1
|
Wilcox S, Sengupta S, Huang C, Tokuda J, Lu A, Woodrum D, Chen Y. Development of a Low-Profile, Piezoelectric Robot for MR-Guided Abdominal Needle Interventions. Ann Biomed Eng 2025:10.1007/s10439-025-03719-w. [PMID: 40266438 DOI: 10.1007/s10439-025-03719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE Minimally invasive needle-based interventions are commonly used in cancer diagnosis and treatment, including procedures, such as biopsy, brachytherapy, and microwave ablation. Although MR-guided needle placement offers several distinct advantages, such as high-resolution target visualization and accurate device tracking, one of the primary limitations that affect its widespread adoption is the ergonomic constraints of the closed-bore MRI environment, requiring the patients to be frequently moved in and out to perform the needle-based procedures. This paper introduces a low-profile, body-mounted, MR-guided robot designed to address this limitation by streamlining the operation workflow and enabling accurate needle placement within the MRI scanner. METHODS The robot employs piezoelectric linear actuators and stacked Cartesian XY stages to precisely control the position and orientation of a needle guide. A kinematic model and control framework was developed to facilitate accurate targeting. Additionally, clinical workflow for the liver interventions was developed to demonstrate the robot's capability to replicate existing procedures. The proposed system was validated in benchtop environment and 3T MRI scanner to quantify the system performance. RESULTS Experimental validations conducted in free space demonstrated a position accuracy of 2.38 ± 0.94 mm and orientation error of 1.40 ± 2.89°. Additional tests to confirm MR-conditionality and MR-guided phantom placements were carried out to assess the system's performance and safety in MRI suite, yielding a position error of 2.01 ± 0.77 mm and an orientation error of 1.57 ± 1.31°. CONCLUSION The presented robot shows exceptional compatibility with a wide range of patients and bore sizes while maintaining clinically significant accuracy. Future work will focus on the validations in dynamic liver environments.
Collapse
Affiliation(s)
- Samuel Wilcox
- Institute of Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, 30332, USA
| | - Saikat Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Chuan Huang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Junichi Tokuda
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Aiming Lu
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - David Woodrum
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yue Chen
- Institute of Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Rouhezamin MR, Fintelmann FJ, Huang AJ, Arellano RS, Smolinski-Zhao S, Patel DM, Wehrenberg-Klee EP, Uppot RN. Limited Effectiveness in Early Human Clinical Experience with Pulsed Electrical Field Ablation. J Vasc Interv Radiol 2025; 36:274-281. [PMID: 39522867 DOI: 10.1016/j.jvir.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/01/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE To evaluate oncological outcomes, abscopal effect, and adverse events (AEs) of pulsed electrical field (PEF) ablation of tumors in the chest, abdomen, and pelvis. MATERIALS AND METHODS PEF ablations performed at an academic medical center between May 2023 and January 2024 were retrospectively analyzed. Eleven patients (4 males and 7 females; age, 58 years ± 19) underwent 11 PEF sessions targeting 13 tumors (lung metastasis from solitary fibrous tumor [n = 3] and colorectal carcinoma (CA) [n = 1], osteosarcoma pleural metastases [n = 2], hepatocellular CA [n = 2], liver metastasis from colorectal CA [n = 1] and leiomyosarcoma [n = 1], metastatic melanoma to the pancreas [n = 1], metastatic retroperitoneal lymph node from endometrial CA [n = 1], and recurrence of endometrial CA in the vaginal cuff [n = 1]) with the goal of complete coverage (n = 11/13) or debulking (n = 2/13). The mean tumor diameter was 1.9 cm (SD ± 1.0; range, 0.4-3.3 cm). Cross-sectional imaging follow-up was 5.3 months (SD ± 2.2; range, 1.9-7.9 months). Oncological outcomes, abscopal effect, and AEs categorized according to the Society of Interventional Radiology (SIR) guidelines were analyzed. RESULTS Of 11 tumors that underwent ablation for complete coverage, complete coverage was achieved for 1 (9%), and residual was detected in 9 (81%). Ten (91%) of 11 patients showed either residual, local, or distant progression within a median of 3 months. No abscopal effect was observed. There were 2 mild and 2 severe AEs. CONCLUSIONS PEF ablation showed a low rate of complete coverage (9%) and a high rate (91%) of residual, local, or distant progression. No abscopal effect was observed in any patient within a median of 5.1 months after the ablation.
Collapse
Affiliation(s)
- Mohammad Reza Rouhezamin
- Department of Radiology, Division of Interventional Radiology, Massachusetts General Hospital Boston & Harvard Medical School, Boston, Massachusetts.
| | - Florian J Fintelmann
- Department of Radiology, Division of Thoracic Imaging and Intervention, Massachusetts General Hospital Boston & Harvard Medical School, Boston, Massachusetts
| | - Ambrose J Huang
- Department of Radiology, Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital Boston & Harvard Medical School, Boston, Massachusetts
| | - Ronald Steven Arellano
- Department of Radiology, Division of Interventional Radiology, Massachusetts General Hospital Boston & Harvard Medical School, Boston, Massachusetts
| | - Sara Smolinski-Zhao
- Department of Radiology, Division of Interventional Radiology, Massachusetts General Hospital Boston & Harvard Medical School, Boston, Massachusetts
| | - Dipesh M Patel
- Department of Radiology, Division of Interventional Radiology, Massachusetts General Hospital Boston & Harvard Medical School, Boston, Massachusetts
| | - Eric Paul Wehrenberg-Klee
- Department of Radiology, Division of Interventional Radiology, Massachusetts General Hospital Boston & Harvard Medical School, Boston, Massachusetts
| | - Raul N Uppot
- Department of Radiology, Division of Interventional Radiology, Massachusetts General Hospital Boston & Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Musiu C, Adamo A, Caligola S, Agostini A, Frusteri C, Lupo F, Boschi F, Busato A, Poffe O, Anselmi C, Vella A, Wang T, Dusi S, Piro G, Carbone C, Tortora G, Marzola P, D'Onofrio M, Crinò SF, Corbo V, Scarpa A, Salvia R, Malleo G, Lionetto G, Sartoris S, Ugel S, Bassi C, Bronte V, Paiella S, De Sanctis F. Local ablation disrupts immune evasion in pancreatic cancer. Cancer Lett 2025; 609:217327. [PMID: 39580047 DOI: 10.1016/j.canlet.2024.217327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Pancreatic cancer (PC) is characterised by late diagnosis, tumour heterogeneity, and a peculiar immunosuppressive microenvironment, leading to poor clinical outcomes. Local ablative techniques have been proposed to treat unresectable PC patients, although their impact on activating the host immune system and overcoming resistance to immunotherapy remains elusive. METHODS We dissected the immune-modulatory abilities triggered by local ablation in mouse and human PC models and human specimens, integrating phenotypic and molecular technologies with functional assays. RESULTS Local ablation treatment performed in mice bearing orthotopic syngeneic PC tumours triggered tumour necrosis and a short-term inflammatory process characterised by the prompt increase of HMGB1 plasma levels, coupled with an enhanced amount of circulating and tumour infiltrating myeloid cells and increased MHCII expression in splenic myeloid antigen-presenting cells. Local ablation synergised with immunotherapy to restrict tumour progression and improved the survival of PC-bearing mice by evoking a T lymphocyte-dependent anti-tumour immune response. By integrating spatial transcriptomics with histological techniques, we pinpointed how combination therapy could reshape TME towards an anti-tumour milieu characterised by the preferential entrance and colocalization of activated T lymphocytes and myeloid cells endowed with antigen presentation features instead of T regulatory lymphocytes and CD206-expressing tumour-associated macrophages. In addition, treatment-dependent TME repolarization extended to neoplastic cells, promoting a shift from squamous to a more differentiated classical phenotype. Finally, we validated the immune regulatory properties induced by local ablation in PC patients and identified an association of the short-term treatment-dependent increase of neutrophils, NLR and HMGB1 with a longer time to progression. CONCLUSION Therefore, local ablation might overcome the current limitations of immunotherapy in PC.
Collapse
Affiliation(s)
- Chiara Musiu
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Annalisa Adamo
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | | | - Antonio Agostini
- Medical Oncology, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Cristina Frusteri
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Francesca Lupo
- Department of Engineering for Innovative Medicine University of Verona Hospital Trust, Verona, Italy
| | - Federico Boschi
- Department of Engineering for Innovative Medicine University of Verona Hospital Trust, Verona, Italy
| | - Alice Busato
- Assessment Department Aptuit S.r.l., an Evotec Company, Verona, Italy
| | - Ornella Poffe
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Cristina Anselmi
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Antonio Vella
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Tian Wang
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Silvia Dusi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Geny Piro
- Medical Oncology, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Carmine Carbone
- Medical Oncology, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Pasquina Marzola
- Department of Engineering for Innovative Medicine University of Verona Hospital Trust, Verona, Italy
| | - Mirko D'Onofrio
- Department of Diagnostics and Public Health, Radiology Section, University of Verona Hospital Trust, Verona, Italy
| | - Stefano Francesco Crinò
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Gastroenterology and Digestive Endoscopy Unit, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovative Medicine University of Verona Hospital Trust, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Pathological Anatomy Section, University of Verona Hospital Trust, Verona, Italy
| | - Roberto Salvia
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Giuseppe Malleo
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Gabriella Lionetto
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Silvia Sartoris
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy.
| | - Claudio Bassi
- Department of Engineering for Innovative Medicine University of Verona Hospital Trust, Verona, Italy
| | | | - Salvatore Paiella
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Francesco De Sanctis
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy.
| |
Collapse
|
4
|
Zhou J, Dong G, Jing X, Huang G, Wang Z, Peng M, Zhou Y, Yu X, Yu J, Han Z, Liu F, Gao H, Zhang Y, Cheng Z, Ye X, Liang P. Image-guided percutaneous microwave ablation for unresectable pancreatic cancers: A multicenter retrospective study. Eur J Radiol 2024; 181:111720. [PMID: 39326234 DOI: 10.1016/j.ejrad.2024.111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVE This study aims to assess the feasibility, effectiveness, and safety of image-guided percutaneous microwave ablation (PMWA) for unresectable pancreatic cancer. METHODS In this retrospective study, 72 patients from four hospitals were enrolled between November 2009 and October 2022. Descriptive statistics were employed to describe the patients' characteristics and prognostic factors. The primary endpoint compassed the complete ablation rate (CAR), incidence of complications and the pain relief rate (PRR). RESULTS The median age of the 72 patients was 61 (interquartile range (IQR) 52.5-67.0) years, with 62.5 % (45/72) being male. 26 cases received computed tomography (CT) guidance; 46 cases received ultrasound guidance. A total of 74 tumors were identified (2 in 2 patients), with 56.8 % (42/74) at the body and tail, and the rest at the head and neck. Overall, 73 ablation sessions were carried out, achieving a technical success rate (TSR) of 100 %. The CAR was 40.5 % (30/74). The median follow-up time was 4.6 (1-43.4) months. 50 % (36/72) of patients had died with a median overall survival (OS) of 5.6 (1-27) months. Regarding complications, 18.1 % (13/72) of cases were classified as grade I and II, and 9.8 % (7/72) as grade IIIa. Before surgery, 33 patients experienced pain symptoms, and the postoperative PRR was 96.7 % (32/33). The average pain score decreased from 6.3 (4-10) before surgery to 2.0 (0-8) after ablation (P<0.001). CONCLUSIONS Image-guided PMWA for unresectable pancreatic cancer is safe and feasible, effectively relieving cancer pain and improving patients' the quality of life.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China 100853; Chinese PLA Medical School, Beijing, China
| | - Gang Dong
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 450000
| | - Xiang Jing
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China
| | - Guanghui Huang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China 250021
| | - Zhen Wang
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China 100853
| | - Mengfan Peng
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 450000
| | - Yan Zhou
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China
| | - Xiaoling Yu
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China 100853
| | - Jie Yu
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China 100853
| | - Zhiyu Han
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China 100853
| | - Fangyi Liu
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China 100853
| | - Hongjian Gao
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Yubo Zhang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Zhigang Cheng
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China 100853.
| | - Xin Ye
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China 250014.
| | - Ping Liang
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China 100853.
| |
Collapse
|
5
|
Lim JS, Heard J, Brant N, Malo J, Kong J, Osman H, Buell J, Jeyarajah DR. Irreversible Electroporation Margin Accentuation in Pancreaticoduodenectomy: A Propensity Score Matching Analysis. Ann Surg Oncol 2024; 31:8298-8307. [PMID: 39080139 DOI: 10.1245/s10434-024-15962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/22/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Margin accentuation using irreversible electroporation (MA-IRE) improves recurrence and overall survival (OS) in pancreatic cancer patients; however, there have been limited outcome comparisons to similarly risked patients who did not receive MA-IRE. METHODS Patients with borderline resectable or locally advanced pancreatic adenocarcinoma who underwent a pancreaticoduodenectomy (PD) between 2017 and 2022 were included. Those who did not receive neoadjuvant chemotherapy for major vessel involvement were excluded. One-to-one propensity score matching (PSM) was used to match the MA-IRE group with the corresponding non-MA-IRE control group with similar risk factors. RESULTS A total of 36 patients were included in this study. Seventeen (47.2%) patients who underwent MA-IRE matched with 19 control patients (52.8%) with similar risk factors who did not have MA-IRE. Before matching, OS and disease-free survival (DFS) were comparable between the MA-IRE and non-MA-IRE groups. After matching, the MA-IRE group showed improved OS (746 vs. 509 days, hazard ratio 0.313; p = 0.034) compared with the non-MA-IRE group. DFS (p = 0.768), negative margin status (p = 0.317), and 30-day complication rates (p = 1.000) remained statistically different between the groups. CONCLUSIONS MA-IRE in PD results in longer OS but does not impact margin status, DFS, or postoperative complication rates in our cohort. These findings suggest that MA-IRE is safe and potentially promotes immune cell activation rather than upfront margin mitigation.
Collapse
Affiliation(s)
- Joseph S Lim
- Department of Surgery, Methodist Health System, Dallas, TX, USA
| | - Jessica Heard
- Department of Surgery, Methodist Health System, Dallas, TX, USA
- Department of Surgery, University of Oklahoma School of Medicine, Tulsa, OK, USA
| | - Nick Brant
- Department of Surgery, University of Oklahoma School of Medicine, Tulsa, OK, USA
- Department of Surgery, Emory University, Atlanta, GA, USA
| | - Juan Malo
- Department of Surgery, Methodist Health System, Dallas, TX, USA
| | - Joshua Kong
- Department of Surgery, Methodist Health System, Dallas, TX, USA
| | - Houssam Osman
- Department of Surgery, Anne Burnett School of Medicine at, Texas Christian University, Fort Worth, TX, USA
| | - Joseph Buell
- Department of Surgery, Methodist Health System, Dallas, TX, USA
- Department of Surgery, Anne Burnett School of Medicine at, Texas Christian University, Fort Worth, TX, USA
| | - Dhiresh Rohan Jeyarajah
- Department of Surgery, Methodist Health System, Dallas, TX, USA.
- Department of Surgery, Anne Burnett School of Medicine at, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
6
|
Xu D, Jia M, Yang F, Zhang X, Jiang K. Analyzing the role of TM4SF1 expression in pancreatic adenocarcinoma: understanding prognostic implications and therapeutic opportunities. J Gastrointest Oncol 2024; 15:1760-1776. [PMID: 39279979 PMCID: PMC11399867 DOI: 10.21037/jgo-24-564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is a highly lethal malignancy characterized by aggressive growth and poor prognosis. Understanding the molecular mechanisms underlying PAAD is crucial for developing effective therapies. This study aimed to explore the role of TM4SF1 and other key genes in PAAD progression, their prognostic implications, and therapeutic opportunities. Methods Differential gene expression analysis was performed using PAAD and normal tissue samples to identify upregulated genes, with TM4SF1 emerging as significantly elevated in PAAD. Functional enrichment analysis elucidated associated signaling pathways. A prognostic model comprising BPIFB4, PLEKHN1, CPTP, DVL1, and DDR1 was developed using least absolute shrinkage and selection operator (LASSO) regression and validated in an independent cohort. Genetic mutation analysis provided insights into the functional significance of identified genes. Pharmacogenomic analysis examined associations between gene expression and drug sensitivity. Experimental validation included quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot analyses to confirm gene expression patterns and protein levels. Results Lower TM4SF1 expression correlated with enhanced anti-tumor immune activity in PAAD, suggesting a complex interplay between genetic expression and immune response. The prognostic model showed robust associations with patient survival outcomes, validated across diverse patient cohorts. Genetic mutation analysis highlighted potential therapeutic targets. Pharmacogenomic analysis revealed correlations between gene expression profiles and drug responsiveness, suggesting personalized treatment strategies. Experimental validation confirmed elevated TM4SF1 levels in tumor tissues and demonstrated its role in promoting cancer cell proliferation and colony formation. Conclusions This study advances understanding of the molecular landscape of PAAD, emphasizing TM4SF1 as a key regulator and potential therapeutic target. The integration of genetic expression, immune response dynamics, and pharmacogenomics offers a multifaceted approach to personalized treatment strategies for PAAD, paving the way for improved patient outcomes and novel therapeutic interventions. Further research is warranted to elucidate the clinical utility of targeting TM4SF1 and other identified genes in PAAD management.
Collapse
Affiliation(s)
- Dong Xu
- Pancreas Center & Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Gaochun People's Hospital, Nanjing, China
| | - Mingguang Jia
- Department of General Surgery, Zibo Municipal Hospital, Zibo, China
| | - Fei Yang
- Department of General Surgery, Gaochun People's Hospital, Nanjing, China
| | - Xiaohui Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kuirong Jiang
- Pancreas Center & Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Son H, Kim TI, Lee J, Han SY, Kim DU, Kim D, Kim GH. A Preliminary Study of a Prototype Cryoablation Needle on Porcine Livers for Pancreatic Cancer Treatment. J Clin Med 2024; 13:4998. [PMID: 39274210 PMCID: PMC11396432 DOI: 10.3390/jcm13174998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Background and Aims: Despite its relatively low incidence rate compared to others, pancreatic cancer has a poor prognosis owing to its late detection and poor response to systemic chemotherapy. Because the effectiveness of chemotherapy is still restricted, the need for locoregional treatment is increasing. Cryoablation is an effective and minimally invasive treatment for some cancers, but its efficiency in pancreatic cancer is limited. Despite recent reports about promising outcomes, the optimal method and conditions of treatment are not known. In this preliminary study, we aimed to develop a cryoablation needle which can control the ablated area considering application through endoscopic ultrasonography. Methods: Here, we used a novel cryoneedle cooling system which can adjust the ablation range based on a liquid carbon dioxide refrigerant. Applied to the livers of swine, the cryoablation needle rapidly reached -60 °C within 30 s and cryoablation was performed for approximately 240 s. Based on the distance and depth, we collected real-time temperature data during the procedure. To compare the extent of cell death over time, tissue samples were collected hourly from 3 to 6 h after the procedure. Results: Approximately 4-5 mm of tissue was ablated via cryoablation, and cell death progressed over time after cryoablation. Moreover, the ablated lesions could be regulated using an insulating agent on the needle. Conclusions: This preliminary study on a novel surgical cooling needle system compatible with endoscopic ultrasound for cryoablation-based pancreatic cancer treatment confirmed the efficacy of cryoablation and identified the conditions necessary to induce necrosis. Additionally, this study evaluated the effectiveness of the insulation component of the system in protecting normal cells and assessed the extent of necrosis over time after the procedure.
Collapse
Affiliation(s)
- Hyunjoon Son
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Tae In Kim
- Division of Gastroenterology, Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
- Internal Medicine, School of Medicine, Pusan National University, Busan 46241, Republic of Korea
| | - Jonghyun Lee
- Division of Gastroenterology, Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
- Internal Medicine, School of Medicine, Pusan National University, Busan 46241, Republic of Korea
| | - Sung Yong Han
- Division of Gastroenterology, Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
- Internal Medicine, School of Medicine, Pusan National University, Busan 46241, Republic of Korea
| | - Dong Uk Kim
- Division of Gastroenterology, Department of Internal Medicine, CHA Gumi Medical Center, CHA University, Gumi 13488, Republic of Korea
| | - Daejin Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Gun-Ho Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
8
|
Narkar A, Kaboudian A, Ardeshirpour Y, Casciola M, Feaster TK, Blinova K. In Vitro Assay Development to Study Pulse Field Ablation Outcome Using Solanum Tuberosum. Int J Mol Sci 2024; 25:8967. [PMID: 39201653 PMCID: PMC11354718 DOI: 10.3390/ijms25168967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Exposing cells to intense and brief electric field pulses can modulate cell permeability, a phenomenon termed electroporation. When applied in medical treatments of diseases like cancer and cardiac arrhythmias, depending on level of cellular destruction, it is also referred to as irreversible electroporation (IRE) or Pulsed Field Ablation (PFA). For ablation device testing, several pulse parameters need to be characterized in a comprehensive manner to assess lesion boundary and efficacy. Overly aggressive voltages and application numbers increase animal burden. The potato tuber is a widely used initial model for the early testing of electroporation. The aim of this study is to characterize and refine bench testing for the ablation outcomes of PFA in this simplistic vegetal model. For in vitro assays, several pulse parameters like voltage, duration, and frequency were modulated to study effects not only on 2D ablation area but also 3D depth and volume. As PFA is a relatively new technology with minimal thermal effects, we also measured temperature changes before, during, and after ablation. Data from experiments were supplemented with in silico modeling to examine E-field distribution. We have estimated the irreversible electroporation threshold in Solanum Tuberosum to be at 240 V/cm. This bench testing platform can screen several pulse recipes at early stages of PFA device development in a rapid and high-throughput manner before proceeding to laborious trials for IRE medical devices.
Collapse
Affiliation(s)
- Akshay Narkar
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | | | | | | | | | | |
Collapse
|
9
|
Zhang Z, Yu G, Eresen A, Chen Z, Yu Z, Yaghmai V, Zhang Z. Dendritic cell vaccination combined with irreversible electroporation for treating pancreatic cancer-a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:77. [PMID: 39118942 PMCID: PMC11304422 DOI: 10.21037/atm-23-1882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/25/2024] [Indexed: 08/10/2024]
Abstract
Background and Objective Pancreatic ductal adenocarcinoma (PDAC) is 3rd most lethal cancer in the USA leading to a median survival of six months and less than 5% 5-year overall survival (OS). As the only potentially curative treatment, surgical resection is not suitable for up to 90% of the patients with PDAC due to late diagnosis. Highly fibrotic PDAC with an immunosuppressive tumor microenvironment restricts cytotoxic T lymphocyte (CTL) infiltration and functions causing limited success with systemic therapies like dendritic cell (DC)-based immunotherapy. In this study, we investigated the potential benefits of irreversible electroporation (IRE) ablation therapy in combination with DC vaccine therapy against PDAC. Methods We performed a literature search to identify studies focused on DC vaccine therapy and IRE ablation to boost therapeutic response against PDAC indexed in PubMed, Web of Science, and Scopus until February 20th, 2023. Key Content and Findings IRE ablation destructs tumor structure while preserving extracellular matrix and blood vessels facilitating local inflammation. The studies demonstrated IRE ablation reduces tumor fibrosis and promotes CTL tumor infiltration to PDAC tumors in addition to boosting immune response in rodent models. The administration of the DC vaccine following IRE ablation synergistically enhances therapeutic response and extends OS rates compared to the use of DC vaccination or IRE alone. Moreover, the implementation of data-driven approaches further allows dynamic and longitudinal monitoring of therapeutic response and OS following IRE plus DC vaccine immunoablation. Conclusions The combination of IRE ablation and DC vaccine immunotherapy is a potent strategy to enhance the therapeutic outcomes in patients with PDAC.
Collapse
Affiliation(s)
- Zigeng Zhang
- Department of Radiological Sciences, University of California Irvine, Irvine, CA, USA
| | - Guangbo Yu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Aydin Eresen
- Department of Radiological Sciences, University of California Irvine, Irvine, CA, USA
| | - Zhilin Chen
- Department of Human Biology and Business Administration, University of Southern California, Los Angeles, CA, USA
| | - Zeyang Yu
- Information School, University of Washington, Seattle, WA, USA
| | - Vahid Yaghmai
- Department of Radiological Sciences, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Zhuoli Zhang
- Department of Radiological Sciences, University of California Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
10
|
Badawe HM, Harouz JP, Raad P, Abu K, Freije A, Ghali K, Abou-Kheir W, Khraiche ML. Experimental and Computational Analysis of High-Intensity Focused Ultrasound Thermal Ablation in Breast Cancer Cells: Monolayers vs. Spheroids. Cancers (Basel) 2024; 16:1274. [PMID: 38610952 PMCID: PMC11010989 DOI: 10.3390/cancers16071274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024] Open
Abstract
High-intensity focused ultrasound (HIFU) is a non-invasive therapeutic modality that uses precise acoustic energy to ablate cancerous tissues through coagulative necrosis. In this context, we investigate the efficacy of HIFU ablation in two distinct cellular configurations, namely 2D monolayers and 3D spheroids of epithelial breast cancer cell lines (MDA-MB 231 and MCF7). The primary objective is to compare the response of these two in vitro models to HIFU while measuring their ablation percentages and temperature elevation levels. HIFU was systematically applied to the cell cultures, varying ultrasound intensity and duty cycle during different sonication sessions. The results indicate that the degree of ablation is highly influenced by the duty cycle, with higher duty cycles resulting in greater ablation percentages, while sonication duration has a minimal impact. Numerical simulations validate experimental observations, highlighting a significant disparity in the response of 2D monolayers and 3D spheroids to HIFU treatment. Specifically, tumor spheroids require lower temperature elevations for effective ablation, and their ablation percentage significantly increases with elevated duty cycles. This study contributes to a comprehensive understanding of acoustic energy conversion within the biological system during HIFU treatment for 2D versus 3D ablation targets, holding potential implications for refining and personalizing breast cancer therapeutic strategies.
Collapse
Affiliation(s)
- Heba M. Badawe
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (H.M.B.); (K.A.); (A.F.)
| | - Jean Paul Harouz
- Department of Mechanical Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (J.P.H.); (K.G.)
| | - Petra Raad
- Department of Mechanical Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (J.P.H.); (K.G.)
| | - Kareem Abu
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (H.M.B.); (K.A.); (A.F.)
| | - Anthony Freije
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (H.M.B.); (K.A.); (A.F.)
| | - Kamel Ghali
- Department of Mechanical Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (J.P.H.); (K.G.)
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Massoud L. Khraiche
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (H.M.B.); (K.A.); (A.F.)
| |
Collapse
|
11
|
Hamdy Gad E. Pancreatic Cancer: Updates in Pathogenesis and Therapies. PANCREATIC CANCER- UPDATES IN PATHOGENESIS, DIAGNOSIS AND THERAPIES 2023. [DOI: 10.5772/intechopen.112675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Despite the progress in pancreatic cancer (PC) chemo/radiotherapies, immunotherapies, and novel targeted therapies and the improvement in its peri-operative management policies, it still has a dismal catastrophic prognosis due to delayed detection, early neural and vascular invasions, early micro-metastatic spread, tumour heterogeneities, drug resistance either intrinsic or acquired, unique desmoplastic stroma, and tumour microenvironment (TME). Understanding tumour pathogenesis at the detailed genetic/epigenetic/metabolic/molecular levels as well as studying the tumour risk factors and its known precancerous lesions aggressively is required for getting a more successful therapy for this challenging tumour. For a better outcome of this catastrophic tumour, it should be diagnosed early and treated through multidisciplinary teams of surgeons, gastroenterologists/interventional upper endoscopists, medical/radiation oncologists, diagnostic/intervention radiologists, and pathologists at high-volume centres. Moreover, surgical resection with a negative margin (R0) is the only cure for it. In this chapter; we discuss the recently updated knowledge of PC pathogenesis, risk factors, and precancerous lesions as well as its different management tools (i.e. surgery, chemo/radiotherapies, immunotherapies, novel targeted therapies, local ablative therapies, etc.).
Collapse
|
12
|
Zhai JW, Lv LL, Wu JJ, Zhang YX, Shen Y, Qu QX, Chen C. Combining local cryoablation with PD-L1 blockade synergistically eradicates established murine lung cancer by modulating mitochondrial in PD-1+CD8+ T cell. Immunol Lett 2023; 263:61-69. [PMID: 37805094 DOI: 10.1016/j.imlet.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Immune checkpoint blockade (ICB) has shown improvement in overall survival for lung cancer in clinical trials. However, monotherapies have limited efficacy in improving outcomes and benefit only a subset of patients. Combination therapies targeting multiple pathways can augment an immune response to improve survival further. Here, we demonstrate that combinatorial anti-PD-L1/cryoablation therapy generated a synergistic antitumor activity in the established lung cancer model. Importantly, it was observed that this favorable antitumor immune response comes predominantly from the PD-1+CD8+ T cells generated after the combination therapy, referred as improvement of IFN-γ production and mitochondrial metabolism, which resembled highly functional effectors CD8+ T cells. Notably, the cellular levels of mitochondrial reactive oxygen and mitochondria mass excessively coincided with alteration of IFN-γ secretion in PD-1+CD8+T cell subset. So far, anti-PD-L1/cryoablation therapy selectively derived the improvement of depolarized mitochondria in PD-1+CD8+T cell subset, subsequently rebuild the anti-tumor function of the exhausted CD8+ T cells. Collectively, there is considerable interest in anti-PD-L1 plus cryoablation combination therapy for patients with lung cancer, and defining the underlying mechanisms of the observed synergy.
Collapse
Affiliation(s)
- Jia-Wei Zhai
- Respiratory Department, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, China
| | - Lei-Lei Lv
- Respiratory Department, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, China
| | - Jia-Juan Wu
- Clinical Immunology Laboratory, the First Affiliated Hospital of Soochow University, 178 Ganjiang East Road, Suzhou 215006, China
| | - Yao-Xin Zhang
- Respiratory Department, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, China
| | - Yu Shen
- Clinical Immunology Laboratory, the First Affiliated Hospital of Soochow University, 178 Ganjiang East Road, Suzhou 215006, China
| | - Qiu-Xia Qu
- Clinical Immunology Laboratory, the First Affiliated Hospital of Soochow University, 178 Ganjiang East Road, Suzhou 215006, China.
| | - Cheng Chen
- Respiratory Department, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, China.
| |
Collapse
|
13
|
Gajewska-Naryniecka A, Szwedowicz U, Łapińska Z, Rudno-Rudzińska J, Kielan W, Kulbacka J. Irreversible Electroporation in Pancreatic Cancer-An Evolving Experimental and Clinical Method. Int J Mol Sci 2023; 24:4381. [PMID: 36901812 PMCID: PMC10002122 DOI: 10.3390/ijms24054381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Pancreatic cancer has no symptoms until the disease has advanced and is aggressive cancer with early metastasis. Up to now, the only curative treatment is surgical resection, which is possible in the early stages of the disease. Irreversible electroporation treatment offers new hope for patients with unresectable tumors. Irreversible electroporation (IRE) is a type of ablation therapy that has been explored as a potential treatment for pancreatic cancer. Ablation therapies involve the use of energy to destroy or damage cancer cells. IRE involves using high-voltage, low-energy electrical pulses to create resealing in the cell membrane, causing the cell to die. This review summarizes experiential and clinical findings in terms of the IRE applications. As was described, IRE can be a non-pharmacological approach (electroporation) or combined with anticancer drugs or standard treatment methods. The efficacy of irreversible electroporation (IRE) in eliminating pancreatic cancer cells has been demonstrated through both in vitro and in vivo studies, and it has been shown to induce an immune response. Nevertheless, further investigation is required to assess its effectiveness in human subjects and to comprehensively understand IRE's potential as a treatment option for pancreatic cancer.
Collapse
Affiliation(s)
- Agnieszka Gajewska-Naryniecka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Urszula Szwedowicz
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Zofia Łapińska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Julia Rudno-Rudzińska
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Borowska 213, 50-556 Wroclaw, Poland
| | - Wojciech Kielan
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Borowska 213, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| |
Collapse
|
14
|
In Vitro Measurement and Mathematical Modeling of Thermally-Induced Injury in Pancreatic Cancer Cells. Cancers (Basel) 2023; 15:cancers15030655. [PMID: 36765619 PMCID: PMC9913239 DOI: 10.3390/cancers15030655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Thermal therapies are under investigation as part of multi-modality strategies for the treatment of pancreatic cancer. In the present study, we determined the kinetics of thermal injury to pancreatic cancer cells in vitro and evaluated predictive models for thermal injury. Cell viability was measured in two murine pancreatic cancer cell lines (KPC, Pan02) and a normal fibroblast (STO) cell line following in vitro heating in the range 42.5-50 °C for 3-60 min. Based on measured viability data, the kinetic parameters of thermal injury were used to predict the extent of heat-induced damage. Of the three thermal injury models considered in this study, the Arrhenius model with time delay provided the most accurate prediction (root mean square error = 8.48%) for all cell lines. Pan02 and STO cells were the most resistant and susceptible to hyperthermia treatments, respectively. The presented data may contribute to studies investigating the use of thermal therapies as part of pancreatic cancer treatment strategies and inform the design of treatment planning strategies.
Collapse
|
15
|
Meng L, Wei Y, Xiao Y. Chemo-immunoablation of solid tumors: A new concept in tumor ablation. Front Immunol 2023; 13:1057535. [PMID: 36713427 PMCID: PMC9878389 DOI: 10.3389/fimmu.2022.1057535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023] Open
Abstract
Chemical ablation was designed to inject chemical agents directly into solid tumors to kill cells and is currently only used clinically for the palliative treatment of tumors. The application and combination of different drugs, from anhydrous ethanol, and glacial acetic acid to epi-amycin, have been clinically tested for a long time. The effectiveness is unsatisfactory due to chemical agents' poor diffusion and concentration. Immunotherapy is considered a prospective oncologic therapeutic. Still, the clinical applications were limited by the low response rate of patients to immune drugs and the immune-related adverse effects caused by high doses. The advent of intratumoral immunotherapy has well addressed these issues. However, the efficacy of intratumoral immunotherapy alone is uncertain, as suggested by the results of preclinical and clinical studies. In this study, we will focus on the research of immunosuppressive tumor microenvironment with chemoablation and intratumoral immunotherapy, the synergistic effect between chemotherapeutic drugs and immunotherapy. We propose a new concept of intratumoral chemo-immunoablation. The concept opens a new perspective for tumor treatment from direct killing of tumor cells while, enhancing systemic anti-tumor immune response, and significantly reducing adverse effects of drugs.
Collapse
Affiliation(s)
- Liangliang Meng
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Beijing, China,Department of Radiology, Chinese PAP Hospital of Beijing, Beijing, China
| | - Yingtian Wei
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yueyong Xiao
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Beijing, China,*Correspondence: Yueyong Xiao,
| |
Collapse
|
16
|
Polyakov AN, Patyutko YI, Kudashkin NE, Kantieva DM, Romanova KA, Nasonova EA, Korshak AV, Egenov OA, Podluzhnyi DV. [Irreversible electroporation in locally advanced pancreatic cancer]. Khirurgiia (Mosk) 2023:29-38. [PMID: 37916555 DOI: 10.17116/hirurgia202310129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
OBJECTIVE To determine the feasibility of irreversible electroporation (IRE) for locally advanced pancreatic adenocarcinoma. MATERIAL AND METHODS Twenty-three patients underwent IRE after chemotherapy for locally advanced pancreatic cancer between 2015 and 2022. IRE was performed during laparotomy as a rule (n=22). In one case, IRE was combined with palliative pancretoduodenectomy. Nineteen (86.3%) patients received adjuvant chemotherapy after the procedure. The follow-up examination included contrast-enhanced CT/MRI of the abdomen, chest X-ray or CT, analysis of CA 19-9 marker one month after surgery and then every three months. RESULTS Complications after IRE developed in 5 (21.7%) patients. Three patients (13.0%) had arrhythmia, two (8.7%) ones had pancreatic necrosis. A 90-day mortality after the procedure was 4.3% (n=1), the cause was pancreatic necrosis. According to intraoperative data and the first examination (CT/MRI), the entire tumor infiltrate was treated in 21 (91.3%) cases. Median follow-up was 19 months. Median period until local recurrence was 15 months. Isolated local recurrence was observed in 7 patients. Of these, 3 ones underwent radiotherapy, one patient underwent repeated IRE. Distant metastases were found in 11 patients; systemic therapy was restarted. Median time to progression was 7 months after IRE and 14 months after initiation of chemotherapy. The median overall survival was 16 months after electroporation and 25 months after chemotherapy. CONCLUSION Irreversible electroporation may be useful in carefully selected patients with unresectable locally advanced pancreatic adenocarcinoma after successful induction chemotherapy. This procedure provides local control, but the impact on long-term outcomes and feasibility of routine use should be analyzed in randomized trials.
Collapse
Affiliation(s)
- A N Polyakov
- Blokhin National Medical Cancer Research Center, Moscow, Russia
| | - Yu I Patyutko
- Blokhin National Medical Cancer Research Center, Moscow, Russia
| | - N E Kudashkin
- Blokhin National Medical Cancer Research Center, Moscow, Russia
| | - D M Kantieva
- Blokhin National Medical Cancer Research Center, Moscow, Russia
| | - K A Romanova
- Blokhin National Medical Cancer Research Center, Moscow, Russia
| | - E A Nasonova
- Blokhin National Medical Cancer Research Center, Moscow, Russia
| | - A V Korshak
- Blokhin National Medical Cancer Research Center, Moscow, Russia
| | - O A Egenov
- Blokhin National Medical Cancer Research Center, Moscow, Russia
| | - D V Podluzhnyi
- Blokhin National Medical Cancer Research Center, Moscow, Russia
| |
Collapse
|
17
|
Shang L, Li P, Fan J, Zhao C, Niu X, Bian Q, Yuan Z, Kong Y, Zhu T, Xu B, Dong J, Xiang H. Case report: Two PD-L1 positive unresectable advanced pancreatic carcinoma patients with microsatellite stability achieved R0 resection after PD-1 antibody plus chemotherapy as a successful downstaging therapy: A report of two cases. Front Immunol 2022; 13:946266. [PMID: 36203575 PMCID: PMC9530699 DOI: 10.3389/fimmu.2022.946266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundNonobvious early symptoms are a prominent characteristic of pancreatic cancer, resulting in only 20% of patients having resectable tumors at the time of diagnosis. The optimal management of unresectable advanced pancreatic cancer (UAPC) remains an open research question. In this study, the tumors shrank significantly after PD-1 antibody combined with chemotherapy in two UAPC patients, and both have achieved R0 (pathologically negative margin) resection and survival to date.Case presentationCase 1: A 53-year-old man was diagnosed with pancreatic adenocarcinoma (Stage III). He received six cycles of PD-1 antibody plus chemotherapy as the first-line treatment. The tumor was reduced from 11.8×8.8 cm to “0” (the pancreatic head was normal as shown by enhanced computed tomography, ECT) after preoperative neoadjuvant therapy (PNT) and the adverse effects were tolerable. The patient underwent radical surgery and achieved R0 resection. Case 2: A 43-year-old man diagnosed with pancreatic adenocarcinoma with liver metastasis (Stage IV) received three cycles of PD-1 antibody combined with chemotherapy. The tumor was reduced from 5.2×3.9 cm to 2.4×2.3 cm with no side effects. The patient also underwent radical surgery and achieved R0 resection.ConclusionPD-1 antibody plus a chemotherapy regimen resulted in a surprising curative effect and safety in two patients with UAPC, which may portend an improvement in pancreatic carcinoma treatment. We may have a way for UAPC patients to obtain radical treatment and gain long-term survival. Two PD-L1 positive UAPC patients with microsatellite stability (MSS) enlighten us to have a more comprehensive understanding of the prediction of immunotherapy.
Collapse
Affiliation(s)
- Lin Shang
- Department of Hepatobiliary Surgery, Xi’an Daxing Hospital, Xi’an, China
| | - Peng Li
- Department of Hepatobiliary Surgery, Xi’an Daxing Hospital, Xi’an, China
| | - Jie Fan
- Department of Hepatobiliary Surgery, Xi’an Daxing Hospital, Xi’an, China
| | - Chunning Zhao
- Department of Hepatobiliary Surgery, Xi’an Daxing Hospital, Xi’an, China
| | - Xiangying Niu
- Department of Pathology, Xi’an Daxing Hospital, Xi’an, China
| | - Qitian Bian
- Department of Hepatobiliary Surgery, Xi’an Daxing Hospital, Xi’an, China
| | - Zhilin Yuan
- Department of Hepatobiliary Surgery, Xi’an Daxing Hospital, Xi’an, China
| | - Yanlong Kong
- Department of Hepatobiliary Surgery, Xi’an Daxing Hospital, Xi’an, China
| | - Tingshun Zhu
- Department of Hepatobiliary Surgery, Xi’an Daxing Hospital, Xi’an, China
| | - Bin Xu
- Department of Hepatobiliary Surgery, Xi’an Daxing Hospital, Xi’an, China
| | - Jianxin Dong
- Department of Hepatobiliary Surgery, Xi’an Daxing Hospital, Xi’an, China
| | - Hongjun Xiang
- Department of Hepatobiliary Surgery, Xi’an Daxing Hospital, Xi’an, China
- *Correspondence: Hongjun Xiang,
| |
Collapse
|
18
|
Simultaneous Gemcitabine and Percutaneous CT-Guided Irreversible Electroporation for Locally Advanced Pancreatic Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3523769. [PMID: 35747123 PMCID: PMC9213186 DOI: 10.1155/2022/3523769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/24/2022]
Abstract
Background Irreversible electroporation (IRE) is a new local ablation technique for pancreatic cancer. The aim of this study is to analyse the safety and effectiveness of simultaneous gemcitabine and percutaneous CT-guided IRE for locally advanced pancreatic cancer (LAPC). Materials and Methods From October 2016 to January 2018, 61 patients with LAPC who received simultaneous gemcitabine and IRE therapy (GEM-IRE group, n = 31) or IRE alone therapy (IRE group, n = 30). Routine intravenous gemcitabine chemotherapy was performed 2 weeks after IRE in both groups. Results Technical success rates were 90.0% (27/30) and 93.3% (28/30) in the GEM-IRE and IRE groups. Compared with the IRE group, the GEM-IRE group exhibited longer overall survival (OS), local tumor progression free survival (LTPFS), and distant disease free survival (DDFS) from IRE (OS, 17.1 vs. 14.2 months, p=0.031; LTPFS, 14.6 vs. 10.2 months, p=0.045; DDFS, 15.4 vs. 11.7 months, p=0.071). Multivariate Cox regression analysis results suggested that tumor volume ≤37 cm3 and simultaneous gemcitabine with IRE were significant independent prognostic factors of OS, LTPFS, and DDFS. Four major adverse reactions occurred; all of them were resolved after symptomatic treatment. Conclusions Simultaneous gemcitabine and percutaneous CT-guided IRE therapy model was effective and well-tolerated therapeutic strategy in LAPC patients.
Collapse
|
19
|
Mansur A, Garg T, Shrigiriwar A, Etezadi V, Georgiades C, Habibollahi P, Huber TC, Camacho JC, Nour SG, Sag AA, Prologo JD, Nezami N. Image-Guided Percutaneous Ablation for Primary and Metastatic Tumors. Diagnostics (Basel) 2022; 12:diagnostics12061300. [PMID: 35741109 PMCID: PMC9221861 DOI: 10.3390/diagnostics12061300] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
Image-guided percutaneous ablation methods have been further developed during the recent two decades and have transformed the minimally invasive and precision features of treatment options targeting primary and metastatic tumors. They work by percutaneously introducing applicators to precisely destroy a tumor and offer much lower risks than conventional methods. There are usually shorter recovery periods, less bleeding, and more preservation of organ parenchyma, expanding the treatment options of patients with cancer who may not be eligible for resection. Image-guided ablation techniques are currently utilized for the treatment of primary and metastatic tumors in various organs including the liver, pancreas, kidneys, thyroid and parathyroid, prostate, lung, bone, and soft tissue. This article provides a brief review of the various imaging modalities and available ablation techniques and discusses their applications and associated complications in various organs.
Collapse
Affiliation(s)
| | - Tushar Garg
- Division of Vascular and Interventional Radiology, Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins Hospital, Baltimore, MD 21287, USA; (T.G.); (C.G.)
| | - Apurva Shrigiriwar
- Division of Gastroenterology and Hepatology, The Johns Hopkins Hospital, Baltimore, MD 21287, USA;
| | - Vahid Etezadi
- Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Christos Georgiades
- Division of Vascular and Interventional Radiology, Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins Hospital, Baltimore, MD 21287, USA; (T.G.); (C.G.)
| | - Peiman Habibollahi
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Timothy C. Huber
- Vascular and Interventional Radiology, Dotter Department of Interventional Radiology, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Juan C. Camacho
- Department of Clinical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA;
- Vascular and Interventional Radiology, Radiology Associates of Florida, Sarasota, FL 34239, USA
| | - Sherif G. Nour
- Department of Radiology and Medical Imaging, Florida State University College of Medicine, Gainesville, FL 32610, USA;
| | - Alan Alper Sag
- Division of Vascular and Interventional Radiology, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - John David Prologo
- Division of Vascular and Interventional Radiology, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Nariman Nezami
- Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Experimental Therapeutics Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Correspondence: or
| |
Collapse
|
20
|
Kuo KK, Hsiao PJ, Chang WT, Chuang SC, Yang YH, Wuputra K, Ku CC, Pan JB, Li CP, Kato K, Liu CJ, Wu DC, Yokoyama KK. Therapeutic Strategies Targeting Tumor Suppressor Genes in Pancreatic Cancer. Cancers (Basel) 2021; 13:3920. [PMID: 34359820 PMCID: PMC8345812 DOI: 10.3390/cancers13153920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
The high mortality of pancreatic cancer is attributed to the insidious progression of this disease, which results in a delayed diagnosis and advanced disease stage at diagnosis. More than 35% of patients with pancreatic cancer are in stage III, whereas 50% are in stage IV at diagnosis. Thus, understanding the aggressive features of pancreatic cancer will contribute to the resolution of problems, such as its early recurrence, metastasis, and resistance to chemotherapy and radiotherapy. Therefore, new therapeutic strategies targeting tumor suppressor gene products may help prevent the progression of pancreatic cancer. In this review, we discuss several recent clinical trials of pancreatic cancer and recent studies reporting safe and effective treatment modalities for patients with advanced pancreatic cancer.
Collapse
Affiliation(s)
- Kung-Kai Kuo
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (K.-K.K.); (W.-T.C.); (S.-C.C.); (Y.-H.Y.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Pi-Jung Hsiao
- Department of Internal Medicine, Division of Endocrinology and Metabolism, EDA Hospital, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Wen-Tsan Chang
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (K.-K.K.); (W.-T.C.); (S.-C.C.); (Y.-H.Y.)
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Chang Chuang
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (K.-K.K.); (W.-T.C.); (S.-C.C.); (Y.-H.Y.)
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Han Yang
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (K.-K.K.); (W.-T.C.); (S.-C.C.); (Y.-H.Y.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kenly Wuputra
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Chen Ku
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jia-Bin Pan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Pei Li
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kohsuke Kato
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, the University of Tsukuba, Tsukuba 305-8577, Japan;
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Kazunari K. Yokoyama
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| |
Collapse
|