1
|
Jian Z, Pan T, Li R, Zhang W, Cheng T, Zhang H, Song J, Shi N, Zhang Z. Comprehensive analysis of UPK3B as a marker for prognosis and immunity in pancreatic adenocarcinoma. Sci Rep 2025; 15:12716. [PMID: 40223017 PMCID: PMC11994762 DOI: 10.1038/s41598-025-97213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/03/2025] [Indexed: 04/15/2025] Open
Abstract
The low immunogenicity of pancreatic cancer inhibits effective antitumor immune responses, primarily due to the immune evasion mediated by low expression of the major histocompatibility complex (MHC). Through comprehensive analysis, our study identifies UPK3B as a gene closely associated with low MHC expression and low immunogenicity in pancreatic cancer. UPK3B has been reported as a marker of primary mesothelial cells, mature epicardium and promotes extracellular matrix signaling. However, the role of UPK3B in pancreatic cancer remain unclear. We found that UPK3B is highly predictive of overall survival (OS) in patients with pancreatic ductal adenocarcinoma (PDAC) and is significantly related to clinical features, immune cell infiltration, and response to immune checkpoint inhibitor (ICI) therapy. Gene enrichment analysis revealed significant downregulation of immune regulatory and BCR signaling pathways in the UPK3B high-expression group. Additionally, UPK3B is positively correlated with immunosuppressive cells, suggesting that high UPK3B expression may inhibit antitumor immune responses by promoting low MHC expression. UPK3B is also positively correlated with immune checkpoints, indicating that tumors with high UPK3B expression may not benefit from ICI therapy. Therefore, UPK3B may serve as a novel biomarker and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Ziying Jian
- Department of Hematology, Zhong da Hospital of Southeast University, Nanjing, China
| | - Tao Pan
- Department of Radiology, Center of Interventional Radiology and Vascular Surgery, Medical School, Zhongda Hospital, Southeast University, Nanjing, China
| | - Renjie Li
- School of Medicine, Southeast University, Nanjing, China
| | - Weiyu Zhang
- Department of General Surgery, Zhongda Hospital of Southeast University, Nanjing, China
| | - Tao Cheng
- Department of General Surgery, Zhongda Hospital of Southeast University, Nanjing, China
| | - Hanzhe Zhang
- School of Medicine, Southeast University, Nanjing, China
| | - Jialin Song
- School of Medicine, Southeast University, Nanjing, China
| | - Naipeng Shi
- Department of Urology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Zhiheng Zhang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
2
|
Shentu J, Xu H, Zhu F. Ammonia-induced lysosomal and mitochondrial damage: a novel perspective on T cell-based cancer immunotherapy. JOURNAL OF THE NATIONAL CANCER CENTER 2025; 5:105-107. [PMID: 40265095 PMCID: PMC12010380 DOI: 10.1016/j.jncc.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 04/24/2025] Open
Affiliation(s)
- Jianqiao Shentu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, China
| | - Hening Xu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, China
| |
Collapse
|
3
|
Seo YD, Katz MHG, Snyder RA. The Landmark Series: The Future of Pancreatic Cancer Clinical Trials. Ann Surg Oncol 2025; 32:2777-2785. [PMID: 39815074 DOI: 10.1245/s10434-024-16840-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/25/2024] [Indexed: 01/18/2025]
Abstract
Pancreatic cancer has a poor prognosis despite ongoing advances in systemic and multimodal therapies. This review analyzes recent progress and future directions in pancreatic cancer clinical trials, emphasizing the evolution from traditional approaches to a more personalized and biologically-driven treatment paradigm. While improvements in overall survival have been achieved through perioperative therapies, gaps remain in our understanding of optimal treatment strategies. Key questions include selection of specific chemotherapeutic agents, duration of preoperative therapy, the role of radiotherapy, and accurate and real-time assessment of response to therapy. Historically, pancreatic cancer clinical trials have been designed based on anatomic criteria, failing to account for the inherent biologic heterogeneity of this disease. The field is now moving towards a precision oncology approach, leveraging genomic and transcriptomic data to identify predictive biomarkers and personalize treatment selection. Novel clinical trial designs, such as platform and basket trials, are accelerating the evaluation of new therapeutic strategies and facilitating efficient patient selection, particularly in the context of new emerging targeted therapies such as KRAS inhibitors. Furthermore, implementation of dynamic response assessment techniques, such as circulating tumor DNA and radiomics, may inform treatment decision-making and improve prediction of long-term outcomes. By integrating these evolving strategies, the emerging clinical trial landscape has the potential to transform the treatment of pancreatic cancer and yield meaningful improvements in patient outcomes.
Collapse
Affiliation(s)
- Yongwoo David Seo
- Division of Surgery, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew H G Katz
- Division of Surgery, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca A Snyder
- Division of Surgery, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Dhasmana A, Santhanam A, Dhasmana K, Malik S, Preetam S. Innovative smart biosensors for cancer theranostics: A new frontier in detection, diagnosis, and beyond. Cancer Treat Res Commun 2025; 43:100911. [PMID: 40156955 DOI: 10.1016/j.ctarc.2025.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Cancer is still a major health concern worldwide, requiring ongoing improvements in methods of diagnosis and treatment. During the past decade, smart biosensors have become essential instruments in cancer theranostics, improving diagnosis accuracy, tracking treatment efficacy, and customizing patient care. This review thoroughly investigates how smart biosensors have revolutionized the field of cancer. The potential of major technical advancements, such as wearable technology, microfluidic platforms, and sensors based on nanomaterials to identify cancer biomarkers with high sensitivity and specificity is investigated. A detailed discussion is held regarding clinical applications that include early diagnosis, real-time monitoring of therapy responses, and support for personalized medicine techniques. Future directions targeted at optimizing the therapeutic utility of smart biosensors in oncology are also examined, along with issues pertaining to regulatory routes and clinical translation hurdles. This study highlights the potential of smart biosensors to transform cancer treatment, bringing in a new era of precision medicine and better patient outcomes by combining insights from multiple viewpoints.
Collapse
Affiliation(s)
- Archna Dhasmana
- Himalayan School of Bioscience, Swami Rama Himalayan University, Jolly Grant, Dehradun Uttarakhand 248140, India.
| | - Ayushi Santhanam
- Himalayan School of Bioscience, Swami Rama Himalayan University, Jolly Grant, Dehradun Uttarakhand 248140, India
| | - Khushi Dhasmana
- Himalayan School of Bioscience, Swami Rama Himalayan University, Jolly Grant, Dehradun Uttarakhand 248140, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi 834001, India; School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand 248007, India; University Center for Research & Development (UCRD) Chandigarh University, NH-05 Chandigarh- Ludhiana Highway, Mohali, Punjab 140413, India.
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika, 59053, Sweden.
| |
Collapse
|
5
|
Zhang X, Xue Y, Hao M. Cardiotoxicity induced by chemotherapy and immunotherapy in cancer treatment: a bibliometric analysis. Discov Oncol 2025; 16:376. [PMID: 40121610 PMCID: PMC11930912 DOI: 10.1007/s12672-025-02146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
OBJECTIVE New chemotherapy and immunotherapy agents have revolutionized cancer treatment, significantly improving patient survival rates and quality of life while extending lifespans. However, these therapies often come with severe side effects, particularly cardiotoxicity. Over the past few decades, this field has seen steady growth. To better understand current trends, research hotspots, and collaborative networks in this area, a bibliometric analysis of relevant literature was conducted. METHODS A comprehensive search was performed in the Web of Science for articles on cardiotoxicity induced by chemotherapy and immunotherapy in cancer treatment, published in SSCI and SCI-EXPANDED up to October 21, 2024. Using software tools such as GraphPad Prism, CiteSpace, and VOSviewer, we analyzed various parameters including publication year, countries, institutions, journals, authors, and references. Additionally, co-occurrence analyses, cooperation relationship assessments, co-citation networks, keyword maps, clustering analyses, and keyword emergence evaluations were conducted. RESULTS As of October 21, 2024, a total of 5290 articles from 5674 institutions and 27,528 authors across 114 countries and regions were collected. The annual publication frequency and rate steadily increased. The United States emerge as the leading country in terms of publication volume, with the University of Texas System being the most prolific and frequently cited institution. "Breast Cancer Research and Treatment" was among the journals with revelant publications. Notable contributors included Ky bonnie and Thavendiranathan Paaladinesh, while Cardinale D achieved the highest average citation count per publication. Current research hotspots included echocardiography, trastuzumab, doxorubicin, radiotherapy, myocarditis, and 5-fluorouracil. The trend suggests that cardiotoxicity is expected to play an increasingly critical role in chemotherapy and immunotherapy for cancer treatment. CONCLUSION This study provides a bibliometric visualization analysis of cardiotoxicity induced by chemotherapy and immunotherapy in the cancer treatment. It highlights current developments, collaborative efforts, and research hotspots within this field, offering essential scientific reference value for Cardio-Oncology.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Nuclear Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanfeng Xue
- Department of Special Need Medicine, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingyan Hao
- Department of Hospital Office, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, School of Public Health, Shanxi Medical University, Nicholas Global Health Institute, Duke University, No.3, Zhigong ST, Xinghualing District, Taiyuan, 030013, Shanxi, China.
| |
Collapse
|
6
|
Ying F, Zhou X, Chen M, Huang L, Gao L, Zhao Q, Zhang Y. Preclinical study of inetetamab combined with atezolizumab to synergistically inhibit HER2 and PD-L1 in the treatment of ovarian cancer. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200938. [PMID: 40034965 PMCID: PMC11874541 DOI: 10.1016/j.omton.2025.200938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/14/2024] [Accepted: 01/14/2025] [Indexed: 03/05/2025]
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynecological malignancy. Precision treatments are crucial for improving patient survival. This research explored the potential anti-tumor effects of combining inetetamab and atezolizumab for HER2+ EOC patients. The expressions of human epidermal growth factor receptor 2 (HER2) and programmed cell death ligand 1 (PD-L1) in EOC cells were evaluated. EOC cell-derived subcutaneous and peritoneal dissemination mouse models were used to evaluate the anti-tumor effects of inetetamab, with or without atezolizumab. The correlations between the expressions of HER2 and PD-L1 as well as the infiltration of T cells in tumors from patients and mice were analyzed by immunohistochemistry. Inetetamab suppressed the growth of HER2+ tumors in mouse models. HER2 overexpression increased PD-L1 levels in EOC cells. The expression level of HER2 is positively related to that of PD-L1 in the tumors of EOC patients as well as the infiltration of both CD4+ and CD8+ T cells. The combination of inetetamab and atezolizumab impeded the growth of HER2+ EOC tumors in vivo and induced a long-term anti-tumor effect with the elevated infiltration of CD103+CD8+ cells. These findings suggest that the combination of inetetamab and atezolizumab could be a promising precision treatment strategy for HER2+ EOC patients.
Collapse
Affiliation(s)
- Feiquan Ying
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuyang Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Medical Ultrasound, Yueyang Central Hospital, Yueyang 414000, China
| | - Mengqing Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lingling Gao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qing Zhao
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Yuan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Dhillon D, Jain M, Singh AK, Muthukumaran J. Withania somnifera-derived phytochemicals as Bcl-B inhibitors in cancer therapy: A computational approach from byte to bench to bedside. Biochem Biophys Res Commun 2025; 750:151383. [PMID: 39884007 DOI: 10.1016/j.bbrc.2025.151383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Cancer is the second foremost cause of fatalities associated with non-communicable diseases across the globe, affecting multiple organs and often necessitating costly treatments with adverse side effects. Apoptosis, the body's natural cell death process, plays a crucial role in the prevention of cancer, but it's often disrupted in cancer cells, allowing uncontrolled proliferation. Restoring apoptosis in cancer cells is one of the promising therapeutic strategies to curb tumor growth and enhance clinical outcomes. Bcl-B, an anti-apoptotic protein within the Bcl-2 family, interacts with Bax to mitigate apoptosis, indicating it as a druggable target for cancer therapy. There's a critical need for natural, cost-effective alternatives with minimal adverse effects to reduce morbidity rates of cancer patients. Plant-based immunoprotective medications, particularly from sustainable sources like known medicinal plants, offer substantial potential for cancer treatment. This study involves comprehensive in silico approaches (byte) to evaluate the inhibition potential of the phytochemicals derived from Withania somnifera against the anti-apoptotic Bcl-B protein. Research into Bcl-B's binding affinity with 80 phytochemicals from this plant aims to identify interaction sites for promising anticancer agents. This study's focus on Bcl-B protein highlights its potential in modulating apoptotic pathways and exploring novel anti-cancer therapeutics. Through comprehensive screening based on drug-likeness and pharmacokinetic properties, combined with in-house virtual screening, molecular docking, molecular dynamics simulations, and MM/PBSA-based binding free energy analysis, three promising candidate inhibitors-Withanolide L (IMPHY009438), Withanolide M (IMPHY003143), and Withanolide A (IMPHY000090)-were identified and prioritized. These candidates showed favorable estimated binding free energy values, along with desirable drug-likeness and pharmacokinetic profiles. The results demonstrated that the selected and prioritized phytochemicals, Withanolide L, Withanolide M, and Withanolide A display comparable efficacy to Obatoclax (CID: 11404337) and other known synthetic, semi-synthetic, and natural inhibitors of Bcl-2 family proteins. These findings establish a strong bench foundation for further experimental validation and bedside application, potentially offering an alternative natural approach to cancer therapy.
Collapse
Affiliation(s)
- Deepika Dhillon
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Monika Jain
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India.
| |
Collapse
|
8
|
Wei H, Zhang Y, Lu Y, Zou Y, Zhou L, Qin X, Jiang Q. Is ADC a rising star in solid tumor? An umbrella review of systematic reviews and meta-analyses. BMC Cancer 2025; 25:380. [PMID: 40021960 PMCID: PMC11871788 DOI: 10.1186/s12885-025-13726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/12/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) combine the specificity of monoclonal antibodies with the potency of highly cytotoxic drugs and are known as panaceas, completely changing the treatment paradigm for solid tumors. Compared with other anti-cancer drugs, do they have better efficacy and lower toxicity risks? It is necessary to summarize and analyze the published clinical research data in this area to provide additional evidence-based evidence for clinical practice. OBJECTIVE To comprehensively assess and overview the efficacy and safety of antibody-drug conjugates for the treatment of solid tumors. DESIGN An umbrella review of systematic reviews and meta-analyses. METHODS Systematic search of eight electronic databases and one registration platform including Embase, PubMed, Cochrane Database of Systematic Reviews (CDSR), Web of Science (WoS), China National Knowledge Infrastructure (CNKI), Chinese BioMedical Literature Database (CBM), Wan Fang Data, China Science and Technology Journal Database (VIP) and international prospective register of systematic reviews (PROSPERO) on Aug 1, 2024, to identify relevant systematic reviews or meta-analyses. Three authors completed research screening and data extraction independently. AMSTAR 2 was used to evaluate the methodological quality of the included studies and the Grading of Recommendations Assessment, Development and Evaluation Working Group (GRADE) was performed to evaluate the quality of the evidence. We examined progression-free survival (PFS), overall survival (OS), objective response rate (ORR) as efficacy endpoints, and the incidence of adverse events (AEs) as safety profiles. RESULTS A total of 16 eligible publications, including 32 clinical studies, were included in the umbrella review. The methodological quality of the included study was poor, with 2 articles of moderate-quality (12.5%), 5 articles of low quality (31.25%), and 9 articles of critically low quality (56.25%). Only one third of the evidence was of high quality. Within the included studies, breast cancer accounted for four-fifths, 2 studies were gastric cancer, and 1 study was a solid tumor. The overall results showed that ADCs significantly increased PFS and OS in patients with solid tumors, and the risk of toxicity was within an acceptable range. ado-Trastuzumab emtansine (T-DM1) and Trastuzumab deruxtecan (T-Dxd) treatment of human epidermal growth factor receptor 2(HER2) low/positive advanced metastatic breast cancer significantly prolonged PFS and OS, but the ORR showed a significant advantage. Compared with the chemotherapy group, T-Dxd significantly prolonged OS and PFS in gastric cancer patients, while T-DM1 did not. In other cancer types (ovarian cancer, renal cell carcinoma, and malignant pleural mesothelioma), ADCs tended to extend overall survival or progression-free survival compared with controls, but the difference was not statistically significant. CONCLUSIONS Based on the available evidence, in breast cancer, ADCs were proved to with significant improvements in prolonging survival time and demonstrates a tolerable safety profile. Meanwhile, ADCs were proved to have enormous potential for the treatment of solid tumors. However, well-designed, multi-center RCTs need to further identify its potential in various solid tumors. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD 42,024,564,517.
Collapse
Affiliation(s)
- Hua Wei
- Department of Pharmacy, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Yongjun Zhang
- Department of Anesthesiology, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, 610213, China
| | - Yun Lu
- Department of Pharmacy, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Ya Zou
- Department of Pharmacy, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Lu Zhou
- Department of Pharmacy, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Xiaoli Qin
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, P.R. China
| | - Qian Jiang
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, 610041, Sichuan, P.R. China.
| |
Collapse
|
9
|
Ezdoglian A, Tsang-A-Sjoe M, Khodadust F, Burchell G, Jansen G, de Gruijl T, Labots M, van der Laken CJ. Monocyte-related markers as predictors of immune checkpoint inhibitor efficacy and immune-related adverse events: a systematic review and meta-analysis. Cancer Metastasis Rev 2025; 44:35. [PMID: 39982537 PMCID: PMC11845441 DOI: 10.1007/s10555-025-10246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025]
Abstract
The efficacy and off-target effects of immune checkpoint inhibitors (ICI) in cancer treatment vary among patients. Monocytes likely contribute to this heterogeneous response due to their crucial role in immune homeostasis. We conducted a systematic review and meta-analysis to evaluate the impact of monocytes on ICI efficacy and immune-related adverse events (irAEs) in patients with cancer. We systematically searched PubMed, Web of Science, and Embase for clinical studies from January 2000 to December 2023. Articles were included if they mentioned cancer, ICI, monocytes, or any monocyte-related terminology. Animal studies and studies where ICIs were combined with other biologics were excluded, except for studies where two ICIs were used. This systematic review was registered with PROSPERO (CRD42023396297) prior to data extraction and analysis. Monocyte-related markers, such as absolute monocyte count (AMC), monocyte/lymphocyte ratio (MLR), specific monocyte subpopulations, and m-MDSCs were assessed in relation to ICI efficacy and safety. Bayesian meta-analysis was conducted for AMC and MLR. The risk of bias assessment was done using the Cochrane-ROBINS-I tool. Out of 5787 studies identified in our search, 155 eligible studies report peripheral blood monocyte-related markers as predictors of response to ICI, and 32 of these studies describe irAEs. Overall, based on 63 studies, a high MLR was a prognostic biomarker for short progression-free survival (PFS) and overall survival (OS) hazard ratio (HR): 1.5 (95% CI: 1.21-1.88) and 1.52 (95% CI:1.13-2.08), respectively. The increased percentage of classical monocytes was an unfavorable predictor of survival, while low baseline rates of monocytic myeloid-derived suppressor cells (m-MDSCs) were favorable. Elevated intermediate monocyte frequencies were associated but not significantly correlated with the development of irAEs. Baseline monocyte phenotyping may serve as a composite biomarker of response to ICI; however, more data is needed regarding irAEs. Monocyte-related variables may aid in risk assessment and treatment decision strategies for patients receiving ICI in terms of both efficacy and safety.
Collapse
Affiliation(s)
- Aiarpi Ezdoglian
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Michel Tsang-A-Sjoe
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Fatemeh Khodadust
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - George Burchell
- Amsterdam University Medical Library, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Tanja de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Amsterdam University Medical Center, Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Conny J van der Laken
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Li J, Zhou X, Wu L, Ma J, Tan Y, Wu S, Zhu J, Wang Q, Shi Q. Optimal early endpoint for second-line or subsequent immune checkpoint inhibitors in previously treated advanced solid cancers: a systematic review. BMC Cancer 2025; 25:293. [PMID: 39966752 PMCID: PMC11837729 DOI: 10.1186/s12885-025-13712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The administration of second-line or subsequent immune checkpoint inhibitors (ICIs) in previously treated patients with advanced solid cancers has been clinically investigated. However, previous clinical trials lacked an appropriate primary endpoint for efficacy assessment. This systematic review aimed to explore the most optimal early efficacy endpoint for such trials. METHODS Phase 2 or 3 clinical trials involving patients with advanced solid cancers with disease progression following standard first-line therapy receiving second-line or subsequent ICI administration, with adequate survival outcome data, were included from PubMed, Embase, Web of Science, and Cochrane Library databases before February 2023. Quality assessment was conducted using the Cochrane tool and Newcastle-Ottawa Quality Assessment Scale for Cohort Studies for randomized controlled trials (RCTs) and non-randomized trials, respectively. Objective response rate (ORR) and progression-free survival (PFS) at 3, 6, and 9 months were investigated as potential early efficacy endpoint candidates for 12-month overall survival (OS), with a strong correlation defined as Pearson's correlation coefficient r ≥ 0.8. RESULTS A total of 64 RCTs comprising 22,725 patients and 106 non-randomized prospective trials involving 10,608 participants were eligible for modeling and external validation, respectively. RCTs examined 15 different cancer types, predominantly non-small-cell lung cancer (NSCLC) (17, 28%), melanoma (9, 14%), and esophageal squamous cell carcinoma (5, 8%). The median sample size of RCTs was 124 patients, and the median follow-up time was 3.2-57.7 months. The ORR (r = 0.38; 95% confidence interval [CI], 0.18-0.54) and PFS (r = 0.42; 95% CI, 0.14-0.64) exhibited weak trial-level correlations with OS. Within ICI treatment arms, the r values of ORR and 3-, 6-, and 9-month PFS with 12-month OS were 0.61 (95% CI, 0.37-0.79), 0.78 (95% CI, 0.62-0.88), 0.84 (95% CI, 0.77-0.90), and 0.86 (95% CI, 0.79-0.90), respectively. External validation of 6-month PFS indicated an acceptable discrepancy between actual and predicted 12-month OS. CONCLUSIONS In non-randomized phase 2 trials on second-line or subsequent ICI therapy in patients with advanced solid cancers, 6-month PFS could serve as an early efficacy endpoint. However, early efficacy endpoints are not recommended in RCTs to replace OS.
Collapse
Affiliation(s)
- Jingqiu Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoding Zhou
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Wu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiabao Ma
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Tan
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Songke Wu
- Department of Oncology, People'S Hospital of Cangxi County, Guangyuan, China.
| | - Jie Zhu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| | - Qifeng Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| | - Qiuling Shi
- Center for Cancer Prevention Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Alkhathami AG, Pallathadka H, Shah S, Ganesan S, Sharma A, Devi S, Mustafa YF, Alasheqi MQ, Kadhim AJ, Zwamel AH. Mechanisms behind the LncRNAs-mediated regulation of paclitaxel (PTX) resistance in human malignancies. Exp Cell Res 2025; 445:114434. [PMID: 39921031 DOI: 10.1016/j.yexcr.2025.114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Paclitaxel (PTX) is extensively used to treat various cancers, including those of the breast, ovary, lung, esophagus, stomach, pancreas, and neck. However, despite its effectiveness in clinical settings, patients often experience cancer recurrence due to the emergence of resistance to PTX. The mechanisms underlying this resistance in cancer cells exposed to PTX involve modifications in β-tubulin, the primary target molecule associated with mitosis, the activation of pathways that facilitate drug efflux, and the dysregulation of apoptosis-related proteins. Long non-coding RNAs (lncRNAs), which are RNA molecules exceeding 200 nucleotides in length and lacking protein-coding capabilities, play various regulatory roles in cellular functions. A growing body of evidence underscores the role of lncRNAs in cancer progression and their involvement in PTX resistance across different cancer types. As a result, lncRNAs have been identified as promising therapeutic targets for overcoming drug resistance in cancer therapies. This review aims to provide an overview of the current knowledge regarding lncRNAs and their contributions to resistance mechanisms to promote further research in this field. A summary of key lncRNAs and their related pathways associated with PTX resistance will be presented.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | | | - Sejal Shah
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, 360003, Gujarat, India.
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | - Seema Devi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | | | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq.
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
12
|
Huang M, Feng L, Ren H, Yuan Z, Liu C, Liu Y, Su T, Liu X, Yang L. Knowledge, attitudes, and practices regarding whole-course management among patients with gastrointestinal cancers: a cross-sectional study. World J Surg Oncol 2025; 23:45. [PMID: 39924482 PMCID: PMC11809093 DOI: 10.1186/s12957-025-03668-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/19/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND This study aimed to investigate the knowledge, attitudes, and practices (KAP) regarding whole-course management among patients with gastrointestinal (GI) cancers. METHODS This cross-sectional study enrolled patients with GI cancers at the Inner Mongolia Hospital of Peking University Cancer Hospital between November 2023 and April 2024. Data were collected through a self-administered questionnaire, which captured demographic information and scores on KAP. RESULTS A total of 408 participants were included in this study. The mean KAP scores were 10.62 ± 3.14 (out of a maximum of 15), 39.11 ± 4.94 (out of a maximum of 50), and 31.35 ± 5.60 (out of a maximum of 40), respectively. Knowledge was positively correlated with attitudes (r = 0.307, P < 0.001) and practices (r = 0.417, P < 0.001), while attitudes were positively correlated with practices (r = 0.383, P < 0.001). The structural equation model indicated that knowledge influenced attitudes (β = 0.573, P < 0.001) and practices (β = 0.466, P < 0.001), while attitudes influenced practices (β = 0.525, P < 0.001). CONCLUSIONS Patients with GI cancers demonstrated insufficient knowledge, moderate attitudes, and suboptimal practices regarding whole-course management. Improvements in practice could be achieved by enhancing knowledge and attitudes through specialized health education.
Collapse
Affiliation(s)
- Min Huang
- Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| | - Li Feng
- Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China.
| | - Huiling Ren
- Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| | - Zhina Yuan
- Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| | - Cailian Liu
- Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| | - Yujie Liu
- Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| | - Ting Su
- Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| | - Xiaofei Liu
- Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| | - Lingling Yang
- Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| |
Collapse
|
13
|
Mahmud AKMF, Mansour Aly DG, Zhao Y, Benson M, Smelik M, Sysoev O, Wang H, Li X. Proteogenomic analysis reveals Arp 2/3 complex as a common molecular mechanism in high risk pancreatic cysts and pancreatic cancer. Sci Rep 2025; 15:3902. [PMID: 39890846 PMCID: PMC11785783 DOI: 10.1038/s41598-025-87872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025] Open
Abstract
Pancreatic cysts, particularly intraductal papillary mucinous neoplasms (IPMNs), pose a potential risk for progressing to pancreatic cancer (PC). This study investigates the genetic architecture of benign pancreatic cysts and its potential connection to PC using genome-wide association studies (GWAS). The discovery GWAS identified significant genetic variants associated with benign cysts, specifically the rs142409042 variant near the OPCML gene. A pairwise GWAS comparing PC to benign cysts revealed the rs7190458 variant near the BCAR1 and CTRB1 genes. Further analysis with identified GWAS genes highlighted the Actin Related Protein (Arp) 2/3 complex as a potentially important molecular mechanism connecting benign cysts and PC. The Arp2/3 complex-associated genes were significantly upregulated in PC, suggesting their role in the malignant transformation of pancreatic cysts. Differential expression of these genes was observed across various cell types in PC, indicating their involvement in the tumor microenvironment. These findings suggest that the Arp2/3 complex-associated genes can serve as potential biomarkers for predicting the malignant transformation of pancreatic cysts, opening new avenues for targeted therapies and early detection strategies.
Collapse
Affiliation(s)
- A K M Firoj Mahmud
- Medical Digital Twin Research Group, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Dina Gamaleldin Mansour Aly
- Medical Digital Twin Research Group, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Yelin Zhao
- Medical Digital Twin Research Group, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Mikael Benson
- Medical Digital Twin Research Group, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Martin Smelik
- Medical Digital Twin Research Group, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Oleg Sysoev
- Division of Statistics and Machine Learning, Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Hui Wang
- Medical Digital Twin Research Group, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Xinxiu Li
- Medical Digital Twin Research Group, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
14
|
Nishi M, Yamashita S, Takasu C, Wada Y, Yoshikawa K, Tokunaga T, Nakao T, Kashihara H, Yoshimoto T, Shimada M. Role of mast cell in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy. BMC Cancer 2025; 25:99. [PMID: 39825280 PMCID: PMC11740561 DOI: 10.1186/s12885-025-13458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
The pro-tumor effects of mast cell (MC) in the tumor microenvironment (TME) are becoming increasingly clear. Recently, MC were shown to contribute to tumor malignancy by supporting the migration of tumor-associated macrophages (TAMs), suggesting a relationship with tumor immunity. In the current study, we aimed to examine the correlation between MC infiltration and neoadjuvant chemoradiotherapy (nCRT) response for locally advanced rectal cancer (LARC). Ninety-five LARC patients who recieved nCRT were enrolled in this study. Protein levels of the MC marker tryptase and TAM marker CD206 were evaluated with immunohistochemistry (IHC). The correlation between MC infiltration and prognostic factors was evaluated. The effects of MCs on the malignant potential were examined using in vitro proliferation and invasion assays with a colorectal cancer (CRC) cell line (HCT-116). Following nCRT, 31.6% of resected LARC patient specimens were positive for MC infiltration by tryptase IHC analysis. MC infiltration was significantly correlated with nCRT response. The 5-year disease-free survival (DFS) rate was significantly lower in the MC-positive group compared with the MC-negative group (52.3% vs. 76.8%). Univariate and multivariate analyses revealed that MC infiltration was the independent prognostic indicator for DFS. MC infiltration was significantly correlated with CD206 expression, and therefore TAMs. In vitro experiments suggested that tumor activated mast cells could promote CRC cell malignant behavior via production of macrophage inhibitory factor. MC infiltration in LARC patients was positively correlated with TAM infiltration and resistance to nCRT, and was also an independent poor prognostic indicator.
Collapse
Affiliation(s)
- Masaaki Nishi
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan.
| | - Shoko Yamashita
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Chie Takasu
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Yuma Wada
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Kozo Yoshikawa
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Takuya Tokunaga
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Toshihiro Nakao
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Hideya Kashihara
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Toshiaki Yoshimoto
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| |
Collapse
|
15
|
Metrangolo V, Blomquist MH, Dutta A, Gårdsvoll H, Krigslund O, Nørregaard KS, Jürgensen HJ, Ploug M, Flick MJ, Behrendt N, Engelholm LH. Targeting uPAR with an antibody-drug conjugate suppresses tumor growth and reshapes the immune landscape in pancreatic cancer models. SCIENCE ADVANCES 2025; 11:eadq0513. [PMID: 39823326 PMCID: PMC11740940 DOI: 10.1126/sciadv.adq0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Antibody-drug conjugates (ADCs) hold promise to advance targeted therapy of pancreatic ductal adenocarcinoma (PDAC), where the desmoplastic tumor stroma challenges effective treatment. Here, we explored the urokinase plasminogen activator receptor (uPAR) as a candidate ADC target in PDAC, harnessing its massive tumoral and stromal expression in this stroma-dense tumor. We generated a site-specific ADC offering high-affinity, cross-species reactivity, and efficient internalization of the anti-uPAR monoclonal antibody, FL1, carrying a potent anthracycline derivative (PNU-158692). In vitro, FL1-PNU exhibited potent and specific cytotoxicity against uPAR-expressing PDAC cell lines, stromal and immune cells, and bystander killing of uPAR-negative cells. In vivo, the ADC induced remission or sustained tumor regression and extended survival in xenograft models. In syngeneic orthotopic models, the antitumor effect promoted immunomodulation by enhancing infiltrating immune effectors and decreasing immunosuppressive cells. This study lays grounds for further exploring FL1-PNU as a putative clinical ADC candidate, potentially providing a promising therapeutic avenue for PDAC as a monotherapy or in combinatorial regimens.
Collapse
Affiliation(s)
- Virginia Metrangolo
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | - Ananya Dutta
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Henrik Gårdsvoll
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
| | - Oliver Krigslund
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
| | | | | | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Matthew J. Flick
- Department of Medicine and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Niels Behrendt
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, GK-2200 Copenhagen, Denmark
| | - Lars H. Engelholm
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
16
|
Chen Y, Xin Q, Zhu M, Qiu J, Luo Y, Li R, Wei W, Tu J. Exploring CAR-macrophages in non-tumor diseases: Therapeutic potential beyond cancer. J Adv Res 2025:S2090-1232(25)00004-9. [PMID: 39756574 DOI: 10.1016/j.jare.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND After significant advancements in tumor treatment, personalized cell therapy based on chimeric antigen receptors (CAR) holds promise for transforming the management of various diseases. CAR-T therapy, the first approved CAR cell therapy product, has demonstrated therapeutic potential in treating infectious diseases, autoimmune disorders, and fibrosis. CAR-macrophages (CAR-Ms) are emerging as a promising approach in CAR immune cell therapy, particularly for solid tumor treatment, highlighting the feasibility of using macrophages to eliminate pathogens and abnormal cells. AIM OF REVIEW This review summarizes the progress of CAR-M therapy in non-tumor diseases and discusses various CAR intracellular activation domain designs and their potential to optimize therapeutic effects by modulating interactions between cellular components in the tissue microenvironment and CAR-M. Additionally, we discuss the characteristics and advantages of CAR-M therapy compared to traditional medicine and CAR-T/NK therapy, as well as the challenges and prospects for the clinical translation of CAR-M. KEY SCIENTIFIC CONCEPTS OF REVIEW This review provides a comprehensive understanding of CAR-M for the treatment of non-tumor diseases, analyzes the advantages and characteristics of CAR-M therapy, and highlights the important impact of CAR intracellular domain design on therapeutic efficacy. In addition, the challenges and clinical translation prospects of developing CAR-M as a new cell therapy are discussed.
Collapse
Affiliation(s)
- Yizhao Chen
- Department of Pharmacy, The Third Affiliated Hospital of Anhui Medical University, Hefei First People's Hospital, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Qianling Xin
- Anhui Women and Children's Medical Center, Hefei Maternal and Child Health Hospital, Hefei, China
| | - Mengjuan Zhu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Jiaqi Qiu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yan Luo
- Department of Abdominal Radiotherapy, Hubei Provincial Cancer Hospital, Wuhan, China.
| | - Ruilin Li
- Department of Pharmacy, The Third Affiliated Hospital of Anhui Medical University, Hefei First People's Hospital, Hefei, China.
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| | - Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| |
Collapse
|
17
|
Quan L, Liu J, Wang Y, Yang F, Yang Z, Ju J, Shuai Y, Wei T, Yue J, Wang X, Meng J, Yuan P. Exploring risk factors for endocrine-related immune-related adverse events: Insights from meta-analysis and Mendelian randomization. Hum Vaccin Immunother 2024; 20:2410557. [PMID: 39377304 PMCID: PMC11469449 DOI: 10.1080/21645515.2024.2410557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
This study utilized meta-analysis and Mendelian randomization (MR) to identify risk factors for endocrine-related immune-related adverse events (EirAEs) and to ascertain whether EirAEs confer better prognosis of immunotherapy. The meta-analysis identified several risk factors for EirAEs, including elevated baseline TSH (OR = 1.30, 95% CI 1.10-1.53), positive TgAb (OR = 14.23, p < .001), positive TPOAb (OR = 3.75, p < .001), prior thyroid-related medical history (OR = 4.19), increased BMI (OR = 1.11), combination immune checkpoint inhibitors (ICIs) therapy with targeted treatment (OR = 2.71, 95% CI 2.11-3.47), and dual ICI therapy (OR = 3.26, 95% CI 2.22-4.79). MR analysis further supported causalities between extreme BMI, hypothyroidism, and irAEs from a genetic perspective. In addition, cancer patients who experienced EirAEs exhibited significantly prolonged PFS (HR = 0.84, 95% CI 0.73-0.97) and OS (HR = 0.59, 95% CI 0.45-0.76) compared to those without. These findings provide valuable insights for clinical decision-making among healthcare professionals and offer direction for future research in this field.
Collapse
Affiliation(s)
- Liuliu Quan
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of VIP Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinsong Liu
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of VIP Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxin Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fan Yang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zixuan Yang
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of VIP Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Ju
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of VIP Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - You Shuai
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of VIP Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tong Wei
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of VIP Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Yue
- Department of VIP Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Wang
- Department of VIP Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaqi Meng
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Peng Yuan
- Department of VIP Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Zuo K, Liu N, Zhou P, Zheng M, Wang L, Tang T, Yang Z, Chen L, Zhu X. Human serum albumin promotes interactions between HSA-IL-2 fusion protein and CD122 for enhancing immunotherapy. Biomed Pharmacother 2024; 181:117664. [PMID: 39522264 DOI: 10.1016/j.biopha.2024.117664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Interleukin 2 (IL-2) is a multifunctional cytokine that is crucial for T-lymphocytes proliferation and differentiation. However, IL-2 binds to IL-2Rα (CD25) subunit preferentially and tends to stimulate regulatory T cells (Tregs), which express high-affinity trimeric receptors (IL-2Rαβγ), resulting in immunosuppressive effects. Therefore, development of methods that enhance IL-2/CD122 interactions and activate immune responses without affecting therapeutic efficacy of IL-2 may be desirable. In this work, we constructed a recombinant IL-2 fusion protein (HSA-IL-2), comprising human serum albumin (HSA) and IL-2, there was a new interaction interface between HSA domain and CD122 in HSA-IL-2 fusion protein predicted by AlphaFold2, and followed by determining binding affinity between HSA-IL-2 and CD122 through ForteBio's Bio-Layer Interferometry technology. Strikingly, HSA did promoted interactions between HSA-IL-2 fusion protein and CD122 compared with wild-type IL-2. In vivo experiments, HSA-IL-2 fusion protein had capacity to promote CD8+ T cells infiltration while reducing Treg cells infiltration for boosting immunotherapeutic efficacy. Furthermore, it facilitated synergistic therapeutic effect with α-PD-L1 to inhibit tumor growth. Overall, our research unveiled an enhanced binding affinity method underlying interactions between IL-2 and CD122 via fusing albumin, and propose a promising therapeutic strategy to facilitate IL-2 administration and broaden its clinical use.
Collapse
Affiliation(s)
- Kaiyue Zuo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Hainan University, Sanya 572000, China
| | - Naiyu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Hainan University, Sanya 572000, China
| | - Peng Zhou
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Mengzhu Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Lingjuan Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Hainan University, Sanya 572000, China
| | - Tingting Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Hainan University, Sanya 572000, China
| | - Zhanqun Yang
- Department of Pharmacy, Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Long Chen
- Department of Pharmacy, Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100191, China.
| | - Xinjie Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Hainan University, Sanya 572000, China.
| |
Collapse
|
19
|
Yang W, Hu P, Zuo C. Application of imaging technology for the diagnosis of malignancy in the pancreaticobiliary duodenal junction (Review). Oncol Lett 2024; 28:596. [PMID: 39430731 PMCID: PMC11487531 DOI: 10.3892/ol.2024.14729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
The pancreaticobiliary duodenal junction (PBDJ) is the connecting area of the pancreatic duct, bile duct and duodenum. In a broad sense, it refers to a region formed by the head of the pancreas, the pancreatic segment of the common bile duct and the intraduodenal segment, the descending and the horizontal part of the duodenum, and the soft tissue around the pancreatic head. In a narrow sense, it refers to the anatomical Vater ampulla. Due to its complex and variable anatomical features, and the diversity of pathological changes, it is challenging to make an early diagnosis of malignancy at the PBDJ and define the histological type. The unique anatomical structure of this area may be the basis for the occurrence of malignant tumors. Therefore, understanding and subclassifying the anatomical configuration of the PBDJ is of great significance for the prevention and treatment of malignant tumors at their source. The present review comprehensively discusses commonly used imaging techniques and other new technologies for diagnosing malignancy at the PBDJ, offering evidence for physicians and patients to select appropriate examination methods.
Collapse
Affiliation(s)
- Wanyi Yang
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Province, Changsha, Hunan 410013, P.R. China
- Graduates Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410013, P.R. China
| | - Pingsheng Hu
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Province, Changsha, Hunan 410013, P.R. China
| | - Chaohui Zuo
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Province, Changsha, Hunan 410013, P.R. China
- Graduates Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
20
|
Zhang H, Liu A, Bo W, Zhang M, Wang H, Feng X, Wu Y. Upregulation of HSD11B1 promotes cortisol production and inhibits NK cell activation in pancreatic adenocarcinoma. Mol Immunol 2024; 175:10-19. [PMID: 39276709 DOI: 10.1016/j.molimm.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
Cortisol is a glucocorticoid hormone that has immunosuppressive function. Elevated basal cortisol levels are present in patients with some kinds of cancers, but its role in the microenvironment of pancreatic adenocarcinoma (PAAD) remains unclear. This study analyzed the expression of genes involved in cortisol generation by using high-throughput sequencing data from TCGA portal and found HSD11B1 was significantly upregulated in patients with PAAD. The correlations between HSD11B1 level and the expression of 23 immunosuppressive receptors were analyzed by Spearman's correlation analysis. The function of HSD11B1 was examined in primary NK cells and PAAD cell lines. The levels of cortisol in medium and cell lysates were detected by ELISA. In vitro killing assay was used to evaluate the cytotoxicity of NK cells. Cell surface levels of CD96, Tim-3, PD-1, TIGIT, CTLA-4, NKp46, NKp30, NKD2G and LFA-1A, and intracellular levels of CD107a and IFN-γ were examined by flow cytometry. We observed that patients with higher HSD11B1 level had shorter survival time. HSD11B1 is positively correlated with the mRNA levels of 11 immunosuppressive receptors in PAAD. Higher HSD11B1 level relates to reduced abundance of activated NK cells in the tumors. HSD11B1 overexpressed NK cells exhibit exhausted phenotype with increased cortisol production, reduced viability, and reduced cytotoxicity against cancer cells. Overexpression of HSD11B1 did not change the viability of tumor cells but upregulated cortisol production. Targeting HSD11B1 by a specific inhibitor improved the NK cells responsiveness. In conclusion, HSD11B1 is upregulated in patients with PAAD, and higher HSD11B1 level is related to poor prognosis. Upregulation of HSD11B1 in NK and tumor cells increased the production and secretion of cortisol and induces NK cell exhaustion.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Aixiang Liu
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mingyi Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Haiqing Wang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xielin Feng
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Wu
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China; Department of Medical Oncology, Daytime Medical Treatment Area, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
21
|
Toyoda T, Miura N, Kato S, Masuda T, Ohashi R, Matsushita A, Matsuda F, Ohtsuki S, Katakura A, Honda K. Identification of TPI1 As a potential therapeutic target in pancreatic cancer with dependency of TP53 mutation using multi-omics analysis. Cancer Sci 2024; 115:3622-3635. [PMID: 39259678 PMCID: PMC11531968 DOI: 10.1111/cas.16302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 09/13/2024] Open
Abstract
Mutations of KRAS, CDKN2A, TP53, and SMAD4 are the four major driver genes for pancreatic ductal adenocarcinoma (PDAC), of which mutations of KRAS and TP53 are the most frequently recognized. However, molecular-targeted therapies for mutations of KRAS and TP53 have not yet been developed. To identify novel molecular targets, we newly established organoids with the Kras mutation (KrasmuOR) and Trp53 loss of function using Cre transduction and CRISPR/Cas9 (Krasmu/p53muOR) from murine epithelia of the pancreatic duct in KrasLSL-G12D mice, and then analyzed the proteomic and metabolomic profiles in both organoids by mass spectrometry. Hyperfunction of the glycolysis pathway was recognized in Krasmu/p53muOR compared with KrasmuOR. Loss of function of triosephosphate isomerase (TPI1), which is involved in glycolysis, induced a reduction of cell proliferation in human PDAC cell lines with the TP53 mutation, but not in PDAC or in human fibroblasts without TP53 mutation. The TP53 mutation is clinically recognized in 70% of patients with PDAC. In the present study, protein expression of TPI1 and nuclear accumulation of p53 were recognized in the same patients with PDAC. TPI1 is a potential candidate therapeutic target for PDAC with the TP53 mutation.
Collapse
Affiliation(s)
- Tomoaki Toyoda
- Department of Bioregulation, Graduate School of MedicineNippon Medical SchoolBunkyo‐kuTokyoJapan
- Department of Oral Pathobiological Science and SurgeryTokyo Dental CollegeTokyoJapan
| | - Nami Miura
- Department of BioregulationInstitute for Advanced Medical Sciences, Nippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Shingo Kato
- Department of Gastroenterology and HepatologyYokohama City University School of MedicineYokohamaKanazawa‐kuJapan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Institute for Advanced BiosciencesKeio UniversityTsuruokaYamagataJapan
| | - Ryuji Ohashi
- Department of Integrated Diagnostic Pathology, Graduate School of MedicineNippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Akira Matsushita
- Department of Gastroenterological SurgeryNippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and TechnologyOsaka UniversityOsakaJapan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Akira Katakura
- Department of Oral Pathobiological Science and SurgeryTokyo Dental CollegeTokyoJapan
| | - Kazufumi Honda
- Department of Bioregulation, Graduate School of MedicineNippon Medical SchoolBunkyo‐kuTokyoJapan
- Department of BioregulationInstitute for Advanced Medical Sciences, Nippon Medical SchoolBunkyo‐kuTokyoJapan
| |
Collapse
|
22
|
Wang R, Liu J, Jiang B, Gao B, Luo H, Yang F, Ye Y, Chen Z, Liu H, Cui C, Xu K, Li B, Yang X. A single-cell perspective on immunotherapy for pancreatic cancer: from microenvironment analysis to therapeutic strategy innovation. Front Immunol 2024; 15:1454833. [PMID: 39539544 PMCID: PMC11557317 DOI: 10.3389/fimmu.2024.1454833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic cancer remains one of the most lethal malignancies, with conventional treatment options providing limited efficacy. Recent advancements in immunotherapy have offered new hope, yet the unique tumor microenvironment (TME) of pancreatic cancer poses significant challenges to its successful application. This review explores the transformative impact of single-cell technology on the understanding and treatment of pancreatic cancer. By enabling high-resolution analysis of cellular heterogeneity within the TME, single-cell approaches have elucidated the complex interplay between various immune and tumor cell populations. These insights have led to the identification of predictive biomarkers and the development of innovative, personalized immunotherapeutic strategies. The review discusses the role of single-cell technology in dissecting the intricate immune landscape of pancreatic cancer, highlighting the discovery of T cell exhaustion profiles and macrophage polarization states that influence treatment response. Moreover, it outlines the potential of single-cell data in guiding the selection of immunotherapy drugs and optimizing treatment plans. The review also addresses the challenges and prospects of translating these single-cell-based innovations into clinical practice, emphasizing the need for interdisciplinary research and the integration of artificial intelligence to overcome current limitations. Ultimately, the review underscores the promise of single-cell technology in driving therapeutic strategy innovation and improving patient outcomes in the battle against pancreatic cancer.
Collapse
Affiliation(s)
- Rui Wang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Jie Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bo Jiang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Benjian Gao
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Honghao Luo
- Department of Radiology, Xichong People’s Hospital, Nanchong, China
| | - Fengyi Yang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuntao Ye
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhuo Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Cui
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Bo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoli Yang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
23
|
Wang YZ, Peng MZ, Xu YL, Ying Y, Tang LH, Xu HX, He JY, Liu L, Wang WQ. First reported advanced pancreatic cancer with hyperprogression treated with PD-1 blockade combined with chemotherapy: a case report and literature review. Discov Oncol 2024; 15:560. [PMID: 39404967 PMCID: PMC11480291 DOI: 10.1007/s12672-024-01420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Pancreatic cancer is among the most immune-resistant tumor types due to its unique tumor microenvironment and low cancer immunogenicity. Single-agent immune modulators have thus far proven clinically ineffective. However, a growing body of evidence suggests that combination of these modulators with other strategies could unlock the potential of immunotherapy in pancreatic cancer. Herein, we describe the case of a 59-year-old male with metastatic pancreatic ductal adenocarcinoma, referred to our center to receive immunotherapy (serplulimab, a novel anti-PD-1 antibody) combined with chemotherapy (gemcitabine/nab-paclitaxel). During the initial three treatment cycles, the patient was assessed as having stable disease (SD) according to RECIST 1.1 criteria. However, following two additional cycles of combination therapy, the primary tumor mass increased from 4.9 cm to 13.2 cm, accompanied by the development of new lung lesions, ascites, and pelvic metastases. He succumbed to respiratory failure one month later. Retrospective analysis revealed that the patient had MDM4 amplification, identified as a high-risk factor for hyperprogressive disease (HPD). To our knowledge, this is the first reported case of HPD in pancreatic cancer with multiple metastases treated using combination therapy. We investigated the potential mechanisms and reviewed the latest literature on predictive factors for HPD. These findings suggest that while chemotherapy combined with immunotherapy may hold promise for treating pancreatic cancer, it is imperative to identify and closely monitor patients with high-risk factors for HPD when using immunotherapy.
Collapse
Affiliation(s)
- Ya-Zhou Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mao-Zhen Peng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yao-Lin Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ying Ying
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lin-Hui Tang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hua-Xiang Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun-Yi He
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Ciepła J, Smolarczyk R. Tumor hypoxia unveiled: insights into microenvironment, detection tools and emerging therapies. Clin Exp Med 2024; 24:235. [PMID: 39361163 PMCID: PMC11449960 DOI: 10.1007/s10238-024-01501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Hypoxia is one of the defining characteristics of the tumor microenvironment (TME) in solid cancers. It has a major impact on the growth and spread of malignant cells as well as their resistance to common treatments like radiation and chemotherapy. Here, we explore the complex functions of hypoxia in the TME and investigate its effects on angiogenesis, immunological evasion, and cancer cell metabolism. For prognostic and therapeutic reasons, hypoxia identification is critical, and recent developments in imaging and molecular methods have enhanced our capacity to precisely locate underoxygenated areas inside tumors. Furthermore, targeted therapies that take advantage of hypoxia provide a potential new direction in the treatment of cancer. Therapeutic approaches that specifically target hypoxic conditions in tumors without causing adverse effects are being led by hypoxia-targeted nanocarriers and hypoxia-activated prodrugs (HAPs). This review provides an extensive overview of this dynamic and clinically significant area of oncology research by synthesizing current knowledge about the mechanisms of hypoxia in cancer, highlighting state-of-the-art detection methodologies, and assessing the potential and efficacy of hypoxia-targeted therapies.
Collapse
Affiliation(s)
- Joanna Ciepła
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| |
Collapse
|
25
|
Rencinai A, Tollapi E, Marianantoni G, Brunetti J, Henriquez T, Pini A, Bracci L, Falciani C. Branched oncolytic peptides target HSPGs, inhibit metastasis, and trigger the release of molecular determinants of immunogenic cell death in pancreatic cancer. Front Mol Biosci 2024; 11:1429163. [PMID: 39417004 PMCID: PMC11479992 DOI: 10.3389/fmolb.2024.1429163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Immunogenic cell death (ICD) can be exploited to treat non-immunoreactive tumors that do not respond to current standard and innovative therapies. Not all chemotherapeutics trigger ICD, among those that do exert this effect, there are anthracyclines, irinotecan, some platinum derivatives and oncolytic peptides. We studied two new branched oncolytic peptides, BOP7 and BOP9 that proved to elicit the release of damage-associated molecular patterns DAMPS, mediators of ICD, in pancreatic cancer cells. The two BOPs selectively bound and killed tumor cells, particularly PANC-1 and Mia PaCa-2, but not cells of non-tumor origin such as RAW 264.7, CHO-K1 and pgsA-745. The cancer selectivity of the two BOPs may be attributed to their repeated cationic sequences, which enable multivalent binding to heparan sulfate glycosaminoglycans (HSPGs), bearing multiple anionic sulfation patterns on cancer cells. This interaction of BOPs with HSPGs not only fosters an anti-metastatic effect in vitro, as demonstrated by reduced adhesion and migration of PANC-1 cancer cells, but also shows promising tumor-specific cytotoxicity and low hemolytic activity. Remarkably, the cytotoxicity induced by BOPs triggers the release of DAMPs, particularly HMGB1, IFN-β and ATP, by dying cells, persisting longer than the cytotoxicity of conventional chemotherapeutic agents such as irinotecan and daunorubicin. An in vivo assay in nude mice showed an encouraging 20% inhibition of tumor grafting and growth in a pancreatic cancer model by BOP9.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chiara Falciani
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| |
Collapse
|
26
|
Zhou Q, Lei Y. ARMCX3 regulates ROS signaling, affects neural differentiation and inflammatory microenvironment in dental pulp stem cells. Heliyon 2024; 10:e37079. [PMID: 39296219 PMCID: PMC11407977 DOI: 10.1016/j.heliyon.2024.e37079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Background The neural differentiation of dental pulp stem cells (DPSCs) exhibits great potential in the treatment of dental pulp repair and neurodegenerative diseases. However, the precise molecular mechanisms underlying this process remain unclear. This study was designed to reveal the roles and regulatory mechanisms of the armadillo repeat-containing X-linked 3 (ARMCX3) in neural differentiation and inflammatory microenvironment in human DPSCs (hDPSCs). Methods We treated hDPSCs with porphyromonas gingivalis lipopolysaccharide (Pg-LPS) to simulate the inflammatory microenvironment. Then the lentiviral vectors were introduced to construct stable cell lines with ARMCX3 knockdown or overexpression. The expression of neural-specific markers, ARMCX3 and inflammation factors were estimated by immunofluorescence (IF), quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) assays. Additionally, we used IF assays and specific kits to investigate the regulatory role of ARMCX3 on reactive oxygen species (ROS) signaling. Moreover, a ROS inhibitor was utilized to verify whether ROS inhibition reversed the effects of ARMCX3 in Pg-LPS-treated hDPSCs. Results This work illustrated that Pg-LPS treatment significantly enhanced ARMCX3 expression and inflammatory response, and inhibited neural differentiation in hDPSCs. ARMCX3 knockdown effectively accelerated neural differentiation and controlled inflammatory cytokines at a lower level in hDPSCs in the presence of Pg-LPS. Additionally, knockdown of ARMCX3 notably reduced ROS production and ROS inhibition effectively eliminated the roles of ARMCX3 overexpression in hDPSCs. Besides, all results were proved to be statistically significant. Conclusion This investigation proved that ARMCX3 affected neural differentiation and inflammation microenvironment in hDPSCs at least partly by mediating ROS signal. These findings provided a new perspective on the mechanism of neural differentiation of hDPSCs and help to better explore the therapeutic schedule of pulpitis and neurodegenerative diseases.
Collapse
Affiliation(s)
- Quanying Zhou
- Department of Stomatology, Wuhan Ninth Hospital, Wuhan, Hubei, 430080, China
| | - Yi Lei
- Department of Stomatology, Wuhan Ninth Hospital, Wuhan, Hubei, 430080, China
| |
Collapse
|
27
|
Yoo J, Hwang J, Choi J, Ramalingam M, Jeong H, Jang S, Jeong HS, Kim D. The effects of resistance training on cardiovascular factors and anti-inflammation in diabetic rats. Heliyon 2024; 10:e37081. [PMID: 39295999 PMCID: PMC11407942 DOI: 10.1016/j.heliyon.2024.e37081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Diabetes induces a range of macrovascular and microvascular changes, which lead to significant clinical complications. Although many studies have tried to solve the diabetic problem using drugs, it remains unclear. In this study, we investigated whether resistance exercise affects cardiovascular factors and inflammatory markers in diabetes. The study subjected Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which have genetically induced diabetes mellitus, to a resistance exercise program for 12 weeks and assessed the levels of cardiovascular factors and inflammatory markers using western blotting analysis, ELISA, and immunohistochemistry. During the training period, OLETF + exercise (EX) group exhibited lower body weight and reduced glucose levels when compared with OLETF group. Western blotting analysis, ELISA, and immunohistochemistry revealed that the levels of PAI-1, VACM-1, ICAM-1, E-selectin, TGF-β, CRP, IL-6, and TNF-α were decreased in OLETF + EX group when compared with the OLETF group. Moreover, the anti-inflammatory markers, IL-4 and IL-10, were highly expressed after exercise. Therefore, these results indicate that exercise may influence the regulation of cardiovascular factors and inflammatory markers, as well as help patients with metabolic syndromes regulate inflammation and cardiovascular function.
Collapse
Affiliation(s)
- Jin Yoo
- Department of Physical Education, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
| | - Jiyun Choi
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
| | - Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
| | - Haewon Jeong
- StemCell Bio Incorporated, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
- StemCell Bio Incorporated, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
- StemCell Bio Incorporated, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
| | - Daeyeol Kim
- Department of Physical Education, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
28
|
Theocharopoulos C, Ziogas IA, Douligeris CC, Efstathiou A, Kolorizos E, Ziogas DC, Kontis E. Antibody-drug conjugates for hepato-pancreato-biliary malignancies: "Magic bullets" to the rescue? Cancer Treat Rev 2024; 129:102806. [PMID: 39094332 DOI: 10.1016/j.ctrv.2024.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Hepato-Pancreato-Biliary (HPB) malignancies constitute a highly aggressive group of cancers that have a dismal prognosis. Patients not amenable to curative intent surgical resection are managed with systemic chemotherapy which, however, confers little survival benefit. Antibody-Drug Conjugates (ADCs) are tripartite compounds that merge the intricate selectivity and specificity of monoclonal antibodies with the cytodestructive potency of attached supertoxic payloads. In view of the unmet need for drugs that will enhance the survival rates of HPB cancer patients, the assessment of ADCs for treating HPB malignancies has become the focus of extensive clinical and preclinical investigation, showing encouraging preliminary results. In the current review, we offer a comprehensive overview of the growing body of evidence on ADC approaches tested for HPB malignancies. Starting from a concise discussion of the functional principles of ADCs, we summarize here all available data from preclinical and clinical studies evaluating ADCs in HPB cancers.
Collapse
Affiliation(s)
| | - Ioannis A Ziogas
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | | | | - Dimitrios C Ziogas
- First Department of Internal Medicine, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens 11527, Greece
| | - Elissaios Kontis
- Department of Surgery, Metaxa Cancer Hospital, Piraeus 18537, Greece
| |
Collapse
|
29
|
Ba Q, Wang X, Lu Y. Establishment of a prognostic model for pancreatic cancer based on mitochondrial metabolism related genes. Discov Oncol 2024; 15:376. [PMID: 39196457 PMCID: PMC11358576 DOI: 10.1007/s12672-024-01255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
AIM Pancreatic ductal adenocarcinoma (PAAD) is recognized as an exceptionally aggressive cancer that both highly lethal and unfavorable prognosis. The mitochondrial metabolism pathway is intimately involved in oncogenesis and tumor progression, however, much remains unknown in this area. In this study, the bioinformatic tools have been used to construct a prognostic model with mitochondrial metabolism-related genes (MMRGs) to evaluate the survival, immune status, mutation profile, and drug sensitivity of PAAD patients. METHOD Univariate Cox regression and LASSO regression were used to screen the differentially expressed genes (DEGs), and multivariate Cox regression was used to develop the risk model. Kaplan-Meier estimator was employed to identify MMRGs signatures associated with overall survival (OS). ROC curves were utilized to evaluate the model's performance. Maftools, immunedeconv and CIBERSORT R packages were applied to analyze the gene mutation profiles and immune status. The corresponding sensitivity to pharmaceutical agents was assessed using oncoPredict R packages. RESULTS A prognostic model with five MMRGs was developed, which defined the patients as high-risk showed lower survival rates. There was good consistency among individuals categorized as high-risk, showing elevated rates of genetic alterations, particularly in the TP53 and KRAS genes. Furthermore, these patients exhibited increased levels of immunosuppression, characterized by an increased presence of macrophages, neutrophils, Th2 cells, and regulatory T cells. Additionally, high-risk patients showed increased sensitivity to Sabutoclax and Venetoclax. CONCLUSION By utilizing a gene signature associated with mitochondrial metabolism, a prognostic model has been established which could be a highly efficient method for predicting the outcomes of PAAD patients.
Collapse
Affiliation(s)
- Qinwen Ba
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
30
|
Vitorakis N, Gargalionis AN, Papavassiliou KA, Adamopoulos C, Papavassiliou AG. Precision Targeting Strategies in Pancreatic Cancer: The Role of Tumor Microenvironment. Cancers (Basel) 2024; 16:2876. [PMID: 39199647 PMCID: PMC11352254 DOI: 10.3390/cancers16162876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Pancreatic cancer demonstrates an ever-increasing incidence over the last years and represents one of the top causes of cancer-associated mortality. Cells of the tumor microenvironment (TME) interact with cancer cells in pancreatic ductal adenocarcinoma (PDAC) tumors to preserve cancer cells' metabolism, inhibit drug delivery, enhance immune suppression mechanisms and finally develop resistance to chemotherapy and immunotherapy. New strategies target TME genetic alterations and specific pathways in cell populations of the TME. Complex molecular interactions develop between PDAC cells and TME cell populations including cancer-associated fibroblasts, myeloid-derived suppressor cells, pancreatic stellate cells, tumor-associated macrophages, tumor-associated neutrophils, and regulatory T cells. In the present review, we aim to fully explore the molecular landscape of the pancreatic cancer TME cell populations and discuss current TME targeting strategies to provide thoughts for further research and preclinical testing.
Collapse
Affiliation(s)
- Nikolaos Vitorakis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios N Gargalionis
- Department of Clinical Biochemistry, 'Attikon' University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Kostas A Papavassiliou
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
31
|
Shen WJ, Kao HM, Wang CY, Kousar R, Lin JS, Ko CC, Lin HY, Ta HDK, Anuraga G, Xuan DTM, Kumar S, Dey S, Ly NP, Wang WJ. Multiple Comprehensive Analyses Identify Lysine Demethylase KDM as a Potential Therapeutic Target for Pancreatic Cancer. Int J Med Sci 2024; 21:2158-2169. [PMID: 39239542 PMCID: PMC11373554 DOI: 10.7150/ijms.96134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Pancreatic cancer (PC) is a challenging and heterogeneous disease with a high mortality rate. Despite advancements in treatment, the prognosis for PC patients remains poor, with a high chance of disease recurrence. Biomarkers are crucial for diagnosing cancer, predicting patient prognosis and selecting treatments. However, the current lack of effective biomarkers for PC could contribute to the insufficiency of existing treatments. These findings underscore the urgent need to develop novel strategies to fight this disease. This study utilized multiple comprehensive bioinformatic analyses to identify potential therapeutic target genes in PC, focusing on histone lysine demethylases (KDMs). We found that high expression levels of KDM family genes, particularly KDM1A, KDM5A and KDM5B, were associated with improved overall survival in the cohort. Furthermore, the infiltration of various immune cells, including B cells, neutrophils, CD8+ T cells, dendritic cells, and macrophages, was positively correlated with KDM1A, KDM5A, and KDM5B expression. Moreover, MetaCore pathway analysis revealed interesting connections between KDM1A and the cell cycle and proliferation, between KDM5A and DNA damage and double-strand break repair through homologous recombination, and between KDM5B and WNT/β-catenin signaling. These findings suggest that KDM1A, KDM5A and KDM5B may serve as promising biomarkers and therapeutic targets for PC, a disease of high importance due to its aggressive nature and urgent need for novel biomarkers to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Wan-Jou Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Hsuan-Min Kao
- Department of Geriatric, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 600566, Taiwan
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Rubina Kousar
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan
| | - Jing-Shan Lin
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan
| | - Ching-Chung Ko
- Department of Medical Imaging, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| | - Hoang Dang Khoa Ta
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Gangga Anuraga
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya, East Java 60234, Indonesia
| | - Do Thi Minh Xuan
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City 70000, Vietnam
| | - Sachin Kumar
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Faculty of Biotechnology and Applied Sciences, Shoolini University of Biotechnology and Management Sciences, Himachal Pradesh, India
| | - Sanskriti Dey
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ngoc Phung Ly
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Wei-Jan Wang
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
32
|
Zhou SQ, Wan P, Zhang S, Ren Y, Li HT, Ke QH. Programmed cell death 1 inhibitor sintilimab plus concurrent chemoradiotherapy for locally advanced pancreatic adenocarcinoma. World J Clin Oncol 2024; 15:859-866. [PMID: 39071470 PMCID: PMC11271726 DOI: 10.5306/wjco.v15.i7.859] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma, a malignancy that arises in the cells of the pancreas, is a devastating disease with unclear etiology and often poor prognosis. Locally advanced pancreatic cancer, a stage where the tumor has grown significantly but has not yet spread to distant organs, presents unique challenges in treatment. This article aims to discuss the current strategies, challenges, and future directions in the management of locally advanced pancreatic adenocarcinoma (LAPC). AIM To investigate the feasibility and efficacy of programmed cell death 1 (PD-1) inhibitor sintilimab plus concurrent chemoradiotherapy for LAPC. METHODS Eligible patients had LAPC, an Eastern cooperative oncology group performance status of 0 or 1, adequate organ and marrow functions, and no prior anticancer therapy. In the observation group, participants received intravenous sintilimab 200 mg once every 3 wk, and received concurrent chemoradiotherapy (concurrent conventional fractionated radiotherapy with doses planning target volume 50.4 Gy and gross tumor volume 60 Gy in 28 fractions and oral S-1 40 mg/m2 twice daily on days 1-14 of a 21-d cycle and intravenous gemcitabine 1000 mg/m2 on days 1 and 8 of a 21-d cycle for eight cycles until disease progression, death, or unacceptable toxicity). In the control group, participants only received concurrent chemoradiotherapy. From April 2020 to November 2021, 64 participants were finally enrolled with 34 in the observation group and 30 in the control group. RESULTS Thirty-four patients completed the scheduled course of chemoradiotherapy, while 32 (94.1%) received sintilimab plus concurrent chemoradiotherapy with 2 patients discontinuing sintilimab in the observation group. Thirty patients completed the scheduled course of chemoradiotherapy in the control group. Based on the Response Evaluation Criteria in Solid Tumors guidelines, the analysis of the observation group revealed that a partial response was observed in 11 patients (32.4%), stable disease was evident in 19 patients (55.9%), and 4 patients (11.8%) experienced progressive disease; a partial response was observed in 6 (20.0%) patients, stable disease in 18 (60%), and progressive disease in 6 (20%) in the control group. The major toxic effects were leukopenia and nausea. The incidence of severe adverse events (AEs) (grade 3 or 4) was 26.5% (9/34) in the observation group and 23.3% (7/30) in the control group. There were no treatment-related deaths. The observation group demonstrated a significantly longer median overall survival (22.1 mo compared to 15.8 mo) (P < 0.05) and progression-free survival (12.2 mo vs 10.1 mo) (P < 0.05) in comparison to the control group. The occurrence of severe AEs did not exhibit a statistically significant difference between the observation group and the control group (P > 0.05). CONCLUSION Sintilimab plus concurrent chemoradiotherapy was effective and safe for LAPC patients, and warrants further investigation.
Collapse
Affiliation(s)
- Shi-Qiong Zhou
- Department of Chemoradiotherapy, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| | - Peng Wan
- Department of Chemoradiotherapy, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| | - Sen Zhang
- Department of Chemoradiotherapy, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| | - Yuan Ren
- Department of Chemoradiotherapy, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| | - Hong-Tao Li
- Department of Chemoradiotherapy, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| | - Qing-Hua Ke
- Department of Chemoradiotherapy, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| |
Collapse
|
33
|
Song W, Hu H, Yuan Z, Yao H. A prognostic model for anoikis-related genes in pancreatic cancer. Sci Rep 2024; 14:15200. [PMID: 38956290 PMCID: PMC11220081 DOI: 10.1038/s41598-024-65981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Anoikis, a distinct form of programmed cell death, is crucial for both organismal development and maintaining tissue equilibrium. Its role extends to the proliferation and progression of cancer cells. This study aimed to establish an anoikis-related prognostic model to predict the prognosis of pancreatic cancer (PC) patients. Gene expression data and patient clinical profiles were sourced from The Cancer Genome Atlas (TCGA-PAAD: Pancreatic Adenocarcinoma) and the International Cancer Genome Consortium (ICGC-PACA: Pancreatic Ductal Adenocarcinoma). Non-cancerous pancreatic tissue gene expression data were obtained from the Genotype-Tissue Expression (GTEx) project. The R package was used to construct anoikis-related PC prognostic models, which were later validated with the ICGC-PACA database. Survival analyses demonstrated a poorer prognosis for patients in the high-risk group, consistent across both TCGA-PAAD and ICGC-PACA datasets. A nomogram was designed as a predictive tool to estimate patient mortality. The study also analyzed tumor mutations and immune infiltration across various risk groups, uncovering notable differences in tumor mutation patterns and immune landscapes between high- and low-risk groups. In conclusion, this research successfully developed a prognostic model centered on anoikis-related genes, offering a novel tool for predicting the clinical trajectory of PC patients.
Collapse
Affiliation(s)
- Wenbin Song
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, 300052, People's Republic of China
| | - Haiyang Hu
- Department of Cardiac Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, 272007, People's Republic of China
| | - Zhengbo Yuan
- School of Medicine, Xiamen University, No.4221 Xiangan South Road, Xiangan District, Xiamen, 361102, People's Republic of China.
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No.55 Zhenghai load, Siming District, Xiamen, 361001, People's Republic of China.
| | - Hao Yao
- Department of Hepatological Surgery, The Second Hospital of Tianjin Medical University, No.23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China.
| |
Collapse
|
34
|
Eichhorn JS, Petrik J. Thetumor microenvironment'sinpancreatic cancer:Effects onimmunotherapy successandnovel strategiestoovercomethehostile environment. Pathol Res Pract 2024; 259:155370. [PMID: 38815507 DOI: 10.1016/j.prp.2024.155370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
Cancer is a significant global health issue that poses a considerable burden on both patients and healthcare systems. Many different types of cancers exist that often require unique treatment approaches and therapies. A hallmark of tumor progression is the creation of an immunosuppressive environment, which poses complex challenges for current treatments. Amongst the most explored characteristics is a hypoxic environment, high interstitial pressure, and immunosuppressive cells and cytokines. Traditional cancer treatments involve radiotherapy, chemotherapy, and surgical procedures. The advent of immunotherapies was regarded as a promising approach with hopes of greatly increasing patients' survival and outcome. Although some success is seen with various immunotherapies, the vast majority of monotherapies are unsuccessful. This review examines how various aspects of the tumor microenvironment (TME) present challenges that impede the success of immunotherapies. Subsequently, we review strategies to manipulate the TME to facilitate the success of immunotherapies.
Collapse
Affiliation(s)
- Jan Sören Eichhorn
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1 Canada
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1 Canada.
| |
Collapse
|
35
|
McDaniel A, Rothstein KV, Gonzalez D, Nuccitelli R. Nano-Pulse Stimulation Treatment Inhibits Pan02 Murine Pancreatic Tumor Growth and Induces a Long-Term Adaptive Immune Response with Abscopal Effects When Combined with Immune-Enhancing Agents. Bioelectricity 2024; 6:108-117. [PMID: 39119566 PMCID: PMC11304879 DOI: 10.1089/bioe.2024.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Pancreatic cancer is associated with a poor prognosis and immunotherapy alone has not demonstrated sufficient efficacy in the treatment of nonresectable tumors. Nano-Pulse Stimulation™ therapy (NPS™) applies nanosecond electric pulses that lead to regulated cell death, exposing tumor antigen to the immune system. To establish a primary Pan02 tumor, mice were intradermally injected with Pan02 cells into the right flank. Secondary, rechallenge tumors and distal, secondary tumors (abscopal response) were established by injecting Pan02 cells into the opposite left flank. After 5 days of tumor growth, one of the tumors was treated with NPS, followed by injection with an immune-enhancing agent to stimulate an immune response. Growth of the treated primary tumor and untreated rechallenge tumors (injected 60-days post-treatment) or distal secondary tumors (injected simultaneously with the primary) was monitored. NPS in combination with the adjuvant and TLR agonist, resiquimod (RES), was the optimal treatment regimen for both eliminating a primary Pan02 tumor as well as inhibiting growth of a Pan02 cell rechallenge tumor. This inhibition of the rechallenge tumor injected 2 months after eliminating the primary tumor suggests a long-term immune response had been stimulated. Additional support for this came from the observations that depleting CD8+ T-cells reduced inhibition of rechallenge tumor growth by 35% and rechallenge tumors had 3-fold more CD8+ T-cells than tumors injected after surgical resection of the primary tumor. When the NPS-treated tumor was immediately injected with the anti-OX40 antibody to agonize the function of the costimulatory T cell receptor, OX40, up to 80% of untreated abscopal tumors were eliminated. NPS plus RES was the most effective at both eliminating a primary tumor and inhibiting a rechallenge tumor. NPS treatment followed by injection of aOX40 was the most effective at inhibiting the growth of an untreated abscopal tumor.
Collapse
Affiliation(s)
- Amanda McDaniel
- Biology Department, Pulse Biosciences, Inc., Hayward, California, USA
| | | | - Dacia Gonzalez
- Biology Department, Pulse Biosciences, Inc., Hayward, California, USA
| | | |
Collapse
|
36
|
Lo YL, Li CY, Chou TF, Yang CP, Wu LL, Chen CJ, Chang YH. Exploring in vivo combinatorial chemo-immunotherapy: Addressing p97 suppression and immune reinvigoration in pancreatic cancer with tumor microenvironment-responsive nanoformulation. Biomed Pharmacother 2024; 175:116660. [PMID: 38701563 DOI: 10.1016/j.biopha.2024.116660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely devastating nature with poor prognosis and increasing incidence, making it a formidable challenge in the global fight against cancer-related mortality. In this innovative preclinical investigation, the VCP/p97 inhibitor CB-5083 (CB), miR-142, a PD-L1 inhibitor, and immunoadjuvant resiquimod (R848; R) were synergistically encapsulated in solid lipid nanoparticles (SLNs). These SLNs demonstrated features of peptides targeting PD-L1, EGFR, and the endoplasmic reticulum, enclosed in a pH-responsive polyglutamic (PGA)-polyethylene glycol (PEG) shell. The homogeneous size and zeta potential of the nanoparticles were stable for 28 days at 4°C. The study substantiated the concurrent modulation of key pathways by the CB, miR, and R-loaded nanoformulation, prominently affecting VCP/Bip/ATF6, PD-L1/TGF-β/IL-4, -8, -10, and TNF-α/IFN-γ/IL-1, -12/GM-CSF/CCL4 pathways. This adaptable nanoformulation induced durable antitumor immune responses and inhibited Panc-02 tumor growth by enhancing T cell infiltration, dendritic cell maturation, and suppressing Tregs and TAMs in mice bearing Panc-02 tumors. Furthermore, tissue distribution studies, biochemical assays, and histological examinations highlighted enhanced safety with PGA and peptide-modified nanoformulations for CB, miR, and/or R in Panc-02-bearing mice. This versatile nanoformulation allows tailored adjustment of the tumor microenvironment, thereby optimizing the localized delivery of combined therapy. These compelling findings advocate the potential development of a pH-sensitive, three-in-one PGA-PEG nanoformulation that combines a VCP inhibitor, a PD-L1 inhibitor, and an immunoadjuvant for cancer treatment via combinatorial chemo-immunotherapy.
Collapse
Affiliation(s)
- Yu-Li Lo
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Faculty of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Ching-Yao Li
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States; Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, United States
| | - Ching-Ping Yang
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Li-Ling Wu
- Department and Institute of Physiology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, Taiwan
| | - Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
37
|
Kang J, Lee JH, Cha H, An J, Kwon J, Lee S, Kim S, Baykan MY, Kim SY, An D, Kwon AY, An HJ, Lee SH, Choi JK, Park JE. Systematic dissection of tumor-normal single-cell ecosystems across a thousand tumors of 30 cancer types. Nat Commun 2024; 15:4067. [PMID: 38744958 PMCID: PMC11094150 DOI: 10.1038/s41467-024-48310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
The complexity of the tumor microenvironment poses significant challenges in cancer therapy. Here, to comprehensively investigate the tumor-normal ecosystems, we perform an integrative analysis of 4.9 million single-cell transcriptomes from 1070 tumor and 493 normal samples in combination with pan-cancer 137 spatial transcriptomics, 8887 TCGA, and 1261 checkpoint inhibitor-treated bulk tumors. We define a myriad of cell states constituting the tumor-normal ecosystems and also identify hallmark gene signatures across different cell types and organs. Our atlas characterizes distinctions between inflammatory fibroblasts marked by AKR1C1 or WNT5A in terms of cellular interactions and spatial co-localization patterns. Co-occurrence analysis reveals interferon-enriched community states including tertiary lymphoid structure (TLS) components, which exhibit differential rewiring between tumor, adjacent normal, and healthy normal tissues. The favorable response of interferon-enriched community states to immunotherapy is validated using immunotherapy-treated cancers (n = 1261) including our lung cancer cohort (n = 497). Deconvolution of spatial transcriptomes discriminates TLS-enriched from non-enriched cell types among immunotherapy-favorable components. Our systematic dissection of tumor-normal ecosystems provides a deeper understanding of inter- and intra-tumoral heterogeneity.
Collapse
Affiliation(s)
- Junho Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jun Hyeong Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hongui Cha
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jinhyeon An
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Joonha Kwon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Division of Cancer Data Science, National Cancer Center, Bioinformatics Branch, Goyang, Republic of Korea
| | - Seongwoo Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seongryong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Mert Yakup Baykan
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - So Yeon Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dohyeon An
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ah-Young Kwon
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si, Republic of Korea
| | - Hee Jung An
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
- Penta Medix Co., Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea.
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
- Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
38
|
Decker-Farrell AR, Sastra SA, Harimoto T, Hasselluhn MC, Palermo CF, Ballister ER, Badgley MA, Danino T, Olive KP. "Tumor-selective treatment of metastatic pancreatic cancer with an engineered, probiotic living drug". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592216. [PMID: 38746175 PMCID: PMC11092568 DOI: 10.1101/2024.05.02.592216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses significant challenges for effective treatment, with systemic chemotherapy often proving inadequate due to poor drug delivery and the tumor's immunosuppressive microenvironment. Engineered bacteria present a novel approach to target PDAC, leveraging their ability to colonize tumors and deliver therapeutic payloads. Here, we engineered probiotic Escherichia coli Nissle 1917 (EcN) to produce the pore-forming Theta toxin (Nis-Theta) and evaluated its efficacy in a preclinical model of PDAC. Probiotic administration resulted in selective colonization of tumor tissue, leading to improved overall survival compared to standard chemotherapy. Moreover, this strain exhibited cytotoxic effects on both primary and distant tumor lesions while sparing normal tissues. Importantly, treatment also modulated the tumor microenvironment by increasing anti-tumor immune cell populations and reducing immunosuppressive markers. These findings demonstrate the potential of engineered probiotic bacteria as a safe and effective therapeutic approach for PDAC, offering promise for improved patient outcomes.
Collapse
|
39
|
Moffat GT, Coyne Z, Albaba H, Aung KL, Dodd A, Espin-Garcia O, Moura S, Gallinger S, Kim J, Fraser A, Hutchinson S, Moulton CA, Wei A, McGilvray I, Dhani N, Jang R, Elimova E, Moore M, Prince R, Knox J. Impact of an Inter-Professional Clinic on Pancreatic Cancer Outcomes: A Retrospective Cohort Study. Curr Oncol 2024; 31:2589-2597. [PMID: 38785475 PMCID: PMC11119140 DOI: 10.3390/curroncol31050194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) presents significant challenges in diagnosis, staging, and appropriate treatment. Furthermore, patients with PDAC often experience complex symptomatology and psychosocial implications that require multi-disciplinary and inter-professional supportive care management from health professionals. Despite these hurdles, the implementation of inter-professional clinic approaches showed promise in enhancing clinical outcomes. To assess the effectiveness of such an approach, we examined the impact of the Wallace McCain Centre for Pancreatic Cancer (WMCPC), an inter-professional clinic for patients with PDAC at the Princess Margaret Cancer Centre (PM). Methods: This retrospective cohort study included all patients diagnosed with PDAC who were seen at the PM before (July 2012-June 2014) and after (July 2014-June 2016) the establishment of the WMCPC. Standard therapies such as surgery, chemotherapy, and radiation therapy remained consistent across both time periods. The cohorts were compared in terms of survival rates, disease stage, referral patterns, time to treatment, symptoms, and the proportion of patients assessed and supported by nursing and allied health professionals. Results: A total of 993 patients were included in the review, comprising 482 patients pre-WMCPC and 511 patients post-WMCPC. In the multivariate analysis, adjusting for ECOG (Eastern Cooperative Oncology Group) and stage, it was found that post-WMCPC patients experienced longer median overall survival (mOS, HR 0.84, 95% CI 0.72-0.98, p = 0.023). Furthermore, the time from referral to initial consultation date decreased significantly from 13.4 to 8.8 days in the post-WMCPC cohort (p < 0.001), along with a reduction in the time from the first clinic appointment to biopsy (14 vs. 8 days, p = 0.022). Additionally, patient-reported well-being scores showed improvement in the post-WMCPC cohort (p = 0.02), and these patients were more frequently attended to by nursing and allied health professionals (p < 0.001). Conclusions: The implementation of an inter-professional clinic for patients diagnosed with PDAC led to improvements in overall survival, patient-reported well-being, time to initial assessment visit and pathological diagnosis, and symptom management. These findings advocate for the adoption of an inter-professional clinic model in the treatment of patients with PDAC.
Collapse
Affiliation(s)
- Gordon Taylor Moffat
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 1X6, Canada
| | - Zachary Coyne
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 1X6, Canada
| | - Hamzeh Albaba
- Department of Oncology, Jack Ady Cancer Centre, University of Alberta, Lethbridge, AB T1J 1W5, Canada
| | - Kyaw Lwin Aung
- Livestrong Cancer Institutes and Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anna Dodd
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 1X6, Canada
| | - Osvaldo Espin-Garcia
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
| | - Shari Moura
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 1X6, Canada
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital Joseph, Toronto, ON M5G 1X5, Canada
- Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - John Kim
- Department of Radiation Medicine, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 1X6, Canada
| | - Adriana Fraser
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 1X6, Canada
| | - Shawn Hutchinson
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 1X6, Canada
| | - Carol-Anne Moulton
- Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Alice Wei
- Department of Surgery, Memorial Sloan Kettering Cancer Center, Weill-Cornell School of Medicine, Cornell University, New York City, NY 10065, USA
| | - Ian McGilvray
- Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Neesha Dhani
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 1X6, Canada
| | - Raymond Jang
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 1X6, Canada
| | - Elena Elimova
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 1X6, Canada
| | - Malcolm Moore
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 1X6, Canada
| | - Rebecca Prince
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 1X6, Canada
| | - Jennifer Knox
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 1X6, Canada
| |
Collapse
|
40
|
Su L, Hounye AH, Pan Q, Miao K, Wang J, Hou M, Xiong L. Explainable cancer factors discovery: Shapley additive explanation for machine learning models demonstrates the best practices in the case of pancreatic cancer. Pancreatology 2024; 24:404-423. [PMID: 38342661 DOI: 10.1016/j.pan.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Pancreatic cancer is one of digestive tract cancers with high mortality rate. Despite the wide range of available treatments and improvements in surgery, chemotherapy, and radiation therapy, the five-year prognosis for individuals diagnosed pancreatic cancer remains poor. There is still research to be done to see if immunotherapy may be used to treat pancreatic cancer. The goals of our research were to comprehend the tumor microenvironment of pancreatic cancer, found a useful biomarker to assess the prognosis of patients, and investigated its biological relevance. In this paper, machine learning methods such as random forest were fused with weighted gene co-expression networks for screening hub immune-related genes (hub-IRGs). LASSO regression model was used to further work. Thus, we got eight hub-IRGs. Based on hub-IRGs, we created a prognosis risk prediction model for PAAD that can stratify accurately and produce a prognostic risk score (IRG_Score) for each patient. In the raw data set and the validation data set, the five-year area under the curve (AUC) for this model was 0.9 and 0.7, respectively. And shapley additive explanation (SHAP) portrayed the importance of prognostic risk prediction influencing factors from a machine learning perspective to obtain the most influential certain gene (or clinical factor). The five most important factors were TRIM67, CORT, PSPN, SCAMP5, RFXAP, all of which are genes. In summary, the eight hub-IRGs had accurate risk prediction performance and biological significance, which was validated in other cancers. The result of SHAP helped to understand the molecular mechanism of pancreatic cancer.
Collapse
Affiliation(s)
- Liuyan Su
- School of Mathematics and Statistics, Central South University, Changsha, 410083, China
| | | | - Qi Pan
- School of Mathematics and Statistics, Central South University, Changsha, 410083, China
| | - Kexin Miao
- School of Mathematics and Statistics, Central South University, Changsha, 410083, China
| | - Jiaoju Wang
- School of Mathematics and Statistics, Central South University, Changsha, 410083, China
| | - Muzhou Hou
- School of Mathematics and Statistics, Central South University, Changsha, 410083, China.
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Hunan Clinical Research Center for Intelligent General Surgery, Changsha, 410011, China.
| |
Collapse
|
41
|
Ding M, Gao J, Wang J, Li Z, Gong X, Cui Z, Li C, Xue H, Li D, Wang Y. Colorectal cancer subtyping and immune landscape analysis based on natural killer cell-related genes. Arab J Gastroenterol 2024; 25:150-159. [PMID: 38719664 DOI: 10.1016/j.ajg.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/29/2024] [Accepted: 03/20/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND AND STUDY AIMS The prognosis of colorectal cancer (CRC) is related to natural killer (NK) cells, but the molecular subtype features of CRC based on NK cells are still unknown. This study aimed to identify NK cell-related molecular subtypes of CRC and analyze the survival status and immune landscape of patients with different subtypes. PATIENTS/MATERIAL AND METHODS mRNA expression data, single nucleotide variant (SNV) data, and clinical information of CRC patients were obtained from The Cancer Genome Atlas. Differentially expressed genes (DEGs) were obtained through differential analysis, and the intersection was taken with NK cell-associated genes to obtain 103 NK cell-associated CRC DEGs (NCDEGs). Based on NCDEGs, CRC samples were divided into three clusters through unsupervised clustering analysis. Survival analysis, immune analysis, Gene Set Enrichment Analysis (GSEA), and tumor mutation burden (TMB) analysis were performed. Finally, NCDEG-related small-molecule drugs were screened using the CMap database. RESULTS Survival analysis revealed that cluster2 had a lower survival rate than cluster1 and cluster3 (p < 0.05). Immune infiltration analysis found that the immune infiltration levels and immune checkpoint expression levels of cluster1_3 were substantially higher than those of cluster2, and the tumor purity was the opposite (p < 0.05). GSEA presented that cluster1_3 was significantly enriched in the chemokine signaling pathway, ECM receptor interaction, and antigen processing and presentation pathways (p < 0.05). The TMB of cluster1_3 was significantly higher than that of cluster2 (p < 0.05). Genes with the highest mutation rate in CRC were APC, TP53, TTN, and KRAS. Drug prediction results showed that small-molecule drugs that reverse the upregulation of NCDEGs, deoxycholic acid, dipivefrine, phenformin, and other drugs may improve the prognosis of CRC. CONCLUSION NK cell-associated CRC subtypes can be used to evaluate the tumor characteristics of CRC patients and provide an important reference for CRC patients.
Collapse
Affiliation(s)
- Mei Ding
- Surgical Research Division, Tangshan Vocational & Technical College, Tangshan, Hebei 063000, China; Department of Laparoscopy and Colorectal Surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Jianchao Gao
- Department of Laparoscopy and Colorectal Surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Jinyan Wang
- Department of Laparoscopy and Colorectal Surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Zongfu Li
- Surgical Research Division, Tangshan Vocational & Technical College, Tangshan, Hebei 063000, China
| | - Xiangliang Gong
- Department of Laparoscopy and Colorectal Surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Zhiyu Cui
- Department of Laparoscopy and Colorectal Surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Changjun Li
- Department of Laparoscopy and Colorectal Surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Hongjun Xue
- Department of Laparoscopy and Colorectal Surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Dandan Li
- Department of Pathology, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Yigang Wang
- Department of Laparoscopy and Colorectal Surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China.
| |
Collapse
|
42
|
Ajay AK, Gasser M, Hsiao LL, Böldicke T, Waaga-Gasser AM. TLR2 and TLR9 Blockade Using Specific Intrabodies Inhibits Inflammation-Mediated Pancreatic Cancer Cell Growth. Antibodies (Basel) 2024; 13:11. [PMID: 38390872 PMCID: PMC10885114 DOI: 10.3390/antib13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) remains a deadly cancer worldwide with a need for new therapeutic approaches. A dysregulation in the equilibrium between pro- and anti-inflammatory responses with a predominant immunosuppressive inflammatory reaction in advanced stage tumors seem to contribute to tumor growth and metastasis. The current therapies do not include strategies against pro-tumorigenic inflammation in cancer patients. We have shown that the upregulated cell surface expression of Toll-like Receptor (TLR) 2 and of TLR9 inside PDAC cells maintain chronic inflammatory responses, support chemotherapeutic resistance, and mediate tumor progression in human pancreatic cancer. We further demonstrated intracellular TLR2 and TLR9 targeting using specific intrabodies, which resulted in downregulated inflammatory signaling. In this study, we tested, for the first time, an intrabody-mediated TLR blockade in human TLR2- and TLR9-expressing pancreatic cancer cells for its effects on inflammatory signaling-mediated tumor growth. Newly designed anti-TLR2- and anti-TLR9-specific intrabodies inhibited PDAC growth. Co-expression analysis of the intrabodies and corresponding human TLRs showed efficient retention and accumulation of both intrabodies within the endoplasmic reticulum (ER), while co-immunoprecipitation studies indicated both intrabodies interacting with their cognate TLR antigen within the pancreatic cancer cells. Cancer cells with attenuated proliferation expressing accumulated TLR2 and TRL9 intrabodies demonstrated reduced STAT3 phosphorylation signaling, while apoptotic markers Caspases 3 and 8 were upregulated. To conclude, our results demonstrate the TLR2 and TLR9-specific intrabody-mediated signaling pathway inhibition of autoregulatory inflammation inside cancer cells and their proliferation, resulting in the suppression of pancreatic tumor cell growth. These findings underscore the potential of specific intrabody-mediated TLR inhibition in the ER relevant for tumor growth inhibition and open up a new therapeutic intervention strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Amrendra K Ajay
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Martin Gasser
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Li-Li Hsiao
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Böldicke
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Ana Maria Waaga-Gasser
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
43
|
Fleming Martinez AK, Storz P. Protein kinase D1 - A targetable mediator of pancreatic cancer development. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119646. [PMID: 38061566 PMCID: PMC10872883 DOI: 10.1016/j.bbamcr.2023.119646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 01/14/2024]
Abstract
Members of the Protein kinase D (PKD) kinase family each play important cell-specific roles in the regulation of normal pancreas functions. In pancreatic diseases PKD1 is the most widely characterized isoform with roles in pancreatitis and in induction of pancreatic cancer and its progression. PKD1 expression and activation increases in pancreatic acinar cells through macrophage secreted factors, Kirsten rat sarcoma viral oncogene homolog (KRAS) signaling, and reactive oxygen species (ROS), driving the formation of precancerous lesions. In precancerous lesions PKD1 regulates cell survival, growth, senescence, and generation of doublecortin like kinase 1 (DCLK1)-positive cancer stem cells (CSCs). Within tumors, regulation by PKD1 includes chemoresistance, apoptosis, proliferation, CSC features, and the Warburg effect. Thus, PKD1 plays a critical role throughout pancreatic disease initiation and progression.
Collapse
Affiliation(s)
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
44
|
Grobbelaar C, Kgomo M, Mabeta P. Angiogenesis and Pancreatic Cancer: Novel Approaches to Overcome Treatment Resistance. Curr Cancer Drug Targets 2024; 24:1116-1127. [PMID: 38299403 DOI: 10.2174/0115680096284588240105051402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024]
Abstract
Pancreatic cancer (PCa) is acknowledged as a significant contributor to global cancer- related mortality and is widely recognized as one of the most challenging malignant diseases to treat. Pancreatic ductal adenocarcinoma (PDAC), which is the most common type of PCa, is highly aggressive and is mostly incurable. The poor prognosis of this neoplasm is exacerbated by the prevalence of angiogenic molecules, which contribute to stromal stiffness and immune escape. PDAC overexpresses various proangiogenic proteins, including vascular endothelial growth factor (VEGF)-A, and the levels of these molecules correlate with poor prognosis and treatment resistance. Moreover, VEGF-targeting anti-angiogenesis treatments are associated with the onset of resistance due to the development of hypoxia, which in turn induces the production of angiogenic molecules. Furthermore, excessive angiogenesis is one of the hallmarks of the second most common form of PCa, namely, pancreatic neuroendocrine tumor (PNET). In this review, the role of angiogenesis regulators in promoting disease progression in PCa, and the impact of these molecules on resistance to gemcitabine and various therapies against PCa are discussed. Finally, the use of anti-angiogenic agents in combination with chemotherapy and other targeted therapeutic molecules is discussed as a novel solution to overcome current treatment limitations in PCa.
Collapse
Affiliation(s)
- Craig Grobbelaar
- Department of Physiology, University of Pretoria, CNR Lynnwood Road and Roper Street, Hatfield, 0028, South Africa
| | - Mpho Kgomo
- Department of Internal Medicine, Faculty of Health Sciences, University of Pretoria, 9 Bophelo Road, Arcadia, CNR Lynnwood Road and Roper Street, Hatfield, 0028, South Africa
| | - Peace Mabeta
- Department of Physiology, University of Pretoria, CNR Lynnwood Road and Roper Street, Hatfield, 0028South Africa
| |
Collapse
|
45
|
Ardalan B, Livingstone A, Franceschi D, Sleeman D, Azqueta J, Gonzalez R, England J. Metastatic Pancreatic Adenocarcinoma Downstaged to T0N0 with Chemotherapy and Targeted Therapy, Confirmed by Surgical Pathology: A Case Report. Case Rep Oncol 2024; 17:803-808. [PMID: 39144240 PMCID: PMC11324202 DOI: 10.1159/000539776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/23/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is an aggressive human tumor that is typically diagnosed at a later stage when surgery is not possible. Case Presentation We report the case of a 62-year-old woman who presented to the emergency department with abdominal pain. Computed tomography (CT) revealed a solitary hepatic lesion and a pancreatic body lesion. The pancreatic body lesion was biopsied endoscopically, and a tissue diagnosis was obtained to confirm the diagnosis of PDAC. She was then treated with 12 cycles of FOLFIRINOX with stable disease on CT. Due to the history of a hepatic lesion, she received 11 cycles of gemcitabine/Abraxane and a combination of a MEK inhibitor, Mekinist, and a BRAF inhibitor, BRAFTOVI. Subsequently, the patient underwent a liver biopsy. The biopsy result was negative, and the tumor was deemed resectable. The patient underwent a distal pancreatectomy. Surgical pathology demonstrated a 1.1-cm low-grade papillary mucinous neoplasm with negative margins and lymph nodes, staged T0N0. Adjuvant chemotherapy was not administered. Conclusion To our knowledge, this is the first report of a patient with metastatic pancreatic adenocarcinoma who received prolonged IV and oral chemotherapy. At the time of the operation, the pathological stage was T0N0. The patient has recently been seen 9 months after surgery with no evidence cancer recurrence. Additionally, ctDNA remains negative.
Collapse
Affiliation(s)
- Bach Ardalan
- Department of Medical Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Alan Livingstone
- Department of Surgical Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Dido Franceschi
- Department of Surgical Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Danny Sleeman
- Department of Surgical Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Jose Azqueta
- Department of Medical Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Rosali Gonzalez
- Department of Medical Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Jonathan England
- Department of Pathology, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
46
|
Dabiri R, Rashid MU, Khan OS, Jehanzeb S, Alomari M, Zafar H, Zahid E, Rahman AU, Karam A, Ahmad S. Immune modulators for pancreatic ductal adenocarcinoma therapy. IMMUNE LANDSCAPE OF PANCREATIC CANCER DEVELOPMENT AND DRUG RESISTANCE 2024:103-129. [DOI: 10.1016/b978-0-443-23523-8.00021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
47
|
Hamdy Gad E. Pancreatic Cancer: Updates in Pathogenesis and Therapies. PANCREATIC CANCER- UPDATES IN PATHOGENESIS, DIAGNOSIS AND THERAPIES 2023. [DOI: 10.5772/intechopen.112675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Despite the progress in pancreatic cancer (PC) chemo/radiotherapies, immunotherapies, and novel targeted therapies and the improvement in its peri-operative management policies, it still has a dismal catastrophic prognosis due to delayed detection, early neural and vascular invasions, early micro-metastatic spread, tumour heterogeneities, drug resistance either intrinsic or acquired, unique desmoplastic stroma, and tumour microenvironment (TME). Understanding tumour pathogenesis at the detailed genetic/epigenetic/metabolic/molecular levels as well as studying the tumour risk factors and its known precancerous lesions aggressively is required for getting a more successful therapy for this challenging tumour. For a better outcome of this catastrophic tumour, it should be diagnosed early and treated through multidisciplinary teams of surgeons, gastroenterologists/interventional upper endoscopists, medical/radiation oncologists, diagnostic/intervention radiologists, and pathologists at high-volume centres. Moreover, surgical resection with a negative margin (R0) is the only cure for it. In this chapter; we discuss the recently updated knowledge of PC pathogenesis, risk factors, and precancerous lesions as well as its different management tools (i.e. surgery, chemo/radiotherapies, immunotherapies, novel targeted therapies, local ablative therapies, etc.).
Collapse
|
48
|
Pinelli D, Micalef A, Merelli B, Trezzi R, Amaduzzi A, Agnesi S, Guizzetti M, Camagni S, Fedele V, Colledan M. Pancreatic ductal adenocarcinoma complete regression after preoperative chemotherapy: Surgical results in a small series. Cancer Treat Res Commun 2023; 37:100770. [PMID: 37837717 DOI: 10.1016/j.ctarc.2023.100770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) becomes a systemic disease from an early stage. Complete surgical resection remains the only validated and potentially curative treatment; disappointingly only 20% of patients present with a resectable tumour. Although a complete pathological regression (pCR) after the preoperative chemotherapy could intuitively lead to better outcomes and prolonged survival some reports highlighted significant rates of recurrence. CASES PRESENTATION We describe three cases of pCR following preoperative chemotherapy for PDAC. The first two cases received neoadjuvant mFOLFIRINOX and PAX-G scheme for borderline resectable PDAC. Recurrence appeared 9 and 12 months after surgery. Although both patients started adjuvant therapy straight after the diagnosis of recurrence, the disease rapidly progressed and led them to death 12 and 15 months after surgery. The third case was characterized by germline BRCA2 mutation. The patient presented with PDAC of the body, intrapancreatic biliary stenosis and suspected peritoneal metastasis. One year later, after first and second-line chemotherapy, she underwent explorative laparoscopy and total spleno-pancreatectomy without evidence of viable tumour cells in the surgical specimen. At six months she is recurrence-free. CONCLUSIONS Very few reports describe a complete pathological response following preoperative chemotherapy in pancreatic cancer. We observed three cases in the last three years with disappointing oncological results. Further investigations are needed to predict PDAC prognosis in pCR after chemotherapy.
Collapse
Affiliation(s)
- Domenico Pinelli
- Department of Organ Failure and Transplantation, ASST-Papa Giovanni XXIII, Piazza OMS, 1, 24127, Bergamo, Italy
| | - Andrea Micalef
- Department of Organ Failure and Transplantation, ASST-Papa Giovanni XXIII, Piazza OMS, 1, 24127, Bergamo, Italy; Università degli Studi di Milano, Milano, Italy.
| | - Barbara Merelli
- Unit of Medical Oncology, ASST-Papa Giovanni XXIII, Piazza OMS, 1, 24127, Bergamo, Italy
| | - Rosangela Trezzi
- Unit of Pathology, ASST-Papa Giovanni XXIII, Piazza OMS 1, 24127, Bergamo, Italy
| | - Annalisa Amaduzzi
- Department of Organ Failure and Transplantation, ASST-Papa Giovanni XXIII, Piazza OMS, 1, 24127, Bergamo, Italy
| | - Stefano Agnesi
- Department of Organ Failure and Transplantation, ASST-Papa Giovanni XXIII, Piazza OMS, 1, 24127, Bergamo, Italy
| | - Michela Guizzetti
- Department of Organ Failure and Transplantation, ASST-Papa Giovanni XXIII, Piazza OMS, 1, 24127, Bergamo, Italy
| | - Stefania Camagni
- Department of Organ Failure and Transplantation, ASST-Papa Giovanni XXIII, Piazza OMS, 1, 24127, Bergamo, Italy
| | - Veronica Fedele
- Department of Organ Failure and Transplantation, ASST-Papa Giovanni XXIII, Piazza OMS, 1, 24127, Bergamo, Italy; Università degli Studi di Milano, Milano, Italy
| | - Michele Colledan
- Department of Organ Failure and Transplantation, ASST-Papa Giovanni XXIII, Piazza OMS, 1, 24127, Bergamo, Italy; University of Bicocca, Milano, Italy
| |
Collapse
|
49
|
Cammarota AL, Falco A, Basile A, Molino C, Chetta M, D’Angelo G, Marzullo L, De Marco M, Turco MC, Rosati A. Pancreatic Cancer-Secreted Proteins: Targeting Their Functions in Tumor Microenvironment. Cancers (Basel) 2023; 15:4825. [PMID: 37835519 PMCID: PMC10571538 DOI: 10.3390/cancers15194825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a ravaging disease with a poor prognosis, requiring a more detailed understanding of its biology to foster the development of effective therapies. The unsatisfactory results of treatments targeting cell proliferation and its related mechanisms suggest a shift in focus towards the inflammatory tumor microenvironment (TME). Here, we discuss the role of cancer-secreted proteins in the complex TME tumor-stroma crosstalk, shedding lights on druggable molecular targets for the development of innovative, safer and more efficient therapeutic strategies.
Collapse
Affiliation(s)
- Anna Lisa Cammarota
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
| | - Antonia Falco
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
| | - Anna Basile
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
| | - Carlo Molino
- General Surgery Unit, A.O.R.N. Cardarelli, 80131 Naples, Italy;
| | - Massimiliano Chetta
- Medical and Laboratory Genetics Unit, A.O.R.N., Cardarelli, 80131 Naples, Italy;
| | - Gianni D’Angelo
- Department of Computer Science, University of Salerno, 84084 Fisciano, Italy;
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| | - Maria Caterina Turco
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| | - Alessandra Rosati
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
50
|
Chouari T, La Costa FS, Merali N, Jessel MD, Sivakumar S, Annels N, Frampton AE. Advances in Immunotherapeutics in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:4265. [PMID: 37686543 PMCID: PMC10486452 DOI: 10.3390/cancers15174265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for up to 95% of all pancreatic cancer cases and is the seventh-leading cause of cancer death. Poor prognosis is a result of late presentation, a lack of screening tests and the fact some patients develop resistance to chemotherapy and radiotherapy. Novel therapies like immunotherapeutics have been of recent interest in pancreatic cancer. However, this field remains in its infancy with much to unravel. Immunotherapy and other targeted therapies have yet to yield significant progress in treating PDAC, primarily due to our limited understanding of the disease immune mechanisms and its intricate interactions with the tumour microenvironment (TME). In this review we provide an overview of current novel immunotherapies which have been studied in the field of pancreatic cancer. We discuss their mechanisms, evidence available in pancreatic cancer as well as the limitations of such therapies. We showcase the potential role of combining novel therapies in PDAC, postulate their potential clinical implications and the hurdles associated with their use in PDAC. Therapies discussed with include programmed death checkpoint inhibitors, Cytotoxic T-lymphocyte-associated protein 4, Chimeric Antigen Receptor-T cell therapy, oncolytic viral therapy and vaccine therapies including KRAS vaccines, Telomerase vaccines, Gastrin Vaccines, Survivin-targeting vaccines, Heat-shock protein (HSP) peptide complex-based vaccines, MUC-1 targeting vaccines, Listeria based vaccines and Dendritic cell-based vaccines.
Collapse
Affiliation(s)
- Tarak Chouari
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Francesca Soraya La Costa
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
| | - Nabeel Merali
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
- The Minimal Access Therapy Training Unit, University of Surrey, Guildford GU2 7WG, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham B15 2TT, UK;
| | - Nicola Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Adam E. Frampton
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
- The Minimal Access Therapy Training Unit, University of Surrey, Guildford GU2 7WG, UK
| |
Collapse
|