascular lesions in a mouse asthma model and interesting case studies in a rhesus macaque, dog and genetically engineered mouse model.
Collapse
Affiliation(s)
| | | | | | | | - Mark Hoenerhoff
- Unit for Laboratory Animal Medicine In Vivo Animal Core, University of Michigan Medical School, Ann Arbor, MI
| | - Jonathan Nagel
- University of North Carolina – Chapel Hill, Chapel Hill, NC
- North Carolina State University, Raleigh, NC
| | | |
Collapse
|
20
|
Dal Bello R, Pasanisi J, Joudinaud R, Duchmann M, Pardieu B, Ayaka P, Di Feo G, Sodaro G, Chauvel C, Kim R, Vasseur L, Chat L, Ling F, Pacchiardi K, Vaganay C, Berrou J, Benaksas C, Boissel N, Braun T, Preudhomme C, Dombret H, Raffoux E, Fenouille N, Clappier E, Adès L, Puissant A, Itzykson R. A multiparametric niche-like drug screening platform in acute myeloid leukemia. Blood Cancer J 2022; 12:95. [PMID: 35750691 PMCID: PMC9232632 DOI: 10.1038/s41408-022-00689-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Functional precision medicine in AML often relies on short-term in vitro drug sensitivity screening (DSS) of primary patient cells in standard culture conditions. We designed a niche-like DSS assay combining physiologic hypoxia (O2 3%) and mesenchymal stromal cell (MSC) co-culture with multiparameter flow cytometry to enumerate lymphocytes and differentiating (CD11/CD14/CD15+) or leukemic stem cell (LSC)-enriched (GPR56+) cells within the leukemic bulk. After functional validation of GPR56 expression as a surrogate for LSC enrichment, the assay identified three patterns of response, including cytotoxicity on blasts sparing LSCs, induction of differentiation, and selective impairment of LSCs. We refined our niche-like culture by including plasma-like amino-acid and cytokine concentrations identified by targeted metabolomics and proteomics of primary AML bone marrow plasma samples. Systematic interrogation revealed distinct contributions of each niche-like component to leukemic outgrowth and drug response. Short-term niche-like culture preserved clonal architecture and transcriptional states of primary leukemic cells. In a cohort of 45 AML samples enriched for NPM1c AML, the niche-like multiparametric assay could predict morphologically (p = 0.02) and molecular (NPM1c MRD, p = 0.04) response to anthracycline-cytarabine induction chemotherapy. In this cohort, a 23-drug screen nominated ruxolitinib as a sensitizer to anthracycline-cytarabine. This finding was validated in an NPM1c PDX model.
Collapse
Affiliation(s)
- Reinaldo Dal Bello
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.,Service Hématologie Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Justine Pasanisi
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Romane Joudinaud
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Matthieu Duchmann
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Bryann Pardieu
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Paolo Ayaka
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Giuseppe Di Feo
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Gaetano Sodaro
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Clémentine Chauvel
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.,Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Rathana Kim
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.,Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Loic Vasseur
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Laureen Chat
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Frank Ling
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Kim Pacchiardi
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.,Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Camille Vaganay
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Jeannig Berrou
- Université Paris Cité, EA 3518, IRSL, Hôpital Saint-Louis, F-75010, Paris, France
| | - Chaima Benaksas
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Nicolas Boissel
- Service Hématologie Adolescents Jeunes Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Thorsten Braun
- Université Paris Cité, EA 3518, IRSL, Hôpital Saint-Louis, F-75010, Paris, France.,Service d'Hématologie clinique, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Claude Preudhomme
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Hervé Dombret
- Service Hématologie Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France.,Université Paris Cité, EA 3518, IRSL, Hôpital Saint-Louis, F-75010, Paris, France
| | - Emmanuel Raffoux
- Service Hématologie Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Nina Fenouille
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Emmanuelle Clappier
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.,Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Lionel Adès
- Service Hématologie Seniors, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Alexandre Puissant
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Raphael Itzykson
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France. .,Service Hématologie Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France.
| |
Collapse
|
21
|
Kamel AM, Elsharkawy NM, Kandeel EZ, Hanafi M, Samra M, Osman RA. Leukemia Stem Cell Frequency at Diagnosis Correlates With Measurable/Minimal Residual Disease and Impacts Survival in Adult Acute Myeloid Leukemia. Front Oncol 2022; 12:867684. [PMID: 35530356 PMCID: PMC9069678 DOI: 10.3389/fonc.2022.867684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous disease in which the initiation and maintenance of the malignant clone is blamed on a rare population of leukemia stem cells (LSCs). The persistence of such a malignant population is referred to as measurable/minimal residual disease (MRD). Evaluation of MRD is the gold standard for follow-up of therapy and constitutes an independent prognostic parameter. As LSCs are the main contributor to the persistence of MRD, then MRD should correlate with the bulk of LSCs at the individual case level. MRD is measured at defined time points during therapy. However, LSCs can be evaluated at diagnosis, which ensures the advantage of early prediction of high-risk patients and allows for early therapeutic decisions. Using two simple four-color monoclonal antibody combinations (CD38/CD123/CD34/CD45 and CD90/CD133/CD45/CD33) and the prism function of the Coulter Navios flow cytometer, the frequency of LSC subsets was evaluated in 84 newly diagnosed adult AML patients. For each panel, 16 possible combinations were detected. Our results showed that there was extreme variability in the percentage of the LSC fraction between different cases, as well as at the individual case level. For each LSC subset, the median value was used to divide cases into low and high expressors. LSC subsets that showed an impact on overall survival (OS) and disease-free survival (DFS) included CD123+, CD 123+/CD34-, CD34-/CD38+/CD123+, CD34+/CD38-/CD123+, CD133+, and CD133+/CD33-. On multivariate analysis, only CD123 (p ≤ 0.001, SE = 0.266, HR = 2.8, 95% CI = 1.74.7) and CD133+/CD33- (p = 0.017, SE = 0.263, HR = 1.9, 95% CI = 1.1–3.1) retained their significance for OS. Likewise, only CD34+/CD38-/CD123+ (p ≤ 0.001, HR 2.3, SE: 0.499, 95% CI: 2.4–17.4) and CD133 (p = 0.015, HR 2.3, SE 0.34, 95% CI: 1.2–4.4) retained their statistical significance for DFS. The LSC frequency at diagnosis showed a moderate to strong correlation with MRD status at day 14 and day 28. In conclusion, the level of LSCs at diagnosis correlated with MRD status at day 14 and day 28 in AML patients and had a deleterious impact on OS and DFS. It may be used as an early marker for high-risk patients allowing for early therapeutic decisions.
Collapse
Affiliation(s)
- Azza M Kamel
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Nahla M Elsharkawy
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Eman Z Kandeel
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Marwa Hanafi
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohammed Samra
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Randa A Osman
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
22
|
Dissecting the Genetic and Non-Genetic Heterogeneity of Acute Myeloid Leukemia Using Next-Generation Sequencing and In Vivo Models. Cancers (Basel) 2022; 14:cancers14092182. [PMID: 35565315 PMCID: PMC9103951 DOI: 10.3390/cancers14092182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is an extremely aggressive form of blood cancer with high rates of treatment failure. AML arises from the stepwise acquisition of genetic aberrations and is a highly heterogeneous disorder. Recent research has shown that individual AML samples often contain several clones that are defined by a distinct combination of genetic lesions, epigenetic patterns and cell surface marker expression profiles. A better understanding of the clonal dynamics of AML is required to develop novel treatment strategies against this disease. In this review, we discuss the recent developments that have further deepened our understanding of clonal evolution and heterogeneity in AML. Abstract Acute myeloid leukemia (AML) is an extremely aggressive and heterogeneous disorder that results from the transformation of hematopoietic stem cells. Although our understanding of the molecular pathology of AML has greatly improved in the last few decades, the overall and relapse free survival rates among AML patients remain quite poor. This is largely due to evolution of the disease and selection of the fittest, treatment-resistant leukemic clones. There is increasing evidence that most AMLs possess a highly complex clonal architecture and individual leukemias are comprised of genetically, phenotypically and epigenetically distinct clones, which are continually evolving. Advances in sequencing technologies as well as studies using murine AML models have provided further insights into the heterogeneity of leukemias. We will review recent advances in the field of genetic and non-genetic heterogeneity in AML.
Collapse
|
23
|
Li S, Wang Z, Guo X, Chen P, Tang Y. Potent anti-tumor activity of CD45RA-targeting Hm3A4-Ranpirnase against myeloid lineage leukemias. Bioengineered 2022; 13:8631-8642. [PMID: 35322728 PMCID: PMC9161826 DOI: 10.1080/21655979.2022.2054159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/06/2022] Open
Abstract
CD45RA is a specific marker for leukemia stem cell (LSC) sub-populations in acute myeloid leukemia (AML). Ranpirnase (Rap), an amphibian RNase, has been extensively investigated in preclinical and clinical studies for its antitumor activity. Rap could be administered repeatedly to patients without inducing an immune response. Reversible renal toxicity has been reported to be dose-limiting. In this study, we generated a novel immunotoxin targeting LSCs: Hm3A4-Rap, which was composed of Rap and Hm3A4, a human-mouse chimeric antibody against CD45RA. This immunotoxin was generated recombinantly by fusing Rap to Hm3A4 at the Fc terminus and then produced by stably transfecting CHO cells. The immunotoxin was purified using Ni-NTA and then evaluated using RT-PCR, SDS-PAGE, antibody titer assays, competitive inhibition assays, and internalization assays. In addition, the purity, molecular integrity, and affinity to the CD45RA antigen were determined. In vitro studies demonstrated that Hm3A4-Rap could efficiently kill target cells. In vivo studies demonstrated that Hm3A4-Rap had potent anti-leukemia activity, with dosed mice showing a significant increase in survival time compared to control mice (P < 0.01). In summary, our immunotoxin had excellent biological activity suggesting its potential therapeutic value for treating AML patients. Additional preclinical and clinical studies are needed to develop this immunotoxin as a treatment option for patients with leukemia.
Collapse
Affiliation(s)
- Sisi Li
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, PR China
- Division/Center of Pediatric Hematology-Oncology at the Children’s Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Medical Research Center for Child Health, Hangzhou, Zhejiang, PR China
| | - Zhujun Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR, China
| | - Xiaoping Guo
- Division/Center of Pediatric Hematology-Oncology at the Children’s Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Medical Research Center for Child Health, Hangzhou, Zhejiang, PR China
| | - Ping Chen
- Division/Center of Pediatric Hematology-Oncology at the Children’s Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Medical Research Center for Child Health, Hangzhou, Zhejiang, PR China
| | - Yongmin Tang
- Division/Center of Pediatric Hematology-Oncology at the Children’s Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Medical Research Center for Child Health, Hangzhou, Zhejiang, PR China
| |
Collapse
|
24
|
Thakral D, Gupta R, Khan A. Leukemic stem cell signatures in Acute myeloid leukemia- targeting the Guardians with novel approaches. Stem Cell Rev Rep 2022; 18:1756-1773. [DOI: 10.1007/s12015-022-10349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 11/09/2022]
|
25
|
Multimerin-1 and cancer: a review. Biosci Rep 2022; 42:230760. [PMID: 35132992 PMCID: PMC8881648 DOI: 10.1042/bsr20211248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Multimerin-1 (MMRN1) is a platelet protein with a role in haemostasis and coagulation. It is also present in endothelial cells (ECs) and the extracellular matrix (ECM), where it may be involved in cell adhesion, but its molecular functions and protein–protein interactions in these cellular locations have not been studied in detail yet. In recent years, MMRN1 has been identified as a differentially expressed gene (DEG) in various cancers and it has been proposed as a possible cancer biomarker. Some evidence suggest that MMRN1 expression is regulated by methylation, protein interactions, and non-coding RNAs (ncRNAs) in different cancers. This raises the questions if a functional role of MMRN1 is being targeted during cancer development, and if MMRN1’s differential expression pattern correlates with cancer progression. As a result, it is timely to review the current state of what is known about MMRN1 to help inform future research into MMRN1’s molecular mechanisms in cancer.
Collapse
|
26
|
[Development and functional verification of CAR-T cells targeting CLL-1]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:102-106. [PMID: 35381669 PMCID: PMC8980646 DOI: 10.3760/cma.j.issn.0253-2727.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To explore the development of a CAR-T cells targeting CLL-1 and verify its function. Methods: The expression levels of CLL-1 targets in cell lines and primary cells were detected by flow cytometry. A CLL-1 CAR vector was constructed, and the corresponding lentivirus was prepared. After infection and activation of T cells, CAR-T cells targeting CLL-1 were produced and their function was verified in vitro and in vivo. Results: CLL-1 was expressed in acute myeloid leukemia (AML) cell lines and primary AML cells. The transduction rate of the prepared CAR T cells was 77.82%. In AML cell lines and AML primary cells, CLL-1-targeting CAR-T cells significantly and specifically killed CLL-1-expressing cells. Compared to untransduced T cells, CAR-T cells killed target cells and secreted inflammatory cytokines, such as interleukin-6 and interferon-γ, at significantly higher levels (P<0.001) . In an in vivo human xenograft mouse model of AML, CLL-1 CAR-T cells also exhibited potent antileukemic activity and induced prolonged mouse survival compared with untransduced T cells [not reached vs 22 days (95%CI 19-24 days) , P=0.002]. Conclusion: CAR-T cells targeting CLL-1 have been successfully produced and have excellent functions.
Collapse
|
27
|
Wang SSY. Relationship between leukaemic stem cells and hematopoietic stem cells and their clinical application. Leuk Lymphoma 2022; 63:1524-1533. [PMID: 35067128 DOI: 10.1080/10428194.2022.2027401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The world is aging and with it an associated increase in malignancies. Haematological malignancies especially Acute Myeloid Leukemia (AML) are no exception to this trend. With scientific advances, development of new AML treatments has improved patient mortality. One future research interest would be Leukeamic Stem Cells (LSC). This review aims to briefly highlight main LSC characteristics and their relationship with hematopoietic stem cells. Key LSC characteristics include dysregulated apoptosis, capacity for self-renewal, genomic instability, dysregulated energetics, immune privilege and an altered tumor microenvironment. Similar characteristics are also found in HSCs though in a regulated form. Classifying these characteristics will aid in the development of clinical biomarkers for LSC which is a potential clinical application of LSC biology. LSC biomarkers might prove to be critical in future AML management through improving accuracy of AML diagnosis, providing targeted treatment to minimize side effects, refinement of prognosis and relapse risk for earlier intervention.
Collapse
Affiliation(s)
- Samuel S Y Wang
- Department of Haematology, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
28
|
A primary hierarchically organized patient-derived model enables in depth interrogation of stemness driven by the coding and non-coding genome. Leukemia 2022; 36:2690-2704. [PMID: 36131042 PMCID: PMC9613464 DOI: 10.1038/s41375-022-01697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
Many cancers are organized as cellular hierarchies sustained by cancer stem cells (CSC), whose eradication is crucial for achieving long-term remission. Difficulties to isolate and undertake in vitro and in vivo experimental studies of rare CSC under conditions that preserve their original properties currently constitute a bottleneck for identifying molecular mechanisms involving coding and non-coding genomic regions that govern stemness. We focussed on acute myeloid leukemia (AML) as a paradigm of the CSC model and developed a patient-derived system termed OCI-AML22 that recapitulates the cellular hierarchy driven by leukemia stem cells (LSC). Through classical flow sorting and functional analyses, we established that a single phenotypic population is highly enriched for LSC. The LSC fraction can be easily isolated and serially expanded in culture or in xenografts while faithfully recapitulating functional, transcriptional and epigenetic features of primary LSCs. A novel non-coding regulatory element was identified with a new computational approach using functionally validated primary AML LSC fractions and its role in LSC stemness validated through efficient CRISPR editing using methods optimized for OCI-AML22 LSC. Collectively, OCI-AML22 constitutes a valuable resource to uncover mechanisms governing CSC driven malignancies.
Collapse
|
29
|
Fleischmann M, Schnetzke U, Hochhaus A, Scholl S. Management of Acute Myeloid Leukemia: Current Treatment Options and Future Perspectives. Cancers (Basel) 2021; 13:5722. [PMID: 34830877 PMCID: PMC8616498 DOI: 10.3390/cancers13225722] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Treatment of acute myeloid leukemia (AML) has improved in recent years and several new therapeutic options have been approved. Most of them include mutation-specific approaches (e.g., gilteritinib for AML patients with activating FLT3 mutations), or are restricted to such defined AML subgroups, such as AML-MRC (AML with myeloid-related changes) or therapy-related AML (CPX-351). With this review, we aim to present a comprehensive overview of current AML therapy according to the evolved spectrum of recently approved treatment strategies. We address several aspects of combined epigenetic therapy with the BCL-2 inhibitor venetoclax and provide insight into mechanisms of resistance towards venetoclax-based regimens, and how primary or secondary resistance might be circumvented. Furthermore, a detailed overview on the current status of AML immunotherapy, describing promising concepts, is provided. This review focuses on clinically important aspects of current and future concepts of AML treatment, but will also present the molecular background of distinct targeted therapies, to understand the development and challenges of clinical trials ongoing in AML patients.
Collapse
Affiliation(s)
| | | | | | - Sebastian Scholl
- Klinik für Innere Medizin II, Abteilung Hämatologie und Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07740 Jena, Germany; (M.F.); (U.S.); (A.H.)
| |
Collapse
|
30
|
Gurney M, O’Dwyer M. Realizing Innate Potential: CAR-NK Cell Therapies for Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:1568. [PMID: 33805422 PMCID: PMC8036691 DOI: 10.3390/cancers13071568] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Next-generation cellular immunotherapies seek to improve the safety and efficacy of approved CD19 chimeric antigen receptor (CAR) T-cell products or apply their principles across a growing list of targets and diseases. Supported by promising early clinical experiences, CAR modified natural killer (CAR-NK) cell therapies represent a complementary and potentially off-the-shelf, allogeneic solution. While acute myeloid leukemia (AML) represents an intuitive disease in which to investigate CAR based immunotherapies, key biological differences to B-cell malignancies have complicated progress to date. As CAR-T cell trials treating AML are growing in number, several CAR-NK cell approaches are also in development. In this review we explore why CAR-NK cell therapies may be particularly suited to the treatment of AML. First, we examine the established role NK cells play in AML biology and the existing anti-leukemic activity of NK cell adoptive transfer. Next, we appraise potential AML target antigens and consider common and unique challenges posed relative to treating B-cell malignancies. We summarize the current landscape of CAR-NK development in AML, and potential targets to augment CAR-NK cell therapies pharmacologically and through genetic engineering. Finally, we consider the broader landscape of competing immunotherapeutic approaches to AML treatment. In doing so we evaluate the innate potential, status and remaining barriers for CAR-NK based AML immunotherapy.
Collapse
Affiliation(s)
- Mark Gurney
- Apoptosis Research Center, National University of Ireland Galway, H91 TK33 Galway, Ireland;
| | - Michael O’Dwyer
- Apoptosis Research Center, National University of Ireland Galway, H91 TK33 Galway, Ireland;
- ONK Therapeutics Ltd., H91 V6KV Galway, Ireland
| |
Collapse
|
31
|
Descriptive and Functional Genomics in Acute Myeloid Leukemia (AML): Paving the Road for a Cure. Cancers (Basel) 2021; 13:cancers13040748. [PMID: 33670178 PMCID: PMC7916915 DOI: 10.3390/cancers13040748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Over the past decades, genetic advances have allowed a more precise molecular characterization of AML with the identification of novel oncogenes and tumor suppressors as part of a comprehensive AML molecular landscape. Recent advances in genetic sequencing tools also enabled a better understanding of AML leukemogenesis from the preleukemic state to posttherapy relapse. These advances resulted in direct clinical implications with the definition of molecular prognosis classifications, the development of treatment recommendations based on minimal residual disease (MRD) measurement and the discovery of novel targeted therapies, ultimately improving AML patients' overall survival. The more recent development of functional genomic studies, pushed by novel molecular biology technologies (short hairpin RNA (shRNA) and CRISPR-Cas9) and bioinformatics tools design on one hand, along with the engineering of humanized physiologically relevant animal models on the other hand, have opened a new genomics era resulting in a greater knowledge of AML physiopathology. Combining descriptive and functional genomics will undoubtedly open the road for an AML cure within the next decades.
Collapse
|
32
|
Perriello VM, Gionfriddo I, Rossi R, Milano F, Mezzasoma F, Marra A, Spinelli O, Rambaldi A, Annibali O, Avvisati G, Di Raimondo F, Ascani S, Falini B, Martelli MP, Brunetti L. CD123 Is Consistently Expressed on NPM1-Mutated AML Cells. Cancers (Basel) 2021; 13:cancers13030496. [PMID: 33525388 PMCID: PMC7865228 DOI: 10.3390/cancers13030496] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary One-third of adult acute myeloid leukemia (AML) harbors NPM1 mutations. A deep knowledge of the distribution of selected antigens on the surface of NPM1-mutated AML cells may help optimizing new therapies for this frequent AML subtype. CD123 is known to be expressed on leukemic cells but also on healthy hematopoietic and endothelial cells, although at lower levels. Differences in antigen densities between AML and healthy cells may enlighten therapeutic windows, where targeting CD123 could be effective without triggering “on-target off-tumor” toxicities. Here, we perform a thorough analysis of CD123 expression demonstrating high expression of this antigen on both NPM1-mutated bulk leukemic cells and CD34+CD38− cells. Abstract NPM1-mutated (NPM1mut) acute myeloid leukemia (AML) comprises about 30% of newly diagnosed AML in adults. Despite notable advances in the treatment of this frequent AML subtype, about 50% of NPM1mut AML patients treated with conventional treatment die due to disease progression. CD123 has been identified as potential target for immunotherapy in AML, and several anti-CD123 therapeutic approaches have been developed for AML resistant to conventional therapies. As this antigen has been previously reported to be expressed by NPM1mut cells, we performed a deep flow cytometry analysis of CD123 expression in a large cohort of NPM1mut and wild-type samples, examining the whole blastic population, as well as CD34+CD38− leukemic cells. We demonstrate that CD123 is highly expressed on NPM1mut cells, with particularly high expression levels showed by CD34+CD38− leukemic cells. Additionally, CD123 expression was further enhanced by FLT3 mutations, which frequently co-occur with NPM1 mutations. Our results identify NPM1-mutated and particularly NPM1/FLT3 double-mutated AML as disease subsets that may benefit from anti-CD123 targeted therapies.
Collapse
Affiliation(s)
- Vincenzo Maria Perriello
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Ilaria Gionfriddo
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Roberta Rossi
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Francesca Milano
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Federica Mezzasoma
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Andrea Marra
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Orietta Spinelli
- Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, Italy; (O.S.); (A.R.)
| | - Alessandro Rambaldi
- Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, Italy; (O.S.); (A.R.)
- Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Ombretta Annibali
- Hematology and Stem Cell Transplant Unit, Campus Biomedico University Hospital, 00128 Rome, Italy; (O.A.); (G.A.)
| | - Giuseppe Avvisati
- Hematology and Stem Cell Transplant Unit, Campus Biomedico University Hospital, 00128 Rome, Italy; (O.A.); (G.A.)
| | - Francesco Di Raimondo
- Hematology and Bone Marrow Transplant Unit, Catania University Hospital, 95125 Catania, Italy;
| | - Stefano Ascani
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
- Hematology and Bone Marrow Transplant Unit, Santa Maria della Misericordia Hospital, 06131 Perugia, Italy
- Pathology, Santa Maria Hospital, 05100 Terni, Italy
| | - Brunangelo Falini
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
- Hematology and Bone Marrow Transplant Unit, Santa Maria della Misericordia Hospital, 06131 Perugia, Italy
| | - Maria Paola Martelli
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
- Hematology and Bone Marrow Transplant Unit, Santa Maria della Misericordia Hospital, 06131 Perugia, Italy
- Correspondence: (M.P.M.); (L.B.)
| | - Lorenzo Brunetti
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
- Hematology and Bone Marrow Transplant Unit, Santa Maria della Misericordia Hospital, 06131 Perugia, Italy
- Correspondence: (M.P.M.); (L.B.)
| |
Collapse
|