1
|
Ragab A, Ayman R, Salem MA, Ammar YA, Abusaif MS. Unveiling a novel pyrazolopyrimidine scaffold as a dual COX-2/5-LOX inhibitor with immunomodulatory potential: Design, synthesis, target prediction, anti-inflammatory activity, and ADME-T with docking simulation. Eur J Med Chem 2025; 290:117499. [PMID: 40101450 DOI: 10.1016/j.ejmech.2025.117499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
Dual-target COX-2/5-LOX inhibitors are regarded as a rational strategy for the design of potent anti-inflammatory agents with favorable safety profiles. In this study, novel pyrazolo[1,5-a]pyrimidine derivatives were synthesized, developed, and screened for their ability to inhibit the cyclooxygenase-2 enzyme in vitro, with comparisons made to the established inhibitors Celecoxib and Meloxicam. Spectroscopic analyses confirmed the structure of the designed derivatives. The target prediction using AI was performed to identify potential targets that could be engaged through Swiss target prediction database. The SAR study was established by incorporating various substituents and nuclei into the pyrazolopyrimidine pharmacophore. The synthesized pyrazolopyrimidines exhibited IC50 values ranging from 53.32 ± 4.43 to 254.90 ± 6.45 nM, in comparison to Celecoxib (IC50 = 6.73 ± 5.69 nM) and Meloxicam (IC50 = 52.35 ± 6.66 nM). Notably, compound 5a was identified as the most active derivative, demonstrating an IC50 of 53.32 ± 4.43 nM. The three most prominent pyrazolopyrimidine derivatives, 3a, 5a, and 6a, were subsequently evaluated for their ability to inhibit the COX-1 and 5-LOX enzymes. Compounds 3a, 5a, and 6a demonstrated inhibitory activity against COX-1, with IC50 values of 476.45 ± 16.56, 757.51 ± 2.61, and 169.13 ± 5.77 nM, respectively. These derivatives 3a, 5a, and 6a showed significant selectivity index values of 7.91, 14.20, and 2.80, respectively, toward COX-2 rather than COX-1 in comparison to Meloxicam (SI = 0.75) and Celecoxib (SI = 2.35). Moreover, compound 5a exhibited 86 % inhibition compared to Zileuton's 88 %, while compounds 3a and 6a displayed inhibition rates of 84 % and 80 %, respectively, at a concentration of 100 μM. The most potent compound 5a, demonstrated the highest 5-LOX inhibitory activity, with IC50 of 2.292 ± 0.14 μM. The most promising pyrazolopyrimidine derivative 5a demonstrated a down-regulation of TNF-α and IL-6 gene expression by approximately 0.3826-fold and 0.2732-fold, respectively, when compared to Celecoxib, which induced reductions of 0.2320-fold and 0.2730-fold in these cytokines to promote apoptosis in RAW264.7 cells. Finally, in-silico ADME-T and docking simulations were conducted to predict the oral bioavailability, toxicity, and binding interactions with binding affinity.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt; Chemistry Department, Faculty of Science, Galala University, Galala City, 43511, Suez, Egypt.
| | - Radwa Ayman
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
2
|
Uti DE, Atangwho IJ, Alum EU, Ntaobeten E, Obeten UN, Bawa I, Agada SA, Ukam CIO, Egbung GE. Antioxidants in cancer therapy mitigating lipid peroxidation without compromising treatment through nanotechnology. DISCOVER NANO 2025; 20:70. [PMID: 40272665 DOI: 10.1186/s11671-025-04248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/03/2025] [Indexed: 04/27/2025]
Abstract
BACKGROUND Cancer treatments often exploit oxidative stress to selectively kill tumour cells by disrupting their lipid peroxidation membranes and inhibiting antioxidant enzymes. However, lipid peroxidation plays a dual role in cancer progression, acting as both a tumour promoter and a suppressor. Balancing oxidative stress through antioxidant therapy remains a challenge, as excessive antioxidant activity may compromise the efficacy of chemotherapy and radiotherapy. AIM This review explores the role of antioxidants in mitigating lipid peroxidation in cancer therapy while maintaining treatment efficacy. It highlights recent advancements in nanotechnology-based targeted antioxidant delivery to optimize therapeutic outcomes. METHODS A comprehensive literature review was conducted using reputable databases, including PubMed, Scopus, Web of Science, and ScienceDirect. The search focused on publications from the past five years (2020-2025), supplemented by relevant studies from earlier years. Keywords such as "antioxidants," "lipid peroxidation," "nanotechnology in cancer therapy," and "oxidative stress" were utilized. Relevant articles were critically analysed, and graphical illustrations were created. RESULTS Emerging evidence suggests that nanoparticles, including liposomes, polymeric nanoparticles, metal-organic frameworks, and others, can effectively encapsulate and control the release of antioxidants in tumour cells while minimizing systemic toxicity. Stimuli-responsive carriers with tumour-specific targeting mechanisms further enhance antioxidant delivery. Studies indicate that these strategies help preserve normal cells, mitigate oxidative stress-related damage, and improve treatment efficacy. However, challenges such as bioavailability, stability, and potential interactions with standard therapies remain. CONCLUSION Integrating nanotechnology with antioxidant-based interventions presents a promising approach for optimizing cancer therapy. Future research should focus on refining lipid peroxidation modulation strategies, assessing oxidative stress profiles during treatment, and employing biomarkers to determine optimal antioxidant dosing. A balanced approach to antioxidant use may enhance therapeutic efficacy while minimizing adverse effects.
Collapse
Affiliation(s)
- Daniel Ejim Uti
- Department of Biochemistry, Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria.
| | - Item Justin Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Esther Ugo Alum
- Department of Biochemistry, Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda
| | - Emmanuella Ntaobeten
- Department of Cancer and Haematology, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Uket Nta Obeten
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, PMB 1010, Abakaliki, Ebonyi State, Nigeria
| | - Inalegwu Bawa
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria
| | - Samuel A Agada
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria
| | | | - Godwin Eneji Egbung
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
3
|
Yun D, Yang JH, Yang S, Sim JA, Kim M, Park JW, Jeong SY, Shin A, Kweon SS, Song N. Novel genetic loci and functional properties of immune-related genes for colorectal cancer survival in Korea. BMC Cancer 2025; 25:456. [PMID: 40082818 PMCID: PMC11905532 DOI: 10.1186/s12885-025-13819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
One major topic in colorectal cancer (CRC) research is the role of immune cells against cancer cells. The association of single-nucleotide polymorphisms (SNPs) and polygenic risk scores (PRS) with CRC was examined and their functional properties were identified using a gene-gene interaction network. 960 CRC patients at Seoul National University Hospital (SNUH, discovery) and 6,627 CRC patients at Chonnam National University Hospital (CNNUH, validation) were enrolled. SNPs were genotyped using the Korean Biobank Array. 2,729 immune-related genes were selected from the Ensembl, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes, and 37,398 SNPs were mapped. PRS were categorized into tertiles. Cox proportional hazard models were fitted for overall survival (OS) and progression-free survival (PFS). A gene-gene interaction network was analyzed. Among CRC patients from SNUH, 154 (16.0%) died, while 245 (25.5%) had progression. In CNNUH, 3,537 (53.4%) died. For OS, the most significant association was observed for rs117322760 (8q23.1, PKHD1L1, hazard ratio (HR) = 4.58, p-value = 1.40 × 10- 6). For PFS, it was observed in rs143531681 (7q36.1, NOS3, HR = 4.67, p-value = 9.72 × 10- 8). For PRS, the highest tertile group showed an increased risk for OS (HR = 59.58, p-value = 9.20 × 10-48) and PFS (HR = 9.81, p-value = 1.69 × 10-23). Significant interactions were observed between PIK3R2 and PIK3CA for OS and ALOX5 and COTL1 for PFS. This study presented novel genetic variants associated with OS and PFS in CRC patients, and notable findings from the analysis of PRS and the gene-gene interaction.
Collapse
Grants
- RS-2024-00358322, 2022R1C1C1009902, RS-2024-00440787 Ministry of Science and ICT, South Korea
- RS-2024-00358322, 2022R1C1C1009902, RS-2024-00440787 Ministry of Science and ICT, South Korea
- RS-2024-00358322, 2022R1C1C1009902, RS-2024-00440787 Ministry of Science and ICT, South Korea
- RS-2024-00358322, 2022R1C1C1009902, RS-2024-00440787 Ministry of Science and ICT, South Korea
- HCRI23004, HCRI21019 Chonnam National University Hwasun Hospital
- HCRI23004, HCRI21019 Chonnam National University Hwasun Hospital
- 2520140010 Seoul National University Hospital Cohort Research Fund
- 2520140010 Seoul National University Hospital Cohort Research Fund
- 2520140010 Seoul National University Hospital Cohort Research Fund
- 2520140010 Seoul National University Hospital Cohort Research Fund
Collapse
Affiliation(s)
- Dabin Yun
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Jung-Ho Yang
- Department of Preventive Medicine, Chonnam National University Medical School, Hwasun, Jeonnam, Korea
| | - Soyoun Yang
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Jin-Ah Sim
- Department of AI Convergence, Hallym University, Chuncheon, Gangwon, Korea
| | - Minjung Kim
- Department of Surgery, College of Medicine and Hospital, Seoul National University, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Ji Won Park
- Department of Surgery, College of Medicine and Hospital, Seoul National University, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Seung Yong Jeong
- Department of Surgery, College of Medicine and Hospital, Seoul National University, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Aesun Shin
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Hwasun, Jeonnam, Korea
| | - Nan Song
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, Korea.
| |
Collapse
|
4
|
Wahnou H, Limami Y, Duval RE, Ismail B, Léger DY, Sol V, Liagre B. Photodynamic anti-cancer therapy and arachidonic acid metabolism: State of the art in 2024. ANNALES PHARMACEUTIQUES FRANÇAISES 2025:S0003-4509(25)00042-2. [PMID: 40020873 DOI: 10.1016/j.pharma.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Photodynamic therapy (PDT) has emerged as a promising and evolving modality in cancer treatment leveraging light-sensitive compounds known as photosensitizers to selectively induce cell death in malignant tissues through the generation of reactive oxygen species (ROS). This review delves into the intricate mechanisms of PDT highlighting the pivotal role of photosensitizers and the resultant oxidative stress that damages cancer cells. It explores the versatile applications of PDT across various cancer types alongside the advantages and limitations inherent to this therapy. Recent technological advancements including improved photosensitizers and novel light delivery systems are also discussed. Additionally the review examines the critical role of arachidonic acid (AA) metabolism in cancer progression detailing the cyclooxygenase, lipoxygenase and cytochrome P450 pathways and their contributions to tumor biology. By elucidating the interplay between PDT and AA metabolism the review underscores the potential of targeting AA metabolic pathways to enhance PDT efficacy. Finally it provides clinical and translational perspectives highlighting ongoing research and future directions aimed at optimizing PDT for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, BP2693 Maarif, Casablanca, Morocco.
| | - Youness Limami
- Institute of Health Sciences, Hassan First University, Settat, Morocco.
| | | | - Bassel Ismail
- College of Health and Medical Technology, Medical Laboratories Technology Department, Alayen Iraqi University, Thi-Qar 64001, Iraq.
| | - David Yannick Léger
- Université de Limoges, LABCiS UR 22722, faculté de Pharmacie, 87000 Limoges, France.
| | - Vincent Sol
- Université de Limoges, LABCiS UR 22722, faculté de Pharmacie, 87000 Limoges, France.
| | - Bertrand Liagre
- Université de Limoges, LABCiS UR 22722, faculté de Pharmacie, 87000 Limoges, France.
| |
Collapse
|
5
|
Medriano CA, Kim S, Kim LH, Bae S. Chronic Exposure of Adult Zebrafish to Polyethylene and Polyester-based Microplastics: Metabolomic and Gut Microbiome Alterations Reflecting Dysbiosis and Resilience. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136691. [PMID: 39642737 DOI: 10.1016/j.jhazmat.2024.136691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
The study explored the ecotoxicological effects of chronic exposure to microplastic (MP) on adult zebrafish, focusing on environmentally relevant concentrations of polyethylene (PE) beads and polyester (PES). High-throughput untargeted metabolomics via UPLC-QToF-MS and 16S metagenomics for gut microbiota analysis were used to assess ecotoxicity in zebrafish exposed to varying concentrations of PE and PES. The VIP (Variable Importance in Projection) scores indicated PE exposure primarily impacted phospholipids, ceramides, and nucleotide-related compounds, while PES exposure led to alterations in lipid-related compounds, chitin, and amino acid derivatives. From MSEA (Metabolite Set Enrichment Analysis) and Mummichog analyses, PE and PES significantly disrupted key metabolomic pathways associated with inflammation, immune responses, and apoptosis, including leukotriene and arachidonic acid metabolism and the formation of putative anti-inflammatory metabolites from EPA. PE caused physical disruption and inflammation of the epithelial barrier, whereas PES affected gut microbiota interactions, impairing digestion and metabolism. Although alpha diversity within the gut microbiome remained stable, beta diversity analysis revealed significant shifts in microbial composition and structure, suggesting a disruption of functional balance and an increased susceptibility to pathogens. Chronic PE and PES exposures induced shifts in the gut microbial community and interaction network with potential increases in pathogenic bacteria and alteration in commensal bacteria, demonstrating the microbiome's resilience and adaptability to stressors of MPs exposure. High-throughput metabolomics and 16S metagenomics revealed potential chronic diseases associated with inflammation, immune system disorders, metabolic dysfunction, and gut dysbiosis, highlighting the complex relationship between gut microbiome resilience and metabolic disruption under MP-induced stress, with significant ecological implications.
Collapse
Affiliation(s)
- Carl Angelo Medriano
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Sungpyo Kim
- Research Institute for Advanced Industrial Technology, Korea University, Republic of Korea
| | - Lan Hee Kim
- Research Institute for Advanced Industrial Technology, Korea University, Republic of Korea; Department of Environmental System Engineering, Korea University, Republic of Korea
| | - Sungwoo Bae
- Department of Environmental System Engineering, Korea University, Republic of Korea.
| |
Collapse
|
6
|
Makkiyah FA, Amalina S, Rahmi EP, Pradana DLC. Fractionation of an ethanolic extract of purple leaves ( Graptophyllum pictum) with antioxidant and lipoxygenase activity inhibition assay. J Adv Pharm Technol Res 2025; 16:30-34. [PMID: 40177512 PMCID: PMC11960824 DOI: 10.4103/japtr.japtr_182_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 04/05/2025] Open
Abstract
Graptophyllum pictum offers therapeutic potential that has received attention from researchers around the world. The purple leaf is native to New Guinea and has been widely distributed, including Indonesia. This study aims to determine the antioxidant activity and potential inhibition of the lipoxygenase (LOX) enzyme in the hexane fraction, ethyl acetate fraction, and water fraction of purple leaf. Samples were extracted by maceration using 96% ethanol, followed by multilevel fractionation using ethyl acetate, hexane, and water solvents. The fractions were determined for their antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl method, and their potential in LOX enzyme inhibition was analyzed using an ultraviolet-vis spectrophotometer. The ethyl acetate fraction showed the highest antioxidant activity with inhibition concentration (IC50) of 17.23 µg/mL; LOX inhibition was also demonstrated by the highest ethyl acetate fraction with IC50 133.47 µg/mL, followed by the hexane fraction, and then the water fraction. These results suggest purple leaves with ethyl acetate fraction can be a new drug innovation with antioxidant and anti-inflammatory properties, and this study can be used as an evaluation material for further drug development.
Collapse
Affiliation(s)
- Feda Anisah Makkiyah
- Department of Neurosurgery, Faculty of Medicine, Pembangunan Nasional Veteran Jakarta University, Jakarta, Indonesia
| | - Siti Amalina
- Undergraduate Medical Program, Research Unit of Regenerative and Neuroscience, Faculty of Medicine, Pembangunan Nasional Veteran Jakarta University, Jakarta, Indonesia
| | - Eldiza Puji Rahmi
- Department of Pharmacy, Faculty of Medicine, Pembangunan Nasional Veteran Jakarta University, Jakarta, Indonesia
| | | |
Collapse
|
7
|
Lavrentaki V, Kousaxidis A, Theodosis-Nobelos P, Papagiouvannis G, Koutsopoulos K, Nicolaou I. Design, synthesis, and pharmacological evaluation of indazole carboxamides of N-substituted pyrrole derivatives as soybean lipoxygenase inhibitors. Mol Divers 2024; 28:3757-3782. [PMID: 38145424 DOI: 10.1007/s11030-023-10775-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023]
Abstract
In this paper, we attempted to develop a novel class of compounds against lipoxygenase, a key enzyme in the biosynthesis of leukotrienes implicated in a series of inflammatory diseases. Given the absence of appropriate human 5-lipoxygenase crystallographic data, solved soybean lipoxygenase-1 and -3 structures were used as a template to generate an accurate pharmacophore model which was further used for virtual screening purposes. Eight compounds (1-8) have been derived from the in-house library consisting of N-substituted pyrroles conjugated with 5- or 6-indazole moieties through a carboxamide linker. This study led to the discovery of hit molecule 8 bearing a naphthyl group with the IC50 value of 22 μM according to soybean lipoxygenase in vitro assay. Isosteric replacement of naphthyl ring with quinoline moieties and reduction of carbonyl carboxamide group resulted in compounds 9-12 and 13, respectively. Compound 12 demonstrated the most promising enzyme inhibition. In addition, compounds 8 and 12 were found to reduce the carrageenan-induced paw edema in vivo by 52.6 and 49.8%, respectively. In view of the encouraging outcomes concerning their notable in vitro and in vivo anti-inflammatory activities, compounds 8 and 12 could be further optimized for the discovery of novel 5-lipoxygenase inhibitors in future.
Collapse
Affiliation(s)
- Vasiliki Lavrentaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Antonios Kousaxidis
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | - Georgios Papagiouvannis
- Department of Pharmacy, School of Health Sciences, Frederick University, 1036, Nicosia, Cyprus
| | | | - Ioannis Nicolaou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
8
|
Rahmawati SI, Indriani DW, Ningsih FN, Hardhiyuna M, Firdayani F, Ahmadi P, Rosyidah A, Septiana E, Dharmayanti NLPI, Bayu A, Putra MY. Dual anti-inflammatory activities of COX-2/5-LOX driven by kratom alkaloid extracts in lipopolysaccharide-induced RAW 264.7 cells. Sci Rep 2024; 14:28993. [PMID: 39578527 PMCID: PMC11584675 DOI: 10.1038/s41598-024-79229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
Cyclooxygenase (COX) and lipoxygenase (LOX) enzymes play a pivotal role in producing pro-inflammatory eicosanoids, including prostaglandins (PGs) and leukotrienes (LTs), in the inflammation process. Mitragynine is a primary alkaloid contained in the kratom's leaves and has been reported to show anti-inflammatory activity by suppressing COX-2 mRNA translation to lowering PGs synthesis. In this study, the Kratom's alkaloid extract containing ~ 46% mitragynine was found to exhibit dual inhibition activity towards COX-2/5-LOX enzymes at concentrations below 25 ppm in the LPS-induced RAW 264.7 macrophage cells. At these levels, no cell toxicity was observed while the cells became death (e.g., 10-46% viability at 50-100 ppm) and only COX-2 inhibition activity was observed after exposed with more than 25 ppm of alkaloid extract. In contrast, the methanolic-crude extract of Kratom's leaf containing ~ 5% mitragynine showed no inhibition toward COX-2/5-LOX enzymes and did not toxic onto the cells, even after treated at 100 ppm. The alkaloid extract suppressed several antiinflammation parameters, including ROS (64% reduction at 25 ppm), NO (30% reduction at 25 ppm), TNF-α (~ 50% reduction at 25 ppm), and IL-6 production (60% reduction at 6.25 ppm). In silico molecular studies indicated strong binding affinity of Kratom alkaloids to COX-2 and 5-LOX active sites, supporting the Kratom's alkaloids to have great potential dual inhibition activity towards COX-2/5-LOX enzymes and to be developed as a safer NSAIDs with fewer side effects.
Collapse
Affiliation(s)
- Siti Irma Rahmawati
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km. 46, 16911, Jakarta, West Java, Indonesia.
| | - Dwi Wahyu Indriani
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km. 46, 16911, Jakarta, West Java, Indonesia.
| | - Febby Nurdiya Ningsih
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km. 46, 16911, Jakarta, West Java, Indonesia
| | - Mutia Hardhiyuna
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km. 46, 16911, Jakarta, West Java, Indonesia
| | - Firdayani Firdayani
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km. 46, 16911, Jakarta, West Java, Indonesia
| | - Peni Ahmadi
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km. 46, 16911, Jakarta, West Java, Indonesia
| | - A'liyatur Rosyidah
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km. 46, 16911, Jakarta, West Java, Indonesia
| | - Eris Septiana
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km. 46, 16911, Jakarta, West Java, Indonesia
| | - Ni Luh Putu Indi Dharmayanti
- Research Organization for Health, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km. 46, 16911, Jakarta, West Java, Indonesia
| | - Asep Bayu
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km. 46, 16911, Jakarta, West Java, Indonesia
| | - Masteria Yunovilsa Putra
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km. 46, 16911, Jakarta, West Java, Indonesia.
- Faculty of Pharmacy, Universitas Indonesia, Jalan Prof. DR. Mahar Mardjono, Pondok Cina, Beji, Depok, 16424, Jakarta, West Java, Indonesia.
- National Metabolomics Collaborative Research Center, Universitas Indonesia, Kampus UI, Depok, 16424, Jakarta, West Java, Indonesia.
| |
Collapse
|
9
|
Dubey A, Sivaraman J. Investigating anti-inflammatory actions of marine algal compound against lipoxygenase concentrating on therapeutic applications through computational approach. J Biomol Struct Dyn 2024; 42:9050-9063. [PMID: 37643084 DOI: 10.1080/07391102.2023.2249115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
Inflammation is the preliminary response given to any possible harmful stimuli including infections, injury or stress by immune system where neutrophils and macrophages gets activated and produces mediators, such as nitric oxide and cytokines that serves as biomarkers of inflammation. Lipoxygenases are enzymes that peroxidises lipids and are involved in the pathogenesis of several diseases including inflammatory diseases. These are oxidative enzymes comprising a non-heme iron atom in active site and are convoluted in inflammatory reactions. Fucoidan is sulphated polysaccharide that has numerous pharmacological implications. Implications of fucoidan on inflammatory diseases are still an objective of rigorous research. Therefore, this study focusses on investigating lipoxygenase inhibitory activities of fucoidan. The mechanism of lipoxygenase inhibitory activities of fucoidan was studied via molecular docking and molecular dynamics simulations. The docking score produced by the binding of the fucoidan to the lipoxygenase was - 6.69 kcal/mol whereas, the docking score in case of Aspirin and Zileuton were -5.8 kcal/mol and -7.0 kcal/mol and it was found that fucoidan makes hydrogen bonds with lipoxygenase protein through polar amino acid glutamine at GLN 514. The results obtained from molecular dynamics simulations proposed the development of a stable complex between fucoidan and lipoxygenase due to the establishment of favourable interactions with amino acid residues and indicated efficient results when compared with Aspirin and Zileuton. This study suggested that fucoidan had anti-inflammatory potentials and thus can be used as a promising drug candidate against inflammation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akanksha Dubey
- Computational Drug Design Lab, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Jayanthi Sivaraman
- Computational Drug Design Lab, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
10
|
Di Carlo E, Sorrentino C. Oxidative Stress and Age-Related Tumors. Antioxidants (Basel) 2024; 13:1109. [PMID: 39334768 PMCID: PMC11428699 DOI: 10.3390/antiox13091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress is the result of the imbalance between reactive oxygen and nitrogen species (RONS), which are produced by several endogenous and exogenous processes, and antioxidant defenses consisting of exogenous and endogenous molecules that protect biological systems from free radical toxicity. Oxidative stress is a major factor in the aging process, contributing to the accumulation of cellular damage over time. Oxidative damage to cellular biomolecules, leads to DNA alterations, lipid peroxidation, protein oxidation, and mitochondrial dysfunction resulting in cellular senescence, immune system and tissue dysfunctions, and increased susceptibility to age-related pathologies, such as inflammatory disorders, cardiovascular and neurodegenerative diseases, diabetes, and cancer. Oxidative stress-driven DNA damage and mutations, or methylation and histone modification, which alter gene expression, are key determinants of tumor initiation, angiogenesis, metastasis, and therapy resistance. Accumulation of genetic and epigenetic damage, to which oxidative stress contributes, eventually leads to unrestrained cell proliferation, the inhibition of cell differentiation, and the evasion of cell death, providing favorable conditions for tumorigenesis. Colorectal, breast, lung, prostate, and skin cancers are the most frequent aging-associated malignancies, and oxidative stress is implicated in their pathogenesis and biological behavior. Our aim is to shed light on the molecular and cellular mechanisms that link oxidative stress, aging, and cancers, highlighting the impact of both RONS and antioxidants, provided by diet and exercise, on cellular senescence, immunity, and development of an antitumor response. The dual role of ROS as physiological regulators of cell signaling responsible for cell damage and diseases, as well as its use for anti-tumor therapeutic purposes, will also be discussed. Managing oxidative stress is crucial for promoting healthy aging and reducing the risk of age-related tumors.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
11
|
Liaqat S, Fatima B, Hussain D, Imran M, Zahra Jawad SE, Imran M, Saeed A, Majeed S, Najam-Ul-Haq M. Doxorubicin encapsulated blend of sitagliptin-lignin polymeric drug delivery system for effective combination therapy against cancer. Int J Biol Macromol 2024; 269:132146. [PMID: 38734342 DOI: 10.1016/j.ijbiomac.2024.132146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/22/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
In this research, a sitagliptin-lignin biopolymer (SL) containing zinc selenide quantum dots (ZnSe QDs) and doxorubicin (doxo) was synthesized. The fabricated polymeric drug delivery system was characterized via FTIR, XRD, SEM, TGA, IR, and DSC. SLQD-Doxo exhibited an irregular surface with a 32 nm diameter and well-defined surface chemistry. Drug loading efficiency was assessed at different concentrations, pH levels, time intervals, and temperatures, and drug kinetics were calculated. Maximum drug release was observed at 6 μmol concentration after 24 h, pH of 6.5 and 45 °C. The maximum drug encapsulation efficiency was 81.75 %. SLQD-Doxo demonstrated 24.4 ± 1.04 % anti-inflammatory activity, and the maximum lipoxygenase inhibition in a concentration-dependent manner was 71.45 ± 2.02 %, compared to indomethacin, a standard anticancer drug. The designed system was applied to breast cancer MCF-7 cells to evaluate anticancer activity. Cytotoxicity of SLQD-Doxo resulted in 24.48 ± 1.64 dead cells and 74.39 ± 4.12 viable cells. Lignin's polyphenolic nature resulted in good antioxidant activity of LLQD-Doxo. The combination of SLQD-Doxo was appropriate for drug delivery at high temperatures and acidic pH of tumor cells compared to healthy cells.
Collapse
Affiliation(s)
- Sana Liaqat
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Imran
- Biochemistry Section, Institute of Chemical Sciences, University of Peshawar, 25120, Pakistan
| | - Shan E Zahra Jawad
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Imran
- Research Center for Advanced for Advanced Materials Science (RCAMS), Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Adeela Saeed
- Department of Chemistry, The Women University Multan, Multan 60000, Pakistan
| | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| |
Collapse
|
12
|
Zagórska-Dziok M, Nowak A, Zgadzaj A, Oledzka E, Kędra K, Wiącek AE, Sobczak M. New Polymeric Hydrogels with Cannabidiol and α-Terpineol as Potential Materials for Skin Regeneration-Synthesis and Physicochemical and Biological Characterization. Int J Mol Sci 2024; 25:5934. [PMID: 38892121 PMCID: PMC11173307 DOI: 10.3390/ijms25115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Dermatology and cosmetology currently prioritize healthy, youthful-looking skin. As a result, research is being conducted worldwide to uncover natural substances and carriers that allow for controlled release, which could aid in the battle against a variety of skin illnesses and slow the aging process. This study examined the biological and physicochemical features of novel hydrogels containing cannabidiol (CBD) and α-terpineol (TER). The hydrogels were obtained from ε-caprolactone (CL) and poly(ethylene glycol) (PEG) copolymers, diethylene glycol (DEG), poly(tetrahydrofuran) (PTHF), 1,6-diisocyanatohexane (HDI), and chitosan (CHT) components, whereas the biodegradable oligomers were synthesized using the enzyme ring-opening polymerization (e-ROP) method. The in vitro release rate of the active compounds from the hydrogels was characterized by mainly first-order kinetics, without a "burst release". The antimicrobial, anti-inflammatory, cytotoxic, antioxidant, and anti-aging qualities of the designed drug delivery systems (DDSs) were evaluated. The findings indicate that the hydrogel carriers that were developed have the ability to scavenge free radicals and impact the activity of antioxidant enzymes while avoiding any negative effects on keratinocytes and fibroblasts. Furthermore, they have anti-inflammatory qualities by impeding protein denaturation as well as the activity of proteinase and lipoxygenase. Additionally, their ability to reduce the multiplication of pathogenic bacteria and inhibit the activity of collagenase and elastase has been demonstrated. Thus, the developed hydrogel carriers may be effective systems for the controlled delivery of CBD, which may become a valuable tool for cosmetologists and dermatologists.
Collapse
Affiliation(s)
- Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Faculty of Medicine, University of Information Technology and Management in Rzeszow, 2 Sucharskiego St., 35-225 Rzeszow, Poland;
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Anna Zgadzaj
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland;
| | - Ewa Oledzka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| | - Karolina Kędra
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka St., 01-224 Warsaw, Poland;
| | - Agnieszka Ewa Wiącek
- Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, pl. Sq. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland;
| | - Marcin Sobczak
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| |
Collapse
|
13
|
Kanwal S, Ahmad S, Yasmin Begum M, Siddiqua A, Rao H, Ghalloo BA, Shahzad MN, Ahmad I, Khan KUR. Chemical Profiling, in-vitro biological evaluation and molecular docking studies of Ruellia tweediana: An unexplored plant. Saudi Pharm J 2024; 32:101939. [PMID: 38261891 PMCID: PMC10797148 DOI: 10.1016/j.jsps.2023.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/25/2023] [Indexed: 01/25/2024] Open
Abstract
Many Ruellia species have been utilized in traditional medicine and despite the prevalent use of Ruellia tweediana in folk medicine, its antioxidant potential and polyphenol content have not been investigated. Therefore, the present study aimed to explore the medicinal value of R. tweediana by evaluating its total phenolic (TPC) and flavonoid contents (TFC), GC-MS analysis, antioxidant, antibacterial, and enzyme inhibition activities. The TPC and TFC of the extract/fractions were assessed using the Folin-Ciocalteu and aluminum trichloride methods, respectively. To determine the antioxidant capacity, five different assays were used: DPPH, ABTS, CUPRAC, FRAP, and metal chelating assays. The inhibition activity against α-glucosidase, α-amylase, cholinesterases, and lipoxygenase enzymes was also analyzed. Furthermore, GC-MS was performed for chemical screening of non-polar fraction. The methanol extract showed the maximum TPC (167.34 ± 2.23 mg GAE/g) and TFC (120.43 ± 1.71 mg RE/g) values among all the tested samples. GC-MS screening of the n-hexane fraction showed the presence of 40 different phytoconstituents. The results demonstrated the highest scavenging potential of the methanol extract against DPPH (167.79 ± 2.75 mg TE/g) and ABTS (255.32 ± 2.91 mg TE/g) radicals, as well as the metal-reducing capacity measured by CUPRAC (321.34 ± 3.09 mg TE/g), FRAP (311.32 ± 2.91 mg TE/g), and metal chelating assay (246.78 ± 10.34 mg EDTAE/g). Notably, the n-hexane fraction revealed the highest α-glucosidase and α-amylase inhibition activity (186.8 ± 2.84 and 179.7 ± 4.32 mg ACAE/g, respectively) while methanol extract showed highest acetylcholinesterase and butyrylcholinesterase inhibition activity (198.6 ± 3.31 and 184.3 ± 2.92 mg GALE/g, respectively). The GC-MS identified Lupeol showed best binding affinity with all docked enzymes as compared to standard compounds. The presence of bioactive phytoconstituents showed by GC-MS underscores the medicinal importance of R. tweediana, making it a promising candidate for natural medicine.
Collapse
Affiliation(s)
- Shamsa Kanwal
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University, Jonesboro, AR 72404, United States of America
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University Abha 61421, Saudi Arabia
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Huma Rao
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Bilal Ahmad Ghalloo
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis 55454, United States of America
| | - Muhammad Nadeem Shahzad
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Imtiaz Ahmad
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Primary & Secondary Health Department, Punjab 54000, Pakistan
| | - Kashif-ur-Rehman Khan
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
14
|
Jayathilake AG, Luwor RB, Nurgali K, Su XQ. Molecular Mechanisms Associated with the Inhibitory Role of Long Chain n-3 PUFA in Colorectal Cancer. Integr Cancer Ther 2024; 23:15347354241243024. [PMID: 38708673 PMCID: PMC11072084 DOI: 10.1177/15347354241243024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/14/2024] [Accepted: 03/11/2024] [Indexed: 05/07/2024] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death in the world. Multiple evidence suggests that there is an association between excess fat consumption and the risk of CRC. The long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential for human health, and both in vitro and in vivo studies have shown that these fatty acids can prevent CRC development through various molecular mechanisms. These include the modulation of arachidonic acid (AA) derived prostaglandin synthesis, alteration of growth signaling pathways, arrest of the cell cycle, induction of cell apoptosis, suppression of angiogenesis and modulation of inflammatory response. Human clinical studies found that LC n-3 PUFA combined with chemotherapeutic agents can improve the efficacy of treatment and reduce the dosage of chemotherapy and associated side effects. In this review, we discuss comprehensively the anti-cancer effects of LC n-3 PUFA on CRC, with a main focus on the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Rodney Brain Luwor
- The University of Melbourne, Melbourne, VIC, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
- Australian Institute for Muscular Skeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Xiao Qun Su
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Rainatou B, Esther BKWLM, Boukaré K, Souleymane C, Moumouni K, Noufou O. Phytochemical Study and In Vitro Biological Activities of Hibiscus panduriformis Burm. f. (Malvaceae), Alternanthera pungens Kunth (Amaranthaceae), and Wissadula rostrata (Schumach.) Hook. f. (Malvaceae). BIOMED RESEARCH INTERNATIONAL 2023; 2023:8289750. [PMID: 38162338 PMCID: PMC10756742 DOI: 10.1155/2023/8289750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/24/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
The present study investigated the phytochemical content of Hibiscus panduriformis, Alternanthera pungens, and Wissadula rostrata and assessed their radical scavenging and anti-inflammatory properties. n-Hexane, dichloromethane (DCM), ethyl acetate, and methanol extracts were prepared from the powdered plant parts. The phytochemical analysis was performed using qualitative high-performance thin-layer chromatography, and polyphenols were quantified using well-established methods. The anti-inflammatory effect was by lipoxygenase inhibition, while the antiradical impact was evaluated through DPPH and ABTS radicals. Steroids, triterpenoids, flavonoids, and tannins were identified in the three plants. The highest phenolic content (95.67 ± 2.19 mg gallic acid equivalent/g) was obtained in the methanolic extract of W. rostrata, while the lowest was measured in H. panduriformis. H. panduriformis was found to be highly rich in flavonoids (61.22 ± 0.09 mg rutin equivalent/g), condensed tannins (62.53 ± 0.03 mg catechin equivalent/g), and hydrolyzable tannins (125.1 ± 1.02 mg tannic acid equivalent/g). The methanolic extract of H. panduriformis displayed the greatest antilipoxygenase activity with an IC50 value of 8.78 ± 1.05 μg/mL. It should be noted that although a moderate to low effect was observed, the extracts were more likely to scavenge DPPH (IC50 values ranged from 0.106 ± 0.010 to 1 mg/mL) than ABTS radicals. There was a strong to moderate correlation between the antilipoxygenase and DPPH radical scavenging effects of the methanolic extracts and total phenolic content (antilipoxygenase, r = 0.7175; DPPH, r = 0.9376). Furthermore, it is worth noting that this is the first report investigating the phytochemical analysis and in vitro biological properties of Hibiscus panduriformis. The results highlighted the richness of this plant in polyphenols and demonstrated its high and moderate effects on lipoxygenase and DPPH radicals, respectively. To this intent, further in vivo and in vitro studies on this plant, along with exhaustive phytochemical analysis, are needed.
Collapse
Affiliation(s)
- Boly Rainatou
- Institute of Research in Health Sciences, Research & Development Laboratory/Phytomedicines and Medicines, 03 PO 7047, Ouagadougou 03, Burkina Faso
| | | | - Kaboré Boukaré
- Institute of Research in Health Sciences, Research & Development Laboratory/Phytomedicines and Medicines, 03 PO 7047, Ouagadougou 03, Burkina Faso
- Laboratory of Organic Chemistry and Applied Physic (LCOPA), Doctoral School of Sciences and Techniques, University Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Compaoré Souleymane
- Institute of Research in Health Sciences, Research & Development Laboratory/Phytomedicines and Medicines, 03 PO 7047, Ouagadougou 03, Burkina Faso
| | - Koala Moumouni
- Institute of Research in Health Sciences, Research & Development Laboratory/Phytomedicines and Medicines, 03 PO 7047, Ouagadougou 03, Burkina Faso
| | - Ouédraogo Noufou
- Institute of Research in Health Sciences, Research & Development Laboratory/Phytomedicines and Medicines, 03 PO 7047, Ouagadougou 03, Burkina Faso
| |
Collapse
|
16
|
Kalinkin AI, Sigin VO, Kuznetsova EB, Ignatova EO, Vinogradov II, Vinogradov MI, Vinogradov IY, Zaletaev DV, Nemtsova MV, Kutsev SI, Tanas AS, Strelnikov VV. Epigenomic Profiling Advises Therapeutic Potential of Leukotriene Receptor Inhibitors for a Subset of Triple-Negative Breast Tumors. Int J Mol Sci 2023; 24:17343. [PMID: 38139172 PMCID: PMC10743620 DOI: 10.3390/ijms242417343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive molecular subtype, with a poor survival rate compared to others subtypes. For a long time, chemotherapy was the only systemic treatment for TNBC, and the identification of actionable molecular targets might ultimately improve the prognosis for TNBC patients. We performed a genome-wide analysis of DNA methylation at CpG islands on a collection of one hundred ten breast carcinoma samples and six normal breast tissue samples using reduced representation bisulfite sequencing with the XmaI restriction enzyme (XmaI-RRBS) and identified a subset of TNBC samples with significant hypomethylation at the LTB4R/LTB4R2 genes' CpG islands, including CpG dinucleotides covered with cg12853742 and cg21886367 HumanMethylation 450K microarray probes. Abnormal DNA hypomethylation of this region in TNBC compared to normal samples was confirmed by bisulfite Sanger sequencing. Gene expression generally anticorrelates with promoter methylation, and thus, the promoter hypomethylation detected and confirmed in our study might be revealed as an indirect marker of high LTB4R/LTB4R2 expression using a simple methylation-sensitive PCR test. Analysis of RNA-seq expression and DNA methylation data from the TCGA dataset demonstrates that the expression of the LTB4R and LTB4R2 genes significantly negatively correlates with DNA methylation at both CpG sites cg12853742 (R = -0.4, p = 2.6 × 10-6; R = -0.21, p = 0.015) and cg21886367 (R = -0.45, p = 7.3 × 10-8; R = -0.24, p = 0.005), suggesting the upregulation of these genes in tumors with abnormal hypomethylation of their CpG island. Kaplan-Meier analysis using the TCGA-BRCA gene expression and clinical data revealed poorer overall survival for TNBC patients with an upregulated LTB4R. To this day, only the leukotriene inhibitor LY255283 has been tested on an MCF-7/DOX cell line, which is a luminal A breast cancer molecular subtype. Other studies compare the effects of Montelukast and Zafirlukast (inhibitors of the cysteinyl leukotriene receptor, which is different from LTB4R/LTB4R2) on the MDA-MB-231 (TNBC) cell line, with high methylation and low expression levels of LTB4R. In our study, we assess the therapeutic effects of various drugs (including leukotriene receptor inhibitors) with the DepMap gene effect and drug sensitivity data for TNBC cell lines with hypomethylated and upregulated LTB4R/LTB4R2 genes. LY255283, Minocycline, Silibinin, Piceatannol, Mitiglinide, 1-Azakenpaullone, Carbetocin, and Pim-1-inhibitor-2 can be considered as candidates for the additional treatment of TNBC patients with tumors demonstrating LTB4R/LTB4R2 hypomethylation/upregulation. Finally, our results suggest that the epigenetic status of leukotriene B4 receptors is a novel, potential, predictive, and prognostic biomarker for TNBC. These findings might improve individualized therapy for TNBC patients by introducing new therapeutic adjuncts as anticancer agents.
Collapse
Affiliation(s)
- Alexey I. Kalinkin
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Vladimir O. Sigin
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Ekaterina B. Kuznetsova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Ekaterina O. Ignatova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
- Nikolay Nikolaevich Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Ilya I. Vinogradov
- Regional Clinical Oncology Dispensary, 390011 Ryazan, Russia;
- Department of Histology, Pathological Anatomy and Medical Genetics, Ryazan State Medical University, 390026 Ryazan, Russia; (M.I.V.); (I.Y.V.)
| | - Maxim I. Vinogradov
- Department of Histology, Pathological Anatomy and Medical Genetics, Ryazan State Medical University, 390026 Ryazan, Russia; (M.I.V.); (I.Y.V.)
| | - Igor Y. Vinogradov
- Department of Histology, Pathological Anatomy and Medical Genetics, Ryazan State Medical University, 390026 Ryazan, Russia; (M.I.V.); (I.Y.V.)
| | - Dmitry V. Zaletaev
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Marina V. Nemtsova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Sergey I. Kutsev
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Alexander S. Tanas
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Vladimir V. Strelnikov
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| |
Collapse
|
17
|
Li C, Yang X, Li H, Fu Y, Wang W, Jin X, Bian L, Peng L. Postoperative ratio of C-reactive protein to albumin is an independent prognostic factor for gastric cancer. Eur J Med Res 2023; 28:360. [PMID: 37735699 PMCID: PMC10515040 DOI: 10.1186/s40001-023-01334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE The role of postoperative of the ratio of c-reactive protein to albumin (CRP/Alb ratio) in the prognosis of gastric cancer is rarely evaluated. Our purpose was to investigate the correlation of the postoperative CRP/Alb ratio and long-term prognosis of gastric cancer. METHODS We enrolled 430 patients who suffered from radical gastrectomy. The commonly used inflammatory indices, clinical-pathological characteristics and oncologic outcomes were recorded. The median was used to the cut-off value for preoperative and postoperative CRP/Alb ratio, respectively. Kaplan-Meier analysis and Cox proportional hazards regression model were performed to determine its prognostic significance. RESULTS In univariate analysis, there were significant differences were observed in overall survival (OS) according to perioperative CRP/Alb ratio, c-reactive protein (CRP), serum albumin (Alb), respectively. According to the multivariate analysis, higher postoperative CRP/Alb ratio (HR 2.03, 95% CI 1.55-2.66, P < 0.001), lower postoperative albumin (Alb), higher preoperative c-reactive protein (CRP) and higher postoperative CRP were indicated a shorter overall survival. CONCLUSION Postoperative inflammatory factors in patients with gastric cancer should be pay attention, especially postoperative CRP/Alb ratio may be an independent predictor of long-term prognosis of gastric cancer.
Collapse
Affiliation(s)
- Chenxi Li
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xuhui Yang
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Hui Li
- Department of Oncology, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Fu
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wenying Wang
- Senior Department of Obstetrics & Gynecology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Xin Jin
- Senior Department of Hepato-Pancreato-Biliary Surgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Lihua Bian
- Department of Obstetrics and Gynecology, Hainan Hospital of PLA General Hospital, Sanya, China
| | - Liang Peng
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
18
|
Kusumah J, Castañeda-Reyes ED, Bringe NA, Gonzalez de Mejia E. Soybean ( Glycine max) INFOGEST Colonic Digests Attenuated Inflammatory Responses Based on Protein Profiles of Different Varieties. Int J Mol Sci 2023; 24:12396. [PMID: 37569771 PMCID: PMC10418973 DOI: 10.3390/ijms241512396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Soybean compounds have been established to modulate inflammation, but less is known about how whole soybean compositions work together after digestion. The objective was to evaluate and compare the anti-inflammatory responses of different soybean varieties under simulated gastrointestinal digestion, with additional consideration of the glycinin:β-conglycinin ratio (GBR). Soybean colonic digests (SCD) inhibited cyclooxygenase (COX)-2 (25-82%), 5-lipoxidase (LOX) (18-35%), and inducible nitric oxide (iNOS) (8-61%). Varieties 88, GN3, and 93 were the most effective inhibitors. SCD (1 mg/mL) of varieties 81 and GN1 significantly (p < 0.05) reduced nitrite production by 44 and 47%, respectively, compared to lipopolysaccharide (LPS)-stimulated macrophages. SCD effectively reduced pro-inflammatory cytokine interleukin (IL)-6 (50 and 80% for 96 and GN1, respectively). Western blot results showed a decrease in the expression of iNOS, p65, and p50. The GBR was in the range of 0.05-1.57. Higher ratio correlated with higher production of IL-1β (r = 0.44) and tumor necrosis factor-alpha (TNF-α, r = 0.56). Inflammatory microarray results showed a significant decrease in expression of markers granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-6 in cells treated with GN1 SCD compared to LPS. The results suggested that SCD exerted its anti-inflammatory potential through nuclear factor kappa B (NF-κΒ) pathway inhibition by decreasing the levels of NF-κB-dependent cytokines and subunits, and inhibition of pro-inflammatory enzyme activity.
Collapse
Affiliation(s)
- Jennifer Kusumah
- 228 Edward R Madigan Lab, Department Food Science, and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (J.K.); (E.D.C.-R.)
| | - Erick Damian Castañeda-Reyes
- 228 Edward R Madigan Lab, Department Food Science, and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (J.K.); (E.D.C.-R.)
| | | | - Elvira Gonzalez de Mejia
- 228 Edward R Madigan Lab, Department Food Science, and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (J.K.); (E.D.C.-R.)
| |
Collapse
|
19
|
Sharif MA, Khan AM, Salekeen R, Rahman MH, Mahmud S, Bibi S, Biswas P, Nazmul Hasan M, Islam KMD, Rahman SM, Islam ME, Alshammari A, Alharbi M, Hayee A. Phyllanthus emblica (Amla) methanolic extract regulates multiple checkpoints in 15-lipoxygenase mediated inflammopathies: Computational simulation and in vitro evidence. Saudi Pharm J 2023; 31:101681. [PMID: 37576860 PMCID: PMC10415228 DOI: 10.1016/j.jsps.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/15/2023] [Indexed: 08/15/2023] Open
Abstract
Amla (Phyllanthus emblica) has long been used in traditional folk medicine to prevent and cure a variety of inflammatory diseases. In this study, the antioxidant activity (DPPH scavenging and reducing power), anti-inflammatory activity (RBC Membrane Stabilization and 15-LOX inhibition), and anticoagulation activity (Serin protease inhibition and Prothrombin Time assays) of the methanolic extract of amla were conducted. Amla exhibited a substantial amount of phenolic content (TPC: 663.53 mg GAE/g) and flavonoid content (TFC: 418.89 mg GAE/g). A strong DPPH scavenging effect was observed with an IC50 of 311.31 µg/ml as compared to standard ascorbic acid with an IC50 of 130.53 µg/ml. In reducing power assay, the EC50 value of the extract was found to be 196.20 µg/ml compared to standard ascorbic acid (EC50 = 33.83 µg/ml). The IC50 value of the RBC membrane stabilization and 15-LOX assays was observed as 101.08 µg/ml (IC50 of 58.62 µg/ml for standard aspirin) and 195.98 µg/ml (IC50 of 19.62 µg/ml for standard quercetin), respectively. The extract also strongly inhibited serine protease (trypsin) activity with an IC50 of 505.81 µg/ml (IC50 of 295.44 µg/ml for standard quercetin). The blood coagulation time (PTT) was found to be 11.91 min for amla extract and 24.11 min for standard Warfarin. Thus, the findings of an in vitro study revealed that the methanolic extract of amla contains significant antioxidant, anti-inflammatory, and anticoagulation activity. Furthermore, in silico docking and simulation of reported phytochemicals of amla with human 15-LOXA and 15-LOXB were carried out to validate the anti-inflammatory activity of amla. In this analysis, epicatechin and catechin showed greater molecular interaction and were considerably stable throughout the 100 ns simulation with 15-lipoxygenase A (15-LOXA) and 15-lipoxygenase B (15-LOXB) respectively.
Collapse
Affiliation(s)
- Md. Arman Sharif
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Arman Mahmud Khan
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md. Hafijur Rahman
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Sakib Mahmud
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 41000, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - S.M. Mahbubur Rahman
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md. Emdadul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdul Hayee
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
20
|
Holanda FH, Pereira RR, Marinho VHS, Jimenez DEQ, Costa Ferreira LMM, Ribeiro-Costa RM, de Sousa FFO, Ferreira IM. Development of nanostructured formulation from naringenin and silk fibroin and application for inhibition of lipoxygenase (LOX). RSC Adv 2023; 13:23063-23075. [PMID: 37529367 PMCID: PMC10388158 DOI: 10.1039/d3ra02374e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
A simple low-energy method was used to obtain polymeric nanoparticles containing silk fibroin (SF), fatty butyl esters (oily phase) and the flavonoid naringenin. Experimental planning (Box-Behnken) was applied to investigate the optimal conditions for three factors (variation of the concentrations of SF, naringenin and fatty butyl ester) at three levels, with evaluation of particle size, polydispersity index (PDI) and zeta potential (ZP) as responses. The results showed that the polymeric particle was formed with sizes of 179.6 to 633.9 nm, PDI of 0.33 to 0.77 and ZP of -60.4 to -38.8 mV. The best responses under the optimized conditions (Nari-SF 9 and 15) were characterized through transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR), visible ultraviolet (UV-vis) and fluorescence, which confirmed that coated nanoparticles had been obtained. It was shown that the nanoformulation had excellent stability, the bioavailability of naringenin had been improved through use of the biopolymer and high inhibition of the enzyme lipoxygenase had been achieved in vitro.
Collapse
Affiliation(s)
- Fabrício H Holanda
- Laboratório de Biocatálise e Síntese Orgânica Aplicada, Departamento de Ciências Exatas e Tecnológicas, Universidade Federal do Amapá Rod. JK, km 02 68902-280 Macapá Amapá Brazil
- Programa de Pós-graduação em Inovação Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá Rod. JK, km 02 68902-280 Macapá Amapá Brazil
| | - Rayanne R Pereira
- Universidade Federal do Oeste do Pará, Instituto de Saúde Coletiva (Unidade Tapajós) 68035-110 Santarém Pará Brazil
| | - Victor Hugo S Marinho
- Laboratório de Biocatálise e Síntese Orgânica Aplicada, Departamento de Ciências Exatas e Tecnológicas, Universidade Federal do Amapá Rod. JK, km 02 68902-280 Macapá Amapá Brazil
| | - David E Q Jimenez
- Laboratório de Biocatálise e Síntese Orgânica Aplicada, Departamento de Ciências Exatas e Tecnológicas, Universidade Federal do Amapá Rod. JK, km 02 68902-280 Macapá Amapá Brazil
| | | | - Roseane M Ribeiro-Costa
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará Belém PA Brazil
| | - Francisco Fábio O de Sousa
- Programa de Pós-graduação em Inovação Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá Rod. JK, km 02 68902-280 Macapá Amapá Brazil
| | - Irlon M Ferreira
- Laboratório de Biocatálise e Síntese Orgânica Aplicada, Departamento de Ciências Exatas e Tecnológicas, Universidade Federal do Amapá Rod. JK, km 02 68902-280 Macapá Amapá Brazil
- Programa de Pós-graduação em Inovação Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá Rod. JK, km 02 68902-280 Macapá Amapá Brazil
| |
Collapse
|
21
|
Masuri S, Moráň L, Vesselá T, Cadoni E, Cabiddu MG, Pečinka L, Gabrielová V, Meloni F, Havel J, Vaňhara P, Pivetta T. A novel heteroleptic Cu(II)-phenanthroline-UDCA complex as lipoxygenase inhibitor and ER-stress inducer in cancer cell lines. J Inorg Biochem 2023; 246:112301. [PMID: 37392615 DOI: 10.1016/j.jinorgbio.2023.112301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
A new heteroleptic copper(II) compound named C0-UDCA was prepared by reaction of [Cu(phen)2(OH2)](ClO4)2 (C0) with the bile ursodeoxycholic acid (UDCA). The resulting compound is able to inhibit the lipoxygenase enzyme showing more efficacy than the precursors C0 and UDCA. Molecular docking simulations clarified the interactions with the enzyme as due to allosteric modulation. The new complex shows antitumoral effect on ovarian (SKOV-3) and pancreatic (PANC-1) cancer cells at the Endoplasmic Reticulum (ER) level by activating the Unfolded Protein Response. In particular, the chaperone BiP, the pro-apoptotic protein CHOP and the transcription factor ATF6 are upregulated in the presence of C0-UDCA. The combination of Intact Cell MALDI-MS and statistical analysis have allowed us to discriminate between untreated and treated cells based on their mass spectrometry fingerprints.
Collapse
Affiliation(s)
- Sebastiano Masuri
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Lukáš Moráň
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic
| | - Tereza Vesselá
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Enzo Cadoni
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Maria Grazia Cabiddu
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Lukáš Pečinka
- Department of Chemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Viktorie Gabrielová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Francesca Meloni
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Josef Havel
- Department of Chemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Tiziana Pivetta
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
22
|
Patil PP, Kumar P, Khanal P, Patil VS, Darasaguppe HR, Bhandare VV, Bhatkande A, Shukla S, Joshi RK, Patil BM, Roy S. Computational and experimental pharmacology to decode the efficacy of Theobroma cacao L. against doxorubicin-induced organ toxicity in EAC-mediated solid tumor-induced mice. Front Pharmacol 2023; 14:1174867. [PMID: 37324470 PMCID: PMC10264642 DOI: 10.3389/fphar.2023.1174867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Background and objective: Doxorubicin is extensively utilized chemotherapeutic drug, and it causes damage to the heart, liver, and kidneys through oxidative stress. Theobroma cacao L (cocoa) is reported to possess protective effects against several chemical-induced organ damages and also acts as an anticancer agent. The study aimed to determine whether the administration of cocoa bean extract reduces doxorubicin-induced organ damage in mice with Ehrlich ascites carcinoma (EAC) without compromising doxorubicin efficacy. Methodology: Multiple in vitro methods such as cell proliferation, colony formation, chemo-sensitivity, and scratch assay were carried out on cancer as well as normal cell lines to document the effect of cocoa extract (COE) on cellular physiology, followed by in vivo mouse survival analysis, and the organ-protective effect of COE on DOX-treated animals with EAC-induced solid tumors was then investigated. In silico studies were conducted on cocoa compounds with lipoxygenase and xanthine oxidase to provide possible molecular explanations for the experimental observations. Results: In vitro studies revealed potent selective cytotoxicity of COE on cancer cells compared to normal. Interestingly, COE enhanced DOX potency when used in combination. The in vivo results revealed reduction in EAC and DOX-induced toxicities in mice treated with COE, which also improved the mouse survival time; percentage of lifespan; antioxidant defense system; renal, hepatic, and cardiac function biomarkers; and also oxidative stress markers. COE reduced DOX-induced histopathological alterations. Through molecular docking and MD simulations, we observed chlorogenic acid and 8'8 methylenebiscatechin, present in cocoa, to have the highest binding affinity with lipoxygenase and xanthine oxidase, which lends support to their potential in ameliorating oxidative stress. Conclusion: The COE reduced DOX-induced organ damage in the EAC-induced tumor model and exhibited powerful anticancer and antioxidant effects. Therefore, COE might be useful as an adjuvant nutritional supplement in cancer therapy.
Collapse
Affiliation(s)
- Priyanka P. Patil
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka, India
| | - Pranjal Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Pukar Khanal
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka, India
| | - Vishal S. Patil
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka, India
| | - Harish R. Darasaguppe
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | | | - Arati Bhatkande
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | - Sudhanshu Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Rajesh K. Joshi
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | | | - Subarna Roy
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
| |
Collapse
|
23
|
Myriagkou M, Papakonstantinou E, Deligiannidou GE, Patsilinakos A, Kontogiorgis C, Pontiki E. Novel Pyrimidine Derivatives as Antioxidant and Anticancer Agents: Design, Synthesis and Molecular Modeling Studies. Molecules 2023; 28:molecules28093913. [PMID: 37175322 PMCID: PMC10180197 DOI: 10.3390/molecules28093913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The heterocyclic ring system of pyrido [2,3-d]pyrimidines is a privileged scaffold in medicinal chemistry, possessing several biological activities. The synthesis of the pyrimidine derivatives was performed via the condensation of a suitable α,β-unsaturated ketone with 4-amino-6-hydroxy-2-mercaptopyrimidine monohydrate in glacial acetic acid. Chalcones were synthesized, as starting materials, via the Claisen-Schmidt condensation of an appropriately substituted ketone and an appropriately substituted aldehyde in the presence of aqueous KOH 40% w/v in ethanol. All the synthesized compounds were characterized using IR, 1H-NMR, 13C-NMR, LC-MS and elemental analysis. The synthesized compounds were evaluated for their antioxidant (DPPH assay), anti-lipid peroxidation (AAPH), anti-LOX activities and ability to interact with glutathione. The compounds do not interact significantly with DPPH but strongly inhibit lipid peroxidation. Pyrimidine derivatives 2a (IC50 = 42 μΜ), 2f (IC50 = 47.5 μΜ) and chalcone 1g (IC50 = 17 μM) were the most potent lipoxygenase inhibitors. All the tested compounds were found to interact with glutathione, apart from 1h. Cell viability and cytotoxicity assays were performed with the HaCaT and A549 cell lines, respectively. In the MTT assay towards the HaCaT cell line, none of the compounds presented viability at 100 μM. On the contrary, in the MTT assay towards the A549 cell line, the tested compounds showed strong cytotoxicity at 100 μM, with derivative 2d presenting the strongest cytotoxic effects at the concentration of 50 μΜ.
Collapse
Affiliation(s)
- Malama Myriagkou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evangelia Papakonstantinou
- Laboratory of Hygiene and Environmental Protection, School of Medicine, Democritus University of Thrace, 25510 Alexandroupoli, Greece
| | - Georgia-Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, School of Medicine, Democritus University of Thrace, 25510 Alexandroupoli, Greece
| | | | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, School of Medicine, Democritus University of Thrace, 25510 Alexandroupoli, Greece
| | - Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
24
|
Anantachoke N, Duangrat R, Sutthiphatkul T, Ochaikul D, Mangmool S. Kombucha Beverages Produced from Fruits, Vegetables, and Plants: A Review on Their Pharmacological Activities and Health Benefits. Foods 2023; 12:foods12091818. [PMID: 37174355 PMCID: PMC10178031 DOI: 10.3390/foods12091818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Kombucha is a traditional health beverage produced by fermenting sweetened tea with a symbiotic culture of bacteria and yeasts. Consumption of kombucha beverages has been growing and there is kombucha commercially available worldwide as one of the most famous low-alcohol beverages. Kombucha beverages have been claimed to have beneficial effects on human health because they contain a variety of bioactive compounds that possess various functional properties. At present, several kinds of raw material (e.g., milk, fruit, vegetables, and herbs) have been fermented with kombucha consortium and consumed as kombucha beverages. Although several studies have been written regarding the biological activities of kombucha and raw materials, there is however little information available on the characterization of their components as well as the biological activities of fermented kombucha from many raw material mixtures. Several pharmacological activities were reviewed in the scientific literature, describing their potential implications for human health. In addition, the adverse effects and toxicity of kombucha consumption were also reviewed. In this study, we focused on the main and latest studies of the pharmacological effects of kombucha beverages produced from various kinds of raw materials, including antioxidant, anti-inflammatory, immunomodulatory, antimicrobial, anticancer, antidiabetic, antihypertensive, and antihyperlipidemic effects in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Natthinee Anantachoke
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tanyarat Sutthiphatkul
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Duangjai Ochaikul
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
25
|
Faggioli F, Velarde MC, Wiley CD. Cellular Senescence, a Novel Area of Investigation for Metastatic Diseases. Cells 2023; 12:cells12060860. [PMID: 36980201 PMCID: PMC10047218 DOI: 10.3390/cells12060860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Metastasis is a systemic condition and the major challenge among cancer types, as it can lead to multiorgan vulnerability. Recently, attention has been drawn to cellular senescence, a complex stress response condition, as a factor implicated in metastatic dissemination and outgrowth. Here, we examine the current knowledge of the features required for cells to invade and colonize secondary organs and how senescent cells can contribute to this process. First, we describe the role of senescence in placentation, itself an invasive process which has been linked to higher rates of invasive cancers. Second, we describe how senescent cells can contribute to metastatic dissemination and colonization. Third, we discuss several metabolic adaptations by which senescent cells could promote cancer survival along the metastatic journey. In conclusion, we posit that targeting cellular senescence may have a potential therapeutic efficacy to limit metastasis formation.
Collapse
Affiliation(s)
- Francesca Faggioli
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Istituto di Ricerca Genetica e Biomedica (IRGB-CNR) uos Milan, Via Fantoli 15/16, 20090 Milan, Italy
- Correspondence: ; Tel.: +39-02-82245211
| | - Michael C. Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City PH 1101, Philippines
| | - Christopher D. Wiley
- Jean Mayer USDA Human Nutrition Research Center on Aging, Boston, MA 02111, USA
- School of Medicine, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
26
|
Lipids Fraction from Caralluma europaea (Guss.): MicroTOF and HPLC Analyses and Exploration of Its Antioxidant, Cytotoxic, Anti-Inflammatory, and Wound Healing Effects. SEPARATIONS 2023. [DOI: 10.3390/separations10030172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Caralluma europaea is a medicinal plant used in Morocco to cure a variety of illnesses. This study was conducted to determine the chemical composition, the antioxidant, antiproliferative, anti-inflammatory, and wound healing activities of C. europaea lipids. The chemical composition of C. europaea was analyzed using time-of-flight mass spectrometry and high-performance liquid chromatography. The antioxidant potential was determined using the 2,2-di-phenyl-1-picryl hydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) tests. The antiproliferative effect was evaluated by MTT assay against HL60, K562, Huh-7 cancer cells, and normal Vero cells. The anti-inflammatory potential was conducted against carrageenan-induced paw edema. The wound healing effect was evaluated against skin burns for 21 days. The identified phytochemical compounds were docked for their effect on nicotinamide adenine dinucleotide phosphate oxidase, caspase-3, lipoxygenase, glycogen synthase kinase-3-β, and protein casein kinase-1. The results showed the presence of some lipids, such as linoleic acid and vitamin D3. The DPPH (IC50 = 0.018 mg/mL) and FRAP (EC50 = 0.084 mg/mL) of C. europaea lipids showed an important antioxidant effect. For the anti-inflammatory test, an inhibition of 83.50% was recorded after 6 h of treatment. Our extract showed the greatest wound retraction on the 21st day (98.20%). C. europaea lipids showed a remarkable antitumoral effect against the K562 cell line (IC50 = 37.30 µg/mL), with no effect on Vero cells (IC50 > 100 µg/mL). Lignoceric acid was the most active molecule against caspase-3 (−6.453 kcal/mol). The findings indicate the growing evidence of C. europaea as a potential treatment for several diseases.
Collapse
|
27
|
Gholami M, Klashami ZN, Ebrahimi P, Mahboobipour AA, Farid AS, Vahidi A, Zoughi M, Asadi M, Amoli MM. Metformin and long non-coding RNAs in breast cancer. J Transl Med 2023; 21:155. [PMID: 36849958 PMCID: PMC9969691 DOI: 10.1186/s12967-023-03909-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/21/2023] [Indexed: 03/01/2023] Open
Abstract
Breast cancer (BC) is the second most common cancer and cause of death in women. In recent years many studies investigated the association of long non-coding RNAs (lncRNAs), as novel genetic factors, on BC risk, survival, clinical and pathological features. Recent studies also investigated the roles of metformin treatment as the firstline treatment for type 2 diabetes (T2D) played in lncRNAs expression/regulation or BC incidence, outcome, mortality and survival, separately. This comprehensive study aimed to review lncRNAs associated with BC features and identify metformin-regulated lncRNAs and their mechanisms of action on BC or other types of cancers. Finally, metformin affects BC by regulating five BC-associated lncRNAs including GAS5, HOTAIR, MALAT1, and H19, by several molecular mechanisms have been described in this review. In addition, metformin action on other types of cancers by regulating ten lncRNAs including AC006160.1, Loc100506691, lncRNA-AF085935, SNHG7, HULC, UCA1, H19, MALAT1, AFAP1-AS1, AC026904.1 is described.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeynab Nickhah Klashami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pirooz Ebrahimi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | | | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Vahidi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Zoughi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asadi
- Metabolomics and Genomics Research Center Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Lipoxin and glycation in SREBP signaling: Insight into diabetic cardiomyopathy and associated lipotoxicity. Prostaglandins Other Lipid Mediat 2023; 164:106698. [PMID: 36379414 DOI: 10.1016/j.prostaglandins.2022.106698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Diabetes and cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Diabetes increases cardiovascular risk through hyperglycemia and atherosclerosis. Chronic hyperglycemia accelerates glycation reaction, which forms advanced glycation end products (AGEs). Additionally, hyperglycemia with enhanced levels of cholesterol, native and oxidized low-density lipoproteins, free fatty acids, and oxidative stress induces lipotoxicity. Accelerated glycation and disturbed lipid metabolism are characteristic features of diabetic heart failure. SREBP signaling plays a significant role in lipid and glucose homeostasis. AGEs increase lipotoxicity in diabetic cardiomyopathy by inhibiting SREBP signaling. While anti-inflammatory lipid mediators, lipoxins resolve inflammation caused by lipotoxicity by upregulating the PPARγ expression and regulating CD36. PPARγ connects the bridge between glycation and lipoxin in SREBP signaling. A summary of treatment modalities against diabetic cardiomyopathy is given in brief. This review indicates the novel therapeutic approach in the crosstalk between glycation and lipoxin in SREBP signaling.
Collapse
|
29
|
Bourais I, Elmarrkechy S, Taha D, Badaoui B, Mourabit Y, Salhi N, Alshahrani MM, Al Awadh AA, Bouyahya A, Goh KW, Tan CS, El Hajjaji S, Dakka N, Iba N. Comparative Investigation of Chemical Constituents of Kernels, Leaves, Husk, and Bark of Juglans regia L., Using HPLC-DAD-ESI-MS/MS Analysis and Evaluation of Their Antioxidant, Antidiabetic, and Anti-Inflammatory Activities. Molecules 2022; 27:8989. [PMID: 36558122 PMCID: PMC9788639 DOI: 10.3390/molecules27248989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Leaves, husk, kernels, and bark methanolic extracts of Juglans regia L. were tested for their in vitro antidiabetic, anti-inflammatory, and antioxidant activities. For these purposes, α-amylase and α-glucosidase were used as the main enzymes to evaluate antidiabetic activities. Moreover, lipoxidase and tyrosinase activities were tested to estimate anti-inflammatory properties. Antioxidant properties of Juglans regia L., extracts were determined using three different assays. Leaves extract has an important radical scavenging activity and a-amylase inhibition. Similarly, husk extracts showed high total phenolic content (306.36 ± 4.74 mg gallic acid equivalent/g dry extract) with an important α-amylase inhibition (IC50 = 75.42 ± 0.99 µg/mL). Kernels exhibit significant tyrosinase (IC50 = 51.38 ± 0.81 µg/mL) correlated with antioxidant activities (p < 0.05). Husk and bark extracts also showed strong anti-lipoxidase activities with IC50 equal to 29.48 ± 0.28 and 28.58 ± 0.35 µg/mL, respectively. HPLC-DAD-ESI-MS/MS analysis highlights the phenolic profile of methanolic extracts of Juglans regia L. plant parts. The identified polyphenols were known for their antioxidant, antidiabetic (dicaffeoyl-quinic acid glycoside in kernels), and anti-inflammatory (3,4-dihydroxybenzoic acid in leaves) activities. Further investigations are needed to determine molecular mechanisms involved in these effects as well as to study the properties of the main identified compounds.
Collapse
Affiliation(s)
- Ilhame Bourais
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Genomic Center of Human Pathologies, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Salma Elmarrkechy
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Genomic Center of Human Pathologies, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Douae Taha
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Genomic Center of Human Pathologies, Mohammed V University in Rabat, Rabat BP 1014, Morocco
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Bouabid Badaoui
- Laboratoire de Biodiversité, Ecologie et Génome, Faculté des Sciences, Université Mohammed V in Rabat, Rabat BP 1014, Morocco
| | - Yassine Mourabit
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Najoua Salhi
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat BP 10100, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Genomic Center of Human Pathologies, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, Nilai 71800, Malaysia
| | - Souad El Hajjaji
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Nadia Dakka
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Genomic Center of Human Pathologies, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Naima Iba
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Genomic Center of Human Pathologies, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| |
Collapse
|
30
|
Burke ND, Nixon B, Roman SD, Schjenken JE, Walters JLH, Aitken RJ, Bromfield EG. Male infertility and somatic health - insights into lipid damage as a mechanistic link. Nat Rev Urol 2022; 19:727-750. [PMID: 36100661 DOI: 10.1038/s41585-022-00640-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Over the past decade, mounting evidence has shown an alarming association between male subfertility and poor somatic health, with substantial evidence supporting the increased incidence of oncological disease, cardiovascular disease, metabolic disorders and autoimmune diseases in men who have previously received a subfertility diagnosis. This paradigm is concerning, but might also provide a novel window for a crucial health reform in which the infertile phenotype could serve as an indication of potential pathological conditions. One of the major limiting factors in this association is the poor understanding of the molecular features that link infertility with comorbidities across the life course. Enzymes involved in the lipid oxidation process might provide novel clues to reconcile the mechanistic basis of infertility with incident pathological conditions. Building research capacity in this area is essential to enhance the early detection of disease states and provide crucial information about the disease risk of offspring conceived through assisted reproduction.
Collapse
Affiliation(s)
- Nathan D Burke
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
- Priority Research Centre for Drug Development, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Jessica L H Walters
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia.
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia.
- Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
31
|
Al-Mijalli SH, Mrabti NN, Ouassou H, Sheikh RA, Assaggaf H, Bakrim S, Abdallah EM, Alshahrani MM, Al Awadh AA, Lee LH, AlDhaheri Y, Sahebkar A, Zengin G, Attar AA, Bouyahya A, Mrabti HN. Chemical Composition and Antioxidant, Antimicrobial, and Anti-Inflammatory Properties of Origanum compactum Benth Essential Oils from Two Regions: In Vitro and In Vivo Evidence and In Silico Molecular Investigations. Molecules 2022; 27:7329. [PMID: 36364152 PMCID: PMC9653751 DOI: 10.3390/molecules27217329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 10/29/2023] Open
Abstract
The purposes of this investigatory study were to determine the chemical composition of the essential oils (EOs) of Origanum compactum from two Moroccan regions (Boulemane and Taounate), as well as the evaluation of their biological effects. Determining EOs' chemical composition was performed by a gas chromatography-mass spectrophotometer (GC-MS). The antioxidant activity of EOs was evaluated using free radical scavenging ability (DPPH method), fluorescence recovery after photobleaching (FRAP), and lipid peroxidation inhibition assays. The anti-inflammatory effect was assessed in vitro using the 5-lipoxygenase (5-LOX) inhibition test and in vivo using the carrageenan-induced paw edema model. Finally, the antibacterial effect was evaluated against several strains using the disk-diffusion assay and the micro-dilution method. The chemical constituent of O. compactum EO (OCEO) from the Boulemane zone is dominated by carvacrol (45.80%), thymol (18.86%), and α-pinene (13.43%). However, OCEO from the Taounate zone is rich in 3-carene (19.56%), thymol (12.98%), and o-cymene (11.16%). OCEO from Taounate showed higher antioxidant activity than EO from Boulemane. Nevertheless, EO from Boulemane considerably inhibited 5-LOX (IC50 = 0.68 ± 0.02 µg/mL) compared to EO from Taounate (IC50 = 1.33 ± 0.01 µg/mL). A similar result was obtained for tyrosinase inhibition with Boulemane EO and Taounate EO, which gave IC50s of 27.51 ± 0.03 μg/mL and 41.83 ± 0.01 μg/mL, respectively. The in vivo anti-inflammatory test showed promising effects; both EOs inhibit and reduce inflammation in mice. For antibacterial activity, both EOs were found to be significantly active against all strains tested in the disk-diffusion test, but O. compactum EO from the Boulemane region showed the highest activity. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) for O. compactum EO from the Boulemane region ranged from 0.06 to 0.25% (v/v) and from 0.15 to 0.21% (v/v) for O. compactum from the Taounate region. The MBC/MIC index revealed that both EOs exhibited remarkable bactericidal effects.
Collapse
Affiliation(s)
- Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nidal Naceiri Mrabti
- Computer Chemistry and Modeling Team, Laboratory of Materials, Modeling and Environmental Engineering (LIMME), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University (USMBA), BP 1796, Atlas, Fez 30000, Morocco
| | - Hayat Ouassou
- Faculty of Sciences, University Mohammed First, Boulevard Mohamed VI, BP 717, Oujda 60000, Morocco
| | - Ryan A. Sheikh
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Yusra AlDhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Gokhan Zengin
- Biochemistry and Physiology Research Laboratory, Department of Biology, Faculty of Science, Selcuk University, 42130 Konya, Turkey
| | - Ammar A. Attar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP 6203, Rabat 10000, Morocco
- Laboratoires TBC, Faculty of Pharmaceutical and Biological Sciences, B.P. 8359006 Lille, France
| |
Collapse
|
32
|
Perry SC, van Hoorebeke C, Sorrentino J, Bautista L, Akinkugbe O, Conrad WS, Rutz N, Holman TR. Structural basis for altered positional specificity of 15-lipoxygenase-1 with 5S-HETE and 7S-HDHA and the implications for the biosynthesis of resolvin E4. Arch Biochem Biophys 2022; 727:109317. [PMID: 35709965 DOI: 10.1016/j.abb.2022.109317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023]
Abstract
Human 15-lipoxygenases (LOX) are critical enzymes in the inflammatory process, producing various pro-resolution molecules, such as lipoxins and resolvins, but the exact role each of the two 15-LOXs in these biosynthetic pathways remains elusive. Previously, it was observed that h15-LOX-1 reacted with 5S-HETE in a non-canonical manner, producing primarily the 5S,12S-diHETE product. To determine the active site constraints of h15-LOX-1 in achieving this reactivity, amino acids involved in the fatty acid binding were investigated. It was observed that R402L did not have a large effect on 5S-HETE catalysis, but F414 appeared to π-π stack with 5S-HETE, as seen with AA binding, indicating an aromatic interaction between a double bond of 5S-HETE and F414. Decreasing the size of F352 and I417 shifted oxygenation of 5S-HETE to C12, while increasing the size of these residues reversed the positional specificity of 5S-HETE to C15. Mutants at these locations demonstrated a similar effect with 7S-HDHA as the substrate, indicating that the depth of the active site regulates product specificity for both substrates. Together, these data indicate that of the three regions proposed to control positional specificity, π-π stacking and active site cavity depth are the primary determinants of positional specificity with 5S-HETE and h15-LOX-1. Finally, the altered reactivity of h15-LOX-1 was also observed with 5S-HEPE, producing 5S,12S-diHEPE instead of 5S,15S-diHEPE (aka resolvin E4 (RvE4). However, h15-LOX-2 efficiently produces 5S,15S-diHEPE from 5S-HEPE. This result is important with respect to the biosynthesis of the RvE4 since it obscures which LOX isozyme is involved in its biosynthesis. Future work detailing the expression levels of the lipoxygenase isoforms in immune cells and selective inhibition during the inflammatory response will be required for a comprehensive understanding of RvE4 biosynthesis.
Collapse
Affiliation(s)
- Steven C Perry
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, USA
| | | | - James Sorrentino
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, USA
| | - Leslie Bautista
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, USA
| | - Oluwayomi Akinkugbe
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, USA
| | - William S Conrad
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, USA
| | - Natalie Rutz
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, USA
| | - Theodore R Holman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, USA.
| |
Collapse
|
33
|
Md Idris MH, Mohd Amin SN, Mohd Amin SN, Nyokat N, Khong HY, Selvaraj M, Zakaria ZA, Shaameri Z, Hamzah AS, Teh LK, Salleh MZ. Flavonoids as dual inhibitors of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX): molecular docking and in vitro studies. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00296-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Inflammation is known to involve in many pathological processes of different diseases, but the current therapy causes adverse effects. Thus, there is a great interest for the discovery of flavonoids as a valuable alternative to classical analgesic and anti-inflammatory agent with dual-inhibitory action, especially on both COX-2 and 5-LOX which can minimize or overcome this problem.
Results
In the present work, drug-likeness properties of the synthesized flavonoids via Lipinski’s Rule of Five were predicted using QikProp prior to evaluation of their COX and LOX inhibitory activities using enzyme assays. Subsequently, molecular docking was performed using GLIDE to analyse their binding behaviour. The results showed that all compounds obeyed the Lipinski’s Rule of Five. NPC6 and NPC7 had displayed better selectivity towards COX-2 as compared to Indomethacin with less than 50% inhibition against COX-1. In addition, these compounds also inhibited activity of 5-LOX. Their selectivity to COX-2 was due to the binding to hydrophobic region and extends to lobby region near the entrance of COX binding site forming hydrogen bond with Ser530. Interestingly, these compounds showed a similar binding mode as Zileuton in the active site of 5-LOX and formed hydrogen bond interaction with Ala424.
Conclusion
NPC6 and NPC7 had potential as dual inhibitor of COX-2 and 5-LOX. The scaffolds of these chemical entities are useful to be as lead compounds for the dual inhibition of COX-2 and 5-LOX.
Collapse
|
34
|
İlgün S, Karatoprak GŞ, Polat DÇ, Şafak EK, Yıldız G, Küpeli Akkol E, Sobarzo-Sánchez E. Phytochemical Composition and Biological Activities of Arctium minus (Hill) Bernh.: A Potential Candidate as Antioxidant, Enzyme Inhibitor, and Cytotoxic Agent. Antioxidants (Basel) 2022; 11:antiox11101852. [PMID: 36290576 PMCID: PMC9598467 DOI: 10.3390/antiox11101852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
Arctium minus (Hill) Bernh. (Asteraceae), which has a wide distribution area in Turkey, is a medicinally important plant. Eighty percent methanol extracts of the leaf, flower head, and root parts of A. minus were prepared and their sub-fractions were obtained. Spectrophotometric and chromatographic (high-performance liquid chromatography) techniques were used to assess the phytochemical composition. The extracts were evaluated for antioxidant activity by diphenyl-2-picrylhydrazil radical (DPPH●), 2,2′-Azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS●+) radical scavenging, and β-carotene linoleic acid bleaching assays. Furthermore, the extracts were subjected to α-amylase, α-glucosidase, lipoxygenase, and tyrosinase enzyme inhibition tests. The cytotoxic effects of extracts were investigated on MCF-7 and MDA-MB-231 breast cancer cell lines. The richest extract in terms of phenolic compounds was identified as the ethyl acetate sub-fraction of the root extract (364.37 ± 7.18 mgGAE/gextact). Furthermore, chlorogenic acid (8.855 ± 0.175%) and rutin (8.359 ± 0.125%) were identified as the primary components in the leaves’ ethyl acetate sub-fraction. According to all methods, it was observed that the extracts with the highest antioxidant activity were the flower and leaf ethyl acetate fractions. Additionally, ABTS radical scavenging activity of roots’ ethyl acetate sub-fraction (2.51 ± 0.09 mmol/L Trolox) was observed to be as effective as that of flower and leaf ethyl acetate fractions at 0.5 mg/mL. In the β-carotene linoleic acid bleaching assay, leaves’ methanol extract showed the highest antioxidant capacity (1422.47 ± 76.85) at 30 min. The enzyme activity data showed that α-glucosidase enzyme inhibition of leaf dichloromethane extract was moderately high, with an 87.12 ± 8.06% inhibition value. Lipoxygenase enzyme inhibition was weakly detected in all sub-fractions. Leaf methanol extract, leaf butanol, and root ethyl acetate sub-fractions showed 99% tyrosinase enzyme inhibition. Finally, it was discovered that dichloromethane extracts of leaves, roots, and flowers had high cytotoxic effects on the MDA-MB-231 cell line, with IC50 values of 21.39 ± 2.43, 13.41 ± 2.37, and 10.80 ± 1.26 µg/mL, respectively. The evaluation of the plant extracts in terms of several bioactivity tests revealed extremely positive outcomes. The data of this study, in which all parts of the plant were investigated in detail for the first time, offer promising results for future research.
Collapse
Affiliation(s)
- Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Derya Çiçek Polat
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| | - Esra Köngül Şafak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Gülsüm Yıldız
- Department of Pharmacognosy, Faculty of Pharmacy, Van Yüzüncü Yıl University, Van 65080, Turkey
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey
- Correspondence: (E.K.A.); (E.S.-S.); Tel.: +90-0312-202-3185 (E.K.A.); +90-569-5397-2783 (E.S.-S.)
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 1783, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Correspondence: (E.K.A.); (E.S.-S.); Tel.: +90-0312-202-3185 (E.K.A.); +90-569-5397-2783 (E.S.-S.)
| |
Collapse
|
35
|
Ureña-Vacas I, González-Burgos E, Divakar PK, Gómez-Serranillos MP. Lichen Depsidones with Biological Interest. PLANTA MEDICA 2022; 88:855-880. [PMID: 34034351 DOI: 10.1055/a-1482-6381] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Depsidones are some of the most abundant secondary metabolites produced by lichens. These compounds have aroused great pharmacological interest due to their activities as antioxidants, antimicrobial, and cytotoxic agents. Hence, this paper aims to provide up-to-date knowledge including an overview of the potential biological interest of lichen depsidones. So far, the most studied depsidones are fumarprotocetraric acid, lobaric acid, norstictic acid, physodic acid, salazinic acid, and stictic acid. Their pharmacological activities have been mainly investigated in in vitro studies and, to a lesser extent, in in vivo studies. No clinical trials have been performed yet. Depsidones are promising cytotoxic agents that act against different cell lines of animal and human origin. Moreover, these compounds have shown antimicrobial activity against both Gram-positive and Gram-negative bacteria and fungi, mainly Candida spp. Furthermore, depsidones have antioxidant properties as revealed in oxidative stress in vitro and in vivo models. Future research should be focused on further investigating the mechanism of action of depsidones and in evaluating new potential actions as well as other depsidones that have not been studied yet from a pharmacological perspective. Likewise, more in vivo studies are prerequisite, and clinical trials for the most promising depsidones are encouraged.
Collapse
Affiliation(s)
- Isabel Ureña-Vacas
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid (Spain)
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid (Spain)
| | - Pradeep Kumar Divakar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid (Spain)
| | - M Pilar Gómez-Serranillos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid (Spain)
| |
Collapse
|
36
|
Abdelgawad MA, Elkanzi NA, Musa A, Ghoneim MM, Ahmad W, Elmowafy M, Abdelhaleem Ali AM, Abdelazeem AH, Bukhari SN, El-Sherbiny M, Abourehab MA, Bakr RB. Optimization of pyrazolo[1,5-a]pyrimidine based compounds with pyridine scaffold: Synthesis, biological evaluation and molecular modeling study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
37
|
Nowak A, Zagórska-Dziok M, Perużyńska M, Cybulska K, Kucharska E, Ossowicz-Rupniewska P, Piotrowska K, Duchnik W, Kucharski Ł, Sulikowski T, Droździk M, Klimowicz A. Assessment of the Anti-Inflammatory, Antibacterial and Anti-Aging Properties and Possible Use on the Skin of Hydrogels Containing Epilobium angustifolium L. Extracts. Front Pharmacol 2022; 13:896706. [PMID: 35846995 PMCID: PMC9284006 DOI: 10.3389/fphar.2022.896706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Epilobium angustifolium L. is an ethnomedicinal plant known as a medicinal plant in many regions of the world, among others, in various skin diseases. Despite the great interest in this plant, there are still few reports of biological activity of ready-made dermatological or cosmetical preparations containing the E. angustifolium extracts. The antioxidant, anti-ageing, anti-inflammatory, antibacterial properties and toxicity, wound healing, and skin permeation of topical hydrogels containing E. angustifolium extracts (HEas) was assessed. First, the plant extracts were prepared using three solvents: 70% (v/v) ethanol, 70% (v/v) isopropanol and water, next by preparing hydrogels witch by dry extracts (HEa-EtOH), (HEa-iPrOH) and (HEa-WA), respectively. Finally, the content of selected phenolic acids in the HEas was evaluated by high-performance liquid chromatography (HPLC). All the HEas were characterized by high antioxidant activity. The most increased antibacterial activity was observed for a strain of Streptococcus pneumoniae ATCC 49619, Escherichia coli, Enterococcus faecalis ATCC 29212, Enterococcus faecium, Sarcina lutea ATCC 9341 and Bacillus pseudomycoides, while the strains of Streptococcus epidermidis, Bacillus subtilis, and Staphylococcus aureus were the least sensitive. All the HEas showed a reduction in the activity of lipoxygenase enzymes, proteases, and inhibition of protein denaturation. The HEa-EtOH and HEa-iPrOH also enhanced the wound healing activity of HDF cells. Additionally, in vitro penetration studies were performed using the Franz diffusion cells. These studies showed that the active ingredients contained in E. angustifolium penetrate through human skin and accumulate in it. Furthermore, the hydrogels containing E. angustifolium extracts showed a broad spectrum of activity. Therefore, they can be considered as an interesting alternative for dermatologic and cosmetic preparations.
Collapse
Affiliation(s)
- Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
- *Correspondence: Anna Nowak,
| | - Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Rzeszów, Poland
| | - Magdalena Perużyńska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Krystyna Cybulska
- Department of Microbiology and Environmental Chemistry, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology, Szczecin, Poland
| | - Edyta Kucharska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Poland
| | - Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Poland
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Wiktoria Duchnik
- Department of Pharmaceutical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Tadeusz Sulikowski
- Clinic of General Surgery, Minimally Invasive and Gastrointestinal, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marek Droździk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
38
|
Flavonoids Enhance Lipofection Efficiency and Ameliorate Cytotoxicity in Colon26 and HepG2 Cells via Oxidative Stress Regulation. Pharmaceutics 2022; 14:pharmaceutics14061203. [PMID: 35745776 PMCID: PMC9231055 DOI: 10.3390/pharmaceutics14061203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 12/10/2022] Open
Abstract
The generation of reactive oxygen species (ROS) can affect cationic liposome-mediated transfection. In this study, we focused on a specific class of antioxidants, flavonoids, to investigate the transfection efficiency using cationic liposome/plasmid DNA complexes (lipoplexes) in 2D and 3D cultures of Colon26 and HepG2 cells, respectively. All tested flavonoids enhanced the transfection efficiency in 2D Colon26 and HepG2 cells. Among the tested flavonoids, 25 µM quercetin showed the highest promotion effect of 8.4- and 7.6-folds in 2D Colon26 and HepG2 cells, respectively. Transfection was also performed in 3D cultures of Colon26 and HepG2 cells using lipoplexes with quercetin. Quercetin (12.5 µM) showed the highest transfection efficiency at all transfection timings in 3D Colon26 and HepG2 cells with increased cell viability. Flow cytometry revealed that quercetin treatment reduced the population of gene expression-negative cells with high ROS levels and increased the number of gene expression-positive cells with low ROS levels in HepG2 cells. Information from this study can be valuable to develop strategies to promote transfection efficiency and attenuate cytotoxicity using lipoplexes.
Collapse
|
39
|
Senjo H, Onozawa M, Hidaka D, Yokoyama S, Yamamoto S, Tsutsumi Y, Haseyama Y, Nagashima T, Mori A, Ota S, Sakai H, Ishihara T, Miyagishima T, Kakinoki Y, Kurosawa M, Kobayashi H, Iwasaki H, Hashimoto D, Kondo T, Teshima T. High CRP-albumin ratio predicts poor prognosis in transplant ineligible elderly patients with newly diagnosed acute myeloid leukemia. Sci Rep 2022; 12:8885. [PMID: 35614177 PMCID: PMC9133033 DOI: 10.1038/s41598-022-12813-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
Acute myeloid leukemia (AML) patients older than 65 years have a poor prognosis. Recently, CAR (C-reactive-protein/albumin ratio) has been actively reported as a prognostic index reflecting the nutritional and inflammatory status of elderly patients with solid tumors, but the usefulness of this index as a prognostic indicator in transplant-ineligible elderly AML patients has not been investigated. We studied genetic alterations and CARs in 188 newly diagnosed AML patients aged 65 years or older who were treated in a multicenter setting and had treated without HSCT. Both NCCN 2017 risk group, reflecting the genetic component of the tumor, and CAR, reflecting the inflammatory and nutritional status of the patient, successfully stratified the overall survival (OS) of the patients (2-year OS; CAR low vs high, 42.3% vs 17.8%, P < 0.001). Furthermore, in multivariate analysis, NCCN 2017 poor group and high CAR were extracted as independent poor prognostic factors predicting 2-year OS in the current study. We found, for the first time, that CAR at diagnosis predicted the prognosis of elderly patients with newly diagnosed AML treated without HSCT.
Collapse
Affiliation(s)
- Hajime Senjo
- Department of Hematology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Masahiro Onozawa
- Department of Hematology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Daisuke Hidaka
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Shota Yokoyama
- Department of Hematology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Satoshi Yamamoto
- Department of Hematology, Sapporo City General Hospital, Sapporo, Japan
| | - Yutaka Tsutsumi
- Department of Hematology, Hakodate Municipal Hospital, Hakodate, Japan
| | | | - Takahiro Nagashima
- Department of Hematology, Japanese Red Cross Kitami Hospital, Kitami, Japan
| | - Akio Mori
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Hajime Sakai
- Department of Hematology, Teine Keijinkai Hospital, Sapporo, Japan
| | | | | | | | | | - Hajime Kobayashi
- Department of Hematology, Obihiro Kosei General Hospital, Obihiro, Japan
| | - Hiroshi Iwasaki
- Department of Hematology, Sapporo Kosei General Hospital, Sapporo, Japan
| | - Daigo Hashimoto
- Department of Hematology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
40
|
Ma JY, Liu G, Pan LZ, Hu M, Zhu ZZ. Clinical impact of pretreatment albumin-globulin ratio in patients with colorectal cancer: A meta-analysis. Medicine (Baltimore) 2022; 101:e29190. [PMID: 35608420 PMCID: PMC9276121 DOI: 10.1097/md.0000000000029190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/09/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Accumulating evidence have revealed that pretreatment albumin to globulin ratio (AGR) may be a predictor of prognosis among patients with colorectal cancer (CRC). However, these findings are inconsistent. The aim of the present study was to investigate the prognostic value of pretreatment AGR in CRC. METHODS A systematic meta-analysis was conducted by searching MEDLINE, EMBASE, and Cochrane Library databases. RESULTS A total of 9 studies with 7939 patients were finally included. Low pretreatment AGR was associated with worse overall survival (pooled hazard ratio [HR]: 2.07, 95% CI: 1.60-2.67, P < .001) and disease-free survival/progress-free survival (pooled hazard ratio [HR]: 2.10, 95% confidence interval [CI]: 1.34-3.31, P = .001). Subgroup analyses revealed that the pooled correlation did not alter these results. Moreover, low pretreatment AGR were associated with elderly patients, tumor diameter (≥50 mm), tumor node metastasis stage (III-IV), depth of tumor (T3-4), and CA19-9 (>37 U/mL). CONCLUSION The present meta-analysis suggests that low pretreatment AGR was associated with advanced clinicopathological features and worse prognosis, suggesting AGR is a useful prognostic biomarker for CRC patients.
Collapse
Affiliation(s)
- Jian-Ying Ma
- Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital of Edong Healthcare Group, Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, Hubei, China
| | - Gang Liu
- Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital of Edong Healthcare Group, Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, Hubei, China
| | - Liang-Zhi Pan
- Personnel Section, Huangshi Central Hospital (Pu Ai Hospital) of Edong Healthcare Group, Hubei Polytechnic University, Huangshi, Hubei, China
| | - Min Hu
- Personnel Section, Huangshi Central Hospital (Pu Ai Hospital) of Edong Healthcare Group, Hubei Polytechnic University, Huangshi, Hubei, China
| | - Zhong-Zhong Zhu
- Department of Gastroenteroanrectal Surgery, Huangshi Central Hospital of Edong Healthcare Group, Hubei Polytechnic University, Huangshi, Hubei, China
| |
Collapse
|
41
|
Enderes J, Mallesh S, Stein K, Wagner M, Lysson M, Schneiker B, Kalff JC, Wehner S. Treatment with the 5-Lipoxygenase Antagonist Zileuton Protects Mice from Postoperative Ileus. Eur Surg Res 2022; 63:224-231. [PMID: 35184063 DOI: 10.1159/000522157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/17/2022] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Previous work of our group showed that lipoxygenase (LOX) pathways become activated upon surgical manipulation of the bowel wall and revealed a beneficial immune modulating role of the LOX-derived anti-inflammatory mediator protectin DX in postoperative ileus (POI). While we found a particular role of 12/15-LOX in the anti-inflammatory LOX action during POI, the role of 5-LOX, which produces the pro-inflammatory leukotriene B4 (LTB4), remained unknown. The purpose of this study was to investigate the role of 5-LOX within the pathogenesis of POI in a mouse model. METHODS POI was induced by intestinal manipulation (IM) of the small bowel in C57BL/6, 5-LOX-/-, and CX3CR1GFP/+. Mice were either treated with a vehicle or with the synthetic 5-LOX antagonist zileuton or were left untreated. Cellular localization of 5-LOX and LTB4 release were visualized by immunofluorescence or ELISA, respectively. POI severity was quantified by gastrointestinal transit (GIT) and leukocyte extravasation into the muscularis externa (ME) by immunohistochemistry. RESULTS 5-LOX expression was detected 24 h after IM within infiltrating leukocytes in the ME. LTB4 levels increased during POI in wild type but not in 5-LOX-/- after IM. POI was ameliorated in 5-LOX-/- as shown by decreased leukocyte numbers and normalized GIT. Zileuton normalized the postoperative GIT and reduced the numbers of infiltrating leukocytes into the ME. DISCUSSION/CONCLUSION Our data demonstrate that 5-LOX and its metabolite LTB4 play a crucial role in POI. Genetic deficiency of 5-LOX and pharmacological antagonism by zileuton protected mice from POI. 5-LOX antagonism might be a promising target for prevention of POI in surgical patients.
Collapse
Affiliation(s)
- Jana Enderes
- Division of Immune Pathophysiology, Department of Surgery, University Hospital Bonn, Bonn, Germany,
| | - Shilpashree Mallesh
- Division of Immune Pathophysiology, Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Kathy Stein
- Division of Immune Pathophysiology, Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Melissa Wagner
- Division of Immune Pathophysiology, Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Mariola Lysson
- Division of Immune Pathophysiology, Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Bianca Schneiker
- Division of Immune Pathophysiology, Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Joerg C Kalff
- Division of Immune Pathophysiology, Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Sven Wehner
- Division of Immune Pathophysiology, Department of Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
42
|
Inflammation, Fibrosis and Cancer: Mechanisms, Therapeutic Options and Challenges. Cancers (Basel) 2022; 14:cancers14030552. [PMID: 35158821 PMCID: PMC8833582 DOI: 10.3390/cancers14030552] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 01/09/2023] Open
Abstract
Uncontrolled inflammation is a salient factor in multiple chronic inflammatory diseases and cancers. In this review, we provided an in-depth analysis of the relationships and distinctions between uncontrolled inflammation, fibrosis and cancers, while emphasizing the challenges and opportunities of developing novel therapies for the treatment and/or management of these diseases. We described how drug delivery systems, combination therapy and the integration of tissue-targeted and/or pathways selective strategies could overcome the challenges of current agents for managing and/or treating chronic inflammatory diseases and cancers. We also recognized the value of the re-evaluation of the disease-specific roles of multiple pathways implicated in the pathophysiology of chronic inflammatory diseases and cancers-as well as the application of data from single-cell RNA sequencing in the success of future drug discovery endeavors.
Collapse
|
43
|
Harnessing oxidative stress for anti-glioma therapy. Neurochem Int 2022; 154:105281. [PMID: 35038460 DOI: 10.1016/j.neuint.2022.105281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Glioma cells use intermediate levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) for growth and invasion, and suppressing these reactive molecules thus may compromise processes that are vital for glioma survival. Increased oxidative stress has been identified in glioma cells, in particular in glioma stem-like cells. Studies have shown that these cells harbor potent antioxidant defenses, although endogenous protection against nitrosative stress remains understudied. The enhancement of oxidative or nitrosative stress offers a potential target for triggering glioma cell death, but whether oxidative and nitrosative stresses can be combined for therapeutic effects requires further research. The optimal approach of harnessing oxidative stress for anti-glioma therapy should include the induction of free radical-induced oxidative damage and the suppression of antioxidant defense mechanisms selectively in glioma cells. However, selective induction of oxidative/nitrosative stress in glioma cells remains a therapeutic challenge, and research into selective drug delivery systems is ongoing. Because of multifactorial mechanisms of glioma growth, progression, and invasion, prospective oncological therapies may include not only therapeutic oxidative/nitrosative stress but also inhibition of oncogenic kinases, antioxidant molecules, and programmed cell death mediators.
Collapse
|
44
|
Kerget B, Kerget F, Aydın M, Karaşahin Ö. Effect of montelukast therapy on clinical course, pulmonary function, and mortality in patients with COVID-19. J Med Virol 2021; 94:1950-1958. [PMID: 34958142 PMCID: PMC9015221 DOI: 10.1002/jmv.27552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022]
Abstract
The inflammatory/anti‐inflammatory balance has an important role in the clinical course of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) (coronavirus disease [COVID‐19]) infection, which has affected over 200 million people since it first appeared in China in December 2019. This study aimed to determine the effectiveness of montelukast, which has known anti‐inflammatory and bronchodilatory effects, in these patients. The prospective randomized controlled study included 180 patients who were hospitalized in the infectious diseases department of our hospital between May and July 2021 and were diagnosed with the delta variant of SARS‐CoV‐2 by real‐time polymerase chain reaction of nasopharyngeal swabs. The patients were divided into three groups and received only standard treatment according to national guidelines (Group 1) or standard treatment plus 10 mg/day montelukast (Group 2) or 20 mg/day montelukast (Group 3). Laboratory parameters and pulmonary function tests (PFTs) at admission and on Day 5 of treatment were compared. Comparison of laboratory parameters on Day 5 showed that Groups 2 and 3 had significantly lower levels of lactate dehydrogenase, fibrinogen, D‐dimer, C‐reactive protein, and procalcitonin compared with Group 1 (p = 0.04, 0.002, 0.05, 0.03, and 0.04, respectively). In the comparison between Groups 2 and 3, only fibrinogen was significantly lower in Group 3 (p = 0.02). PFT results did not differ between the groups at admission, while on Day 5, only Group 3 showed significant improvements in forced expiratory volume in 1 s, forced vital capacity, and peak expiratory flow 25–75 compared with admission (p = 0.001 for all). Montelukast may be beneficial in COVID‐19 patients to maintain the inflammatory/anti‐inflammatory balance, prevent respiratory failure through its bronchodilator activity, and reduce mortality. The study included 180 participants who were divided into three groups: Group 1 (n = 60) received standard treatment in accordance with our national COVID‐19 diagnosis and treatment guide, Group 2 (n = 60) received 10 mg/day oral montelukast in addition to standard treatment, and Group 3 (n = 60) received 20 mg/day oral montelukast in addition to standard treatment. We aimed to investigate the effect of treatment with varying doses of montelukast as an adjunct to standard antiviral therapy on pulmonary function tests and clinical courses in patients with COVID‐19.
Collapse
Affiliation(s)
- Buğra Kerget
- Department of Pulmonary Diseases, Ataturk University School of Medicine, Erzurum, Turkey
| | - Ferhan Kerget
- Department of Infection Diseases and Clinical Microbiology, Health Sciences University Erzurum Regional Education and Research Hospital, Erzurum, Turkey
| | - Murat Aydın
- Department of Infection Diseases and Clinical Microbiology, Health Sciences University Erzurum Regional Education and Research Hospital, Erzurum, Turkey
| | - Ömer Karaşahin
- Department of Infection Diseases and Clinical Microbiology, Health Sciences University Erzurum Regional Education and Research Hospital, Erzurum, Turkey
| |
Collapse
|
45
|
Urumbil SK, Anilkumar MN. Anti-inflammatory activity of endophytic bacterial isolates from Emilia sonchifolia (Linn.) DC. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114517. [PMID: 34389445 DOI: 10.1016/j.jep.2021.114517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the traditional medicine system, plants have been utilized as a rich source of anti-microbial, anti-inflammatory, anti-cancer, anti-viral and anti-oxidant compounds. The biological properties of plant-based drugs depend on their interaction with endophytes which persist as an important provider of bioactive secondary metabolites. Bacterial endophytes secrete anti-inflammatory molecules whose activity can be the base for the anti-inflammatory property of the plant. AIM OF THE STUDY During the screening of endophytes from Emilia sonchifolia, we isolated six different bacteria whose potential as the sources of anti-inflamamtory compounds have been aimed at in this study. MATERIALS AND METHODS Anti-inflammatory activity of the ethyl acetate extract of endophytes was studied by both in vitro and in vivo analyses. In vitro study was done using protein denaturation, COX, LOX, iNOS, myeloperoxidase and nitric oxide assays and in vivo analysis was carried out by carrageenan-induced and formalin-induced paw oedema tests. The expression level of anti-inflammatory genes such as COX-2 and NfKb was confirmed by real time PCR. RESULTS We confirmed anti-inflammatory activity of the ethyl acetate extract of bacterial endophytes of E sonchifolia by both in vitro and in vivo experiments. Carrageenan- and formalin-induced inflammations in mice were effectively reduced by the administration of the bacterial extract. Among the isolates, strain ES1effectively reduced inflammation. Gene expression studies confirmed reduction in the expression of COX-2 and NfKb genes in the presence of ES1 extract. CONCLUSION The present investigation demonstrated the anti-inflammatory property of the isolated bacterial endophyte ES1 (Bacillus subtilis strain-MG 692780) and thus justifies the possible role of endophytes in contributing anti-inflammatory property to E sonchifolia which is ethno-botanically important as a source of anti-inflammatory drug.
Collapse
Affiliation(s)
| | - Madhavan Nair Anilkumar
- Cell Culture Lab, Department of Botany, Union Christian College, Aluva, Ernakulam, Pin-683 102, Kerala, India.
| |
Collapse
|
46
|
Malayil D, Jose B, Narayanankutty A, Ramesh V, Rajagopal R, Alfarhan A. Phytochemical profiling of Azima tetracantha Lam. leaf methanol extract and elucidation of its potential as a chain-breaking antioxidant, anti-inflammatory and anti-proliferative agent. Saudi J Biol Sci 2021; 28:6040-6044. [PMID: 34764736 PMCID: PMC8568843 DOI: 10.1016/j.sjbs.2021.07.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/02/2023] Open
Abstract
Azima tetracantha, a traditional medicinal plant included in the order Brassicales and family Salvadoraceae, is widely used as a dietary supplement in folklore medicines. The plant is also used for the treatment of rheumatism, diarrhea and other inflammatory disorders. The present investigation focused on the phytochemical composition, radical scavenging, reducing potential and anti-proliferative activities of the A. tetracantha leaves. Quantitative estimation of the polyphenols and flavonoids revealed significantly elevated levels in the methanol extract. Corroborating with this, methanol extract exhibited higher in vitro anti-radical scavenging effect against 2,2-diphenyl-1- picrylhydrazyl (34.14 ± 2.19 μg/mL), and hydrogen peroxide (44.96 ± 1.77 μg/mL), as well as ferric reducing properties (58.24 ± 6.98 μg/mL). The methanolic extract also showed strong lipoxygenase (71.42 ± 6.36 μg/mL) and nitric oxide inhibitory activities (94.23 ± 8.11 μg/mL). Cytotoxic activity against MCF7 cells was found to be higher (IC50= 37.62 ± 2.94 μg/mL), than that of MDAMB231 cells (IC50= 69.11 ± 5.02 μg/mL). The qPCR-based analysis indicated dose-dependent increase in the expression of the pro-apoptotic genes such as executioner caspases and apoptotic protease activating factor-1. Overall, the results indicated the possible use of methanol extract of A. tetracantha leaves as a chain-breaking antioxidant molecule and are capable of inhibiting inflammatory enzymes and the proliferative potential of breast cancer cells.
Collapse
Affiliation(s)
- Dhilna Malayil
- PG and Research Department of Zoology, Malabar Christian College, Calicut, Kerala, India
| | - Boby Jose
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Kerala, India
| | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Kerala, India
| | - Varsha Ramesh
- Department of Biotechnology, Deakin University, Victoria, Australia
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
47
|
Anti-inflammatory and Antioxidant Properties of Finger Millet ( Eleusine coracana (L.) Gaertn.) Varieties Cultivated in Sri Lanka. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7744961. [PMID: 34631888 PMCID: PMC8500749 DOI: 10.1155/2021/7744961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022]
Abstract
The prevalence of inflammatory-mediated and oxidative stress-associated diseases is increasing worldwide, creating an increasing demand for novel sources of anti-inflammatory agents and antioxidants. This study was focused on determining the in vitro arachidonate 5-lipoxygenase (A5-LOX), xanthine oxidase (XO), hyaluronidase and oxidative burst inhibitory activities, and antioxidant properties of Ravi, Rawana, and Oshadha finger millet varieties using ethanolic and methanolic extracts. Among all extracts, the methanolic extract of Oshadha exhibited the highest A5-LOX (IC50 value: 484.42 μg/ml) and XO (IC50 value: 764.34 μg/ml) inhibitory activities. All extracts showed less than 50% hyaluronidase inhibitory activity at 1 mg/ml concentration. Methanolic extracts showed moderate inhibitory potential on reactive oxygen species (ROS) generated from whole blood phagocytes, with IC50 values ranging between 26.9 and 27.7 μg/ml, when compared to ibuprofen (IC50 value: 11.18 μg/ml). All extracts showed potent inhibition of ROS produced from polymorphonuclear neutrophils isolated from human blood when compared to ibuprofen (IC50 value: 2.47 μg/ml) and IC50 values of methanolic and ethanolic extracts ranged from 0.29 to 0.47 μg/ml and 1.35 to 1.70 μg/ml, respectively. All extracts had significantly high amounts of phenolic compounds including flavonoids and the potential to scavenge 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic) acid (ABTS) cation, 2,2-diphenyl-1-picryl-hydrazyl (DPPH), and oxygen radicals. Besides, they were able to reduce metal ions and chelate metal ions terminating radical generating reactions. This is the first report of A5-LOX, XO, hyaluronidase, and oxidative burst inhibitory properties of any extract of any finger millet variety cultivated in Sri Lanka. The findings revealed the potential of using these finger millet extracts as natural sources of anti-inflammatory drug candidates. Additionally, the findings indicated that Ravi, Rawana, and Oshadha varieties are good sources of antioxidants. Therefore, consumption of these finger millet varieties on a regular basis may play an important role in the prevention and dietary management of oxidative stress-associated diseases.
Collapse
|
48
|
Liu YS, Wu PE, Chou WC, Vikram R, Chen WT, Yang SL, Bolla MK, Wang Q, Dennis J, Chan TL, Choi JY, Hou MF, Ito H, Kang D, Kim SW, Kwong A, Matsuo K, Park SK, Shu XO, Zheng W, Dunning AM, Easton DF, Shen CY. Body mass index and type 2 diabetes and breast cancer survival: a Mendelian randomization study. Am J Cancer Res 2021; 11:3921-3934. [PMID: 34522458 PMCID: PMC8414374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023] Open
Abstract
The causal relationship between body mass index (BMI) and type 2 diabetes (T2D) and breast cancer prognosis is still ambiguous. The aim of this study was to investigate the prognostic effect of BMI and T2D on breast cancer disease-free survival (DFS) among Asian individuals. In this two-sample Mendelian randomization (MR) study, the instrumental variables (IVs) were identified using a genome-wide association study (GWAS) among 24,000 participants in the Taiwan Biobank. Importantly, the validity of these IVs was confirmed with a previous large-scale GWAS (Biobank Japan Project, BBJ). In this study, we found that a genetic predisposition toward higher BMI (as indicated by BMI IVs, F = 86.88) was associated with poor breast cancer DFS (hazard ratio [HR] = 6.11; P < 0.001). Furthermore, higher level of genetically predicted T2D (as indicated by T2D IVs) was associated with an increased risk of recurrence of and mortality from breast cancer (HR = 1.43; P < 0.001). Sensitivity analyses, including the weighted-median approach, MR-Egger regression, Radial regression and Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) supported the consistency of our findings. Finally, the causal relationship between BMI and poor breast cancer prognosis was confirmed in a prospective cohort study. Our MR analyses demonstrated the causal relationship between the genetic prediction of elevated BMI and a greater risk of T2D with poor breast cancer prognosis. BMI and T2D have important clinical implications and may be used as prognostic indicators of breast cancer.
Collapse
Affiliation(s)
- Yi-Shian Liu
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Pei-Ei Wu
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Wen-Cheng Chou
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Rajeev Vikram
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Wei-Ting Chen
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Show-Ling Yang
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of CambridgeCambridge, United Kingdom
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of CambridgeCambridge, United Kingdom
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of CambridgeCambridge, United Kingdom
| | - Tsun L Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Cancer Genetics CentreHappy Valley, Hong Kong, China
- Department of Pathology, Hong Kong Sanatorium and HospitalHappy Valley, Hong Kong, China
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University Graduate SchoolSeoul, Korea
- Cancer Research Institute, Seoul National UniversitySeoul, Korea
- Institute of Health Policy and Management, Seoul National University Medical Research CenterSeoul, Korea
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Municipal Hsiao-Kang HospitalKaohsiung, Taiwan
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center Research InstituteNagoya, Japan
- Division of Cancer Epidemiology, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Daehee Kang
- Cancer Research Institute, Seoul National UniversitySeoul, Korea
- Department of Preventive Medicine, Seoul National University College of MedicineSeoul, Korea
| | - Sung-Won Kim
- Department of Surgery, Daerim Saint Mary’s HospitalSeoul, Korea
| | - Ava Kwong
- Hong Kong Hereditary Breast Cancer Family Registry, Cancer Genetics CentreHappy Valley, Hong Kong, China
- Department of Surgery, The University of Hong KongPok Fu Lam, Hong Kong, China
- Department of Surgery, Hong Kong Sanatorium and HospitalHappy Valley, Hong Kong, China
| | - Keitaro Matsuo
- Division of Cancer Epidemiology, Nagoya University Graduate School of MedicineNagoya, Japan
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research InstituteNagoya, Japan
| | - Sue K Park
- Department of Biomedical Sciences, Seoul National University Graduate SchoolSeoul, Korea
- Cancer Research Institute, Seoul National UniversitySeoul, Korea
- Department of Preventive Medicine, Seoul National University College of MedicineSeoul, Korea
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of MedicineNashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of MedicineNashville, TN, USA
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of CambridgeCambridge, United Kingdom
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of CambridgeCambridge, United Kingdom
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of CambridgeCambridge, United Kingdom
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of CambridgeCambridge, United Kingdom
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
- College of Public Health, China Medical UniversityTaichung, Taiwan
| |
Collapse
|
49
|
Blanco-Salas J, Hortigón-Vinagre MP, Morales-Jadán D, Ruiz-Téllez T. Searching for Scientific Explanations for the Uses of Spanish Folk Medicine: A Review on the Case of Mullein (Verbascum, Scrophulariaceae). BIOLOGY 2021; 10:618. [PMID: 34356473 PMCID: PMC8301161 DOI: 10.3390/biology10070618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
Verbascum species (common mullein) have been widely used in Spanish folk medicine to treat pathologies related to the musculature, skeleton, and circulatory, digestive, and respiratory systems, as well as to treat infectious diseases and organ-sense illnesses. These applications support the potential anti-inflammatory action of Verbascum phytochemicals. Based on the aforementioned facts, and following a deep bibliographic review of the chemical composition of the 10 species of Verbascum catalogued by the Spanish Inventory of Traditional Knowledge related to Biodiversity, we look for scientific evidences to correlate the traditional medical uses with the chemical components of these plants. To support these findings, in silico simulations were performed to investigate molecular interactions between Verbascum phytochemicals and cellular components. Most of common mullein traditional uses could rely on the anti-inflammatory action of phytochemicals, such as quercetin, and it could explain the employment of these plants to treat a wide range of diseases mediated by inflammatory processes such as respiratory diseases, otitis, arthrosis, and rheumatism among others.
Collapse
Affiliation(s)
- José Blanco-Salas
- Department of Vegetal Biology, Ecology and Earth Science, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain;
| | - María P. Hortigón-Vinagre
- Department of Biochemistry, Molecular Biology and Genetics, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Diana Morales-Jadán
- One Health Research Group, Universidad de las Américas, Campus Queri, Quito 170513, Ecuador;
| | - Trinidad Ruiz-Téllez
- Department of Vegetal Biology, Ecology and Earth Science, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain;
| |
Collapse
|
50
|
Danciu C, Cioanca O, Watz Farcaș C, Hancianu M, Racoviceanu R, Muntean D, Zupko I, Oprean C, Tatu C, Paunescu V, Proks M, Diaconeasa Z, Soica C, Pinzaru I, Dehelean C. Botanical Therapeutics (Part II): Antimicrobial and In Vitro Anticancer Activity against MCF7 Human Breast Cancer Cells of Chamomile, Parsley and Celery Alcoholic Extracts. Anticancer Agents Med Chem 2021; 21:187-200. [PMID: 33109067 DOI: 10.2174/1871520620666200807213734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/21/2020] [Accepted: 06/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND This study was designed as a continuation of a complex investigation about the phytochemical composition and biological activity of chamomile, parsley, and celery extracts against A375 human melanoma and dendritic cells. OBJECTIVE The main aim was the evaluation of the antimicrobial potential of selected extracts as well as the in vitro anticancer activity against MCF7 human breast cancer cells. METHODS In order to complete the picture regarding the phytochemical composition, molecular fingerprint was sketched out by the help of FTIR spectroscopy. The activity of two enzymes (acetylcholinesterase and butyrylcholinesterase) after incubation with the three extracts was spectrophotometrically assessed. The antimicrobial potential was evaluated by disk diffusion method. The in vitro anticancer potential against MCF7 human breast cancer cells was appraised by MTT, LDH, wound healing, cell cycle, DAPI, Annexin-V-PI assays. RESULTS The results showed variations between the investigated extracts in terms of inhibitory activity against enzymes, such as acetyl- and butyrilcholinesterase. Chamomile and parsley extracts were active only against tested Gram-positive cocci, while all tested extracts displayed antifungal effects. Among the screened samples at the highest tested concentration, namely 60μg/mL, parsley was the most active extract in terms of reducing the viability of MCF7 - human breast adenocarcinoma cell line and inducing the release of lactate dehydrogenase. On the other hand, chamomile and celery extracts manifested potent anti-migratory effects. Furthermore, celery extract was the most active in terms of total apoptotic events, while chamomile extract induced the highest necrosis rate. CONCLUSION The screened samples containing phytochemicals belonging in majority to the class of flavonoids and polyphenols can represent candidates for antimicrobial and anticancer agents.
Collapse
Affiliation(s)
- Corina Danciu
- Faculty of Pharmacy, "Victor Babes," University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Oana Cioanca
- Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T.Popa" Iasi, 700115, Iasi, Romania
| | - Claudia Watz Farcaș
- Faculty of Pharmacy, "Victor Babes," University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Monica Hancianu
- Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T.Popa" Iasi, 700115, Iasi, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, "Victor Babes," University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Delia Muntean
- Faculty of Medicine, "Victor Babes," University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Istvan Zupko
- Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
| | - Camelia Oprean
- Faculty of Pharmacy, "Victor Babes," University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Calin Tatu
- OncoGen Centre, County Hospital "Pius Branzeu", 300736, Timisoara, Romania
| | - Virgil Paunescu
- Faculty of Pharmacy, "Victor Babes," University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Maria Proks
- Faculty of Pharmacy, "Victor Babes," University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Zorita Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine ClujNapoca, 400372, Cluj-Napoca, Romania
| | - Codruta Soica
- Faculty of Pharmacy, "Victor Babes," University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, "Victor Babes," University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, "Victor Babes," University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|