1
|
Kalsi P, Gupta N, Goyal G, Sharma H. Decoding the role of extracellular vesicles in pathogenesis of cystic fibrosis. Mol Cell Pediatr 2025; 12:5. [PMID: 40257719 DOI: 10.1186/s40348-025-00190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/05/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Intercellular communication is a critical process that ensures cooperation between distinct cell types and maintains homeostasis. In the past decades, extracellular vesicles (EVs) have been recognized as key components in cell-to-cell communication. These EVs carry multiple factors such as active enzymes, metabolites, nucleic acids and surface molecules that can alter the behavior of recipient cells. Thus, the role of EVs in exacerbating disease pathology by transporting inflammatory mediators, and other molecular signals that contribute to chronic inflammation and immune dysregulation in various diseases including cystic fibrosis (CF) is well documented. MAIN BODY CF is a genetic disorder characterized by chronic inflammation and persistent infections, primarily affecting the respiratory system. This review explores the multifaceted roles of EVs in CF lung disease, focusing on their biogenesis, cargo, and contributions to disease progression. It is well known that CF results from mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) gene, leading to defective ion transport, thick mucus secretion, and a propensity for bacterial infections. However, it has been observed that EVs derived from CF patients carry altered molecular cargo, including proteins, lipids, RNA, and DNA, which can exacerbate these conditions by promoting inflammation, and modulating immune responses. Beyond their pathogenic roles, EVs also hold significant therapeutic potential. Their natural ability to transfer bioactive molecules positions them as promising vectors for delivering therapeutic agents, such as gene therapy constructs and anti-inflammatory compounds. Accordingly, a study has shown that these EVs can act as a carrier molecule for transport of functional CFTR mRNA, helping to restore proper chloride ion channel function by correcting defective CFTR proteins in affected cells. CONCLUSION This review aims to summarize the role of EVs and their molecular cargo in pathogenesis of CF lung disease via modulation of intracellular signaling leading to persistent inflammation and increased disease severity. We also explored the mechanisms of EV biogenesis, cargo selection, and their effects on recipient cells which may provide novel insights into CF pathogenesis and open new avenues for EV-based therapies aimed at improving disease management.
Collapse
Affiliation(s)
- Priya Kalsi
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India
| | - Nikhil Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India
| | - Gitanjali Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India
| | - Himanshu Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India.
| |
Collapse
|
2
|
Li YK, Ge FJ, Liu XN, Zeng CM, Qian MJ, Li YH, Zheng MM, Qu JJ, Fang LJ, Lu JJ, Yang B, He QJ, Zhou JY, Zhu H. Ivacaftor, a CFTR potentiator, synergizes with osimertinib against acquired resistance to osimertinib in NSCLC by regulating CFTR-PTEN-AKT axis. Acta Pharmacol Sin 2025; 46:1045-1057. [PMID: 39627385 PMCID: PMC11950241 DOI: 10.1038/s41401-024-01427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 01/05/2025]
Abstract
Osimertinib, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), has demonstrated significant clinical benefits in the treatment of EGFR-mutated non-small cell lung cancer (NSCLC). However, inevitable acquired resistance to osimertinib limits its clinical utility, and there is a lack of effective countermeasures. Here, we established osimertinib-resistant cell lines and performed drug library screening. This screening identified ivacaftor, a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator, as a synergistic enhancer of osimertinib-induced anti-tumor activity both in vitro and in vivo. Mechanistically, ivacaftor facilitated the colocalization of CFTR and PTEN on the plasma membrane to promote the function of PTEN, subsequently inhibiting the PI3K/AKT signaling pathway and suppressing tumor growth. In summary, our study suggests that activating CFTR enhances osimertinib-induced anti-tumor activity by regulating the PTEN-AKT axis. Furthermore, ivacaftor and osimertinib constitute a potential combination strategy for treating osimertinib-resistant EGFR-mutated NSCLC patients.
Collapse
Affiliation(s)
- Yue-Kang Li
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, 310003, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, China
| | - Fu-Jing Ge
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, China
| | - Xiang-Ning Liu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, China
| | - Chen-Ming Zeng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, China
| | - Mei-Jia Qian
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, China
| | - Yong-Hao Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, China
| | - Ming-Ming Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, China
| | - Jing-Jing Qu
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, 310003, China
| | - Liang-Jie Fang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, 310003, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Qiao-Jun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Ya Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, 310003, China.
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
García MS, Madrid-Carbajal CJ, Peláez A, Moreno RMG, Alonso EF, García BP, Punter RMG, Ancochea J, Bachiller JME, Ruiz JDH, Clemente MG. The Role of Triple CFTR Modulator Therapy in Reducing Systemic Inflammation in Cystic Fibrosis. Lung 2025; 203:55. [PMID: 40153049 DOI: 10.1007/s00408-025-00806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/12/2025] [Indexed: 03/30/2025]
Abstract
PURPOSE Cystic fibrosis (CF) is a genetic disease caused by mutations in the CFTR gene, leading to multisystemic complications, particularly in the lungs. CFTR dysfunction results in altered ion transport, chronic inflammation, and progressive lung damage. The triple therapy elexacaftor/tezacaftor/ivacaftor (ETI) has demonstrated significant improvements in pulmonary function and quality of life. This study aimed to evaluate the anti-inflammatory effects of ETI by analysing systemic cytokine profiles over 12 months. METHODS A prospective study included 32 CF patients ≥ 18 years with at least one delF508 mutation, undergoing ETI therapy. Clinical stability was ensured prior to therapy initiation. Demographic data, BMI (Body Mass Index), FEV1% (Forced expiratory Volume in the first second), VR/TLC (residual volume/total lung capacity) and sweat chloride concentrations were recorded at baseline, 6 months and 12 months. Inflammatory markers, including fibrinogen, C-reactive protein (CRP), and a panel of 8 cytokines, were measured using multiplex bead-based immunoassays and electrochemiluminescence. Longitudinal changes were analysed using mixed-effects models and statistical tests, with significance set at p < 0.05. RESULTS During a 12-month follow-up, the neutrophils number and proinflammatory biomarkers analyzed, fibrinogen, CRP, GM-CSF, IFN- γ, IL-1 α, IL-1 β, IL-8 (CXCL8), IL-12p70, IL-17A (CTLA-8), and TNF-α, significantly decreased, while eosinophils remained stable. Mixed-effects models confirmed the significant association of inflammatory biomarkers with FEV1, BMI, sweat chloride levels, and VR/TLC highlighting the role of inflammation in the progression of CF. CONCLUSIONS ETI demonstrated marked anti-inflammatory effects in CF patients, reducing systemic inflammation and improving clinical parameters.
Collapse
Affiliation(s)
| | | | - Adrián Peláez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | | | | | | | | | | | | | | | - Marta García Clemente
- Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
| |
Collapse
|
4
|
Alshriem LA, Buqaileh R, Alorjani Q, AbouAlaiwi W. Ciliary Ion Channels in Polycystic Kidney Disease. Cells 2025; 14:459. [PMID: 40136708 PMCID: PMC11941060 DOI: 10.3390/cells14060459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Polycystic kidney disease (PKD) is the most common hereditary disorder that disrupts renal function and frequently progresses to end-stage renal disease. Recent advances have elucidated the critical role of primary cilia and ciliary ion channels, including transient receptor potential (TRP) channels, cystic fibrosis transmembrane conductance regulator (CFTR), and polycystin channels, in the pathogenesis of PKD. While some channels primarily function as chloride conductance channels (e.g., CFTR), others primarily regulate calcium (Ca+2) homeostasis. These ion channels are essential for cellular signaling and maintaining the normal kidney architecture. Dysregulation of these pathways due to genetic mutations in PKD1 and PKD2 leads to disrupted Ca+2 and cAMP signaling, aberrant fluid secretion, and uncontrolled cellular proliferation, resulting in tubular cystogenesis. Understanding the molecular mechanisms underlying these dysfunctions has opened the door for innovative therapeutic strategies, including TRPV4 activators, CFTR inhibitors, and calcimimetics, to mitigate cyst growth and preserve renal function. This review summarizes the current knowledge on the roles of ciliary ion channels in PKD pathophysiology, highlights therapeutic interventions targeting these channels, and identifies future research directions for improving patient outcomes.
Collapse
Affiliation(s)
- Lubna A. Alshriem
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA; (L.A.A.); (R.B.); (Q.A.)
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Raghad Buqaileh
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA; (L.A.A.); (R.B.); (Q.A.)
| | - Qasim Alorjani
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA; (L.A.A.); (R.B.); (Q.A.)
| | - Wissam AbouAlaiwi
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA; (L.A.A.); (R.B.); (Q.A.)
| |
Collapse
|
5
|
Wan Y, Hudson R, Smith J, Forman-Kay JD, Ditlev JA. Protein interactions, calcium, phosphorylation, and cholesterol modulate CFTR cluster formation on membranes. Proc Natl Acad Sci U S A 2025; 122:e2424470122. [PMID: 40063811 PMCID: PMC11929494 DOI: 10.1073/pnas.2424470122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 03/25/2025] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel whose dysfunction leads to intracellular accumulation of chloride ions, dehydration of cell surfaces, and subsequent damage to airway and ductal organs. Beyond its function as a chloride channel, interactions between CFTR, epithelium sodium channel, and solute carrier (SLC) transporter family membrane proteins and cytoplasmic proteins, including calmodulin and Na+/H+ exchanger regulatory factor-1 (NHERF-1), coregulate ion homeostasis. CFTR has also been observed to form mesoscale membrane clusters. However, the contributions of multivalent protein and lipid interactions to cluster formation are not well understood. Using a combination of computational modeling and biochemical reconstitution assays, we demonstrate that multivalent interactions with CFTR protein binding partners, calcium, and membrane cholesterol can induce mesoscale CFTR cluster formation on model membranes. Phosphorylation of the intracellular domains of CFTR also promotes mesoscale cluster formation in the absence of calcium, indicating that multiple mechanisms can contribute to CFTR cluster formation. Our findings reveal that coupling of multivalent protein and lipid interactions promotes CFTR cluster formation consistent with membrane-associated biological phase separation.
Collapse
Affiliation(s)
- Yimei Wan
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Rhea Hudson
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Jordyn Smith
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Julie D. Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Jonathon A. Ditlev
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Program in Cell and Systems Biology, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| |
Collapse
|
6
|
Aljameeli AM, Alsuwayt B, Bharati D, Gohri V, Mohite P, Singh S, Chidrawar V. Chloride channels and mast cell function: pioneering new frontiers in IBD therapy. Mol Cell Biochem 2025:10.1007/s11010-025-05243-w. [PMID: 40038149 DOI: 10.1007/s11010-025-05243-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Emerging evidence indicates that chloride channels (ClCs) significantly affect the pathogenesis of inflammatory bowel disease (IBD) through their regulatory roles in mast cell function and epithelial integrity. IBD, encompassing conditions such as Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract, where channels influence immune responses, fluid balance, and cellular signalling pathways essential for maintaining mucosal homeostasis. This review examines the specific roles of ClC in mast cells, focussing on the regulation of mast cell activation, degranulation, cytokine release, and immune cell recruitment in inflamed tissues. Key channels, including Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and ClC-2, are discussed in detail because of their involvement in maintaining intestinal epithelial barrier function, a critical factor disrupted in IBD. For example, CFTR facilitates chloride ion transport across epithelial cells, which is essential for mucosal hydration and maintenance of the intestinal barrier. Reduced CFTR function can compromise this barrier, permitting microbial antigens to penetrate the underlying tissues and triggering excessive immune responses. ClC-2, another chloride channel expressed in mast cells and epithelial cells, supports tight junction integrity, contributes to barrier function, and reduces intestinal permeability. Dysregulation of these channels is linked to altered mast cell activity and excessive release of pro-inflammatory mediators, exacerbating IBD symptoms, such as diarrhoea, abdominal pain, and tissue damage. Here, we review recent pharmacological strategies targeting ClC, including CFTR potentiators and ClC-2 activators, which show the potential to mitigate inflammatory responses. Additionally, experimental approaches for selective modulation of chloride channels in mast cells have been explored. Although targeting ClC offers promising therapeutic avenues, challenges remain in achieving specificity and minimizing side effects. This review highlights the therapeutic potential of Cl channel modulation in mast cells as a novel approach for IBD treatment, aiming to reduce inflammation and restore intestinal homeostasis in affected patients.
Collapse
Affiliation(s)
- Ahmed M Aljameeli
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Albatin, Saudi Arabia
| | - Bader Alsuwayt
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Albatin, Saudi Arabia
| | - Deepak Bharati
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401 404, India
| | - Vaishnavi Gohri
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401 404, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401 404, India.
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Vijay Chidrawar
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed-to-University, Green Industrial Park, TSIIC, Polepally, Jadcherla, Hyderabad, Telangana, 509301, India.
| |
Collapse
|
7
|
Cho DY, Skelton AJ, Grayson JW, Turner JH, Woodworth BA. Prevalence of Cystic Fibrosis Carrier Status in Chronic Rhinosinusitis Without Nasal Polyp. Int Forum Allergy Rhinol 2025. [PMID: 39972960 DOI: 10.1002/alr.23549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Affiliation(s)
- Do-Yeon Cho
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Otolaryngology, Department of Surgery, Veterans Affairs, Birmingham, Alabama, USA
| | - Adam J Skelton
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica W Grayson
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Justin H Turner
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bradford A Woodworth
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
8
|
Fuhrer M, Zampoli M, Abriel H. Diagnosing cystic fibrosis in low- and middle-income countries: challenges and strategies. Orphanet J Rare Dis 2024; 19:482. [PMID: 39707455 DOI: 10.1186/s13023-024-03506-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Cystic Fibrosis is caused by recessively inherited variants of the cystic fibrosis transmembrane regulator. It is associated with diverse clinical presentations that can affect the respiratory, digestive, and reproductive systems and inhibit nutrient absorption and growth. MAIN BODY The current estimation of people affected by Cystic Fibrosis is likely underestimated as this disease remains undiagnosed in countries with limited diagnostic capacity. Recent evidence indicates that Cystic Fibrosis is more common than initially thought and is likely underreported in low- and middle-income countries. The sweat chloride test remains the gold standard for diagnosing Cystic Fibrosis. However, the costs of commercially available instruments, consumables, and laboratory reagents remain relatively high for widespread implementation in low- and middle-income countries. CONCLUSION Alternative, cost-effective, and simpler approaches to sweat electrolyte measurement, may present more feasible options for CF diagnosis in the setting of low- and middle-income countries. Novel low-cost, point-of-care innovations for measuring sweat chloride should be explored and further validated as suitable alternatives. It will be important to consider how to implement these options and adjust the diagnostic algorithm to meet the needs of low- and middle-income countries. Future Cystic Fibrosis research in low- and middle-income countries should focus on finding a lower-cost and resource-intensive pathway for CF screening and diagnosis to improve its availability.
Collapse
Affiliation(s)
- Michèle Fuhrer
- Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, CH-3012, Switzerland.
| | - Marco Zampoli
- Department of Paediatrics and Child Health Division of Paediatric Pulmonology, Red Cross War Memorial Children's Hospital, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Hugues Abriel
- Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, CH-3012, Switzerland.
| |
Collapse
|
9
|
Shah DD, Chorawala MR, Pandya AJ, Kothari N, Prajapati BG, Parekh PS. Advancing the Battle against Cystic Fibrosis: Stem Cell and Gene Therapy Insights. Curr Med Sci 2024; 44:1155-1174. [PMID: 39676146 DOI: 10.1007/s11596-024-2936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/03/2024] [Indexed: 12/17/2024]
Abstract
Cystic fibrosis (CF) is a hereditary disorder characterized by mutations in the CFTR gene, leading to impaired chloride ion transport and subsequent thickening of mucus in various organs, particularly the lungs. Despite significant progress in CF management, current treatments focus mainly on symptom relief and do not address the underlying genetic defects. Stem cell and gene therapies present promising avenues for tackling CF at its root cause. Stem cells, including embryonic, induced pluripotent, mesenchymal, hematopoietic, and lung progenitor cells, offer regenerative potential by differentiating into specialized cells and modulating immune responses. Similarly, gene therapy aims to correct CFTR gene mutations by delivering functional copies of the gene into affected cells. Various approaches, such as viral and nonviral vectors, gene editing with CRISPR-Cas9, small interfering RNA (siRNA) therapy, and mRNA therapy, are being explored to achieve gene correction. Despite their potential, challenges such as safety concerns, ethical considerations, delivery system optimization, and long-term efficacy remain. This review provides a comprehensive overview of the current understanding of CF pathophysiology, the rationale for exploring stem cell and gene therapies, the types of therapies available, their mechanisms of action, and the challenges and future directions in the field. By addressing these challenges, stem cell and gene therapies hold promise for transforming CF management and improving the quality of life of affected individuals.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Aanshi J Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, 384012, India.
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | | |
Collapse
|
10
|
Xu P, Zou W, Yin W, Chen G, Gao G, Zhong X. Ion channels research in hPSC-RPE cells: bridging benchwork to clinical applications. J Transl Med 2024; 22:1073. [PMID: 39604931 PMCID: PMC11600670 DOI: 10.1186/s12967-024-05769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Ion channels in retinal pigment epithelial (RPE) cells are crucial for retinal health and vision functions. Defects in such channels are intricately associated with the development of various retinopathies that cause blindness. Human pluripotent stem cells (hPSC)-derived RPE cells, including those from human-induced pluripotent stem cells (hiPSC) and human embryonic stem cells (hESC), have been used as in vitro models for investigating pathogenic mechanisms and screening potential therapeutic strategies for retinopathies. Therefore, the cellular status of hPSC-RPE cells, including maturity and physiologic functions, have been widely explored. Particularly, research on ion channels in hPSC-RPE cells can lead to the development of more stable models upon which robust investigations and clinical safety assessments can be performed. Moreover, the use of patient-specific hiPSC-RPE cells has significantly accelerated the clinical translation of gene therapy for retinal channelopathies, such as bestrophinopathies. This review consolidates current research on ion channels in hPSC-RPE cells, specifically Kir7.1, Bestrophin-1, CLC-2, and CaV1.3, providing a foundation for future research.
Collapse
Affiliation(s)
- Ping Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Weisheng Zou
- Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, 510080, China
| | - Wenjing Yin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Guifu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Guanjie Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiufeng Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
11
|
Glaenzel U, Huth F, Eggimann F, Hackling M, Leuthold LA, Meissner A, Bebrevska L. Absorption, Distribution, Metabolism, and Excretion of Icenticaftor (QBW251) in Healthy Male Volunteers at Steady State and In Vitro Phenotyping of Major Metabolites. Drug Metab Dispos 2024; 52:1379-1387. [PMID: 39313328 DOI: 10.1124/dmd.124.001751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Icenticaftor (QBW251) is a potentiator of the cystic fibrosis transmembrane conductance regulator protein and is currently in clinical development for the treatment of chronic obstructive pulmonary disease and chronic bronchitis. An absorption, distribution, metabolism, and excretion study was performed at steady state to determine the pharmacokinetics, mass balance, and metabolite profiles of icenticaftor in humans. In this open-label study, six healthy men were treated with unlabeled oral icenticaftor (400 mg b.i.d.) for 4 days. A single oral dose of [14C]icenticaftor was administered on Day 5, and unlabeled icenticaftor was administered twice daily from the evening of Day 5 to Day 12. Unchanged icenticaftor accounted for 18.5% of plasma radioactivity. Moderate to rapid absorption of icenticaftor was observed (median time to reach peak or maximum concentration: 4 hours), with 93.4% of the dose absorbed. It exhibited moderate distribution (Vz/F: 335 L) and was extensively metabolized, principally through N-glucuronidation, O-glucuronidation, and/or O-demethylation. The metabolites M8 and M9, formed by N-glucuronidation and O-glucuronidation of icenticaftor, respectively, represented the main entities detected in plasma (35.3% and 14.5%, respectively) in addition to unchanged icenticaftor (18.5%). The apparent mean terminal half-life of icenticaftor was 15.4 hours in blood and 20.6 hours in plasma. Icenticaftor was eliminated from the body mainly through metabolism followed by renal excretion, and excretion of radioactivity was complete after 9 days. In vitro phenotyping of icenticaftor showed that cytochrome P450 and uridine diphosphate glucuronosyltransferase were responsible for 31% and 69% of the total icenticaftor metabolism in human liver microsomes, respectively. This study provided invaluable insights into the disposition of icenticaftor. SIGNIFICANCE STATEMENT: The absorption, distribution, metabolism, and excretion of a single radioactive oral dose of icenticaftor was evaluated at steady state to investigate the nonlinear pharmacokinetics observed previously with icenticaftor. [14C]Icenticaftor demonstrated good systemic availability after oral administration and was extensively metabolized and moderately distributed to peripheral tissues. The most abundant metabolites, M8 and M9, were formed by N-glucuronidation and O-glucuronidation of icenticaftor, respectively. Phenotyping demonstrated that [14C]icenticaftor was metabolized predominantly by UGT1A9 with a remarkably low Km value.
Collapse
Affiliation(s)
- Ulrike Glaenzel
- Novartis Pharma AG, Basel, Switzerland (U.G., F.H., F.E., L.A.L., A.M., L.B.) and Novartis Pharmaceuticals Corporation, East Hanover, New Jersey (M.H.)
| | - Felix Huth
- Novartis Pharma AG, Basel, Switzerland (U.G., F.H., F.E., L.A.L., A.M., L.B.) and Novartis Pharmaceuticals Corporation, East Hanover, New Jersey (M.H.)
| | - Fabian Eggimann
- Novartis Pharma AG, Basel, Switzerland (U.G., F.H., F.E., L.A.L., A.M., L.B.) and Novartis Pharmaceuticals Corporation, East Hanover, New Jersey (M.H.)
| | - Melissa Hackling
- Novartis Pharma AG, Basel, Switzerland (U.G., F.H., F.E., L.A.L., A.M., L.B.) and Novartis Pharmaceuticals Corporation, East Hanover, New Jersey (M.H.)
| | - Luc Alexis Leuthold
- Novartis Pharma AG, Basel, Switzerland (U.G., F.H., F.E., L.A.L., A.M., L.B.) and Novartis Pharmaceuticals Corporation, East Hanover, New Jersey (M.H.)
| | - Axel Meissner
- Novartis Pharma AG, Basel, Switzerland (U.G., F.H., F.E., L.A.L., A.M., L.B.) and Novartis Pharmaceuticals Corporation, East Hanover, New Jersey (M.H.)
| | - Lidiya Bebrevska
- Novartis Pharma AG, Basel, Switzerland (U.G., F.H., F.E., L.A.L., A.M., L.B.) and Novartis Pharmaceuticals Corporation, East Hanover, New Jersey (M.H.)
| |
Collapse
|
12
|
Alqasmi M. Therapeutic Interventions for Pseudomonas Infections in Cystic Fibrosis Patients: A Review of Phase IV Trials. J Clin Med 2024; 13:6530. [PMID: 39518670 PMCID: PMC11547045 DOI: 10.3390/jcm13216530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Pseudomonas aeruginosa (Pa) poses a significant threat to individuals with cystic fibrosis (CF), as this bacterium is highly adaptable and resistant to antibiotics. While early-stage Pa infections can often be eradicated with aggressive antibiotic therapy, chronic infections are nearly impossible to eliminate and require treatments that focus on long-term bacterial suppression. Without such suppression, these persistent infections can severely damage the lungs, leading to serious complications and a reduced life expectancy for CF patients. Evidence for a specific treatment regimen for managing Pa infections in CF patients remains limited. This narrative review provides a detailed analysis of antimicrobial therapies assessed in completed phase IV trials, focusing on their safety and efficacy, especially with prolonged use. Key antibiotics, including tobramycin, colistin, meropenem, aztreonam, ceftolozane/tazobactam, ciprofloxacin, and azithromycin, are discussed, emphasizing their use, side effects, and delivery methods. Inhaled antibiotics are preferred for their targeted action and minimal side effects, while systemic antibiotics offer potency but carry risks like nephrotoxicity. The review also explores emerging treatments, such as phage therapy and antibiofilm agents, which show promise in managing chronic infections. Nonetheless, further research is necessary to enhance the safety and effectiveness of existing therapies while investigating new approaches for better long-term outcomes.
Collapse
Affiliation(s)
- Mohammed Alqasmi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
13
|
Milczewska J, Syunyaeva Z, Żabińska-Jaroń A, Sands D, Thee S. Changing profile of bacterial infection and microbiome in cystic fibrosis: when to use antibiotics in the era of CFTR-modulator therapy. Eur Respir Rev 2024; 33:240068. [PMID: 39631927 PMCID: PMC11615665 DOI: 10.1183/16000617.0068-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024] Open
Abstract
The advent of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy, especially the triple therapy combining the drugs elexacaftor, tezacaftor, ivacaftor (ETI), has significantly changed the course of the disease in people with cystic fibrosis (pwCF). ETI, which is approved for the majority (80-90%) of pwCF, partially restores CFTR channel function, resulting in improved mucociliary clearance and, consequently, improved lung function, respiratory symptoms and pulmonary exacerbations. The bacterial burden of classical CF pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus is reduced without reaching eradication in the majority of infected patients. Limited data is available on less common or emerging bacterial pathogens. ETI has a positive effect on the lung microbiome but does not fully restore it to a healthy state. Due to the significant reduction in sputum production under ETI, respiratory samples such as deep-throat swabs are commonly taken, despite their inadequate representation of lower respiratory tract pathogens. Currently, there are still unanswered questions related to this new therapy, such as the clinical impact of infection with cystic fibrosis (CF) pathogens, the value of molecular diagnostic tests, the durability of the effects on respiratory infection and the role of fungal and viral infections. This article reviews the changes in bacterial lung infections and the microbiome in CF to provide evidence for the use of antibiotics in the era of ETI.
Collapse
Affiliation(s)
- Justyna Milczewska
- Cystic Fibrosis Department, Institute of Mother and Child, Warsaw, Poland
- Cystic Fibrosis Centre, Pediatric Hospital, Dziekanow Lesny, Poland
- Joint first authors
| | - Zulfiya Syunyaeva
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Joint first authors
| | | | - Dorota Sands
- Cystic Fibrosis Department, Institute of Mother and Child, Warsaw, Poland
- Cystic Fibrosis Centre, Pediatric Hospital, Dziekanow Lesny, Poland
| | - Stephanie Thee
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Najm M, Martignetti L, Cornet M, Kelly-Aubert M, Sermet I, Calzone L, Stoven V. From CFTR to a CF signalling network: a systems biology approach to study Cystic Fibrosis. BMC Genomics 2024; 25:892. [PMID: 39342081 PMCID: PMC11438383 DOI: 10.1186/s12864-024-10752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Cystic Fibrosis (CF) is a monogenic disease caused by mutations in the gene coding the Cystic Fibrosis Transmembrane Regulator (CFTR) protein, but its overall physio-pathology cannot be solely explained by the loss of the CFTR chloride channel function. Indeed, CFTR belongs to a yet not fully deciphered network of proteins participating in various signalling pathways. METHODS We propose a systems biology approach to study how the absence of the CFTR protein at the membrane leads to perturbation of these pathways, resulting in a panel of deleterious CF cellular phenotypes. RESULTS Based on publicly available transcriptomic datasets, we built and analyzed a CF network that recapitulates signalling dysregulations. The CF network topology and its resulting phenotypes were found to be consistent with CF pathology. CONCLUSION Analysis of the network topology highlighted a few proteins that may initiate the propagation of dysregulations, those that trigger CF cellular phenotypes, and suggested several candidate therapeutic targets. Although our research is focused on CF, the global approach proposed in the present paper could also be followed to study other rare monogenic diseases.
Collapse
Affiliation(s)
- Matthieu Najm
- Center for Computational Biology (CBIO), Mines Paris-PSL, 75006, Paris, France.
- Institut Curie, Université PSL, 75005, Paris, France.
- INSERM U900, 75005, Paris, France.
| | - Loredana Martignetti
- Center for Computational Biology (CBIO), Mines Paris-PSL, 75006, Paris, France
- Institut Curie, Université PSL, 75005, Paris, France
- INSERM U900, 75005, Paris, France
| | - Matthieu Cornet
- Center for Computational Biology (CBIO), Mines Paris-PSL, 75006, Paris, France
- Institut Curie, Université PSL, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- Institut Necker Enfants Malades, INSERM U1151, 75015, Paris, France
| | - Mairead Kelly-Aubert
- Institut Necker Enfants Malades, INSERM U1151, 75015, Paris, France
- Université Paris Cité, 75015, Paris, France
| | - Isabelle Sermet
- Institut Necker Enfants Malades, INSERM U1151, 75015, Paris, France
- Université Paris Cité, 75015, Paris, France
- Centre de Référence Maladies Rares, Mucoviscidose et Maladies Apparentées, Hôpital Necker Enfants Malades AP-HP Centre Paris Cité, 75015, Paris, France
| | - Laurence Calzone
- Center for Computational Biology (CBIO), Mines Paris-PSL, 75006, Paris, France.
- Institut Curie, Université PSL, 75005, Paris, France.
- INSERM U900, 75005, Paris, France.
| | - Véronique Stoven
- Center for Computational Biology (CBIO), Mines Paris-PSL, 75006, Paris, France.
- Institut Curie, Université PSL, 75005, Paris, France.
- INSERM U900, 75005, Paris, France.
| |
Collapse
|
15
|
Guyot E, Reynaud Q, Belhassen M, Bérard M, Dehillotte C, Lemonnier L, Viprey M, Van Ganse E, Burgel PR, Durieu I. Health care resource utilization preceding death or lung transplantation in people with cystic fibrosis: HCRU before transplant or death in cystic fibrosis. J Cyst Fibros 2024; 23:903-909. [PMID: 38480112 DOI: 10.1016/j.jcf.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND We studied the health care resource utilization (HCRU) and associated costs in the year preceding LT in pwCF or death without LT, and we estimated the overall cost of LT. METHODS We performed a linkage between 2006 and 2017 data from the French CF Registry (FCFR) and the French health claims database (Système National des Données de Santé; SNDS). The HCRU and associated costs were described the year before LT or before death without LT, and two years after LT. RESULTS Among the 7,671 patients included in the FCFR, 6,187 patients (80.7 %) were successfully matched to patients in the SNDS (males (m): 51.9 %, mean±SD age at the end of follow-up: 24.6 ± 13.6). Overall, 166 patients died without LT (m: 47.6 %, age at death: 30.4 ± 14.5) and 767 patients with primary LT (m: 48.2 %, age at transplantation: 28.0 ± 9.1) were identified. HCRU was lower among patients who died without receiving LT, with marked differences in the cost of hospital stays. The mean total cost per patient was €66,759 ± 38,249 in the year before death, €149,374 ± 62,678 in the year preceding LT, €63,919 ± 35,399 in the first year following LT, and €42,813 ± 39,967 in the second year of follow-up. CONCLUSION Our results indicate that HCRU was two times lower in the year before death in non-transplant pwCF than in the year before LT, which may reflect inappropriate care of CF in patients who died without receiving LT. It also shows the cost associated with LT.
Collapse
Affiliation(s)
- Erika Guyot
- PELyon, PharmacoEpidémiologie Lyon, 210 avenue Jean Jaurès, 69007 Lyon, France.
| | - Quitterie Reynaud
- RESearch on HealthcAre PErformance (RESHAPE), INSERM U1290, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69373 Lyon Cedex 08, France; French National Cystic Fibrosis Reference Center (constitutif), Service de médecine interne et de pathologie vasculaire, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre-Bénite, France; ERN-Lung Cystic Fibrosis Network, Frankfurt, Germany
| | - Manon Belhassen
- PELyon, PharmacoEpidémiologie Lyon, 210 avenue Jean Jaurès, 69007 Lyon, France
| | - Marjorie Bérard
- PELyon, PharmacoEpidémiologie Lyon, 210 avenue Jean Jaurès, 69007 Lyon, France
| | - Clémence Dehillotte
- Association Vaincre la Mucoviscidose, 181 Rue de Tolbiac, 75013 Paris, France
| | - Lydie Lemonnier
- Association Vaincre la Mucoviscidose, 181 Rue de Tolbiac, 75013 Paris, France
| | - Marie Viprey
- RESearch on HealthcAre PErformance (RESHAPE), INSERM U1290, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69373 Lyon Cedex 08, France; Département des Données de Santé, Hospices Civils de Lyon, 162 avenue Lacassagne 69003 Lyon, France
| | - Eric Van Ganse
- RESearch on HealthcAre PErformance (RESHAPE), INSERM U1290, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69373 Lyon Cedex 08, France; Service de Pneumologie, Hospices Civils de Lyon, Hôpital de la Croix-Rousse, 103 Grande Rue de la Croix-Rousse, 69002 Lyon, France
| | - Pierre-Régis Burgel
- ERN-Lung Cystic Fibrosis Network, Frankfurt, Germany; Université ParisCité, Inserm U1016, Institut Cochin, Paris, France; Department of Respiratory Medicine and French National Cystic Fibrosis Reference Center, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Isabelle Durieu
- RESearch on HealthcAre PErformance (RESHAPE), INSERM U1290, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69373 Lyon Cedex 08, France; French National Cystic Fibrosis Reference Center (constitutif), Service de médecine interne et de pathologie vasculaire, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre-Bénite, France; ERN-Lung Cystic Fibrosis Network, Frankfurt, Germany
| |
Collapse
|
16
|
Mall MA, Davies JC, Donaldson SH, Jain R, Chalmers JD, Shteinberg M. Neutrophil serine proteases in cystic fibrosis: role in disease pathogenesis and rationale as a therapeutic target. Eur Respir Rev 2024; 33:240001. [PMID: 39293854 PMCID: PMC11409056 DOI: 10.1183/16000617.0001-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/09/2024] [Indexed: 09/20/2024] Open
Abstract
Chronic airway inflammation is a central feature in the pathogenesis of bronchiectasis (BE), which can be caused by cystic fibrosis (CFBE; hereafter referred to as CF lung disease) and non-CF-related conditions (NCFBE). Inflammation in both CF lung disease and NCFBE is predominantly driven by neutrophils, which release proinflammatory cytokines and granule proteins, including neutrophil serine proteases (NSPs). NSPs include neutrophil elastase, proteinase 3 and cathepsin G. An imbalance between NSPs and their antiproteases has been observed in people with CF lung disease and people with NCFBE. While the role of the protease/antiprotease imbalance is well established in both CF lung disease and NCFBE, effective therapies targeting NSPs are lacking. In recent years, the introduction of CF transmembrane conductance regulator (CFTR) modulator therapy has immensely improved outcomes in many people with CF (pwCF). Despite this, evidence suggests that airway inflammation persists, even in pwCF treated with CFTR modulator therapy. In this review, we summarise current data on neutrophilic inflammation in CF lung disease to assess whether neutrophilic inflammation and high, uncontrolled NSP levels play similar roles in CF lung disease and in NCFBE. We discuss similarities between the neutrophilic inflammatory profiles of people with CF lung disease and NCFBE, potentially supporting a similar therapeutic approach. Additionally, we present evidence suggesting that neutrophilic inflammation persists in pwCF treated with CFTR modulator therapy, at levels similar to those in people with NCFBE. Collectively, these findings highlight the ongoing need for new treatment strategies targeting neutrophilic inflammation in CF lung disease.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Scott H Donaldson
- Department of Medicine, Division of Pulmonary Diseases and Critical Care Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Raksha Jain
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Michal Shteinberg
- Lady Davis Carmel Medical Center, Haifa, Israel
- The B. Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
17
|
Dartois V, Bonfield TL, Boyce JP, Daley CL, Dick T, Gonzalez-Juarrero M, Gupta S, Kramnik I, Lamichhane G, Laughon BE, Lorè NI, Malcolm KC, Olivier KN, Tuggle KL, Jackson M. Preclinical murine models for the testing of antimicrobials against Mycobacterium abscessus pulmonary infections: Current practices and recommendations. Tuberculosis (Edinb) 2024; 147:102503. [PMID: 38729070 PMCID: PMC11168888 DOI: 10.1016/j.tube.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 05/12/2024]
Abstract
Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, is increasingly recognized as an important pathogen of the human lung, disproportionally affecting people with cystic fibrosis (CF) and other susceptible individuals with non-CF bronchiectasis and compromised immune functions. M. abscessus infections are extremely difficult to treat due to intrinsic resistance to many antibiotics, including most anti-tuberculous drugs. Current standard-of-care chemotherapy is long, includes multiple oral and parenteral repurposed drugs, and is associated with significant toxicity. The development of more effective oral antibiotics to treat M. abscessus infections has thus emerged as a high priority. While murine models have proven instrumental in predicting the efficacy of therapeutic treatments for M. tuberculosis infections, the preclinical evaluation of drugs against M. abscessus infections has proven more challenging due to the difficulty of establishing a progressive, sustained, pulmonary infection with this pathogen in mice. To address this issue, a series of three workshops were hosted in 2023 by the Cystic Fibrosis Foundation (CFF) and the National Institute of Allergy and Infectious Diseases (NIAID) to review the current murine models of M. abscessus infections, discuss current challenges and identify priorities toward establishing validated and globally harmonized preclinical models. This paper summarizes the key points from these workshops. The hope is that the recommendations that emerged from this exercise will facilitate the implementation of informative murine models of therapeutic efficacy testing across laboratories, improve reproducibility from lab-to-lab and accelerate preclinical-to-clinical translation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation & Department of Medical Sciences, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Tracey L Bonfield
- Genetics and Genome Sciences and National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jim P Boyce
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charles L Daley
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas Dick
- Center for Discovery and Innovation & Department of Medical Sciences, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA; Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Shashank Gupta
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA; Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02215, USA; Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Barbara E Laughon
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicola I Lorè
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kenneth N Olivier
- Department of Medicine, Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, USA; Marsico Lung Institute, Chapel Hill, 27599-7248, NC, USA
| | | | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA.
| |
Collapse
|
18
|
Merigo F, Lagni A, Boschi F, Bernardi P, Conti A, Plebani R, Romano M, Sorio C, Lotti V, Sbarbati A. Loss of CFTR Reverses Senescence Hallmarks in SARS-CoV-2 Infected Bronchial Epithelial Cells. Int J Mol Sci 2024; 25:6185. [PMID: 38892373 PMCID: PMC11172982 DOI: 10.3390/ijms25116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
SARS-CoV-2 infection has been recently shown to induce cellular senescence in vivo. A senescence-like phenotype has been reported in cystic fibrosis (CF) cellular models. Since the previously published data highlighted a low impact of SARS-CoV-2 on CFTR-defective cells, here we aimed to investigate the senescence hallmarks in SARS-CoV-2 infection in the context of a loss of CFTR expression/function. We infected WT and CFTR KO 16HBE14o-cells with SARS-CoV-2 and analyzed both the p21 and Ki67 expression using immunohistochemistry and viral and p21 gene expression using real-time PCR. Prior to SARS-CoV-2 infection, CFTR KO cells displayed a higher p21 and lower Ki67 expression than WT cells. We detected lipid accumulation in CFTR KO cells, identified as lipolysosomes and residual bodies at the subcellular/ultrastructure level. After SARS-CoV-2 infection, the situation reversed, with low p21 and high Ki67 expression, as well as reduced viral gene expression in CFTR KO cells. Thus, the activation of cellular senescence pathways in CFTR-defective cells was reversed by SARS-CoV-2 infection while they were activated in CFTR WT cells. These data uncover a different response of CF and non-CF bronchial epithelial cell models to SARS-CoV-2 infection and contribute to uncovering the molecular mechanisms behind the reduced clinical impact of COVID-19 in CF patients.
Collapse
Affiliation(s)
- Flavia Merigo
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.M.); (P.B.); (A.C.); (A.S.)
| | - Anna Lagni
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy;
| | - Federico Boschi
- Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy;
| | - Paolo Bernardi
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.M.); (P.B.); (A.C.); (A.S.)
| | - Anita Conti
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.M.); (P.B.); (A.C.); (A.S.)
| | - Roberto Plebani
- Laboratory of Molecular Medicine, Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (R.P.); (M.R.)
| | - Mario Romano
- Laboratory of Molecular Medicine, Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (R.P.); (M.R.)
| | - Claudio Sorio
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy;
| | - Virginia Lotti
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy;
| | - Andrea Sbarbati
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.M.); (P.B.); (A.C.); (A.S.)
| |
Collapse
|
19
|
Jarosz-Griffiths HH, Gillgrass L, Caley LR, Spoletini G, Clifton IJ, Etherington C, Savic S, McDermott MF, Peckham D. Anti-inflammatory effects of elexacaftor/tezacaftor/ivacaftor in adults with cystic fibrosis heterozygous for F508del. PLoS One 2024; 19:e0304555. [PMID: 38820269 PMCID: PMC11142445 DOI: 10.1371/journal.pone.0304555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
Inflammation is a key driver in the pathogenesis of cystic fibrosis (CF). We assessed the effectiveness of elexacaftor/tezacaftor/ivacaftor (ETI) therapy on downregulating systemic and immune cell-derived inflammatory cytokines. We also monitored the impact of ETI therapy on clinical outcome. Adults with CF, heterozygous for F508del (n = 19), were assessed at baseline, one month and three months following ETI therapy, and clinical outcomes were measured, including sweat chloride, lung function, weight, neutrophil count and C-reactive protein (CRP). Cytokine quantifications were measured in serum and following stimulation of peripheral blood mononuclear cells (PBMCs) with lipopolysaccharide (LPS) and adenosine triphosphate and analysed using LEGEND plex™ Human Inflammation Panel 1 by flow cytometry (n = 19). ASC specks were measured in serum and caspase-1 activity and mRNA levels determined from stimulated PBMCs were determined. Patients remained stable over the study period. ETI therapy resulted in decreased sweat chloride concentrations (p < 0.0001), CRP (p = 0.0112) and neutrophil count (p = 0.0216) and increased percent predicted forced expiratory volume (ppFEV1) (p = 0.0399) from baseline to three months, alongside a trend increase in weight. Three months of ETI significantly decreased IL-18 (p< 0.0011, p < 0.0001), IL-1β (p<0.0013, p = 0.0476), IL-6 (p = 0.0109, p = 0.0216) and TNF (p = 0.0028, p = 0.0033) levels in CF serum and following PBMCs stimulation respectively. The corresponding mRNA levels were also found to be reduced in stimulated PBMCs, as well as reduced ASC specks and caspase-1 levels, indicative of NLRP3-mediated production of pro-inflammatory cytokines, IL-1β and IL-18. While ETI therapy is highly effective at reducing sweat chloride and improving lung function, it also displays potent anti-inflammatory properties, which are likely to contribute to improved long-term clinical outcomes.
Collapse
Affiliation(s)
| | - Lindsey Gillgrass
- Adult Cystic Fibrosis Unit, St James’s University Hospital, Leeds, United Kingdom
| | - Laura R. Caley
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Giulia Spoletini
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
- Adult Cystic Fibrosis Unit, St James’s University Hospital, Leeds, United Kingdom
| | - Ian J. Clifton
- Adult Cystic Fibrosis Unit, St James’s University Hospital, Leeds, United Kingdom
| | | | - Sinisa Savic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Michael F. McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Daniel Peckham
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
- Adult Cystic Fibrosis Unit, St James’s University Hospital, Leeds, United Kingdom
| |
Collapse
|
20
|
Tavakolidakhrabadi N, Aulicino F, May CJ, Saleem MA, Berger I, Welsh GI. Genome editing and kidney health. Clin Kidney J 2024; 17:sfae119. [PMID: 38766272 PMCID: PMC11099665 DOI: 10.1093/ckj/sfae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Indexed: 05/22/2024] Open
Abstract
Genome editing technologies, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas in particular, have revolutionized the field of genetic engineering, providing promising avenues for treating various genetic diseases. Chronic kidney disease (CKD), a significant health concern affecting millions of individuals worldwide, can arise from either monogenic or polygenic mutations. With recent advancements in genomic sequencing, valuable insights into disease-causing mutations can be obtained, allowing for the development of new treatments for these genetic disorders. CRISPR-based treatments have emerged as potential therapies, especially for monogenic diseases, offering the ability to correct mutations and eliminate disease phenotypes. Innovations in genome editing have led to enhanced efficiency, specificity and ease of use, surpassing earlier editing tools such as zinc-finger nucleases and transcription activator-like effector nucleases (TALENs). Two prominent advancements in CRISPR-based gene editing are prime editing and base editing. Prime editing allows precise and efficient genome modifications without inducing double-stranded DNA breaks (DSBs), while base editing enables targeted changes to individual nucleotides in both RNA and DNA, promising disease correction in the absence of DSBs. These technologies have the potential to treat genetic kidney diseases through specific correction of disease-causing mutations, such as somatic mutations in PKD1 and PKD2 for polycystic kidney disease; NPHS1, NPHS2 and TRPC6 for focal segmental glomerulosclerosis; COL4A3, COL4A4 and COL4A5 for Alport syndrome; SLC3A1 and SLC7A9 for cystinuria and even VHL for renal cell carcinoma. Apart from editing the DNA sequence, CRISPR-mediated epigenome editing offers a cost-effective method for targeted treatment providing new avenues for therapeutic development, given that epigenetic modifications are associated with the development of various kidney disorders. However, there are challenges to overcome, including developing efficient delivery methods, improving safety and reducing off-target effects. Efforts to improve CRISPR-Cas technologies involve optimizing delivery vectors, employing viral and non-viral approaches and minimizing immunogenicity. With research in animal models providing promising results in rescuing the expression of wild-type podocin in mouse models of nephrotic syndrome and successful clinical trials in the early stages of various disorders, including cancer immunotherapy, there is hope for successful translation of genome editing to kidney diseases.
Collapse
Affiliation(s)
| | - Francesco Aulicino
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, Bristol Royal Hospital for Children
| | - Carl J May
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, UK
| | - Moin A Saleem
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, UK
- Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Bristol, UK
| | - Imre Berger
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Gavin I Welsh
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, UK
| |
Collapse
|
21
|
Galiniak S, Biesiadecki M, Rościszewska-Żukowska I, Rachel M. Calcitonin Gene-Related Peptide Level in Cystic Fibrosis Patients. Life (Basel) 2024; 14:565. [PMID: 38792587 PMCID: PMC11122201 DOI: 10.3390/life14050565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Calcitonin gene-related peptide (CGRP) has long been implicated in both the physiology and pathophysiology of the respiratory tract. The objective of our study was to determine the serum concentration of alpha CGRP (αCGRP) in cystic fibrosis (CF) that arises from mutations in the gene responsible for encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Currently, there are not many data in the literature about the role of CGRP in CF. The serum level of αCGRP was estimated using the enzyme-linked immunosorbent assay among 64 patients with CF and 31 healthy controls. The αCGRP concentration in the CF group was 62.51 ± 15.45 pg/mL, while in the control group it was 47.43 ± 8.06 pg/mL (p < 0.001). We also compared the level of αCGRP in CF patients according to the type of CFTR mutation. Homozygotes for ΔF508 had higher αCGRP levels than heterozygotes (67.9 ± 10.2 vs. 54.5 ± 18.3 pg/mL, p < 0.01). The level of this neuropeptide was statistically higher in patients with severe disease than in those with mild CF (p = 0.003) when patients were divided into three groups by spirometry results. αCGRP concentration was not correlated with age, sex, clinical parameters, and pulmonary function test results in the study participants. The results of our study suggest a significant increase in the concentration of αCGRP in the serum of patients with CF compared to the control group. This observation opens interesting possibilities for understanding the role of αCGRP in the context of CF pathophysiology.
Collapse
Affiliation(s)
- Sabina Galiniak
- Institute of Medical Sciences, Medical College, Rzeszów University, Warzywna 1a, 35-310 Rzeszów, Poland; (M.B.); (I.R.-Ż.); (M.R.)
| | - Marek Biesiadecki
- Institute of Medical Sciences, Medical College, Rzeszów University, Warzywna 1a, 35-310 Rzeszów, Poland; (M.B.); (I.R.-Ż.); (M.R.)
| | - Iwona Rościszewska-Żukowska
- Institute of Medical Sciences, Medical College, Rzeszów University, Warzywna 1a, 35-310 Rzeszów, Poland; (M.B.); (I.R.-Ż.); (M.R.)
| | - Marta Rachel
- Institute of Medical Sciences, Medical College, Rzeszów University, Warzywna 1a, 35-310 Rzeszów, Poland; (M.B.); (I.R.-Ż.); (M.R.)
- Department of Allergology and Cystic Fibrosis, State Hospital 2 in Rzeszow, Lwowska 60, 35-301 Rzeszów, Poland
| |
Collapse
|
22
|
Martínez-Hernández A, Mendoza-Caamal EC, Mendiola-Vidal NG, Barajas-Olmos F, Villafan-Bernal JR, Jiménez-Ruiz JL, Monge-Cazares T, García-Ortiz H, Cubas CC, Centeno-Cruz F, Alaez-Verson C, Ortega-Torres S, Luna-Castañeda ADC, Baca V, Lezana JL, Orozco L. CFTR pathogenic variants spectrum in a cohort of Mexican patients with cystic fibrosis. Heliyon 2024; 10:e28984. [PMID: 38601560 PMCID: PMC11004572 DOI: 10.1016/j.heliyon.2024.e28984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Background Molecular diagnosis of cystic fibrosis (CF) is challenging in Mexico due to the population's high genetic heterogeneity. To date, 46 pathogenic variants (PVs) have been reported, yielding a detection rate of 77%. We updated the spectrum and frequency of PVs responsible for this disease in mexican patients. Methods We extracted genomic DNA from peripheral blood lymphocytes obtained from 297 CF patients and their parents. First, we analyzed the five most frequent PVs in the Mexican population using PCR-mediated site-directed mutagenesis. In patients with at least one identified allele, CFTR sequencing was performed using next-generation sequencing tools and multiplex ligation-dependent probe amplification. For variants not previously classified as pathogenic, we used a combination of in silico prediction, CFTR modeling, and clinical characteristics to determine a genotype-phenotype correlation. Results We identified 95 PVs, increasing the detection rate to 87.04%. The most frequent variants were p.(PheF508del) (42.7%), followed by p.(Gly542*) (5.6%), p.(Ser945Leu) (2.9%), p.(Trp1204*) and p.(Ser549Asn) (2.5%), and CFTRdel25-26 and p.(Asn386Ilefs*3) (2.3%). The remaining variants had frequencies of <2.0%, and some were exclusive to one family. We identified 10 novel PVs localized in different exons (frequency range: 0.1-0.8%), all of which produced structural changes, deletions, or duplications in different domains of the protein, resulting in dysfunctional ion flow. The use of different in silico software and American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) criteria allowed us to assume that all of these PVs were pathogenic, causing a severe phenotype. Conclusions In a highly heterogeneous population, combinations of different tools are needed to identify the variants responsible for CF and enable the establishment of appropriate strategies for CF diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Angélica Martínez-Hernández
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genomica, SS, Tlalpan, 14610, Mexico City, Mexico
| | - Elvia C. Mendoza-Caamal
- Clinical Area, Instituto Nacional de Medicina Genómica, SS, Tlalpan, 14610, CDMX, Mexico City, Mexico
| | - Namibia G. Mendiola-Vidal
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genomica, SS, Tlalpan, 14610, Mexico City, Mexico
- Maestría en Ciencias Médicas. PMDCMOS. Sede: HGGEA, UNAM. Coyoacan, 04510, Mexico City, Mexico
| | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genomica, SS, Tlalpan, 14610, Mexico City, Mexico
| | - José Rafael Villafan-Bernal
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genomica, SS, Tlalpan, 14610, Mexico City, Mexico
- Investigador por Mexico, Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT), Benito Juarez, 03940, Mexico City, Mexico
| | - Juan Luis Jiménez-Ruiz
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genomica, SS, Tlalpan, 14610, Mexico City, Mexico
| | - Tulia Monge-Cazares
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genomica, SS, Tlalpan, 14610, Mexico City, Mexico
| | - Humberto García-Ortiz
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genomica, SS, Tlalpan, 14610, Mexico City, Mexico
| | - Cecilia Contreras- Cubas
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genomica, SS, Tlalpan, 14610, Mexico City, Mexico
| | - Federico Centeno-Cruz
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genomica, SS, Tlalpan, 14610, Mexico City, Mexico
| | - Carmen Alaez-Verson
- Genomic Diagnostic Laboratory, Instituto Nacional de Medicina Genomica, SS, Tlalpan, 14610, CDMX, Mexico City, Mexico
| | - Soraya Ortega-Torres
- Curso de Alta Especialidad en Medicina Genómica, Instituto Nacional de Medicina Genomica, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Coyoacan, 04510, Mexico City, Mexico
| | | | - Vicente Baca
- Rheumatology Department, Hospital de Pediatría, CMN Siglo XXI IMSS, Cuauhtemoc, 06720, Mexico City, Mexico
| | - José Luis Lezana
- Cystic Fibrosis Clinic and Pulmonary Physiology Laboratory. Hospital Infantil de Mexico Federico Gómez, SS, Cuauhtemoc, 06720, Mexico City, Mexico
- Asociacion Mexicana de Fibrosis Quistica, A.C. Benito Juarez, 03700, Mexico City, Mexico
| | - Lorena Orozco
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genomica, SS, Tlalpan, 14610, Mexico City, Mexico
| |
Collapse
|
23
|
Han X, Li D, Zhu Y, Schneider-Futschik EK. Recommended Tool Compounds for Modifying the Cystic Fibrosis Transmembrane Conductance Regulator Channel Variants. ACS Pharmacol Transl Sci 2024; 7:933-950. [PMID: 38633590 PMCID: PMC11019735 DOI: 10.1021/acsptsci.3c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/19/2024]
Abstract
Cystic fibrosis (CF) is a genetic disorder arising from variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leading to multiple organ system defects. CFTR tool compounds are molecules that can modify the activity of the CFTR channel. Especially, patients that are currently not able to benefit from approved CFTR modulators, such as patients with rare CFTR variants, benefit from further research in discovering novel tools to modulate CFTR. This Review explores the development and classification of CFTR tool compounds, including CFTR blockers (CFTRinh-172, GlyH-101), potentiators (VRT-532, Genistein), correctors (VRT-325, Corr-4a), and other approved and unapproved modulators, with detailed descriptions and discussions for each compound. The challenges and future directions in targeting rare variants and optimizing drug delivery, and the potential synergistic effects in combination therapies are outlined. CFTR modulation holds promise not only for CF treatment but also for generating CF models that contribute to CF research and potentially treating other diseases such as secretory diarrhea. Therefore, continued research on CFTR tool compounds is critical.
Collapse
Affiliation(s)
- XiaoXuan Han
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danni Li
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yimin Zhu
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elena K. Schneider-Futschik
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
24
|
Hou Y, Huang C, Huang Z, Huang J, Zhu B. STUB1 exacerbates calcium oxalate-induced kidney injury by modulating reactive oxygen species-mediated cellular autophagy via regulating CFTR ubiquitination. Urolithiasis 2024; 52:55. [PMID: 38564006 DOI: 10.1007/s00240-024-01547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024]
Abstract
The formation of calcium oxalate (CaOx) crystals in the kidneys leads to renal epithelial damage and the progression of crystalline nephropathy. This study investigated the role of STIP1 homology and U-box protein 1 (STUB1), an E3 ubiquitin ligase, and cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel, in CaOx-related renal damage and autophagy regulation. HK-2 cells were treated with various doses of CaOx monohydrate (COM) to simulate kidney injury in vitro. Cell viability, reactive oxygen species (ROS) production, and apoptosis were assessed. The regulation of CFTR ubiquitination by STUB1 was confirmed by immunoprecipitation. An in vivo model was established by injecting mice with glyoxylate. COM treatment dose-dependently decreased cell viability, increased TNF-α and ROS production, and induced apoptotic cell death in HK-2 cells. COM-treated cells also showed decreased CFTR protein expression. CFTR overexpression improved cell viability and reduced ROS production in COM-stimulated HK-2 cells. Bioinformatics analysis predicted CFTR's ubiquitination binding site for STUB1. Further analysis confirmed the role of STUB1 as a ubiquitin ligase in CFTR degradation. Knockdown of STUB1 upregulated CFTR expression, while STUB1 overexpression had the opposite effect. Knockdown of CFTR reversed the impact of STUB1 deficiency on autophagy. The in vivo experiments showed that CFTR overexpression attenuated kidney tissue damage and CaOx deposition in mice. STUB1-mediated CFTR ubiquitination plays a crucial role in mitigating calcium oxalate-related renal damage by regulating autophagy. Targeting the STUB1/CFTR axis may hold therapeutic potential for treating kidney injury associated with calcium oxalate deposition.
Collapse
Affiliation(s)
- Yi Hou
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Mid Road Furong District, Changsha, 410011, Hunan, People's Republic of China
| | - Changkun Huang
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Mid Road Furong District, Changsha, 410011, Hunan, People's Republic of China
| | - Zhichao Huang
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Mid Road Furong District, Changsha, 410011, Hunan, People's Republic of China
| | - Jun Huang
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Mid Road Furong District, Changsha, 410011, Hunan, People's Republic of China
| | - Bin Zhu
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Mid Road Furong District, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
25
|
Seidl E, Licht JC, de Vries R, Ratjen F, Grasemann H. Exhaled Breath Analysis Detects the Clearance of Staphylococcus aureus from the Airways of Children with Cystic Fibrosis. Biomedicines 2024; 12:431. [PMID: 38398033 PMCID: PMC10887307 DOI: 10.3390/biomedicines12020431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Electronic nose (eNose) technology can be used to characterize volatile organic compound (VOC) mixes in breath. While previous reports have shown that eNose can detect lung infections with pathogens such as Staphylococcus aureus (SA) in people with cystic fibrosis (CF), the clinical utility of eNose for longitudinally monitoring SA infection status is unknown. METHODS In this longitudinal study, a cloud-connected eNose, the SpiroNose, was used for the breath profile analysis of children with CF at two stable visits and compared based on changes in SA infection status between visits. Data analysis involved advanced sensor signal processing, ambient correction, and statistics based on the comparison of breath profiles between baseline and follow-up visits. RESULTS Seventy-two children with CF, with a mean (IQR) age of 13.8 (9.8-16.4) years, were studied. In those with SA-positive airway cultures at baseline but SA-negative cultures at follow-up (n = 19), significant signal differences were detected between Baseline and Follow-up at three distinct eNose sensors, i.e., S4 (p = 0.047), S6 (p = 0.014), and S7 (p = 0.014). Sensor signal changes with the clearance of SA from airways were unrelated to antibiotic treatment. No changes in sensor signals were seen in patients with unchanged infection status between visits. CONCLUSIONS Our results demonstrate the potential applicability of the eNose as a non-invasive clinical tool to longitudinally monitor pulmonary SA infection status in children with CF.
Collapse
Affiliation(s)
- Elias Seidl
- Division of Respiratory Medicine, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (E.S.); (J.-C.L.); (F.R.)
- Division of Respiratory Medicine, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Johann-Christoph Licht
- Division of Respiratory Medicine, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (E.S.); (J.-C.L.); (F.R.)
| | - Rianne de Vries
- Breathomix BV, Bargelaan 200, 2333 CW Leiden, The Netherlands;
| | - Felix Ratjen
- Division of Respiratory Medicine, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (E.S.); (J.-C.L.); (F.R.)
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Hartmut Grasemann
- Division of Respiratory Medicine, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (E.S.); (J.-C.L.); (F.R.)
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
26
|
Hosseini Nami A, Kabiri M, Zafarghandi Motlagh F, Shirzadeh T, Bagherian H, Zeinali R, Karimi A, Zeinali S. Identification and in silico structural analysis for the first de novo mutation in the cystic fibrosis transmembrane conductance regulator protein in Iran: case report and developmental insight using microsatellite markers. Ther Adv Respir Dis 2024; 18:17534666241253990. [PMID: 38904297 PMCID: PMC11193346 DOI: 10.1177/17534666241253990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/19/2024] [Indexed: 06/22/2024] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by the inheritance of two mutant cystic fibrosis transmembrane conductance regulator (CFTR) alleles, one from each parent. Autosomal recessive disorders are rarely associated with germline mutations or mosaicism. Here, we propose a case of paternal germline mutation causing CF. The subject also had an identifiable maternal mutant allele. We identified the compound heterozygous variants in the proband through Sanger sequencing, and in silico studies predicted functional effects on the protein. Also, short tandem repeat markers revealed the de novo nature of the mutation. The maternal mutation in the CFTR gene was c.1000C > T. The de novo mutation was c.178G > A, p.Glu60Lys. This mutation is located in the lasso motif of the CFTR protein and, according to in silico structural analysis, disrupts the interaction of the lasso motif and R-domain, thus influencing protein function. This first reported case of de novo mutation in Asia has notable implications for molecular diagnostics, genetic counseling, and understanding the genetic etiology of recessive disorders in the Iranian population.
Collapse
Affiliation(s)
- Amin Hosseini Nami
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- Dr. Zeinali’s Medical Genetics Lab, Kawsar Human Genetics Research Center (KHGRC), Tehran, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Tina Shirzadeh
- Dr. Zeinali’s Medical Genetics Lab, Kawsar Human Genetics Research Center (KHGRC), Tehran, Iran
| | - Hamideh Bagherian
- Dr. Zeinali’s Medical Genetics Lab, Kawsar Human Genetics Research Center (KHGRC), Tehran, Iran
| | - Razie Zeinali
- Dr. Zeinali’s Medical Genetics Lab, Kawsar Human Genetics Research Center (KHGRC), Tehran, Iran
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Karimi
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Sirous Zeinali
- Dr. Zeinali’s Medical Genetics Lab, Kawsar Human Genetics Research Center (KHGRC), No. 41, Irna St., Valiasr St., Tehran, Iran
| |
Collapse
|
27
|
Trognon J, Rima M, Lajoie B, Roques C, El Garah F. NaCl-induced modulation of species distribution in a mixed P. aeruginosa / S. aureus / B.cepacia biofilm. Biofilm 2023; 6:100153. [PMID: 37711514 PMCID: PMC10497989 DOI: 10.1016/j.bioflm.2023.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Pseudomonas aeruginosa, Staphylococcus aureus, and Burkholderia cepacia are notorious pathogens known for their ability to form resilient biofilms, particularly within the lung environment of cystic fibrosis (CF) patients. The heightened concentration of NaCl, prevalent in the airway liquid of CF patients' lungs, has been identified as a factor that promotes the growth of osmotolerant bacteria like S. aureus and dampens host antibacterial defenses, thereby fostering favorable conditions for infections. In this study, we aimed to investigate how increased NaCl concentrations impact the development of multi-species biofilms in vitro, using both laboratory strains and clinical isolates of P. aeruginosa, S. aureus, and B. cepacia co-cultures. Employing a low-nutrient culture medium that fosters biofilm growth of the selected species, we quantified biofilm formation through a combination of adherent CFU counts, qPCR analysis, and confocal microscopy observations. Our findings reaffirmed the challenges faced by S. aureus in establishing growth within 1:1 mixed biofilms with P. aeruginosa when cultivated in a minimal medium. Intriguingly, at an elevated NaCl concentration of 145 mM, a symbiotic relationship emerged between S. aureus and P. aeruginosa, enabling their co-existence. Notably, this hyperosmotic environment also exerted an influence on the interplay of these two bacteria with B. cepacia. We demonstrated that elevated NaCl concentrations play a pivotal role in orchestrating the distribution of these three species within the biofilm matrix. Furthermore, our study unveiled the beneficial impact of NaCl on the biofilm growth of clinically relevant mucoid P. aeruginosa strains, as well as two strains of methicillin-sensitive and methicillin-resistant S. aureus. This underscores the crucial role of the microenvironment during the colonization and infection processes. The results suggest that hyperosmotic conditions could hold the key to unlocking a deeper understanding of the genesis and behavior of CF multi-species biofilms.
Collapse
Affiliation(s)
- Jeanne Trognon
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Maya Rima
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Barbora Lajoie
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie Hygiène, Toulouse, France
| | - Fatima El Garah
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
28
|
VanElzakker MB, Tillman EM, Yonker LM, Ratai EM, Georgiopoulos AM. Neuropsychiatric adverse effects from CFTR modulators deserve a serious research effort. Curr Opin Pulm Med 2023; 29:603-609. [PMID: 37655981 PMCID: PMC10552811 DOI: 10.1097/mcp.0000000000001014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
PURPOSE OF REVIEW This review highlights the problem of neuropsychiatric adverse effects (AEs) associated with elexacaftor/tezacaftor/ivacaftor (ETI), current suboptimal mitigation approaches, a novel testable mechanistic hypothesis, and potential solutions requiring further research. RECENT FINDINGS Studies show that a minority of persons with cystic fibrosis (PwCF) initiating cystic fibrosis transmembrane conductance regulator (CFTR) modulators experience neuropsychiatric AEs including worsening mood, cognition, anxiety, sleep, and suicidality. The GABA-A receptor is a ligand-gated chloride channel, and magnetic resonance spectroscopy neuroimaging studies have shown that reduced GABA expression in rostral anterior cingulate cortex is associated with anxiety and depression. Recent research details the impact of peripheral inflammation and the gut-brain axis on central neuroinflammation. Plasma ETI concentrations and sweat chloride have been evaluated in small studies of neuropsychiatric AEs but not validated to guide dose titration or correlated with pharmacogenomic variants or safety/efficacy. SUMMARY Although ETI is well tolerated by most PwCF, some experience debilitating neuropsychiatric AEs. In some cases, these AEs may be driven by modulation of CFTR and chloride transport within the brain. Understanding biological mechanisms is a critical next step in identifying which PwCF are likely to experience AEs, and in developing evidence-based strategies to mitigate them, while retaining modulator efficacy.
Collapse
|
29
|
Patel S, Nugent K. Neutrophil bactericidal activity and host defenses in cystic fibrosis: a narrative review. J Thorac Dis 2023; 15:5773-5783. [PMID: 37969285 PMCID: PMC10636459 DOI: 10.21037/jtd-23-846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/08/2023] [Indexed: 11/17/2023]
Abstract
Background and Objective Cystic fibrosis (CF) is a disorder that affects the cystic fibrosis transmembrane conductance regulator (CFTR). Without properly functioning CFTR channels, chloride does not exit respiratory epithelial cells, and consequently the mucus lining the surface of the cells becomes thick. This viscous mucus accumulates and causes abnormal function of the mucociliary apparatus, which can lead to bacterial colonization, infections with Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), and eventually lung damage. Recent studies have shown that the increased susceptibility to respiratory infections in CF patients may also be due to defects in neutrophil function, but the exact mechanism is uncertain. Methods The PubMed database was searched on February 10, 2023 and again on July 23, 2023 to compile a comprehensive list of clinical and experimental studies to evaluate neutrophil function in CF. The first search included a combination of MeSH terms: "cystic fibrosis" and "neutrophils/physiology". A separate second search included a combination of the MeSH terms: "neutrophils" and "cystic fibrosis transmembrane conductance regulator". Key Content and Findings Neutrophils from patients with CF have decreased transfer of chloride into phagolysosomes after bacterial ingestion and have dysregulated degranulation. This reduces the production of toxic oxidative radicals, especially hypochlorous acid (HOCl), and reduces bactericidal activity. CFTR potentiators correct the dysregulated degranulation in patients with CF and increased neutrophil killing activity. A reduced concentration of chloride in in vitro assays also reduces neutrophil killing activity; these observations are relevant to the reduced chloride concentrations in respiratory secretions in patients with CF. Conclusions This literature review summarizes studies that demonstrate that an important defect in CF neutrophils lies in the oxygen-dependent pathway in phagolysosomes and studies with ivacaftor demonstrate that this drug corrects CF neutrophil function. These studies demonstrate the potential utility of using easily available neutrophils to study drug effects in CF patients.
Collapse
Affiliation(s)
- Shruti Patel
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
30
|
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, Villanueva-Tobaldo CV, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Epithelial Transport in Disease: An Overview of Pathophysiology and Treatment. Cells 2023; 12:2455. [PMID: 37887299 PMCID: PMC10605148 DOI: 10.3390/cells12202455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Epithelial transport is a multifaceted process crucial for maintaining normal physiological functions in the human body. This comprehensive review delves into the pathophysiological mechanisms underlying epithelial transport and its significance in disease pathogenesis. Beginning with an introduction to epithelial transport, it covers various forms, including ion, water, and nutrient transfer, followed by an exploration of the processes governing ion transport and hormonal regulation. The review then addresses genetic disorders, like cystic fibrosis and Bartter syndrome, that affect epithelial transport. Furthermore, it investigates the involvement of epithelial transport in the pathophysiology of conditions such as diarrhea, hypertension, and edema. Finally, the review analyzes the impact of renal disease on epithelial transport and highlights the potential for future research to uncover novel therapeutic interventions for conditions like cystic fibrosis, hypertension, and renal failure.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain;
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain; (L.R.-F.); (C.V.V.-T.)
| | - Carlota Valeria Villanueva-Tobaldo
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain; (L.R.-F.); (C.V.V.-T.)
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | | |
Collapse
|
31
|
Pinzaru AD, Mihai CM, Chisnoiu T, Pantazi AC, Lupu VV, Kassim MAK, Lupu A, Grosan E, Al Jumaili AZN, Ion I, Stoleriu G, Ion I. Oxidative Stress Biomarkers in Cystic Fibrosis and Cystic Fibrosis-Related Diabetes in Children: A Literature Review. Biomedicines 2023; 11:2671. [PMID: 37893045 PMCID: PMC10604378 DOI: 10.3390/biomedicines11102671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The most common inherited condition that results in death, particularly in those of Caucasian heritage, is cystic fibrosis (CF). Of all the young adults diagnosed with cystic fibrosis, 20% will develop hyperglycemia as a complication, later classified as a disease associated with cystic fibrosis. Impaired insulin secretion and glucose intolerance represent the primary mechanisms associated with diabetes (type 1 or type 2) and cystic fibrosis. Oxidative stress represents the imbalance between oxygen-reactive species and antioxidant defense mechanisms. This pathogenic mechanism is vital in triggering other chronic diseases, including cystic fibrosis-related diabetes. It is essential to understand oxidative stress and the significant impact it has on CFRD. This way, therapies can be individually adjusted and tailored to each patient's needs. This review aims to understand the connection between CFRD and oxidative stress. As a subsidiary element, we analyzed the effects of glycemic balance on complications and their evolution over time, providing insights into their potential benefits in mitigating oxidative stress-associated complications.
Collapse
Affiliation(s)
- Anca Daniela Pinzaru
- Department of Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Cristina Maria Mihai
- Department of Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Tatiana Chisnoiu
- Department of Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | | | - Vasile Valeriu Lupu
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Ancuta Lupu
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Grosan
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Ahmed Zaki Naji Al Jumaili
- National Institute of Diabetes, Nutrition and Metabolic Diseases “N.C. Paulescu”, 020475 Bucharest, Romania
| | - Irina Ion
- Department of Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Gabriela Stoleriu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Ileana Ion
- Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
| |
Collapse
|
32
|
Baharara H, Kesharwani P, Johnston TP, Sahebkar A. Therapeutic potential of phytochemicals for cystic fibrosis. Biofactors 2023; 49:984-1009. [PMID: 37191383 DOI: 10.1002/biof.1960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
The aim of this review was to review and discuss various phytochemicals that exhibit beneficial effects on mutated membrane channels, and hence, improve transmembrane conductance. These therapeutic phytochemicals may have the potential to decrease mortality and morbidity of CF patients. Four databases were searched using keywords. Relevant studies were identified, and related articles were separated. Google Scholar, as well as gray literature (i.e., information that is not produced by commercial publishers), were also checked for related articles to locate/identify additional studies. The relevant databases were searched a second time to ensure that recent studies were included. In conclusion, while curcumin, genistein, and resveratrol have demonstrated effectiveness in this regard, it should be emphasized that coumarins, quercetin, and other herbal medicines also have beneficial effects on transporter function, transmembrane conductivity, and overall channel activity. Additional in vitro and in vivo studies should be conducted on mutant CFTR to unequivocally define the mechanism by which phytochemicals alter transmembrane channel function/activity, since the results of the studies evaluated in this review have a high degree of heterogenicity and discrepancy. Finally, continued research be undertaken to clearly define the mechanism(s) of action and the therapeutic effects that therapeutic phytochemicals have on the symptoms observed in CF patients in an effort to reduce mortality and morbidity.
Collapse
Affiliation(s)
- Hamed Baharara
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - AmirHossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Ebrahimi S, Khosravi MA, Raz A, Karimipoor M, Parvizi P. CRISPR-Cas Technology as a Revolutionary Genome Editing tool: Mechanisms and Biomedical Applications. IRANIAN BIOMEDICAL JOURNAL 2023; 27:219-46. [PMID: 37873636 PMCID: PMC10707817 DOI: 10.61186/ibj.27.5.219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/14/2023] [Indexed: 12/17/2023]
Abstract
Programmable nucleases are powerful genomic tools for precise genome editing. These tools precisely recognize, remove, or change DNA at a defined site, thereby, stimulating cellular DNA repair pathways that can cause mutations or accurate replacement or deletion/insertion of a sequence. CRISPR-Cas9 system is the most potent and useful genome editing technique adapted from the defense immune system of certain bacteria and archaea against viruses and phages. In the past decade, this technology made notable progress, and at present, it has largely been used in genome manipulation to make precise gene editing in plants, animals, and human cells. In this review, we aim to explain the basic principle, mechanisms of action, and applications of this system in different areas of medicine, with emphasizing on the detection and treatment of parasitic diseases.
Collapse
Affiliation(s)
- Sahar Ebrahimi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Ali Khosravi
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Parviz Parvizi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
34
|
Parisi GF, Papale M, Pecora G, Rotolo N, Manti S, Russo G, Leonardi S. Cystic Fibrosis and Cancer: Unraveling the Complex Role of CFTR Gene in Cancer Susceptibility. Cancers (Basel) 2023; 15:4244. [PMID: 37686519 PMCID: PMC10486401 DOI: 10.3390/cancers15174244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder affecting multiple organs, primarily the lungs and digestive system. Over the years, advancements in medical care and treatments have significantly increased the life expectancy of individuals with CF. However, with this improved longevity, concerns about the potential risk of developing certain types of cancers have arisen. This narrative review aims to explore the relationship between CF, increased life expectancy, and the associated risk for cancers. We discuss the potential mechanisms underlying this risk, including chronic inflammation, immune system dysregulation, and genetic factors. Additionally, we review studies that have examined the incidence and types of cancers seen in CF patients, with a focus on gastrointestinal, breast, and respiratory malignancies. We also explore the impact of CFTR modulator therapies on cancer risk. In the gastrointestinal tract, CF patients have an elevated risk of developing colorectal cancer, pancreatic cancer, and possibly esophageal cancer. The underlying mechanisms contributing to these increased risks are not fully understood, but chronic inflammation, altered gut microbiota, and genetic factors are believed to play a role. Regular surveillance and colonoscopies are recommended for early detection and management of colorectal cancer in CF patients. Understanding the factors contributing to cancer development in CF patients is crucial for implementing appropriate surveillance strategies and improving long-term outcomes. Further research is needed to elucidate the molecular mechanisms involved and develop targeted interventions to mitigate cancer risk in individuals with CF.
Collapse
Affiliation(s)
- Giuseppe Fabio Parisi
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Viale Carlo Azeglio Ciampi sn, 95121 Catania, Italy; (M.P.); (G.P.); (N.R.); (S.L.)
| | - Maria Papale
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Viale Carlo Azeglio Ciampi sn, 95121 Catania, Italy; (M.P.); (G.P.); (N.R.); (S.L.)
| | - Giulia Pecora
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Viale Carlo Azeglio Ciampi sn, 95121 Catania, Italy; (M.P.); (G.P.); (N.R.); (S.L.)
| | - Novella Rotolo
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Viale Carlo Azeglio Ciampi sn, 95121 Catania, Italy; (M.P.); (G.P.); (N.R.); (S.L.)
| | - Sara Manti
- Pediatric Unit, Department of Human and Pediatric Pathology “Gaetano Barresi”, AOUP G. Martino, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy;
| | - Giovanna Russo
- Pediatric Hematology and Oncology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Salvatore Leonardi
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Viale Carlo Azeglio Ciampi sn, 95121 Catania, Italy; (M.P.); (G.P.); (N.R.); (S.L.)
| |
Collapse
|
35
|
Marsh R, Dos Santos C, Hanson L, Ng C, Major G, Smyth AR, Rivett D, van der Gast C. Tezacaftor/Ivacaftor therapy has negligible effects on the cystic fibrosis gut microbiome. Microbiol Spectr 2023; 11:e0117523. [PMID: 37607068 PMCID: PMC10581179 DOI: 10.1128/spectrum.01175-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/28/2023] [Indexed: 08/24/2023] Open
Abstract
People with cystic fibrosis (pwCF) experience a range of persistent gastrointestinal symptoms throughout life. There is evidence indicating interaction between the microbiota and gut pathophysiology in CF. However, there is a paucity of knowledge on the potential effects of CF transmembrane conductance regulator (CFTR) modulator therapies on the gut microbiome. In a pilot study, we investigated the impact of Tezacaftor/Ivacaftor dual combination CFTR modulator therapy on the gut microbiota and metabolomic functioning in pwCF. Fecal samples from 12 pwCF taken at baseline and following placebo or Tezacaftor/Ivacaftor administration were subjected to microbiota sequencing and to targeted metabolomics to assess the short-chain fatty acid (SCFA) composition. Ten healthy matched controls were included as a comparison. Inflammatory calprotectin levels and patient symptoms were also investigated. No significant differences were observed in overall gut microbiota characteristics between any of the study stages, extended also across intestinal inflammation, gut symptoms, and SCFA-targeted metabolomics. However, microbiota and SCFA metabolomic compositions, in pwCF, were significantly different from controls in all study treatment stages. CFTR modulator therapy with Tezacaftor/Ivacaftor had negligible effects on both the gut microbiota and SCFA composition across the course of the study and did not alter toward compositions observed in healthy controls. Future longitudinal CFTR modulator studies will investigate more effective CFTR modulators and should use prolonged sampling periods, to determine whether longer-term changes occur in the CF gut microbiome. IMPORTANCE People with cystic fibrosis (pwCF) experience persistent gastrointestinal (GI) symptoms throughout life. The research question "how can we relieve gastrointestinal symptoms, such as stomach pain, bloating, and nausea?" remains a top priority for clinical research in CF. While CF transmembrane conductance regulator (CFTR) modulator therapies are understood to correct underlying issues of CF disease and increasing the numbers of pwCF are now receiving some form of CFTR modulator treatment. It is not known how these therapies affect the gut microbiome or GI system. In this pilot study, we investigated, for the first time, effects of the dual combination CFTR modulator medicine, Tezacaftor/Ivacaftor. We found it had negligible effects on patient GI symptoms, intestinal inflammation, or gut microbiome composition and functioning. Our findings are important as they fill important knowledge gaps on the relative effectiveness of these widely used treatments. We are now investigating triple combination CFTR modulators with prolonged sampling periods.
Collapse
Affiliation(s)
- Ryan Marsh
- Department of Applied Sciences, Northumbria University, Newcastle, United Kingdom
| | - Claudio Dos Santos
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Liam Hanson
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Christabella Ng
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Giles Major
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Nestlé Institute of Health Sciences, Société des Produits Nestlé, Lausanne, Switzerland
| | - Alan R. Smyth
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Damian Rivett
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Christopher van der Gast
- Department of Applied Sciences, Northumbria University, Newcastle, United Kingdom
- Department of Respiratory Medicine, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| |
Collapse
|
36
|
De Paolis E, Tilocca B, Lombardi C, De Bonis M, Concolino P, Onori ME, Ricciardi Tenore C, Perrucci A, Roncada P, Capoluongo E, Urbani A, Minucci A, Santonocito C. Next-Generation Sequencing for Screening Analysis of Cystic Fibrosis: Spectrum and Novel Variants in a South-Central Italian Cohort. Genes (Basel) 2023; 14:1608. [PMID: 37628659 PMCID: PMC10454170 DOI: 10.3390/genes14081608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The incidence of cystic fibrosis (CF) and the spectrum of cystic fibrosis transmembrane conductance regulator (CFTR) gene variants differ among geographic regions. Differences in CF carrier distribution are also reported among Italian regions. We described the spectrum of the CFTR variants observed in a large group of subjects belonging from central-southern Italy. We also provide a predictive evaluation of the novel variants identified. CFTR screening was performed in a south-central Italian cohort of 770 subjects. We adopted a next-generation sequencing (NGS) approach using the Devyser CFTR NGS kit on the Illumina MiSeq System coupled with Amplicon Suite data analysis. Bioinformatics evaluation of the impact of novel variants was described. Overall, the presence of at least one alternative allele in the CFTR gene was recorded for 23% of the subjects, with a carrier frequency of CF pathogenic variants of 1:12. The largest sub-group corresponded to the heterozygous carriers of a variant with a conflicting interpretation of pathogenicity. The common CFTR p.(Phe508del) pathogenic variants were identified in 37% of mutated subjects. Bioinformatics prediction supported a potential damaging effect for the three novel CFTR variants identified: p.(Leu1187Phe), p.(Pro22Thr), and c.744-3C > G. NGS applied to CF screening had the benefit of: effectively identifying asymptomatic carriers. It lies in a wide overview of CFTR variants and gives a comprehensive picture of the carrier prevalence. The identification of a high number of unclassified variants may represent a challenge whilst at the same time being of interest and relevance for clinicians.
Collapse
Affiliation(s)
- Elisa De Paolis
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (M.D.B.); (M.E.O.); (C.R.T.); (A.P.); (A.U.); (A.M.)
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, 00168 Rome, Italy;
| | - Bruno Tilocca
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (B.T.); (P.R.)
| | - Carla Lombardi
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, 00168 Rome, Italy;
| | - Maria De Bonis
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (M.D.B.); (M.E.O.); (C.R.T.); (A.P.); (A.U.); (A.M.)
| | - Paola Concolino
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (M.D.B.); (M.E.O.); (C.R.T.); (A.P.); (A.U.); (A.M.)
| | - Maria Elisabetta Onori
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (M.D.B.); (M.E.O.); (C.R.T.); (A.P.); (A.U.); (A.M.)
| | - Claudio Ricciardi Tenore
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (M.D.B.); (M.E.O.); (C.R.T.); (A.P.); (A.U.); (A.M.)
| | - Alessia Perrucci
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (M.D.B.); (M.E.O.); (C.R.T.); (A.P.); (A.U.); (A.M.)
| | - Paola Roncada
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (B.T.); (P.R.)
| | - Ettore Capoluongo
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, 80138 Naples, Italy;
- Department of Clinical Pathology and Genomics, Ospedale Cannizzaro, 95021 Catania, Italy
| | - Andrea Urbani
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (M.D.B.); (M.E.O.); (C.R.T.); (A.P.); (A.U.); (A.M.)
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, 00168 Rome, Italy;
| | - Angelo Minucci
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (M.D.B.); (M.E.O.); (C.R.T.); (A.P.); (A.U.); (A.M.)
| | - Concetta Santonocito
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (M.D.B.); (M.E.O.); (C.R.T.); (A.P.); (A.U.); (A.M.)
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, 00168 Rome, Italy;
| |
Collapse
|
37
|
Chen Y, Yu X, Yan Z, Zhang S, Zhang J, Guo W. Role of epithelial sodium channel-related inflammation in human diseases. Front Immunol 2023; 14:1178410. [PMID: 37559717 PMCID: PMC10407551 DOI: 10.3389/fimmu.2023.1178410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
The epithelial sodium channel (ENaC) is a heterotrimer and is widely distributed throughout the kidneys, blood vessels, lungs, colons, and many other organs. The basic role of the ENaC is to mediate the entry of Na+ into cells; the ENaC also has an important regulatory function in blood pressure, airway surface liquid (ASL), and endothelial cell function. Aldosterone, serum/glucocorticoid kinase 1 (SGK1), shear stress, and posttranslational modifications can regulate the activity of the ENaC; some ion channels also interact with the ENaC. In recent years, it has been found that the ENaC can lead to immune cell activation, endothelial cell dysfunction, aggravated inflammation involved in high salt-induced hypertension, cystic fibrosis, pseudohypoaldosteronism (PHA), and tumors; some inflammatory cytokines have been reported to have a regulatory role on the ENaC. The ENaC hyperfunction mediates the increase of intracellular Na+, and the elevated exchange of Na+ with Ca2+ leads to an intracellular calcium overload, which is an important mechanism for ENaC-related inflammation. Some of the research on the ENaC is controversial or unclear; we therefore reviewed the progress of studies on the role of ENaC-related inflammation in human diseases and their mechanisms.
Collapse
Affiliation(s)
- Yabin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Organ Transplantation (Liver &Kidney Transplantation) Physician Training Centre, Zhengzhou, China
- National Regional Medical Treatment Centre of Henan Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Organ Transplantation (Liver &Kidney Transplantation) Physician Training Centre, Zhengzhou, China
- National Regional Medical Treatment Centre of Henan Organ Transplantation, Zhengzhou, China
| | - Zhiping Yan
- Henan Organ Transplantation Centre, Zhengzhou, China
- Henan Engineering and Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Shuijun Zhang
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
| | - Jiacheng Zhang
- Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory for Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
| |
Collapse
|
38
|
Iazzi M, Sadeghi S, Gupta GD. A Proteomic Survey of the Cystic Fibrosis Transmembrane Conductance Regulator Surfaceome. Int J Mol Sci 2023; 24:11457. [PMID: 37511222 PMCID: PMC10380767 DOI: 10.3390/ijms241411457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this review article is to collate recent contributions of proteomic studies to cystic fibrosis transmembrane conductance regulator (CFTR) biology. We summarize advances from these studies and create an accessible resource for future CFTR proteomic efforts. We focus our attention on the CFTR interaction network at the cell surface, thus generating a CFTR 'surfaceome'. We review the main findings about CFTR interactions and highlight several functional categories amongst these that could lead to the discovery of potential biomarkers and drug targets for CF.
Collapse
Affiliation(s)
| | | | - Gagan D. Gupta
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
39
|
Nimer RM, Abdel Rahman AM. Recent advances in proteomic-based diagnostics of cystic fibrosis. Expert Rev Proteomics 2023; 20:151-169. [PMID: 37766616 DOI: 10.1080/14789450.2023.2258282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/06/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetic disease characterized by thick and sticky mucus accumulation, which may harm numerous internal organs. Various variables such as gene modifiers, environmental factors, age of diagnosis, and CF transmembrane conductance regulator (CFTR) gene mutations influence phenotypic disease diversity. Biomarkers that are based on genomic information may not accurately represent the underlying mechanism of the disease as well as its lethal complications. Therefore, recent advancements in mass spectrometry (MS)-based proteomics may provide deep insights into CF mechanisms and cellular functions by examining alterations in the protein expression patterns from various samples of individuals with CF. AREAS COVERED We present current developments in MS-based proteomics, its application, and findings in CF. In addition, the future roles of proteomics in finding diagnostic and prognostic novel biomarkers. EXPERT OPINION Despite significant advances in MS-based proteomics, extensive research in a large cohort for identifying and validating diagnostic, prognostic, predictive, and therapeutic biomarkers for CF disease is highly needed.
Collapse
Affiliation(s)
- Refat M Nimer
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
40
|
Ayats-Vidal R, Bosque-García M, Cordobilla B, Asensio-De la Cruz O, García-González M, Castro-Marrero J, López-Rico I, Domingo JC. Changes of Erythrocyte Fatty Acids after Supplementation with Highly Concentrated Docosahexaenoic Acid (DHA) in Pediatric Cystic Fibrosis: A Randomized Double-Blind Controlled Trial. J Clin Med 2023; 12:jcm12113704. [PMID: 37297899 DOI: 10.3390/jcm12113704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
We characterized the fatty acid profiles in the erythrocyte membrane of pediatric patients with cystic fibrosis (CF) receiving highly concentrated docosahexaenoic acid (DHA) supplementation (Tridocosahexanoin-AOX® 70%) at 50 mg/kg/day (n = 11) or matching placebo (n = 11) for 12 months. The mean age was 11.7 years. The DHA group showed a statistically significant improvement in n-3 polyunsaturated fatty acids (PUFAs), which was observed as early as 6 months and further increased at 12 months. Among the n-3 PUFAs, there was a significant increase in DHA and eicosapentaenoic acid (EPA). Additionally, a statistically significant decrease in n-6 PUFAs was found, primarily due to a decrease in arachidonic acid (AA) levels and elongase 5 activity. However, we did not observe any changes in linoleic acid levels. The long-term administration of DHA over one year was safe and well tolerated. In summary, the administration of a high-rich DHA supplement at a dose of 50 mg/kg/day for one year can correct erythrocyte AA/DHA imbalance and reduce fatty acid inflammatory markers. However, it is important to note that essential fatty acid alterations cannot be fully normalized with this treatment. These data provide timely information of essential fatty acid profile for future comparative research.
Collapse
Affiliation(s)
- Roser Ayats-Vidal
- Pediatric Allergies, Immunology and Pneumology Unit, Pediatric Medicine Service, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain
| | - Montserrat Bosque-García
- Pediatric Allergies, Immunology and Pneumology Unit, Pediatric Medicine Service, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain
| | - Begoña Cordobilla
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, E-08028 Barcelona, Spain
| | - Oscar Asensio-De la Cruz
- Pediatric Allergies, Immunology and Pneumology Unit, Pediatric Medicine Service, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain
| | - Miguel García-González
- Pediatric Allergies, Immunology and Pneumology Unit, Pediatric Medicine Service, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Parc Taulí 1, E-08208 Sabadell, Spain
| | - Jesús Castro-Marrero
- ME/CFS Research Unit, Division of Rheumatology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, E-08035 Barcelona, Spain
| | - Irene López-Rico
- Pharmacy Department, Institut d'Investigació I Innovació Parc Taulí (I3PT-CERCA), Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, E-08208 Sabadell, Spain
| | - Joan Carles Domingo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
41
|
Abuzgaia AM, Elzagallaai AA, Mullowney T, Rieder MJ. Drug Hypersensitivity Reactions in Patients with Cystic Fibrosis: Potential Value of the Lymphocyte Toxicity Assay to Assess Risk. Mol Diagn Ther 2023; 27:395-403. [PMID: 36939981 DOI: 10.1007/s40291-023-00644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) is a genetic disease characterized by multi-system dysfunction resulting in recurrent lung infections and progressive pulmonary disease. CF patients are at a higher risk for drug hypersensitivity reactions (DHRs) compared to the general population, which has been attributed to the recurrent need for antibiotics and the inflammation associated with CF disease. In vitro toxicity tests such as the lymphocyte toxicity assay (LTA) offer the potential for risk assessment for DHRs. In the current study, we investigated the utility of the LTA test for diagnosis of DHRs in a cohort of CF patients. METHOD Twenty CF patients with suspected DHRs to sulfamethoxazole, penicillins, cephalosporins, meropenem, vancomycin, rifampicin, and tobramycin were recruited to this study and tested using the LTA test along with 20 healthy control volunteers. Demographic data of the patients, including age, sex, and medical history, were obtained. Blood samples were withdrawn from patients and healthy volunteers, and the LTA test was performed on isolated peripheral blood monocytes (PBMCs) from those individuals. RESULTS Cells from CF patients with DHRs displayed a significant (p < 0.0001) concentration-dependent enhanced cell death upon incubation with the culprit drug compared to cells from healthy volunteers. The positivity rate of the LTA test was over 80% in patients with a medical history and clinical presentation consistent with DHRs. CONCLUSION This study is the first to evaluate the use of the LTA test for diagnosis of DHRs in CF patients. According to our results, the LTA test may be a useful tool for diagnosis and management of DHRs in CF patients. Identifying the culprit drug is essential for optimal healthcare for CF patients in the setting of a suspected DHR. The data also provide evidence that accumulation of toxic reactive metabolites could be an important component in the cascade of events leading to the development of DHRs in CF patients. A larger-scale study is needed to confirm the data.
Collapse
Affiliation(s)
- Awatif M Abuzgaia
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. North, London, ON, N6A 3M7, Canada
| | - Abdelbaset A Elzagallaai
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. North, London, ON, N6A 3M7, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Tara Mullowney
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. North, London, ON, N6A 3M7, Canada
| | - Michael J Rieder
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. North, London, ON, N6A 3M7, Canada.
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
42
|
Lemmens-Gruber R, Tzotzos S. The Epithelial Sodium Channel-An Underestimated Drug Target. Int J Mol Sci 2023; 24:ijms24097775. [PMID: 37175488 PMCID: PMC10178586 DOI: 10.3390/ijms24097775] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Epithelial sodium channels (ENaC) are part of a complex network of interacting biochemical pathways and as such are involved in several disease states. Dependent on site and type of mutation, gain- or loss-of-function generated symptoms occur which span from asymptomatic to life-threatening disorders such as Liddle syndrome, cystic fibrosis or generalized pseudohypoaldosteronism type 1. Variants of ENaC which are implicated in disease assist further understanding of their molecular mechanisms in order to create models for specific pharmacological targeting. Identification and characterization of ENaC modifiers not only furthers our basic understanding of how these regulatory processes interact, but also enables discovery of new therapeutic targets for the disease conditions caused by ENaC dysfunction. Numerous test compounds have revealed encouraging results in vitro and in animal models but less in clinical settings. The EMA- and FDA-designated orphan drug solnatide is currently being tested in phase 2 clinical trials in the setting of acute respiratory distress syndrome, and the NOX1/ NOX4 inhibitor setanaxib is undergoing clinical phase 2 and 3 trials for therapy of primary biliary cholangitis, liver stiffness, and carcinoma. The established ENaC blocker amiloride is mainly used as an add-on drug in the therapy of resistant hypertension and is being studied in ongoing clinical phase 3 and 4 trials for special applications. This review focuses on discussing some recent developments in the search for novel therapeutic agents.
Collapse
Affiliation(s)
- Rosa Lemmens-Gruber
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | | |
Collapse
|
43
|
Canella R, Benedusi M, Vallese A, Pecorelli A, Guiotto A, Ferrara F, Rispoli G, Cervellati F, Valacchi G. The role of potassium current in the pulmonary response to environmental oxidative stress. Arch Biochem Biophys 2023; 737:109534. [PMID: 36740034 DOI: 10.1016/j.abb.2023.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Exposure of human lung epithelial cells (A549 cell line) to the oxidant pollutant ozone (O3) alters cell membrane currents inducing its decrease, when the cell undergoes to a voltage-clamp protocol ranging from -90 to +70mV. The membrane potential of these cells is mainly maintained by the interplay of potassium and chloride currents. Our previous studies indicated the ability of O3 to activate ORCC (Outward Rectifier Chloride Channel) and consequently increases the chloride current. In this paper our aim was to understand the response of potassium current to oxidative stress challenge and to identify the kind potassium channel involved in O3 induced current changes. After measuring the total membrane current using an intracellular solution with or without potassium ions, we obtained the contribution of potassium to the overall membrane current in control condition by a mathematical approach. Repeating these experiments after O3 treatment we observed a significant decrease of Ipotassium. Treatment of the cells with Iberiotoxin (IbTx), a specific inhibitor of BK channel, we were able to verify the presence and the functionality of BK channels. In addition, the administration of 4-Aminopyridine (an inhibitor of voltage dependent K channels but not BK channels) and Tetraethylammonium (TEA) before and after O3 treatment we observed the formation of BK oxidative post-translation modifications. Our data suggest that O3 is able to inhibit potassium current by targeting BK channel. Further studies are needed to better clarify the role of this BK channel and its interplay with the other membrane channels under oxidative stress conditions. These findings can contribute to identify the biomolecular pathway induced by O3 allowing a possible pharmacological intervention against oxidative stress damage in lung tissue.
Collapse
Affiliation(s)
- Rita Canella
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy.
| | - Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Andrea Vallese
- Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Anna Guiotto
- Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Giorgio Rispoli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Franco Cervellati
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy; NC State University, Plants for Human Health Institute, Animal Science Dept. NC Research Campus 600 Laureate Way, Kannapolis, NC, 28081, USA; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
44
|
Vasilopoulou C, McDaid-McCloskey SL, McCluskey G, Duguez S, Morris AP, Duddy W. Genome-Wide Gene-Set Analysis Identifies Molecular Mechanisms Associated with ALS. Int J Mol Sci 2023; 24:4021. [PMID: 36835433 PMCID: PMC9966913 DOI: 10.3390/ijms24044021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal late-onset motor neuron disease characterized by the loss of the upper and lower motor neurons. Our understanding of the molecular basis of ALS pathology remains elusive, complicating the development of efficient treatment. Gene-set analyses of genome-wide data have offered insight into the biological processes and pathways of complex diseases and can suggest new hypotheses regarding causal mechanisms. Our aim in this study was to identify and explore biological pathways and other gene sets having genomic association to ALS. Two cohorts of genomic data from the dbGaP repository were combined: (a) the largest available ALS individual-level genotype dataset (N = 12,319), and (b) a similarly sized control cohort (N = 13,210). Following comprehensive quality control pipelines, imputation and meta-analysis, we assembled a large European descent ALS-control cohort of 9244 ALS cases and 12,795 healthy controls represented by genetic variants of 19,242 genes. Multi-marker analysis of genomic annotation (MAGMA) gene-set analysis was applied to an extensive collection of 31,454 gene sets from the molecular signatures database (MSigDB). Statistically significant associations were observed for gene sets related to immune response, apoptosis, lipid metabolism, neuron differentiation, muscle cell function, synaptic plasticity and development. We also report novel interactions between gene sets, suggestive of mechanistic overlaps. A manual meta-categorization and enrichment mapping approach is used to explore the overlap of gene membership between significant gene sets, revealing a number of shared mechanisms.
Collapse
Affiliation(s)
- Christina Vasilopoulou
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| | | | - Gavin McCluskey
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| | - Andrew P. Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester M13 9PT, UK
| | - William Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| |
Collapse
|
45
|
Rapid chloride and bicarbonate determination by capillary electrophoresis for confirmatory testing of cystic fibrosis infants with volume-limited sweat specimens. J Cyst Fibros 2023; 22:66-72. [PMID: 35577746 DOI: 10.1016/j.jcf.2022.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022]
Abstract
Objectives Cystic fibrosis (CF) is a debilitating genetic disorder that benefits from early detection. CF diagnosis relies on measuring elevated sweat chloride that is difficult in neonates with low sweat rates. We introduce a new method for sweat chloride determination from volume-limited specimens, and explore the potential utility of sweat bicarbonate in neonatal CF screening. Methods A rapid assay (< 5 min) was developed to analyze chloride and bicarbonate using capillary electrophoresis with indirect UV detection (CE-iUV). Pilocarpine-stimulated sweat samples from screen-positive CF infants were collected at two hospital sites, including confirmed CF (n = 12), CF screen-positive inconclusive diagnosis (n = 4), and unaffected non-CF cases (n = 37). All sweat chloride samples were analyzed by a coulometric titrator and CE-iUV, and the viability to measure acid-labile bicarbonate was also evaluated. Results Stability studies revealed that bicarbonate can be reliably assessed in sweat if acidification and heating were avoided. Method validation demonstrated that sweat chloride and bicarbonate were quantified with acceptable accuracy (recovery of 102%), precision (CV = 3.7%) and detection limits (∼ 0.1 mM). An inter-laboratory comparison confirmed a mean bias of 6.5% (n = 53) for sweat chloride determination by CE-iUV relative to a commercial chloridometer. However, sweat bicarbonate did not discriminate between CF and non-CF infants (AUC = 0.623, p = 0.215) unlike chloride (AUC = 1.00, p = 3.00 × 10-7). Conclusions CE-iUV offers a robust method for sweat chloride testing from presumptive CF infants that may reduce testing failure rates. However, sweat bicarbonate does not have clinical value in newborn CF diagnosis.
Collapse
|
46
|
Ismail NH, Ibrahim SF, Mokhtar MH, Yahaya A, Zulkefli AF, Ankasha SJ, Osman K. Modulation of vulvovaginal atrophy (VVA) by Gelam honey in bilateral oophorectomized rats. Front Endocrinol (Lausanne) 2023; 14:1031066. [PMID: 36923220 PMCID: PMC10010262 DOI: 10.3389/fendo.2023.1031066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/02/2023] [Indexed: 03/03/2023] Open
Abstract
INTRODUCTION Vulvovaginal atrophy (VVA) is a common condition in post-menopausal women. Symptoms of VVA include dyspareunia, vaginal dryness, vaginal and/or vulvar itching, burning and soreness, dysuria and vaginal bleeding accompanying sexual activity. These symptoms are physiological responses to hypoestrogenicity, inducing atrophy of the vagina epithelia and sudden reduction in mucous production. Prevailing therapy for VVA is hormone replacement therapy (HRT), notably estrogen, progesterone or a combination of the two. However, using HRT is associated with an increased incidence of breast and endometrial cancer, venous thromboembolism in the lungs and legs, stroke and cardiovascular complications. METHODS This study evaluated Malaysian Gelam honey as a nutraceutical alternative to estrogen HRT (ERT) in alleviating VVA. A total of 24 female 8-weekold Sprague Dawley rats underwent bilateral oophorectomy. A minimum of 14 days elapsed from the time of surgery and administration of the first dose of Gelam honey to allow the female hormones to subside to a stable baseline and complete recovery from surgery. Vaginal tissues were harvested following a 2-week administration of Gelam honey, the harvested vagina tissue underwent immunohistochemistry (IHC) analysis for protein localization and qPCR for mRNA expression analysis. RESULTS Results indicated that Gelam honey administration had increased the localization of Aqp1, Aqp5, CFTR and Muc1 proteins in vaginal tissue compared to the menopause group. The effect of Gelam honey on the protein expressions is summarized as Aqp1>CFTR>Aqp5>Muc1. DISCUSSION Gene expression analysis reveals Gelam honey had no effect on Aqp1 and CFTR genes. Gelam honey had up-regulated Aqp5 gene expression. However, its expression was lower than in the ERT+Ovx group. Additionally, Gelam honey up-regulated Muc1 in the vagina, with an expression level higher than those observed either in the ERT+Ovx or SC groups. Gelam honey exhibits a weak estrogenic effect on the genes and proteins responsible for regulating water in the vaginal tissue (Aqp1, Aqp5 and CFTR). In contrast, Gelam honey exhibits a strong estrogenic ability in influencing gene and protein expression for the sialic acid Muc1. Muc1 is associated with mucous production at the vaginal epithelial layer. In conclusion, the protein and gene expression changes in the vagina by Gelam honey had reduced the occurrence of vaginal atrophy in surgically-induced menopause models.
Collapse
Affiliation(s)
- Nur Hilwani Ismail
- Faculty of Applied Sciences, School of Biological Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azyani Yahaya
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Aini Farzana Zulkefli
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sheril June Ankasha
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairul Osman
- Centre of Diagnostic, Therapeutic & Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- *Correspondence: Khairul Osman,
| |
Collapse
|
47
|
Sinha M, Zabini D, Guntur D, Nagaraj C, Enyedi P, Olschewski H, Kuebler WM, Olschewski A. Chloride channels in the lung: Challenges and perspectives for viral infections, pulmonary arterial hypertension, and cystic fibrosis. Pharmacol Ther 2022; 237:108249. [PMID: 35878810 DOI: 10.1016/j.pharmthera.2022.108249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
Fine control over chloride homeostasis in the lung is required to maintain membrane excitability, transepithelial transport as well as intra- and extracellular ion and water homeostasis. Over the last decades, a growing number of chloride channels and transporters have been identified in the cells of the pulmonary vasculature and the respiratory tract. The importance of these proteins is underpinned by the fact that impairment of their physiological function is associated with functional dysregulation, structural remodeling, or hereditary diseases of the lung. This paper reviews the field of chloride channels and transporters in the lung and discusses chloride channels in disease processes such as viral infections including SARS-CoV- 2, pulmonary arterial hypertension, cystic fibrosis and asthma. Although chloride channels have become a hot research topic in recent years, remarkably few of them have been targeted by pharmacological agents. As such, we complement the putative pathophysiological role of chloride channels here with a summary of their therapeutic potential.
Collapse
Affiliation(s)
- Madhushri Sinha
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Diana Zabini
- Department of Physiology, Neue Stiftingtalstrasse 6/V, 8010 Graz, Austria.
| | - Divya Guntur
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Peter Enyedi
- Department of Physiology, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary.
| | - Horst Olschewski
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Andrea Olschewski
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| |
Collapse
|
48
|
Fajac I, Sermet-Gaudelus I. Emerging medicines to improve the basic defect in cystic fibrosis. Expert Opin Emerg Drugs 2022; 27:229-239. [PMID: 35731915 DOI: 10.1080/14728214.2022.2092612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a severe autosomal recessive disorder featuring exocrine pancreatic insufficiency and bronchiectasis. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) encoding the CFTR protein, which is an anion channel. CF treatment has long been based only on intensive symptomatic treatment. During the last 10 years, new drugs called CFTR modulators aiming at restoring the CFTR protein function have become available, and they will benefit around 80% of patients with CF. However, more than 10% of CFTR mutations do not produce any CFTR protein for CFTR modulators to act upon. AREAS COVERED The development of CFTR modulators and their effectiveness in patients with CF will be reviewed. Then, the different strategies to treat patients bearing mutations non-responsive to CFTR modulators will be covered. They comprise DNA- and RNA-based therapies, readthrough agents for nonsense mutations, and cell-based therapies. EXPERT OPINION CF disease has changed tremendously since the advent of CFTR modulators. For mutations that are not amenable to CFTR modulators, new approaches that are being developed benefit from advances in molecular therapy, but many challenges will have to be solved before they can be safely translated to patients.
Collapse
Affiliation(s)
- Isabelle Fajac
- AP-HP. Centre - Université Paris Cité; Hôpital Cochin, Centre de Référence Maladie Rare- Mucoviscidose, Paris, France.,Faculté de Médecine, Université de Paris, Paris, France
| | - Isabelle Sermet-Gaudelus
- Faculté de Médecine, Université de Paris, Paris, France.,Institut Necker Enfants Malades, INSERM U 1151, Paris, France.,AP-HP. Centre - Université Paris Cité; Hôpital Necker Enfants Malades, Centre de Référence Maladie Rare - Mucoviscidose, Paris, France
| |
Collapse
|
49
|
Caley L, Peckham D. Time to change course and tackle CF related obesity. J Cyst Fibros 2022; 21:732-734. [PMID: 35970693 DOI: 10.1016/j.jcf.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Laura Caley
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Daniel Peckham
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom; Leeds Adult Cystic Fibrosis Unit, St James's University Hospital, Leeds, United Kingdom.
| |
Collapse
|
50
|
Matthaiou EI, Chiu W, Conrad C, Hsu J. Macrophage Lysosomal Alkalinization Drives Invasive Aspergillosis in a Mouse Cystic Fibrosis Model of Airway Transplantation. J Fungi (Basel) 2022; 8:751. [PMID: 35887506 PMCID: PMC9321820 DOI: 10.3390/jof8070751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/25/2023] Open
Abstract
Cystic fibrosis (CF) lung transplant recipients (LTRs) exhibit a disproportionately high rate of life-threatening invasive aspergillosis (IA). Loss of the cystic fibrosis transmembrane conductance regulator (CFTR-/-) in macrophages (mφs) has been associated with lyosomal alkalinization. We hypothesize that this alkalinization would persist in the iron-laden post-transplant microenvironment increasing the risk of IA. To investigate our hypothesis, we developed a murine CF orthotopic tracheal transplant (OTT) model. Iron levels were detected by immunofluorescence staining and colorimetric assays. Aspergillus fumigatus (Af) invasion was evaluated by Grocott methenamine silver staining. Phagocytosis and killing of Af conidia were examined by flow cytometry and confocal microscopy. pH and lysosomal acidification were measured by LysoSensorTM and LysotrackerTM, respectively. Af was more invasive in the CF airway transplant recipient compared to the WT recipient (p < 0.05). CFTR-/- mφs were alkaline at baseline, a characteristic that was increased with iron-overload. These CFTR-/- mφs were unable to phagocytose and kill Af conidia (p < 0.001). Poly(lactic-co-glycolic acid) (PLGA) nanoparticles acidified lysosomes, restoring the CFTR-/- mφs’ ability to clear conidia. Our results suggest that CFTR-/- mφs’ alkalinization interacts with the iron-loaded transplant microenvironment, decreasing the CF-mφs’ ability to kill Af conidia, which may explain the increased risk of IA. Therapeutic pH modulation after transplantation could decrease the risk of IA.
Collapse
Affiliation(s)
- Efthymia Iliana Matthaiou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
| | - Wayland Chiu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carol Conrad
- Department of Pediatrics, Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA;
| | - Joe Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
| |
Collapse
|