1
|
Leardini D, Gambuti G, Muratore E, Baccelli F, Gottardi F, Venturelli F, Belotti T, Prete A, Fabbrini M, Brigidi P, Turroni S, Masetti R. Levofloxacin Prophylaxis in Pediatric and Young Adult Allogeneic Hematopoietic Stem Cell Transplantation Recipients Does not Prevent Infective Complications and Infections-related Deaths. Open Forum Infect Dis 2025; 12:ofae707. [PMID: 39935961 PMCID: PMC11811901 DOI: 10.1093/ofid/ofae707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/01/2024] [Indexed: 02/13/2025] Open
Abstract
Background The prophylactic use of quinolones in the setting of allogeneic hematopoietic stem cell transplantation (allo-HCT) is controversial and solid evidence is missing, particularly in children. Methods In this single-center retrospective study, we compared outcomes in patients receiving (n = 74) or not receiving (n = 70) levofloxacin (LVX) prophylaxis, assessing overall survival, event-free survival, acute graft-versus-host disease (aGvHD) and bloodstream infection incidence, and infection-related mortality. Gut microbiota composition was analyzed in a subgroup using 16S rRNA sequencing of stool samples collected pre-HCT and at engraftment. Results We analyzed 144 allo-HCT in 143 patients performed for any indication. No differences were found in the 2 groups regarding main HCT outcomes, namely, cumulative incidence of aGvHD (37.9% vs 43.5%; P = .733), grade III-IV aGvHD (12.2% vs 8.7%; P = .469), gut aGVHD (12.2% vs 17.5%; P = .451), bloodstream infections (25.6% vs 34.1%; P = .236) and death from bacterial infection (9.5% vs 4.3%; P = 0.179). In patients experiencing bacterial infections, those receiving prophylaxis showed higher incidence of quinolone-resistant strains (P = .001). On a subgroup of 50 patients, we analyzed the gut microbiota composition, showing a lower abundance of Blautia (P = .015), Enterococcus (P = .011), and Actinomyces (P = .07) at neutrophil engraftment in patients receiving LVX prophylaxis. Conclusions LVX prophylaxis in the setting of allo-HCT does not prevent infective complications and increases the prevalence of antibiotic-resistant strains.
Collapse
Affiliation(s)
- Davide Leardini
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giacomo Gambuti
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Edoardo Muratore
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Gottardi
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Venturelli
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tamara Belotti
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Arcangelo Prete
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Pinheiro DF, Maciel GM, Lima NP, Lima NF, Ribeiro IS, Haminiuk CWI. Impact of fruit consumption on gut microbiota: Benefits, contaminants, and implications for human health. Trends Food Sci Technol 2024; 154:104785. [DOI: 10.1016/j.tifs.2024.104785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Bergonzini L, Leardini D, Rao R, Foiadelli T, Faraci M, Mancardi MM, Nobile G, Orsini A, Savasta S, Gottardi F, Fetta A, Mina T, Casazza G, Menconi MC, Pruna D, Mura RM, Piroddi A, Rucci P, Masetti R, Cordelli DM. Epilepsy after acute central nervous system complications of pediatric hematopoietic cell transplantation: A retrospective, multicenter study. Seizure 2024; 121:85-90. [PMID: 39126983 DOI: 10.1016/j.seizure.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Acute central nervous system (CNS) complications are common and well described among pediatric patients undergoing haematopoietic cell transplantation (HCT). However, their long-term outcomes are not known. The aim of this study is to describe the incidence, characteristics, and risk factors of long-term epilepsy in pediatric patients with acute CNS complications of HCT. METHODS This retrospective study included pediatric patients who developed acute CNS complications from autologous or allogeneic HCT between 2000 and 2022. Clinical, therapeutic and prognostic data including long-term outcomes were analyzed. A diagnosis of epilepsy was provided if unprovoked seizures occurred during follow-up. RESULTS Ninety-four patients (63 males, 31 females, median age 10 years, range 1-21 years) were included. The most common acute CNS complications were posterior reversible encephalopathy syndrome (n = 43, 46 %) and infections (n = 15, 16 %). Sixty-five patients (69 %) had acute symptomatic seizures, with 14 (16 %) having one or more episodes of status epilepticus (SE). Nine patients (9.6 %) were diagnosed with long-term focal epilepsy during the follow-up (5-year cumulative incidence from the acute complication, 13.3 %). Acute symptomatic SE during neurological complications of HCT was associated with an increased risk of long-term epilepsy (OR=14, 95 % CI 2.87-68.97). CONCLUSIONS A higher occurrence of epilepsy has been observed in our cohort compared to the general population. Acute symptomatic SE during HCT was associated with a higher risk of long-term epilepsy. Pediatric patients with CNS complications during HCT could benefit from specific neurological follow-up. Further studies are needed to characterize mechanisms of epileptogenesis in pediatric patients undergoing HCT.
Collapse
Affiliation(s)
- Luca Bergonzini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, U.O.C. Neuropsichiatria dell'età pediatrica, Member of the ERN EpiCare, Bologna, , Italy; Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Roberta Rao
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Thomas Foiadelli
- Clinica Pediatrica, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maura Faraci
- HSCT Unit, Department of Pediatric Hematology-Oncology, IRCCS Istituto G. Gaslini, Genova, Italy
| | | | - Giulia Nobile
- Unit of Child Neuropsychiatry, member of the ERN EpiCare, IRCCS Gaslini, Genova, Italy
| | - Alessandro Orsini
- Pediatric Neurology, Pediatric Department, AOUP Santa Chiara Hospital, Pisa, Italy
| | - Salvatore Savasta
- Clinica Pediatrica, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Dipartimento di Scienze Mediche e Salute Pubblica, Università di Cagliari, Italy
| | - Francesca Gottardi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna, Italy; Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Anna Fetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, U.O.C. Neuropsichiatria dell'età pediatrica, Member of the ERN EpiCare, Bologna, , Italy; Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Tommaso Mina
- Pediatric Hematology and Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gabriella Casazza
- Pediatric Hematology and Oncology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Maria Cristina Menconi
- Pediatric Hematology and Oncology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Dario Pruna
- Pediatric Neurology and Epileptology Unit, Pediatric Department, ARNAS G. Brotzu/ASL, Cagliari, Italy
| | - Rosa Maria Mura
- Paediatric Hematology and Oncology Unit, Pediatric Hospital "Microcitemico A. Cao", Cagliari, Italy
| | - Antonio Piroddi
- Bone Marrow Transplant Center, Pediatric Hospital "Microcitemico A. Cao", Cagliari, Italy
| | - Paola Rucci
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Riccardo Masetti
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna, Italy; Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Duccio Maria Cordelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, U.O.C. Neuropsichiatria dell'età pediatrica, Member of the ERN EpiCare, Bologna, , Italy; Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| |
Collapse
|
4
|
Muratore E, Leardini D, Baccelli F, Fabozzi F. Editorial: Nutritional support in pediatric cancer: novel insights and future perspectives. Front Nutr 2024; 11:1397439. [PMID: 38765821 PMCID: PMC11100350 DOI: 10.3389/fnut.2024.1397439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Affiliation(s)
- Edoardo Muratore
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Fabozzi
- Department of Hematology/Oncology, Cell and Gene Therapy – IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
5
|
Song X, Lao J, Wang L, Liu S. Research advances on short-chain fatty acids in gastrointestinal acute graft- versus-host disease. Ther Adv Hematol 2024; 15:20406207241237602. [PMID: 38558826 PMCID: PMC10979536 DOI: 10.1177/20406207241237602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Gastrointestinal acute graft-versus-host disease (GI-aGVHD) is a severe early complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT). It has been shown that the intestinal microbiota plays a critical role in this process. As metabolites of the intestinal microbiota, short-chain fatty acids (SCFAs) are vital for maintaining the host-microbiota symbiotic equilibrium. This article provides an overview of the protective effect of SCFAs in the gastrointestinal tract, emphasizes their association with GI-aGVHD, and explores relevant research progress in prevention and treatment research.
Collapse
Affiliation(s)
- Xinping Song
- Shenzhen Children’s Hospital, China Medical University, Shenzhen, Guangdong 518026, China
| | - Jing Lao
- Shenzhen Children’s Hospital, China Medical University, Shenzhen, Guangdong 518026, China
| | - Lulu Wang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, 7019 Yitian Road, Futian District, Shenzhen, Guangdong 518026, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, 7019 Yitian Road, Futian District, Shenzhen, Guangdong 518026, China
| |
Collapse
|
6
|
Pedretti L, Leardini D, Muratore E, Capoferri G, Massa S, Rahman S, Esposito S, Masetti R. Managing the Risk of Foodborne Infections in Pediatric Patients with Cancer: Is the Neutropenic Diet Still an Option? Nutrients 2024; 16:966. [PMID: 38613000 PMCID: PMC11013746 DOI: 10.3390/nu16070966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Infections pose a significant threat to morbidity and mortality during treatments for pediatric cancer patients. Efforts to minimize the risk of infection necessitate preventive measures encompassing both environmental and host-focused strategies. While a substantial number of infections in oncologic patients originate from microorganisms within their native microbiological environment, such as the oral cavity, intestines, and skin, the concrete risk of bloodstream infections linked to the consumption of contaminated food and beverages in the community cannot be overlooked. Ensuring food quality and hygiene is essential to mitigating the impact of foodborne illnesses on vulnerable patients. The neutropenic diet (ND) has been proposed to minimize the risk of sepsis during neutropenic periods. The ND aims to minimize bacterial entry into the gut and bacterial translocation. However, a standardized definition for ND and consensus guidelines for specific food exclusions are lacking. Most centers adopt ND during neutropenic phases, but challenges in achieving caloric intake are common. The ND has not demonstrated any associated benefits and does not ensure improved overall survival. Consequently, providing unified and standardized food safety instructions is imperative for pediatric patients undergoing hematopoietic cell transplantation (HCT). Despite the lack of evidence, ND is still widely administered to both pediatric and adult patients as a precautionary measure. This narrative review focuses on the impact of foodborne infections in pediatric cancer patients and the role of the ND in comparison to food safety practices in patients undergoing chemotherapy or HCT. Prioritizing education regarding proper food storage, preparation, and cooking techniques proves more advantageous than merely focusing on dietary limitations. The absence of standardized guidelines underscores the necessity for further research in this field.
Collapse
Affiliation(s)
- Laura Pedretti
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (G.C.); (S.M.); (S.R.)
| | - Davide Leardini
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (D.L.); (E.M.); (R.M.)
| | - Edoardo Muratore
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (D.L.); (E.M.); (R.M.)
| | - Gaia Capoferri
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (G.C.); (S.M.); (S.R.)
| | - Serena Massa
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (G.C.); (S.M.); (S.R.)
| | - Sofia Rahman
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (G.C.); (S.M.); (S.R.)
| | - Susanna Esposito
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (G.C.); (S.M.); (S.R.)
| | - Riccardo Masetti
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (D.L.); (E.M.); (R.M.)
| |
Collapse
|
7
|
Sardzikova S, Andrijkova K, Svec P, Beke G, Klucar L, Minarik G, Bielik V, Kolenova A, Soltys K. Gut diversity and the resistome as biomarkers of febrile neutropenia outcome in paediatric oncology patients undergoing hematopoietic stem cell transplantation. Sci Rep 2024; 14:5504. [PMID: 38448687 PMCID: PMC10918076 DOI: 10.1038/s41598-024-56242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
The gut microbiota of paediatric oncology patients undergoing a conditioning regimen before hematopoietic stem cell transplantation is recently considered to play role in febrile neutropenia. Disruption of commensal microbiota and evolution of opportune pathogens community carrying a plethora of antibiotic-resistance genes play crucial role. However, the impact, predictive role and association of patient´s gut resistome in the course of the therapy is still to be elucidated. We analysed gut microbiota composition and resistome of 18 paediatric oncology patients undergoing hematopoietic stem cell transplantation, including 12 patients developing febrile neutropenia, hospitalized at The Bone Marrow Transplantation Unit of the National Institute of Children´s disease in Slovak Republic and healthy individuals (n = 14). Gut microbiome of stool samples obtained in 3 time points, before hematopoietic stem cell transplantation (n = 16), one week after hematopoietic stem cell transplantation (n = 16) and four weeks after hematopoietic stem cell transplantation (n = 14) was investigated using shotgun metagenome sequencing and bioinformatical analysis. We identified significant decrease in alpha-diversity and nine antibiotic-resistance genes msr(C), dfrG, erm(T), VanHAX, erm(B), aac(6)-aph(2), aph(3)-III, ant(6)-Ia and aac(6)-Ii, one week after hematopoietic stem cell transplantation associated with febrile neutropenia. Multidrug-resistant opportune pathogens of ESKAPE, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli found in the gut carried the significant subset of patient's resistome. Over 50% of patients treated with trimethoprim/sulfamethoxazole, piperacillin/tazobactam and amikacin carried antibiotic-resistance genes to applied treatment. The alpha diversity and the resistome of gut microbiota one week after hematopoietic stem cell transplantation is relevant predictor of febrile neutropenia outcome after hematopoietic stem cell transplantation. Furthermore, the interindividual diversity of multi-drug resistant opportunistic pathogens with variable portfolios of antibiotic-resistance genes indicates necessity of preventive, personalized approach.
Collapse
Affiliation(s)
- Sara Sardzikova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Kristina Andrijkova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Peter Svec
- Department of Paediatric Haematology and Oncology, Children's Haematology and Oncology Clinic and Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Gabor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lubos Klucar
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
| | - Alexandra Kolenova
- Department of Paediatric Haematology and Oncology, Children's Haematology and Oncology Clinic and Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
8
|
Masetti R, Leardini D, Muratore E, Fabbrini M, D’Amico F, Zama D, Baccelli F, Gottardi F, Belotti T, Ussowicz M, Fraczkiewicz J, Cesaro S, Zecca M, Merli P, Candela M, Pession A, Locatelli F, Prete A, Brigidi P, Turroni S. Gut microbiota diversity before allogeneic hematopoietic stem cell transplantation as a predictor of mortality in children. Blood 2023; 142:1387-1398. [PMID: 37856089 PMCID: PMC10651870 DOI: 10.1182/blood.2023020026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/16/2023] [Indexed: 10/20/2023] Open
Abstract
The correlation existing between gut microbiota diversity and survival after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has so far been studied in adults. Pediatric studies question whether this association applies to children as well. Stool samples from a multicenter cohort of 90 pediatric allo-HSCT recipients were analyzed using 16S ribosomal RNA amplicon sequencing to profile the gut microbiota and estimate diversity with the Shannon index. A global-to-local networking approach was used to characterize the ecological structure of the gut microbiota. Patients were stratified into higher- and lower-diversity groups at 2 time points: before transplantation and at neutrophil engraftment. The higher-diversity group before transplantation exhibited a higher probability of overall survival (88.9% ± 5.7% standard error [SE] vs 62.7% ± 8.2% SE; P = .011) and lower incidence of grade 2 to 4 and grade 3 to 4 acute graft-versus-host disease (aGVHD). No significant difference in relapse-free survival was observed between the 2 groups (80.0% ± 6.0% SE vs 55.4% ± 10.8% SE; P = .091). The higher-diversity group was characterized by higher relative abundances of potentially health-related microbial families, such as Ruminococcaceae and Oscillospiraceae. In contrast, the lower-diversity group showed an overabundance of Enterococcaceae and Enterobacteriaceae. Network analysis detected short-chain fatty acid producers, such as Blautia, Faecalibacterium, Roseburia, and Bacteroides, as keystones in the higher-diversity group. Enterococcus, Escherichia-Shigella, and Enterobacter were instead the keystones detected in the lower-diversity group. These results indicate that gut microbiota diversity and composition before transplantation correlate with survival and with the likelihood of developing aGVHD.
Collapse
Affiliation(s)
- Riccardo Masetti
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Edoardo Muratore
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marco Fabbrini
- Department of Medical and Surgical Sciences, Microbiomics Unit, University of Bologna, Bologna, Italy
- Department of Pharmacy and Biotechnology, Unit of Microbiome Science and Biotechnology, University of Bologna, Bologna, Italy
| | - Federica D’Amico
- Department of Medical and Surgical Sciences, Microbiomics Unit, University of Bologna, Bologna, Italy
| | - Daniele Zama
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Gottardi
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tamara Belotti
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marek Ussowicz
- Department and Clinic of Pediatric Oncology, Hematology and Bone Marrow Transplantation, Wrocław Medical University, Wrocław, Poland
| | - Jowita Fraczkiewicz
- Department and Clinic of Pediatric Oncology, Hematology and Bone Marrow Transplantation, Wrocław Medical University, Wrocław, Poland
| | - Simone Cesaro
- Department of Mother and Child, Pediatric Hematology Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Pietro Merli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, Unit of Microbiome Science and Biotechnology, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, Microbiomics Unit, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, Unit of Microbiome Science and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Wong SP, Er YX, Tan SM, Lee SC, Rajasuriar R, Lim YAL. Oral and Gut Microbiota Dysbiosis is Associated with Mucositis Severity in Autologous Hematopoietic Stem Cell Transplantation: Evidence from an Asian Population. Transplant Cell Ther 2023; 29:633.e1-633.e13. [PMID: 37422196 DOI: 10.1016/j.jtct.2023.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Mucositis is a debilitating complication of hematopoietic stem cell transplantation (HSCT). It is unclear how changes in the composition of microbiota, which are modulated by geographical location and ethnicity, may influence immune regulation leading to the development of mucositis, and the study of both oral and gut microbiota in a single population of autologous HSCT in the Asian region is lacking. The present study aimed to characterize the oral and gut microbiota changes, and the impact on both oral and lower gastrointestinal (GI) mucositis, with associated temporal changes in a population of adult recipients of autologous HSCT. Autologous HSCT recipients age ≥18 years were recruited from Hospital Ampang, Malaysia, between April 2019 and December 2020. Mucositis assessments were conducted daily, and blood, saliva, and fecal samples were collected prior to conditioning, on day 0, and at 7 days and 6 months post-transplantation. Longitudinal differences in alpha diversity and beta diversity were determined using the Wilcoxon signed-rank test and permutational multivariate analysis of variance, respectively. Changes in relative abundances of bacteria across time points were assessed using the microbiome multivariate analysis by linear models function. The combined longitudinal effects of clinical, inflammatory, and microbiota variables on mucositis severity were measured using the generalized estimating equation. Among the 96 patients analyzed, oral mucositis and diarrhea (representing lower GI mucositis) occurred in 58.3% and 95.8%, respectively. Alpha and beta diversities were significantly different between sample types (P < .001) and across time points, with alpha diversity reaching statistical significance at day 0 in fecal samples (P < .001) and at day +7 in saliva samples (P < .001). Diversities normalized to baseline by 6 months post-transplantation. Significant microbiota, clinical, and immunologic factors were associated with increasing mucositis grades. Increasing relative abundances of saliva Paludibacter, Leuconostoc, and Proteus were associated with higher oral mucositis grades, whereas increasing relative abundances of fecal Rothia and Parabacteroides were associated with higher GI mucositis grades. Meanwhile, increasing relative abundances of saliva Lactococcus and Acidaminococcus and fecal Bifidobacterium were associated with protective effects against worsening oral and GI mucositis grades, respectively. This study provides real-world evidence and insights into the dysbiosis of the microbiota in patients exposed to conditioning regimen during HSCT. Independent of clinical and immunologic factors, we demonstrated significant associations between relative bacteria abundances with the increasing severity of oral and lower GI mucositis. Our findings offer a potential rationale to consider the inclusion of preventive and restorative measures targeting oral and lower GI dysbiosis as interventional strategies to ameliorate mucositis outcome in HSCT recipients.
Collapse
Affiliation(s)
- Shu Ping Wong
- Department of Pharmacy, Ampang Hospital, Ministry of Health, Ampang, Selangor Darul Ehsan, Malaysia
| | - Yi Xian Er
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sen Mui Tan
- Department of Haematology, Ampang Hospital, Ministry of Health, Ampang, Selangor Darul Ehsan, Malaysia
| | - Soo Ching Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Reena Rajasuriar
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yvonne Ai Lian Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Gottardi F, Leardini D, Muratore E, Baccelli F, Cerasi S, Venturelli F, Zanaroli A, Belotti T, Prete A, Masetti R. Treatment of steroid-refractory graft versus host disease in children. FRONTIERS IN TRANSPLANTATION 2023; 2:1251112. [PMID: 38993897 PMCID: PMC11235274 DOI: 10.3389/frtra.2023.1251112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 07/13/2024]
Abstract
Systemic steroids are still the first-line approach in acute graft-versus-host disease (aGvHD), and the backbone of chronic GvHD management. Refractoriness to steroid represent a major cause of morbidity and non-relapse mortality after hematopoietic stem cell transplantation (HSCT). In both backgrounds, several second-line immunosuppressive agents have been tested with variable results in terms of efficacy and toxicity. Solid evidence regarding these approaches is still lacking in the pediatric setting where results are mainly derived from adult experiences. Furthermore, the number of treated patients is limited and the incidence of acute and chronic GvHD is lower, resulting in a very heterogeneous approach to this complication by pediatric hematologists. Some conventional therapies and anti-cytokine monoclonal antibodies used in the adult setting have been evaluated in children. In recent years, the increasing understanding of the biological mechanisms underpinning the pathogenesis of GvHD justified the efforts toward the adoption of targeted therapies and non-pharmacologic approaches, with higher response rates and lower immunosuppressive effects. Moreover, many questions regarding the precise timing and setting in which to integrate these new approaches remain unanswered. This Review aims to critically explore the current evidence regarding novel approaches to treat SR-GvHD in pediatric HSCT recipients.
Collapse
Affiliation(s)
- Francesca Gottardi
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Edoardo Muratore
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Sara Cerasi
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Venturelli
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Zanaroli
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tamara Belotti
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Xu J, Kang Y, Zhong Y, Ye W, Sheng T, Wang Q, Zheng J, Yang Q, Yi P, Li Z. Alteration of gut microbiome and correlated amino acid metabolism are associated with acute myelocytic leukemia carcinogenesis. Cancer Med 2023; 12:16431-16443. [PMID: 37409640 PMCID: PMC10469656 DOI: 10.1002/cam4.6283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND The aim of this study is to investigate the profiles of gut microbiota and metabolites in acute myelocytic leukemia (AML) patients treated with/without chemotherapy. METHODS Herein, high-throughput 16S rRNA gene sequencing was performed to analysis gut microbiota profiles, and liquid chromatography and mass spectrometry were performed to analysis metabolites profiles. The correlation between gut microbiota biomarkers identified by LEfSe and differentially expressed metabolites were determined by spearman association analysis. RESULTS The results showed the distinguished gut microbiota and metabolites profiles between AML patients and control individuals or AML patients treated with chemotherapy. Compared to normal populations, the ratio of Firmicutes to Bacteroidetes was increased at the phylum level than that in AML patients, and LEfSe analysis identified Collinsella and Coriobacteriaceae as biomarkers of AML patients. Differential metabolite analysis indicated that, compared to AML patients, numerous differential amino acids and analogs could be observed in control individuals and AML patients treated with chemotherapy. Interestingly, spearman association analysis demonstrated that plenty of bacteria biomarkers shows statistical correlations with differentially expressed amino acid metabolites. In addition, we found that both Collinsella and Coriobacteriaceae demonstrate remarkable positive correlation with hydroxyprolyl-hydroxyproline, prolyl-tyrosine, and tyrosyl-proline. CONCLUSION In conclusion, our present study investigated the role of the gut-microbiome-metabolome axis in AML and revealed the possibility of AML treatment by gut-microbiome-metabolome axis in the further.
Collapse
Affiliation(s)
- Jing Xu
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yong Kang
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of HematologyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Yan Zhong
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of General MedicineGanzhou People's hospitalGanzhouChina
| | - Wencan Ye
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of HematologyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Tianle Sheng
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qingming Wang
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Jifu Zheng
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qiuyue Yang
- Department of Scientific Research ProjectWuhan Kindstar Medical Laboratory Co., Ltd.WuhanChina
- Kindstar Global Precision Medicine InstituteWuhanChina
| | - Ping Yi
- Department of Scientific Research ProjectWuhan Kindstar Medical Laboratory Co., Ltd.WuhanChina
- Kindstar Global Precision Medicine InstituteWuhanChina
| | - Zhenjiang Li
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
12
|
Muratore E, Leardini D, Baccelli F, Venturelli F, Cerasi S, Zanaroli A, Lanari M, Prete A, Masetti R, Zama D. The emerging role of nutritional support in the supportive care of pediatric patients undergoing hematopoietic stem cell transplantation. Front Nutr 2023; 10:1075778. [PMID: 36875838 PMCID: PMC9975569 DOI: 10.3389/fnut.2023.1075778] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) represents a potentially curative strategy for many oncological, hematological, metabolic, and immunological diseases in children. The continuous effort in ameliorating supportive care represents one of the cornerstones in the improvement of outcome in these patients. Nowadays, more than ever nutritional support can be considered a key feature. Oral feeding in the early post-transplant period is severely impaired because of mucositis due to conditioning regimen, characterized by, mainly by vomiting, anorexia, and diarrhea. Gastrointestinal acute graft-versus-host-disease (GvHD), infections and associated treatments, and other medications, such as opioids and calcineurin inhibitors, have also been correlated with decreased oral intake. The consequent reduction in caloric intake combined with the catabolic effect of therapies and transplantation-related complications with consequent extended immobilization, results in a rapid deterioration of nutritional status, which is associated with decreased overall survival and higher complication rates during treatment. Thus, nutritional support during the early post-transplantation period becomes an essential and challenging issue for allo-HSCT recipients. In this context, the role of nutrition in the modulation of the intestinal flora is also emerging as a key player in the pathophysiology of the main complications of HSCT. The pediatric setting is characterized by less evidence, considering the challenge of addressing nutritional needs in this specific population, and many questions are still unanswered. Thus, we perform a narrative review regarding all aspects of nutritional support in pediatric allo-HSCT recipients, addressing the assessment of nutritional status, the relationship between nutritional status and clinical outcomes and the evaluation of the nutritional support, ranging from specific diets to artificial feeding.
Collapse
Affiliation(s)
- Edoardo Muratore
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Venturelli
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Sara Cerasi
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Zanaroli
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marcello Lanari
- Pediatric Emergency Unit, Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Daniele Zama
- Pediatric Emergency Unit, Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Shi Z, Li H, Song W, Zhou Z, Li Z, Zhang M. Emerging roles of the gut microbiota in cancer immunotherapy. Front Immunol 2023; 14:1139821. [PMID: 36911704 PMCID: PMC9992551 DOI: 10.3389/fimmu.2023.1139821] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Gut microbiota represents a hidden treasure vault encompassing trillions of microorganisms that inhabit the intestinal epithelial barrier of the host. In the past decade, numerous in-vitro, animal and clinical studies have revealed the profound roles of gut microbiota in maintaining the homeostasis of various physiological functions, especially immune modulation, and remarkable differences in the configuration of microbial communities between cancers and healthy individuals. In addition, although considerable efforts have been devoted to cancer treatments, there remain many patients succumb to their disease with the incremental cancer burden worldwide. Nevertheless, compared with the stability of human genome, the plasticity of gut microbiota renders it a promising opportunity for individualized treatment. Meanwhile, burgeoning findings indicate that gut microbiota is involved in close interactions with the outcomes of diverse cancer immunotherapy protocols, including immune checkpoint blockade therapy, allogeneic hematopoietic stem cell transplantation, and chimeric antigen receptor T cell therapy. Here, we reviewed the evidence for the capacity of gut microflora to modulate cancer immunotherapies, and highlighted the opportunities of microbiota-based prognostic prediction, as well as microbiotherapy by targeting the microflora to potentiate anticancer efficacy while attenuating toxicity, which will be pivotal to the development of personalized cancer treatment strategies.
Collapse
Affiliation(s)
- Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongwen Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| | - Wenting Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyuan Zhou
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Leardini D, Venturelli F, Baccelli F, Cerasi S, Muratore E, Brigidi P, Pession A, Prete A, Masetti R. Pharmacomicrobiomics in Pediatric Oncology: The Complex Interplay between Commonly Used Drugs and Gut Microbiome. Int J Mol Sci 2022; 23:15387. [PMID: 36499714 PMCID: PMC9740824 DOI: 10.3390/ijms232315387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome (GM) has emerged in the last few years as a main character in several diseases. In pediatric oncological patients, GM has a role in promoting the disease, modulating the effectiveness of therapies, and determining the clinical outcomes. The therapeutic course for most pediatric cancer influences the GM due to dietary modifications and several administrated drugs, including chemotherapies, antibiotics and immunosuppressants. Interestingly, increasing evidence is uncovering a role of the GM on drug pharmacokinetics and pharmacodynamics, defining a bidirectional relationship. Indeed, the pediatric setting presents some contrasts with respect to the adult, since the GM undergoes a constant multifactorial evolution during childhood following external stimuli (such as diet modification during weaning). In this review, we aim to summarize the available evidence of pharmacomicrobiomics in pediatric oncology.
Collapse
Affiliation(s)
- Davide Leardini
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Francesco Venturelli
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Francesco Baccelli
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Sara Cerasi
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Edoardo Muratore
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Andrea Pession
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
- Pediatric Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
15
|
Leardini D, Muratore E, Abram N, Baccelli F, Belotti T, Prete A, Gori D, Masetti R. Effectiveness of Quinolone Prophylaxis in Pediatric Acute Leukemia and Hematopoietic Stem Cell Transplantation: A Systematic Review and Meta-analysis. Open Forum Infect Dis 2022; 9:ofac594. [PMID: 36504701 PMCID: PMC9728521 DOI: 10.1093/ofid/ofac594] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The effectiveness of quinolone prophylaxis in high-risk hematological pediatric patients is controversial. A systematic review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, including studies that involved children and young adults undergoing chemotherapy for acute leukemia or hematopoietic stem cell transplantation (HSCT) who received quinolone prophylaxis compared with no prophylaxis. A meta-analysis was performed on bloodstream infections and neutropenic fever. Data regarding the impact of prophylaxis on overall survival, antibiotic exposure, antibiotic-related adverse effects, antibiotic resistance, Clostridium difficile infections, fungal infections, length of hospitalization, and costs were reviewed in the descriptive analysis. Sixteen studies were included in the qualitative analysis, and 10 of them met the criteria for quantitative analysis. Quinolone prophylaxis was effective in reducing the rate of bloodstream infections and neutropenic fever in pediatric acute leukemia compared with no prophylaxis, but it had no significant effect in HSCT recipients. Prophylaxis was associated with a higher rate of bacterial resistance to fluoroquinolones and higher antibiotic exposure.
Collapse
Affiliation(s)
- Davide Leardini
- Pediatric Oncology and Hematology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Edoardo Muratore
- Pediatric Oncology and Hematology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Nicoletta Abram
- Pediatric Oncology and Hematology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Oncology and Hematology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tamara Belotti
- Pediatric Oncology and Hematology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Gori
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Schwabkey ZI, Wiesnoski DH, Chang CC, Tsai WB, Pham D, Ahmed SS, Hayase T, Turrubiates MRO, El-Himri RK, Sanchez CA, Hayase E, Oquendo ACF, Miyama T, Halsey TM, Heckel BE, Brown AN, Jin Y, Raybaud M, Prasad R, Flores I, McDaniel L, Chapa V, Lorenzi PL, Warmoes MO, Tan L, Swennes AG, Fowler S, Conner M, McHugh K, Graf T, Jensen VB, Peterson CB, Do KA, Zhang L, Shi Y, Wang Y, Galloway-Pena JR, Okhuysen PC, Daniel-MacDougall CR, Shono Y, da Silva MB, Peled JU, van den Brink MR, Ajami N, Wargo JA, Reddy P, Valdivia RH, Davey L, Rondon G, Srour SA, Mehta RS, Alousi AM, Shpall EJ, Champlin RE, Shelburne SA, Molldrem JJ, Jamal MA, Karmouch JL, Jenq RR. Diet-derived metabolites and mucus link the gut microbiome to fever after cytotoxic cancer treatment. Sci Transl Med 2022; 14:eabo3445. [PMID: 36383683 PMCID: PMC10028729 DOI: 10.1126/scitranslmed.abo3445] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Not all patients with cancer and severe neutropenia develop fever, and the fecal microbiome may play a role. In a single-center study of patients undergoing hematopoietic cell transplant (n = 119), the fecal microbiome was characterized at onset of severe neutropenia. A total of 63 patients (53%) developed a subsequent fever, and their fecal microbiome displayed increased relative abundances of Akkermansia muciniphila, a species of mucin-degrading bacteria (P = 0.006, corrected for multiple comparisons). Two therapies that induce neutropenia, irradiation and melphalan, similarly expanded A. muciniphila and additionally thinned the colonic mucus layer in mice. Caloric restriction of unirradiated mice also expanded A. muciniphila and thinned the colonic mucus layer. Antibiotic treatment to eradicate A. muciniphila before caloric restriction preserved colonic mucus, whereas A. muciniphila reintroduction restored mucus thinning. Caloric restriction of unirradiated mice raised colonic luminal pH and reduced acetate, propionate, and butyrate. Culturing A. muciniphila in vitro with propionate reduced utilization of mucin as well as of fucose. Treating irradiated mice with an antibiotic targeting A. muciniphila or propionate preserved the mucus layer, suppressed translocation of flagellin, reduced inflammatory cytokines in the colon, and improved thermoregulation. These results suggest that diet, metabolites, and colonic mucus link the microbiome to neutropenic fever and may guide future microbiome-based preventive strategies.
Collapse
Affiliation(s)
- Zaker I. Schwabkey
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Diana H. Wiesnoski
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chia-Chi Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wen-Bin Tsai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dung Pham
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Saira S. Ahmed
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tomo Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Rawan K. El-Himri
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher A. Sanchez
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eiko Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Annette C. Frenk Oquendo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Takahiko Miyama
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Taylor M. Halsey
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Brooke E. Heckel
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexandria N. Brown
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yimei Jin
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mathilde Raybaud
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rishika Prasad
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ivonne Flores
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren McDaniel
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Valerie Chapa
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip L. Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marc O. Warmoes
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alton G. Swennes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephanie Fowler
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Margaret Conner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin McHugh
- CPRIT Scholar in Cancer Research, Austin, TX 78701, USA
- Department of Bioengineering, Rice University, Houston, TX 77251, USA
| | - Tyler Graf
- Department of Bioengineering, Rice University, Houston, TX 77251, USA
| | - Vanessa B. Jensen
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christine B. Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Liangliang Zhang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yushu Shi
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jessica R. Galloway-Pena
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA
| | - Pablo C. Okhuysen
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Yusuke Shono
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marina Burgos da Silva
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan U. Peled
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10021, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marcel R.M. van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10021, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nadim Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A. Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pavan Reddy
- Department of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Raphael H. Valdivia
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710 USA
| | - Lauren Davey
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710 USA
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samer A. Srour
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rohtesh S. Mehta
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amin M. Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard E. Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samuel A. Shelburne
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey J. Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mohamed A. Jamal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer L. Karmouch
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert R. Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- CPRIT Scholar in Cancer Research, Austin, TX 78701, USA
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
17
|
Muratore E, Leardini D, Baccelli F, Venturelli F, Prete A, Masetti R. Nutritional modulation of the gut microbiome in allogeneic hematopoietic stem cell transplantation recipients. Front Nutr 2022; 9:993668. [PMID: 36337625 PMCID: PMC9632163 DOI: 10.3389/fnut.2022.993668] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents a potentially curative strategy for many oncological and non-oncological diseases, but it is associated with marked morbidity and mortality. The disruption of gut microbiota (GM) eubiosis has been linked to major allo-HSCT complications, including infections and acute graft vs. host disease (aGvHD), and correlates with mortality. This increasing knowledge on the role of the GM in the allo-HSCT procedure has led to fascinating ideas for modulating the intestinal ecosystem in order to improve clinical outcomes. Nutritional strategies, either by changing the route of nutritional supplementation or by administering specific molecules, are increasingly being considered as cost- and risk-effective methods of modulating the GM. Nutritional support has also emerged in the past several years as a key feature in supportive care for allo-HSCT recipients, and deterioration of nutritional status is associated with decreased overall survival and higher complication rates during treatment. Herein we provide a complete overview focused on nutritional modulation of the GM in allo-HSCT recipients. We address how pre transplant diet could affect GM composition and its ability to withstand the upsetting events occurring during transplantation. We also provide a complete overview on the influence of the route of nutritional administration on the intestinal ecosystem, with a particular focus on the comparison between enteral and parenteral nutrition (PN). Moreover, as mounting evidence are showing how specific components of post-transplant diet, such as lactose, could drastically shape the GM, we will also summarize the role of prebiotic supplementation in the modulation of the intestinal flora and in allo-HSCT outcomes.
Collapse
Affiliation(s)
- Edoardo Muratore
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- *Correspondence: Francesco Baccelli,
| | - Francesco Venturelli
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
D’Amico F, Decembrino N, Muratore E, Turroni S, Muggeo P, Mura R, Perruccio K, Vitale V, Zecca M, Prete A, Venturelli F, Leardini D, Brigidi P, Masetti R, Cesaro S, Zama D. Oral Lactoferrin Supplementation during Induction Chemotherapy Promotes Gut Microbiome Eubiosis in Pediatric Patients with Hematologic Malignancies. Pharmaceutics 2022; 14:1705. [PMID: 36015331 PMCID: PMC9416448 DOI: 10.3390/pharmaceutics14081705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 12/19/2022] Open
Abstract
Induction chemotherapy is the first-line treatment for pediatric patients with hematologic malignancies. However, several complications may arise, mainly infections and febrile neutropenia, with a strong impact on patient morbidity and mortality. Such complications have been shown to be closely related to alterations of the gut microbiome (GM), making the design of strategies to foster its eubiosis of utmost clinical importance. Here, we evaluated the impact of oral supplementation of lactoferrin (LF), a glycoprotein endowed with anti-inflammatory, immunomodulatory and antimicrobial activities, on GM dynamics in pediatric oncohematologic patients during induction chemotherapy. Specifically, we conducted a double blind, placebo-controlled trial in which GM was profiled through 16S rRNA gene sequencing before and after two weeks of oral supplementation with LF or placebo. LF was safely administered with no adverse effects and promoted GM homeostasis by favoring the maintenance of diversity and preventing the bloom of pathobionts (e.g., Enterococcus). LF could, therefore, be a promising adjunct to current therapeutic strategies in these fragile individuals to reduce the risk of GM-related complications.
Collapse
Affiliation(s)
- Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Nunzia Decembrino
- Neonatal Intensive Care Unit-AOU Policlinico “Rodolico-San Marco”, University of Catania, 95131 Catania, Italy
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Edoardo Muratore
- Pediatric Hematology and Oncology Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Paola Muggeo
- Pediatric Hematology and Oncology Department, University of Bari, 70121 Bari, Italy
| | - Rosamaria Mura
- Pediatric Hematology and Oncology Department, “A Cao” Microcitemic Pediatric Hospital, “Botzu” Medical Center, 09100 Cagliari, Italy
| | - Katia Perruccio
- Pediatric Hematology and Oncology Department, “Santa Maria della Misericordia” Hospital, 06132 Perugia, Italy
| | - Virginia Vitale
- Pediatric Hematology and Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Arcangelo Prete
- Pediatric Hematology and Oncology Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Francesco Venturelli
- Pediatric Hematology and Oncology Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
| | - Davide Leardini
- Pediatric Hematology and Oncology Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Riccardo Masetti
- Pediatric Hematology and Oncology Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Simone Cesaro
- Pediatric Hematology and Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy
| | - Daniele Zama
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
19
|
Boeriu E, Borda A, Vulcanescu DD, Sarbu V, Arghirescu ST, Ciorica O, Bratosin F, Marincu I, Horhat FG. Diagnosis and Management of Febrile Neutropenia in Pediatric Oncology Patients—A Systematic Review. Diagnostics (Basel) 2022; 12:diagnostics12081800. [PMID: 35892511 PMCID: PMC9394251 DOI: 10.3390/diagnostics12081800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases are associated with a high morbidity and mortality rate among pediatric cancer patients undergoing treatment or receiving a transplant. Neutropenia represents a potentially fatal complication of cancer treatment and is associated with a high risk of developing bacterial infections. Although febrile neutropenia (FN) can affect both adults and children, the latter has a higher chance of infections with an unknown origin. Prompt empiric broad-spectrum antibiotic administration is collectively considered the best therapeutic approach. This review aims to analyze the latest works from the literature regarding the therapeutic strategies, schemes, and approaches and the efficacy of these in pediatric febrile neutropenia. Following PRISMA guidelines, an advanced search on PubMed, Scopus, and Cochrane Library, using the keywords “febrile neutropenia”, “pediatric”, “cancer”, and “oncology”, was performed. A total of 197 articles were found to be eligible. After screening the abstracts and excluding unfit studies, 16 articles were analyzed. There were eight retrospective studies, five prospective studies, and two clinical trials. Altogether, these studies have described around 5000 episodes of FN. The median age of the participants was 7.6 years, and the underlying condition for most of them was acute leukemia. The infectious agent could only be determined in around one-fifth of cases, from which 90% were of bacterial origin. As such, empirical broad-spectrum antibiotics are used, with the most used treatment scheme comprising third- and fourth-generation cephalosporins and antipseudomonal penicillins. In order to improve the treatment strategies of FN episodes and to successfully de-escalate treatments toward narrower-spectrum antibiotics, hospitals and clinics should increase their efforts in identifying the underlying cause of FN episodes through blood culture urine culture and viral tests, wherever infrastructure enables it.
Collapse
Affiliation(s)
- Estera Boeriu
- Department of Pediatrics, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
- Department of Oncology and Haematology, “Louis Turcanu” Emergency Clinical Hospital for Children, Iosif Nemoianu Street 2, 300011 Timisoara, Romania;
| | - Alexandra Borda
- Department of Oncology and Haematology, “Louis Turcanu” Emergency Clinical Hospital for Children, Iosif Nemoianu Street 2, 300011 Timisoara, Romania;
| | - Dan Dumitru Vulcanescu
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.D.V.); (V.S.); (F.G.H.)
| | - Vlad Sarbu
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.D.V.); (V.S.); (F.G.H.)
| | - Smaranda Teodora Arghirescu
- Department of Pediatrics, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
- Correspondence: (S.T.A.); (O.C.)
| | - Ovidiu Ciorica
- Business Administration and Economics Faculty, West University of Timisoara, Johann Heinrich Pestalozzi Street 16, 300115 Timisoara, Romania
- Correspondence: (S.T.A.); (O.C.)
| | - Felix Bratosin
- Methodological and Infectious Diseases Research Center, Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (F.B.); (I.M.)
| | - Iosif Marincu
- Methodological and Infectious Diseases Research Center, Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (F.B.); (I.M.)
| | - Florin George Horhat
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.D.V.); (V.S.); (F.G.H.)
| |
Collapse
|