1
|
Azarian M, Ramezani Farani M, C Cho W, Asgharzadeh F, Yang YJ, Moradi Binabaj M, M Tambuwala M, Farahani N, Hushmandi K, Huh YS. Advancements in colorectal cancer treatment: The role of metal-based and inorganic nanoparticles in modern therapeutic approaches. Pathol Res Pract 2024; 264:155706. [PMID: 39527908 DOI: 10.1016/j.prp.2024.155706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Recent advances in the treatment of colorectal cancer (CRC) have highlighted the integration of metal-based nanoparticles into sophisticated therapeutic strategies. This examination delves into the potential applications of these nanoparticles, particularly in augmenting the effectiveness of photodynamic therapy (PDT) and targeted drug delivery systems. Metal nanoparticles, such as gold (Au), silver (Ag), and copper (Cu), possess distinctive characteristics that make them valuable in cancer treatment. Beyond their role as drug carriers, these nanoparticles actively engage in therapeutic processes like apoptosis induction, enhancement of photothermal effects, and generation of reactive oxygen species (ROS) crucial for tumor cell eradication. The utilization of metal nanoparticles in CRC therapy addresses significant challenges encountered with conventional treatments, such as drug resistance and systemic toxicity. For example, engineered Au nanoparticles enable targeted drug delivery, reducing off-target effects and maximizing therapeutic efficacy against cancerous cells. Their capacity to absorb near-infrared light allows for localized hyperthermia, effectively eliminating cancerous tissues. Similarly, Cu nanoparticles exhibit potential in overcoming drug resistance by enhancing the efficacy of traditional chemotherapeutic agents through ROS production and improved drug stability. This review underscores the significance of precision medicine in CRC care. Through the integration of metal nanoparticles alongside complementary biomarkers and personalized treatment strategies, a more efficient and tailored therapeutic approach can be achieved. The synergistic effect of PDT in combination with metal nanoparticles introduces a novel methodology to CRC treatment, offering a dual-action mechanism that enhances tumor targeting while minimizing undesirable effects. In conclusion, the integration of metal-based nanoparticles in CRC therapy marks a significant progress in oncological treatments. Continued research is imperative to comprehensively grasp their mechanisms, optimize their clinical utility, and address potential safety considerations. This thorough assessment aims to pave the way for future advancements in CRC treatment through the application of nanotechnology and personalized medicine strategies.
Collapse
Affiliation(s)
- Maryam Azarian
- Department of Bioanalytical Ecotoxicology,UFZ- Helmholtz Centre for Environmental Research, Leipzig, Germany; Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Fereshteh Asgharzadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yu-Jeong Yang
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Maryam Moradi Binabaj
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, United Kingdom
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
2
|
Ojo O, Olusola RE, Ojo OO. Spilanthes filicaulis (Schumach. &Thonn.) C. D. Adams: An insights into ethnopharmacologically important but scientifically understudied species. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:980-993. [PMID: 38821482 DOI: 10.1016/j.pharma.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Spilanthes filicaulis (Schumach. & Thonn.) C. D. Adams is synonymous to Acmella caulirhiza Delile. The plant, also known as cock's eye or African cress, is a medicinal herb that belongs to the Asteraceae family. In this paper, the holistic and current applications of S. filicaulis were synthesized and critically discussed by summarizing, for the first time, its botany, traditional medicinal uses, active components, and pharmacological properties. We employed the databases of ScienceDirect, Scopus, Online Wiley library, PubMed, and Google Scholar to retrieve data on S. filicaulis from inception till February 2024, resulting in more than 70 electronic references. Based on literature reports, S. filicaulis has rich ethnopharmacological uses in different disease areas but their scientific validations are still in early stage, or not verified yet. In general, 16 phytochemicals have been identified so far. They include spilanthol, piperine, erucic acid, and isoquinoline derivative among others. The plant extracts possess anticancer, antioxidant, antimicrobial, anti-inflammatory, hepato-protective, anthelminthic, and analgesic activities. In the future, the phytochemical components, and biological activities of S. filicaulis need to be further investigated. Similarly, mechanistic studies need to be incorporated to the biological testing, to uncover the modes of actions of the species extracts and active components. Considering the species' rich ethnopharmacological applications, and the dearth of robust and established toxicity reports, the study on the safety of S. filicaulis would be an interesting and rewarding approach for further research.
Collapse
Affiliation(s)
- Olusesan Ojo
- Department of Chemical Sciences, Lead City University, Lagos-Ibadan Expressway, Toll Gate Area, P.O. Box 30678, Ibadan, Oyo State, Nigeria; Biochemistry and Microbiology Department, Rhodes University, 6140 Makhanda, South Africa.
| | - Ruth Etiosa Olusola
- Department of Chemistry and Biochemistry, Caleb University, Ikorodu-Itoikin Road, P.M.B 001, Imota, Lagos State, Nigeria
| | - Oluwabukola Oluwafunmilayo Ojo
- Pure and Applied Chemistry Department, Ladoke Akintola University of Technology, P.M.B. 4000 Ogbomosho, Oyo State, Nigeria
| |
Collapse
|
3
|
Zulkifli SZ, Pungot NH, Saaidin AS, Jani NA, Mohammat MF. Synthesis and diverse biological activities of substituted indole β-carbolines: a review. Nat Prod Res 2024; 38:3793-3806. [PMID: 37770197 DOI: 10.1080/14786419.2023.2261141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
β-Carboline bearing indole is one of the heterocyclic compounds that play a vital role in medicinal chemistry with various pharmacological effects such as anticancer, anti-acetylcholinesterase, anti-inflammation, antimalarial, antibacterial, anti-diabetic, and antioxidant. Over the last two decades, many studies on the synthesis and biological activity of indole β-carboline compounds have been conducted yet there is no appropriate data summary has been presented. Thus, the goal of this review was to highlight the synthesis pathway and bioactivity of substituted indole β-carboline reported from 2005 to date. In addition, this will encourage further investigation into the synthesis and evaluation of new indole β-carboline, in the hope of contributing to the development of potentially new medications for the treatment of various ailments.
Collapse
Affiliation(s)
- Siti Zafirah Zulkifli
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Noor Hidayah Pungot
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Aimi Suhaily Saaidin
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
| | - Nor Akmalazura Jani
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kuala Pilah, Negeri Sembilan, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| |
Collapse
|
4
|
Vitalini S, Rubin B, Monticelli H, Barollo S, Redaelli M, Bertazza L, Mian C, Zorzan M, Garzoli S, Iriti M, Pezzani R. Biological activities of the aerial and undergound parts of Gymnadenia nigra Rchb.f. (syn. Nigritella nigra (L.) Rchb. f.) from the Italian Alps. Nat Prod Res 2024; 38:3687-3692. [PMID: 37732610 DOI: 10.1080/14786419.2023.2258437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/13/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
This study investigated the bioactivity of both aerial (GNAR) and underground (GNUG) parts of Gymnadenia nigra Rchb.f. (syn. Nigritella nigra (L.) Rchb. f.) (Orchidaceae). The obtained data proved interesting when the samples were tested in two adrenocortical cancer cell lines (SW13 and H295R). In particular, the GNAR 80% methanol extract distinctly inhibited their viability after 24 h at a concentration of 1 µg/µL by MTT assay and trypan blue dye exclusion method. Cell morphology evaluation by means Wright's staining also showed significant results, particularly in SW13 cells under the effect of both extracts. GNAR extract was able to scavenge the DPPH radical better than GNUG extract. It also was more active in albumin denaturation (a maximum % denaturation equal to 463.0 ± 8.3 vs 77.3 ± 13.3) and protease inhibition (a maximum % inhibition equal to 138.5 ± 7.0 vs 2.1 ± 2.0) tests. The results highlighted an important antitumor activity of G. nigra in vitro that deserves to be further studied.
Collapse
Affiliation(s)
- Sara Vitalini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Italy
| | - Beatrice Rubin
- Endocrinology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Halenya Monticelli
- Endocrinology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Susi Barollo
- Endocrinology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Marco Redaelli
- Merieux Nutrisciences Italia, Resana, Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| | - Loris Bertazza
- Endocrinology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Caterina Mian
- Endocrinology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Maira Zorzan
- Endocrinology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, Rome, Italy
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Italy
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine, University of Padova, Padova, Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| |
Collapse
|
5
|
Luo M, Zhao FK, Wang YM, Bian J. Au@Pd nanozyme-mediated catalytic therapy: a novel strategy for targeting tumor microenvironment in cancer treatment. J Transl Med 2024; 22:814. [PMID: 39223625 PMCID: PMC11370004 DOI: 10.1186/s12967-024-05631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Breast cancer, with its high morbidity and mortality rates, is a significant global health burden. Traditional treatments-surgery, chemotherapy, and radiotherapy-are widely used but come with drawbacks such as recurrence, metastasis, and significant side effects, including damage to healthy tissues. To address these limitations, new therapeutic strategies are being developed. Peroxidases (POD) can catalyze excess H2O2 in the tumor microenvironment to generate reactive oxygen species (ROS), which induce cancer cell apoptosis by disrupting redox homeostasis and modulating apoptosis-related proteins. However, natural enzymes face challenges like poor stability, high cost, and sensitivity to environmental conditions, limiting their application in breast cancer treatment. Nanozymes, nanomaterials with enzyme-like activity, offer a promising alternative by overcoming these limitations. METHODS In this study, we successfully prepared Au@Pd nanozymes with peroxidase activity by depositing metallic Pd on Au nanoparticles (Au NPs) synthesized using a trisodium citrate reduction method and ascorbic acid reduction. The in vitro validation was conducted through a series of experiments, including ROS detection, flow cytometry, CCK-8 assay, DNA damage assessment, live/dead cell staining, Western blot (WB), and qPCR. Tumor treatment was performed via tail vein injection of the drug, followed by HE staining of the treated tissues and biochemical analysis of the blood. RESULTS Au@Pd nanozymes can effectively accumulate at the tumor site through the EPR effect and exert peroxidase-like activity, catalyzing the excess H2O2 in the tumor microenvironment to produce ROS. This triggers apoptosis pathways and DNA damage, leading to the downregulation of the anti-apoptotic protein Bcl-2, upregulation of the pro-apoptotic protein Bax, and induction of apoptosis-related genes, demonstrating strong anti-tumor effects. CONCLUSIONS This study developed an efficient nanozyme-mediated catalytic therapy strategy targeting the tumor microenvironment for the treatment of breast cancer cells.
Collapse
Affiliation(s)
- Min Luo
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Fu-Kun Zhao
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Yuan-Min Wang
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Jiang Bian
- Dali University, No.2 Hongsheng Road, Dali Town, Dali City, 671003, Yunnan Province, China.
- Department of anesthesiology, Panzhihua central hospital, No.34 Yikang Street, East District, Panzhihua City, 617000, Sichuan Province, China.
| |
Collapse
|
6
|
Yıldırım M, Erşatır M, Poyraz S, Amangeldinova M, Kudrina NO, Terletskaya NV. Green Extraction of Plant Materials Using Supercritical CO 2: Insights into Methods, Analysis, and Bioactivity. PLANTS (BASEL, SWITZERLAND) 2024; 13:2295. [PMID: 39204731 PMCID: PMC11359946 DOI: 10.3390/plants13162295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
In recent years, the supercritical CO2 extraction method has gained attention due to its use of environmentally friendly, non-toxic solvents, ability to operate at lower temperatures that do not cause the degradation of bioactive compounds, and capacity for rapid extraction. This method is particularly notable for isolating bioactive compounds from plants. The extracts obtained have shown superior properties due to their activity against diseases such as cancer, which is one of the leading causes of death worldwide. The aim of this study is to provide an in-depth understanding of the supercritical CO2 extraction method, as well as to discuss its advantages and disadvantages. Furthermore, the study includes specific data on various plant materials, detailing the following parameters: plant name and region, bioactive compounds or compound classes, extraction temperature (°C), pressure (bar), time (minutes), co-solvent used, and flow rate. Additionally, this study covers extensive research on the isolation of bioactive compounds and the efficacy of the obtained extracts against cancer.
Collapse
Affiliation(s)
- Metin Yıldırım
- Department of Biochemistry, Faculty of Pharmacy, Harran University, Sanliurfa 63050, Türkiye
| | - Mehmet Erşatır
- Department of Chemistry, Faculty of Art and Science, Cukurova University, Adana 01330, Türkiye;
| | - Samet Poyraz
- Independent Researcher, Nevşehir 50040, Türkiye;
| | - Madina Amangeldinova
- Department of Biodiversity and Biological Resources, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Av., 71, Almaty 050040, Kazakhstan; (M.A.); (N.O.K.); (N.V.T.)
- Institute of Genetic and Physiology, Al-Farabi Av., 93, Almaty 050040, Kazakhstan
| | - Nataliya O. Kudrina
- Department of Biodiversity and Biological Resources, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Av., 71, Almaty 050040, Kazakhstan; (M.A.); (N.O.K.); (N.V.T.)
- Institute of Genetic and Physiology, Al-Farabi Av., 93, Almaty 050040, Kazakhstan
| | - Nina V. Terletskaya
- Department of Biodiversity and Biological Resources, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Av., 71, Almaty 050040, Kazakhstan; (M.A.); (N.O.K.); (N.V.T.)
- Institute of Genetic and Physiology, Al-Farabi Av., 93, Almaty 050040, Kazakhstan
| |
Collapse
|
7
|
Chowdhury R, Bhuia MS, Wilairatana P, Afroz M, Hasan R, Ferdous J, Rakib AI, Sheikh S, Mubarak MS, Islam MT. An insight into the anticancer potentials of lignan arctiin: A comprehensive review of molecular mechanisms. Heliyon 2024; 10:e32899. [PMID: 38988539 PMCID: PMC11234030 DOI: 10.1016/j.heliyon.2024.e32899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024] Open
Abstract
Natural products are being developed as possible treatment options due to the rising prevalence of cancer and the harmful side effects of synthetic medications. Arctiin is a naturally occurring lignan found in numerous plants and exhibits different pharmacological activities, along with cancer. To elucidate the anticancer properties and underlying mechanisms of action, a comprehensive search of various electronic databases was conducted using appropriate keywords to identify relevant publications. The findings suggest that arctiin exhibits anticancer properties against tumor formation and various cancers such as cervical, myeloma, prostate, endothelial, gastric, and colon cancers in several preclinical pharmacological investigations. This naturally occurring compound exerts its anticancer effect through different cellular mechanisms, including mitochondrial dysfunction, cell cycle at different phases (G2/M), inhibition of cell proliferation, apoptotic cell death, and cytotoxic effects, as well as inhibition of migration and invasion of various malignant cells. Moreover, the study also revealed that, among the various cellular pathways, arctiin was shown to be more potent in terms of the PI3K/AKT and JAK/STAT signaling pathways. However, pharmacokinetic investigation indicated the compound's poor oral bioavailability. Because of these findings, arctiin might be considered a promising chemotherapeutic drug candidate.
Collapse
Affiliation(s)
- Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Meher Afroz
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Jannatul Ferdous
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Asraful Islam Rakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Salehin Sheikh
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
8
|
Jha SK, De Rubis G, Devkota SR, Zhang Y, Adhikari R, Jha LA, Bhattacharya K, Mehndiratta S, Gupta G, Singh SK, Panth N, Dua K, Hansbro PM, Paudel KR. Cellular senescence in lung cancer: Molecular mechanisms and therapeutic interventions. Ageing Res Rev 2024; 97:102315. [PMID: 38679394 DOI: 10.1016/j.arr.2024.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Lung cancer stands as the primary contributor to cancer-related fatalities worldwide, affecting both genders. Two primary types exist where non-small cell lung cancer (NSCLC), accounts for 80-85% and SCLC accounts for 10-15% of cases. NSCLC subtypes include adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Smoking, second-hand smoke, radon gas, asbestos, and other pollutants, genetic predisposition, and COPD are lung cancer risk factors. On the other hand, stresses such as DNA damage, telomere shortening, and oncogene activation cause a prolonged cell cycle halt, known as senescence. Despite its initial role as a tumor-suppressing mechanism that slows cell growth, excessive or improper control of this process can cause age-related diseases, including cancer. Cellular senescence has two purposes in lung cancer. Researchers report that senescence slows tumor growth by constraining multiplication of impaired cells. However, senescent cells also demonstrate the pro-inflammatory senescence-associated secretory phenotype (SASP), which is widely reported to promote cancer. This review will look at the role of cellular senescence in lung cancer, describe its diagnostic markers, ask about current treatments to control it, look at case studies and clinical trials that show how senescence-targeting therapies can be used in lung cancer, and talk about problems currently being faced, and possible solutions for the same in the future.
Collapse
Affiliation(s)
- Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Shankar Raj Devkota
- Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Yali Zhang
- School of Chemical Engineering, University of Adelaide, Adelaide 5005, Australia
| | - Radhika Adhikari
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Laxmi Akhileshwar Jha
- Naraina Vidya Peeth Group of Institutions, Faculty of Pharmacy, Dr. A. P. J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh 0208020, India
| | - Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026, India; Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam 781035, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Nisha Panth
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| |
Collapse
|
9
|
Chaudhary P, Janmeda P, Pareek A, Chuturgoon AA, Sharma R, Pareek A. Etiology of lung carcinoma and treatment through medicinal plants, marine plants and green synthesized nanoparticles: A comprehensive review. Biomed Pharmacother 2024; 173:116294. [PMID: 38401516 DOI: 10.1016/j.biopha.2024.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Lung cancer, a leading global cause of mortality, poses a significant public health challenge primarily linked to tobacco use. While tobacco contributes to over 90% of cases, factors like dietary choices and radiation exposure also play a role. Despite potential benefits from early detection, cancer patients face hurdles, including drug resistance, chemotherapy side effects, high treatment costs, and limited healthcare access. Traditional medicinal plant knowledge has recently unveiled diverse cancer chemopreventive agents from terrestrial and marine sources. These phytochemicals regulate intricate molecular processes, influencing the immune system, apoptosis, cell cycle, proliferation, carcinogen elimination, and antioxidant levels. In pursuing cutting-edge strategies to combat the diverse forms of cancer, technological advancements have spurred innovative approaches. Researchers have focused on the green synthesis of metallic nanoparticles using plant metabolites. This method offers distinct advantages over conventional physical and chemical synthesis techniques, such as cost-effectiveness, biocompatibility, and energy efficiency. Metallic nanoparticles, through various pathways such as the generation of reactive oxygen species, modulation of enzyme activity, DNA fragmentation, disruption of signaling pathways, perturbation of cell membranes, and interference with mitochondrial function resulting in DNA damage, cell cycle arrest, and apoptosis, exhibit significant potential for preventive applications. Thus, the amalgamation of phytocompounds and metallic nanoparticles holds promise as a novel approach to lung cancer therapy. However, further refinements and advancements are necessary to enhance the environmentally friendly process of metallic nanoparticle synthesis.
Collapse
Affiliation(s)
- Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana (Ayurvedic Pharmaceutics), Banaras Hindu University, Varanasi 221005, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
10
|
Karimivaselabadi A, Osanloo M, Ghanbariasad A, Zarenezhad E, Hosseini H. Comparison of chitosan nanoparticles containing Lippia citriodora essential oil and citral on the induction of apoptosis in A375 melanoma cells. BMC Complement Med Ther 2023; 23:435. [PMID: 38041055 PMCID: PMC10691079 DOI: 10.1186/s12906-023-04268-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Using nanoparticles containing L. citriodora EO and citral has shown potential in treating skin disorders such as melanoma. METHODS In this study, GC‒MS was used to analyze the chemical composition of L. citriodora essential oil (EO). The ion gelation method prepared free chitosan nanoparticles and chitosan nanoparticles containing L. citriodora EO and citral. The successful loading of the EO and citral was evaluated using ATR-FTIR. The DPPH assay measured the antioxidant effect of citral, L. citriodora EO, Citral-ChiNPs, L. citriodora-ChiNPs, and Free-ChiNPs. A375 melanoma cell viability was assessed using the MTT assay. The qPCR technique was employed to evaluate the expression of apoptotic genes, and flow cytometry was used to detect apoptosis. RESULTS This study showed that in equal concentrations, the antioxidant properties of chitosan nanoparticles containing citral were greater than those of chitosan nanoparticles containing L. citriodora. The IC50 values of chitosan nanoparticles containing citral, L. citriodora EO, and their nonformulated states were 105.6, 199.9, 136.9, and 240 µg/ml, respectively. The gene expression results showed that the ratio of the expression of the apoptosis gene to the inhibitory gene was higher than 1 in all the samples, indicating that the conditions for apoptosis were present. Flow cytometry confirmed cell apoptosis, with 93.5 ± 0.3% in chitosan nanoparticles containing citral, 80 ± 0.2% in chitosan nanoparticles containing L. citriodora EO, 63 ± 0.3 in citral, and 42.03% in L. citriodora EO-treated cells. CONCLUSION The results showed that using the Nano form of L. citriodora and citral increased their efficiency in apoptosis pathways and their toxicity against 375 melanoma cancer cells.
Collapse
Affiliation(s)
- Abolfazl Karimivaselabadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Ali Ghanbariasad
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Jayaraman S, Natarajan SR, Veeraraghavan VP, Jasmine S. Unveiling the anti-cancer mechanisms of calotropin: Insights into cell growth inhibition, cell cycle arrest, and metabolic regulation in human oral squamous carcinoma cells (HSC-3). J Oral Biol Craniofac Res 2023; 13:704-713. [PMID: 37731845 PMCID: PMC10507650 DOI: 10.1016/j.jobcr.2023.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023] Open
Abstract
Background Calotropin, a cardiac glycoside obtained from the plant Calotropis gigantea, has demonstrated promising potential as an anti-tumorigenesis compound. Objective The main objective of this study was to investigate the potential anti-cancer properties of calotropin against HSC-3 oral squamous cancer cells and to elucidate the underlying mechanisms involved in its action. Material and method Calotropin were treated in HSC-3 to evaluate cell viability by MTT assay. Flow cytometry analysis divulged that calotropin G0/G1 phase cell cycle arrest and apoptosis in HSC-3 cells. Calotropin displayed inhibitory properties against aerobic glycolysis, a metabolic alteration using glucose uptaken, lactose production and LDHA activity assays. Furthermore, migration and invasion assays help that calotropin has ability to reduce the migratory and invasive of HSC-3 cells, using transwell and Matrigel assay. Validation of mRNA expression through RT-PCR. Molecular docking was implemented to validate the binding association of calotropin with apoptosis and metastatic regulating targets. Result The results exemplify that increasing doses of calotropin effectively hold back the HSC-3 cell progression. Migration and invasion assays help that calotropin has ability to reduce the migratory and invasive of HSC-3 cells, indicating its potential to inhibit cancer metastasis. These results imply that calotropin may influence genes linked to metastasis and apoptosis in order to achieve its beneficial effects on cancer. Docking results provided further support, showing a high binding energy between calotropin and metastasis-mediated pathways. Conclusion Overall, our findings shed an experimental evidence on how calotropin inhibits the HSC-3 oral squamous cancer cell growth, highlighting the drug's potential as a treatment for oral cancer. Further, investigation on in-vivo experiment is warranted to explore its potential mechanism of action and to develop a novel drug towards clinical trial.
Collapse
Affiliation(s)
- Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Sathan Raj Natarajan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Sharmila Jasmine
- Department of Oral Maxillofacial Surgery, Rajas Dental College and Hospital, Kavalkinaru, Tirunelveli, 627105, Tamil Nadu, India
| |
Collapse
|
12
|
James A, Akash K, Sharma A, Bhattacharyya S, Sriamornsak P, Nagraik R, Kumar D. Himalayan flora: targeting various molecular pathways in lung cancer. Med Oncol 2023; 40:314. [PMID: 37787816 DOI: 10.1007/s12032-023-02171-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/21/2023] [Indexed: 10/04/2023]
Abstract
The fatal amplification of lung cancer across the globe and the limitations of current treatment strategies emphasize the necessity for substitute therapeutics. The incorporation of phyto-derived components in chemo treatment holds promise in addressing those challenges. Despite the significant progressions in lung cancer therapeutics, the complexities of molecular mechanism and pathways underlying this disease remain inadequately understood, necessitating novel biomarker targeting. The Himalayas, abundant in diverse plant varieties with established chemotherapeutic potential, presents a promising avenue for investigating potential cures for lung carcinoma. The vast diversity of phytocompounds herein can be explored for targeting the disease. This review delves into the multifaceted targets of lung cancer and explores the established phytochemicals with their specific molecular targets. It emphasizes comprehending the intricate pathways that govern effective therapeutic interventions for lung cancer. Through this exploration of Himalayan flora, this review seeks to illuminate potential breakthroughs in lung cancer management using natural compounds. The amalgamation of Himalayan plant-derived compounds with cautiously designed combined therapeutic approaches such as nanocarrier-mediated drug delivery and synergistic therapy offers an opportunity to redefine the boundaries of lung cancer treatment by reducing the drug resistance and side effects and enabling an effective targeted delivery of drugs. Furthermore, additional studies are obligatory to understand the possible derivation of natural compounds used in current lung cancer treatment from plant species within the Himalayan region.
Collapse
Affiliation(s)
- Abija James
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - K Akash
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, 400715, Chongqing, People's Republic of China
- Department of Sciences, Nirma University, Ahmedabad, Gujarat, 382481, India
| | | | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
13
|
Mannino G, Serio G, Gaglio R, Maffei ME, Settanni L, Di Stefano V, Gentile C. Biological Activity and Metabolomics of Griffonia simplicifolia Seeds Extracted with Different Methodologies. Antioxidants (Basel) 2023; 12:1709. [PMID: 37760012 PMCID: PMC10525635 DOI: 10.3390/antiox12091709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Griffonia simplicifolia, a tropical plant endemic to West Africa, is highly regarded for its significant pharmacological potential. The objective of this study was to evaluate the metabolomic profile and to explore the antioxidant properties, antiproliferative activity, and antimicrobial potential of G. simplicifolia seed extracts obtained through either maceration, microwave-assisted extraction (MAE), or Soxhlet extraction using water, acetone, methanol and ethanol as solvents. Overall, methanol possessed superior total extraction efficiency. HPLC analyses confirmed the efficacy of acetone and ethanol as optimal solvents for the extraction of flavonoids and flavan-3-ols, whereas MAE exhibited enhanced effectiveness in extracting N-containing compounds, including 5-hydroxytryptophan (5-HTP). HPLC-MS analyses identified forty-three compounds, including thirty-four phenolic compounds and nine N-containing molecules. Isomyricitrin, taxifolin and a flavonol glucuronide were the main polyphenols, whereas 5-HTP was the main N-containing compound. Hydroalcoholic G. simplicifolia extracts showed the highest radical scavenging and metal-reducing antioxidant power, suggesting that most of the contribution to antioxidant activity depends on the more polar bioactive compounds. G. simplicifolia extracts showed dose-dependent antiproliferative activity against three distinct cancer cell lines (HeLa, HepG2, and MCF-7), with notable variations observed among both the different extracts and cell lines and divergent GI50 values, emphasizing substantial discrepancies in cell sensitivity to the various extracts. Furthermore, G. simplicifolia extracts revealed antibiotic activity against Staphylococcus aureus. Our results highlight the potential of G. simplicifolia phytochemicals in the development of functional foods, nutraceuticals, and dietary supplements.
Collapse
Affiliation(s)
- Giuseppe Mannino
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135 Turin, Italy;
| | - Graziella Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.S.); (V.D.S.)
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (R.G.); (L.S.)
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135 Turin, Italy;
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (R.G.); (L.S.)
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.S.); (V.D.S.)
| | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.S.); (V.D.S.)
| |
Collapse
|
14
|
Alam M, Ahmed S, Abid M, Hasan GM, Islam A, Hassan MI. Therapeutic targeting of microtubule affinity-regulating kinase 4 in cancer and neurodegenerative diseases. J Cell Biochem 2023; 124:1223-1240. [PMID: 37661636 DOI: 10.1002/jcb.30468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Microtubule affinity-regulating kinase 4 (MARK4) is a member of the Ser/Thr protein kinase family, phosphorylates the microtubule-connected proteins and plays a vital role in causing cancers and neurodegenerative diseases. This kinase modulates multiple signaling pathways, including mammalian target of rapamycin, nuclear factor-κB, and Hippo-signaling, presumably responsible for cancer and Alzheimer's. MARK4 acts as a negative controller of the Hippo-kinase cassette for promoting YAP/TAZ action, and the loss of MARK4 detains the tumorigenic properties of cancer cells. MARK4 is involved in tau hyperphosphorylation that consequently affects neurodegeneration. MARK4 is a promising drug target for cancer, diabetes, and Alzheimer's. Developing the potent and selective inhibitors of MAKR4 are promising in the therapeutic management of associated diseases. Despite its great significance, a few reviews are available to discuss its structure, function and clinical significance. In the current review, we aimed to provide detailed information on the structural features of MARK4 targeted in drug development and its role in various signaling pathways related to cancer and neurodegenerative diseases. We further described the therapeutic potential of MARK4 inhibitors in preventing numerous diseases. Finally, the updated information on MARK4 will be helpful in the further development of effective therapeutic molecules.
Collapse
Affiliation(s)
- Manzar Alam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sarfraz Ahmed
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Asimul Islam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
15
|
Sharma S, Shukla MK, Sharma KC, Tirath, Kumar L, Anal JMH, Upadhyay SK, Bhattacharyya S, Kumar D. Revisiting the therapeutic potential of gingerols against different pharmacological activities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:633-647. [PMID: 36585999 PMCID: PMC9803890 DOI: 10.1007/s00210-022-02372-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
The rhizomes of ginger have been in use in many forms of traditional and alternative medicines. Besides being employed as condiment and flavoring agent, it is used in the treatment of nausea, osteoarthritis, muscle pain, menstrual pain, chronic indigestion, Alzheimer's disease, and cancer. Ginger rhizome contains volatile oils, phenolic compounds and resins, and characterization studies showed that [6]-gingerol, [6]-shogaol, and [6]-paradol are reported to be the pharmacologically active components. Gingerol is a major chemical constituent found as volatile oil in the rhizomes of ginger. It has several medicinal benefits and used for the treatment of rheumatoid arthritis, nausea, cancer, and diabetes. Many studies have been carried out in various parts of the world to isolate and standardize gingerol for their use as a complementary medicine. The present review summarizes wide range of research studies on gingerol and its pharmacological roles in various metabolic diseases.
Collapse
Affiliation(s)
- Samridhi Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173229, Himachal Pradesh, India
| | - Monu Kumar Shukla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173229, Himachal Pradesh, India
| | - Krishan Chander Sharma
- Department of Entomology, School of Agriculture, Shoolini University, Solan-173229, Himachal Pradesh, India
| | - Tirath
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173229, Himachal Pradesh, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh-173229 India
| | - Jasha Momo H. Anal
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | | | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei Chongqing, 400715 People’s Republic of China
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173229, Himachal Pradesh, India
| |
Collapse
|
16
|
Nouioura G, Tourabi M, El Ghouizi A, Kara M, Assouguem A, Saleh A, Kamaly OA, El Ouadrhiri F, Lyoussi B, Derwich EH. Optimization of a New Antioxidant Formulation Using a Simplex Lattice Mixture Design of Apium graveolens L., Coriandrum sativum L., and Petroselinum crispum M. Grown in Northern Morocco. PLANTS (BASEL, SWITZERLAND) 2023; 12:1175. [PMID: 36904035 PMCID: PMC10005385 DOI: 10.3390/plants12051175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
A statistical Simplex Lattice Mixture design was applied to develop a new formulation based on a combination of three plants grown in northern Morocco: Apium graveolens L., Coriandrum sativum L., and Petroselinum crispum M. We examined the extraction yield, total polyphenol content (TPC), 2'2-diphenyl-l-picrylhydrazyl (DPPH) radical scavenging activity, and total antioxidant capacity (TAC). The results of this screening study showed that C. sativum L. had the highest content of DPPH (53.22%) and TAC (37.46 ± 0.29 mg Eq AA/g DW) compared to the other two plants, while P. crispum M. showed the highest TPC (18.52 ± 0.32 mg Eq GA/g DW). Furthermore, the ANOVA analysis of the mixture design showed that all three responses (DPPH, TAC, and TPC) were statistically significant, with determination coefficients of 97%, 93%, and 91%, respectively, and fit the cubic model. Moreover, the diagnostic plots showed good correlation between the experimental and predicted values. Therefore, the best combination obtained under optimal conditions (P1 = 0.611, P2 = 0.289, P3 = 0.100) was characterized by DPPH, TAC, and TPC of 56.21%, 72.74 mg Eq AA/g DW, and 21.98 mg Eq GA/g DW, respectively. The results of this study reinforce the view of stimulating the effect of plant combinations to achieve better antioxidant activities, thus providing a better formulation using designs of mixtures for the food industry and in cosmetic and pharmaceutical applications. Moreover, our findings support the traditional use of the Apiaceae plant species in managing many disorders cited in the Moroccan pharmacopeia.
Collapse
Affiliation(s)
- Ghizlane Nouioura
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El-Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Meryem Tourabi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El-Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El-Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Mohammed Kara
- Laboratory of Biotechnology, Conservation and Valorisation of Natural Resources (LBCVNR), Department of Biology, Faculty of Science Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Amine Assouguem
- Laboratory of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, Fez 30000, Morocco
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Omkulthom Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Faiçal El Ouadrhiri
- Laboratory of Engineering, Molecular Organometallic Materials and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El-Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - El Houssine Derwich
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El-Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
- Unity of GC/MS and GC, City of Innovation, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
17
|
Roy AC, Prasad A, Priya K, Das P, Singh S, Ghosh C, Ghosh I. Anticancer effect of antioxidant-rich methanolic extract of Rauvolfia serpentina (L.) Benth. ex Kurz leaves in HepG2 and HeLa cells: A mechanistic insight. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
18
|
Sharma A, Shambhwani D, Pandey S, Singh J, Lalhlenmawia H, Kumarasamy M, Singh SK, Chellappan DK, Gupta G, Prasher P, Dua K, Kumar D. Advances in Lung Cancer Treatment Using Nanomedicines. ACS OMEGA 2023; 8:10-41. [PMID: 36643475 PMCID: PMC9835549 DOI: 10.1021/acsomega.2c04078] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/13/2022] [Indexed: 06/01/2023]
Abstract
Carcinoma of the lungs is among the most menacing forms of malignancy and has a poor prognosis, with a low overall survival rate due to delayed detection and ineffectiveness of conventional therapy. Therefore, drug delivery strategies that may overcome undesired damage to healthy cells, boost therapeutic efficacy, and act as imaging tools are currently gaining much attention. Advances in material science have resulted in unique nanoscale-based theranostic agents, which provide renewed hope for patients suffering from lung cancer. Nanotechnology has vastly modified and upgraded the existing techniques, focusing primarily on increasing bioavailability and stability of anti-cancer drugs. Nanocarrier-based imaging systems as theranostic tools in the treatment of lung carcinoma have proven to possess considerable benefits, such as early detection and targeted therapeutic delivery for effectively treating lung cancer. Several variants of nano-drug delivery agents have been successfully studied for therapeutic applications, such as liposomes, dendrimers, polymeric nanoparticles, nanoemulsions, carbon nanotubes, gold nanoparticles, magnetic nanoparticles, solid lipid nanoparticles, hydrogels, and micelles. In this Review, we present a comprehensive outline on the various types of overexpressed receptors in lung cancer, as well as the various targeting approaches of nanoparticles.
Collapse
Affiliation(s)
- Akshansh Sharma
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | | | - Sadanand Pandey
- Department
of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jay Singh
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Hauzel Lalhlenmawia
- Department
of Pharmacy, Regional Institute of Paramedical
and Nursing Sciences, Zemabawk, Aizawl, Mizoram 796017, India
| | - Murali Kumarasamy
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research, Hajipur 844102, India
| | - Sachin Kumar Singh
- School
of Pharmaceutical Sciences, Lovely Professional
University, Phagwara 144411, India
- Faculty
of Health, Australian Research Centre in Complementary and Integrative
Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department
of Life Sciences, School of Pharmacy, International
Medical University, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- Department
of Pharmacology, School of Pharmacy, Suresh
Gyan Vihar University, Jaipur 302017, India
- Department
of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical
and Technical Sciences, Saveetha University, Chennai 602117, India
- Uttaranchal
Institute of Pharmaceutical Sciences, Uttaranchal
University, Dehradun 248007, India
| | - Parteek Prasher
- Department
of Chemistry, University of Petroleum &
Energy Studies, Dehradun 248007, India
| | - Kamal Dua
- Faculty
of Health, Australian Research Centre in Complementary and Integrative
Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- Discipline
of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Deepak Kumar
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| |
Collapse
|
19
|
Chiu CS, Cheng YT, Chan YJ, Lu WC, Yang KM, Li PH. Mechanism and inhibitory effects of cactus (Opuntia dillenii) extract on melanocytes and its potential application for whitening cosmetics. Sci Rep 2023; 13:501. [PMID: 36627306 PMCID: PMC9832067 DOI: 10.1038/s41598-022-26125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Penghu cactus (Opuntia dillenii [Ker.] Haw) is a cactus plant that commonly grows in Penghu Island, Taiwan, Republic of China (ROC). However, still lack of scientific study on the Opuntia dillenii [Ker.] Haw extract on skin-whitening-associated tyrosinase activity and melanin production. The activities of its extract in melanogenesis were investigated in this article. In this experiment, we used an extract from the Penghu cactus (Opuntia dillenii [Ker.] Haw) to study its tyrosinase inhibition, anti-melanin generation, UV-protection effects and wound healing capacity in B16-F10 melanocytes. Without reducing cell growth greatly or causing cell death, 20 g/L cactus extract effectively inhibited the melanin production of B16-F10 cells, and melanogenesis was induced by 3-isobutyl-1-methylxanthine. The cactus extract could also promote cell proliferation. Cactus extract treatment decreased the mRNA expression of insulin-like growth factor 1 (IGF-1) and vascular endothelial growth factor (VEGF) and increased that of transforming growth factor β (TGF-β). Thus, it could reduce cell melanin production and promote cell growth but by also reducing IGF-1 and VEGF mRNA expression, may reduce wound scarring and prevent tumor proliferation and swelling. Increasing TGF-β mRNA expression can help increase collagen to remove wrinkles and help in wound healing. Skin patch test results agreed with in vitro results with B16-F10 melanoma cells. The cactus extract significantly inhibited tyrosinase activity and reduced melanin production, showing a whitening effect on skin tests. Cactus may be a good natural candidate for inhibiting melanin production and promoting cell proliferation.
Collapse
Affiliation(s)
- Chien-Shan Chiu
- grid.410764.00000 0004 0573 0731Department of Dermatology, Taichung Veterans General Hospital, 1650 Sec. 4 Taiwan Boulevard, Xitun Dist., Taizhung, 40705 Taiwan ,Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., South Dist., Taizhung, 40227 Taiwan ,grid.445025.20000 0004 0532 2244Department of Medicinal Botanical and Foods on Health Applications, Da-Yeh University, No.168, University Rd., Dacun, Changhua, 51591 Taiwan, ROC
| | - Yu-Tsung Cheng
- grid.410764.00000 0004 0573 0731Cardiovascular Center, Taichung Veterans General Hospital, 1650 Sec. 4 Taiwan Boulevard, Xitun Dist., Taizhung, 40705 Taiwan
| | - Yung-Jia Chan
- grid.445025.20000 0004 0532 2244College of Biotechnology and Bioresources, Da-Yeh University, 168, University Rd, Dacun, Changhua, 51591 Taiwan
| | - Wen-Chien Lu
- Department of Food and Beverage Management, Chung-Jen Junior College of Nursing, Health Sciences and Management, 217, Hung-Mao-Pi, Chia-Yi City, 60077, Taiwan.
| | - Kai-min Yang
- grid.449327.fDepartment of Food Science, National Quemoy University, 1, University Rd., Jinning Township, Kinmen County, 892 Taiwan
| | - Po- Hsien Li
- Department of Food and Nutrition, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taizhung City, 43301, Taiwan.
| |
Collapse
|
20
|
Zhao X, Wang X, Pang Y. Phytochemicals Targeting Ferroptosis: Therapeutic Opportunities and Prospects for Treating Breast Cancer. Pharmaceuticals (Basel) 2022; 15:1360. [PMID: 36355532 PMCID: PMC9693149 DOI: 10.3390/ph15111360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/04/2023] Open
Abstract
Ferroptosis, a recently discovered iron-dependent regulated cell death, has been implicated in the therapeutic responses of various cancers including breast cancer, making it a promising therapeutic target to manage this malignancy. Phytochemicals are conventional sources for medication development. Some phytochemicals have been utilized therapeutically to treat cancers as pharmaceutic agents or dietary supplements. Intriguingly, a considerable number of antitumor drugs derived from phytochemicals have been proven to be targeting ferroptosis, thus producing anticancer effects. In this review, we provide a short overview of the interaction between core ferroptosis modulators and breast cancer, illustrating how ferroptosis affects the destiny of breast cancer cells. We also systematically summarize the regulatory effects of phytochemicals on ferroptosis and emphasize their clinical applications in breast cancer suppression, which may accelerate the development of their therapeutic use in breast cancer.
Collapse
Affiliation(s)
- Xinyi Zhao
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuzhou Pang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
21
|
Bio-Inspired Smart Nanoparticles in Enhanced Cancer Theranostics and Targeted Drug Delivery. J Funct Biomater 2022; 13:jfb13040207. [PMID: 36412848 PMCID: PMC9680339 DOI: 10.3390/jfb13040207] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022] Open
Abstract
Globally, a significant portion of deaths are caused by cancer.Compared with traditional treatment, nanotechnology offers new therapeutic options for cancer due to its ability to selectively target and control drug release. Among the various routes of nanoparticle synthesis, plants have gained significant recognition. The tremendous potential of medicinal plants in anticancer treatments calls for a comprehensive review of existing studies on plant-based nanoparticles. The study examined various metallic nanoparticles obtained by green synthesis using medicinal plants. Plants contain biomolecules, secondary metabolites, and coenzymes that facilitate the reduction of metal ions into nanoparticles. These nanoparticles are believed to be potential antioxidants and cancer-fighting agents. This review aims at the futuristic intuitions of biosynthesis and applications of plant-based nanoparticles in cancer theranostics.
Collapse
|
22
|
Integrated System Pharmacology Approaches to Elucidate Multi-Target Mechanism of Solanum surattense against Hepatocellular Carcinoma. Molecules 2022; 27:molecules27196220. [PMID: 36234758 PMCID: PMC9570789 DOI: 10.3390/molecules27196220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant liver tumors with high mortality. Chronic hepatitis B and C viruses, aflatoxins, and alcohol are among the most common causes of hepatocellular carcinoma. The limited reported data and multiple spectra of pathophysiological mechanisms of HCC make it a challenging task and a serious economic burden in health care management. Solanum surattense (S. surattense) is the herbal plant used in many regions of Asia to treat many disorders including various types of cancer. Previous in vitro studies revealed the medicinal importance of S. surattense against hepatocellular carcinoma. However, the exact molecular mechanism of S. surattense against HCC still remains unclear. In vitro and in silico experiments were performed to find the molecular mechanism of S. surattense against HCC. In this study, the network pharmacology approach was used, through which multi-targeted mechanisms of S. surattense were explored against HCC. Active ingredients and potential targets of S. surattense found in HCC were figured out. Furthermore, the molecular docking technique was employed for the validation of the successful activity of bioactive constituents against potential genes of HCC. The present study investigated the active “constituent–target–pathway” networks and determined the tumor necrosis factor (TNF), epidermal growth factor receptor (EGFR), mammalian target of rapamycin (mTOR), Bcl-2-like protein 1(BCL2L1), estrogen receptor (ER), GTPase HRas, hypoxia-inducible factor 1-alpha (HIF1-α), Harvey Rat sarcoma virus, also known as transforming protein p21 (HRAS), and AKT Serine/Threonine Kinase 1 (AKT1), and found that the genes were influenced by active ingredients of S. surattense. In vitro analysis was also performed to check the anti-cancerous activity of S. surattense on human liver cells. The result showed that S. surattense appeared to act on HCC via modulating different molecular functions, many biological processes, and potential targets implicated in 11 different pathways. Furthermore, molecular docking was employed to validate the successful activity of the active compounds against potential targets. The results showed that quercetin was successfully docked to inhibit the potential targets of HCC. This study indicates that active constituents of S. surattense and their therapeutic targets are responsible for their pharmacological activities and possible molecular mechanisms for treating HCC. Lastly, it is concluded that active compounds of S. surattense act on potential genes along with their influencing pathways to give a network analysis in system pharmacology, which has a vital role in the development and utilization of drugs. The current study lays a framework for further experimental research and widens the clinical usage of S. surattense.
Collapse
|