1
|
Abdel Wadood N, Hollenhorst MI, Elhawy MI, Zhao N, Englisch C, Evers SB, Sabachvili M, Maxeiner S, Wyatt A, Herr C, Burkhart AK, Krause E, Yildiz D, Beckmann A, Kusumakshi S, Riethmacher D, Bischoff M, Iden S, Becker SL, Canning BJ, Flockerzi V, Gudermann T, Chubanov V, Bals R, Meier C, Boehm U, Krasteva-Christ G. Tracheal tuft cells release ATP and link innate to adaptive immunity in pneumonia. Nat Commun 2025; 16:584. [PMID: 39794305 PMCID: PMC11724094 DOI: 10.1038/s41467-025-55936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025] Open
Abstract
Tracheal tuft cells shape immune responses in the airways. While some of these effects have been attributed to differential release of either acetylcholine, leukotriene C4 and/or interleukin-25 depending on the activating stimuli, tuft cell-dependent mechanisms underlying the recruitment and activation of immune cells are incompletely understood. Here we show that Pseudomonas aeruginosa infection activates mouse tuft cells, which release ATP via pannexin 1 channels. Taste signaling through the Trpm5 channel is essential for bacterial tuft cell activation and ATP release. We demonstrate that activated tuft cells recruit dendritic cells to the trachea and lung. ATP released by tuft cells initiates dendritic cell activation, phagocytosis and migration. Tuft cell stimulation also involves an adaptive immune response through recruitment of IL-17A secreting T helper cells. Collectively, the results provide a molecular framework defining tuft cell dependent regulation of both innate and adaptive immune responses in the airways to combat bacterial infection.
Collapse
Affiliation(s)
- Noran Abdel Wadood
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Monika I Hollenhorst
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
| | | | - Na Zhao
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Clara Englisch
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Saskia B Evers
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Mahana Sabachvili
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Stephan Maxeiner
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
| | - Amanda Wyatt
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Christian Herr
- Department of Internal Medicine V-Pulmonology, Allergology, Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Ann-Kathrin Burkhart
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg, Germany
| | - Elmar Krause
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Daniela Yildiz
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Anja Beckmann
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Soumya Kusumakshi
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Dieter Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Sandra Iden
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg, Germany
| | - Sören L Becker
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | | | - Veit Flockerzi
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center, a member of the German Center for Lung Research (DZL), Munich, Germany
| | - Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Robert Bals
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
- Department of Internal Medicine V-Pulmonology, Allergology, Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Carola Meier
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Ulrich Boehm
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany.
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany.
| |
Collapse
|
2
|
Singh N, Cunnington RH, Bhagirath A, Vaishampayan A, Khan MW, Gupte T, Duan K, Gounni AS, Dakshisnamurti S, Hanrahan JW, Chelikani P. Bitter taste receptor T2R14-Gαi coupling mediates innate immune responses to microbial quorum sensing molecules in cystic fibrosis. iScience 2024; 27:111286. [PMID: 39628561 PMCID: PMC11613190 DOI: 10.1016/j.isci.2024.111286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/30/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease characterized by microbial infection and progressive decline in lung function, leading to significant morbidity and mortality. The bitter taste receptor T2R14 is a chemosensory receptor that is significantly expressed in airways. Using a combination of cell-based assays and T2R14 knockdown in bronchial epithelial cells from CF and non-CF individuals, we observed that T2R14 plays a crucial role in the detection of bacterial and fungal signals and enhances host innate immune responses. Expression of Gαi protein is enhanced in CF bronchial epithelial cells and T2R14-Gαi specific signaling leads to increased calcium mobilization. Knockdown of T2R14 leads to reduced innate immune activation by bacterial strains deficient in quorum sensing. The results demonstrate that T2R14 helps protect against microbial infection and thus may play an important role in the innate immune defense of the CF airway epithelium.
Collapse
Affiliation(s)
- Nisha Singh
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Ryan H. Cunnington
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Anjali Bhagirath
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Dalhousie University, Faculty of Dentistry, Halifax, NS, Canada
| | - Ankita Vaishampayan
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Mohd Wasif Khan
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tejas Gupte
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Kangmin Duan
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Abdelilah S. Gounni
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Shyamala Dakshisnamurti
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - John W. Hanrahan
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Feng X, Flüchter P, De Tenorio JC, Schneider C. Tuft cells in the intestine, immunity and beyond. Nat Rev Gastroenterol Hepatol 2024; 21:852-868. [PMID: 39327439 DOI: 10.1038/s41575-024-00978-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/28/2024]
Abstract
Tuft cells have gained substantial attention over the past 10 years due to numerous reports linking them with type 2 immunity and microorganism-sensing capacity in many mucosal tissues. This heightened interest is fuelled by their unique ability to produce an array of biological effector molecules, including IL-25, allergy-related eicosanoids, and the neurotransmitter acetylcholine, enabling downstream responses in diverse cell types. Operating through G protein-coupled receptor-mediated signalling pathways reminiscent of type II taste cells in oral taste buds, tuft cells emerge as chemosensory sentinels that integrate luminal conditions, eliciting appropriate responses in immune, epithelial and neuronal populations. How tuft cells promote tissue alterations and adaptation to the variety of stimuli at mucosal surfaces has been explored in multiple studies in the past few years. Since the initial recognition of the role of tuft cells, the discovery of diverse tuft cell effector functions and associated feedback loops have also revealed the complexity of tuft cell biology. Although earlier work largely focused on extraintestinal tissues, novel genetic tools and recent mechanistic studies on intestinal tuft cells established fundamental concepts of tuft cell activation and functions. This Review is an overview of intestinal tuft cells, providing insights into their development, signalling and interaction modules in immunity and other states.
Collapse
Affiliation(s)
- Xiaogang Feng
- Department of Physiology, University of Zurich, Zurich, Switzerland
| | - Pascal Flüchter
- Department of Physiology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
4
|
Palatini Jackson KM, Mhawish R, Komarnytsky S. Bitter Phytochemicals Acutely Lower Blood Glucose Levels by Inhibition of Glucose Absorption in the Gut. ENDOCRINES 2024; 5:304-322. [DOI: 10.3390/endocrines5030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
For early hominids, frequent encounters with plant foods necessitated the ability to discern bitter poisons and adjust the activity of the gastrointestinal system in anticipation of carbohydrate-rich meals. Plants bitters were also used historically to manage a variety of metabolic and digestive disorders despite an immense structural diversity of bitter phytochemicals without a common molecular target. Our study confirms these observations in a standardized C57BL/6J prediabetic mouse model using 24 model compounds by demonstrating acute lower peak blood glucose values and improved glucose tolerance following intragastric, but not intraperitoneal, treatment. The administration of the synthetic bitter compound denatonium benzoate yielded similar results that were attenuated by co-application of the allosteric inhibitor of the bitter TAS2R receptors. We also show that these effects occur dose-dependently; associate with reduced glucose uptake, increased intracellular [Ca2+] fluxes, and enhanced GLP-1 expression; and are attenuated by the TAS2R inhibitor in the neuroendocrine STC-1 intestinal cells. These findings support the view that inhibition of glucose transport from the intestinal lumen to the blood by TAS2R bitter receptor signaling in the gut may represent a common mechanism in the acute response to oral ingestion of bitter phytochemicals.
Collapse
Affiliation(s)
| | - Reham Mhawish
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Billipp TE, Fung C, Webeck LM, Sargent DB, Gologorsky MB, Chen Z, McDaniel MM, Kasal DN, McGinty JW, Barrow KA, Rich LM, Barilli A, Sabat M, Debley JS, Wu C, Myers R, Howitt MR, von Moltke J. Tuft cell-derived acetylcholine promotes epithelial chloride secretion and intestinal helminth clearance. Immunity 2024; 57:1243-1259.e8. [PMID: 38744291 PMCID: PMC11168877 DOI: 10.1016/j.immuni.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/05/2024] [Accepted: 03/29/2024] [Indexed: 05/16/2024]
Abstract
Epithelial cells secrete chloride to regulate water release at mucosal barriers, supporting both homeostatic hydration and the "weep" response that is critical for type 2 immune defense against parasitic worms (helminths). Epithelial tuft cells in the small intestine sense helminths and release cytokines and lipids to activate type 2 immune cells, but whether they regulate epithelial secretion is unknown. Here, we found that tuft cell activation rapidly induced epithelial chloride secretion in the small intestine. This response required tuft cell sensory functions and tuft cell-derived acetylcholine (ACh), which acted directly on neighboring epithelial cells to stimulate chloride secretion, independent of neurons. Maximal tuft cell-induced chloride secretion coincided with immune restriction of helminths, and clearance was delayed in mice lacking tuft cell-derived ACh, despite normal type 2 inflammation. Thus, we have uncovered an epithelium-intrinsic response unit that uses ACh to couple tuft cell sensing to the secretory defenses of neighboring epithelial cells.
Collapse
Affiliation(s)
- Tyler E Billipp
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Connie Fung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lily M Webeck
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Derek B Sargent
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Matthew B Gologorsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Margaret M McDaniel
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Darshan N Kasal
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - John W McGinty
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Kaitlyn A Barrow
- Center for Respiratory Biology and Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA
| | - Lucille M Rich
- Center for Respiratory Biology and Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Mark Sabat
- Takeda Pharmaceuticals, San Diego, CA, USA
| | - Jason S Debley
- Center for Respiratory Biology and Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Michael R Howitt
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
6
|
Ualiyeva S, Lemire E, Wong C, Perniss A, Boyd A, Avilés EC, Minichetti DG, Maxfield A, Roditi R, Matsumoto I, Wang X, Deng W, Barrett NA, Buchheit KM, Laidlaw TM, Boyce JA, Bankova LG, Haber AL. A nasal cell atlas reveals heterogeneity of tuft cells and their role in directing olfactory stem cell proliferation. Sci Immunol 2024; 9:eabq4341. [PMID: 38306414 PMCID: PMC11127180 DOI: 10.1126/sciimmunol.abq4341] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/08/2023] [Indexed: 02/04/2024]
Abstract
The olfactory neuroepithelium serves as a sensory organ for odors and forms part of the nasal mucosal barrier. Olfactory sensory neurons are surrounded and supported by epithelial cells. Among them, microvillous cells (MVCs) are strategically positioned at the apical surface, but their specific functions are enigmatic, and their relationship to the other specialized epithelial cells is unclear. Here, we establish that the family of MVCs comprises tuft cells and ionocytes in both mice and humans. Integrating analysis of the respiratory and olfactory epithelia, we define the distinct receptor expression of TRPM5+ tuft-MVCs compared with Gɑ-gustducinhigh respiratory tuft cells and characterize a previously undescribed population of glandular DCLK1+ tuft cells. To establish how allergen sensing by tuft-MVCs might direct olfactory mucosal responses, we used an integrated single-cell transcriptional and protein analysis. Inhalation of Alternaria induced mucosal epithelial effector molecules including Chil4 and a distinct pathway leading to proliferation of the quiescent olfactory horizontal basal stem cell (HBC) pool, both triggered in the absence of olfactory apoptosis. Alternaria- and ATP-elicited HBC proliferation was dependent on TRPM5+ tuft-MVCs, identifying these specialized epithelial cells as regulators of olfactory stem cell responses. Together, our data provide high-resolution characterization of nasal tuft cell heterogeneity and identify a function of TRPM5+ tuft-MVCs in directing the olfactory mucosal response to allergens.
Collapse
Affiliation(s)
- Saltanat Ualiyeva
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Evan Lemire
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Caitlin Wong
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Alexander Perniss
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Amelia Boyd
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Evelyn C. Avilés
- Department of Neurobiology, Harvard Medical School, Boston, MA; currently at Faculty of Biological Sciences, Pontificia Universidad Católica de Chile
| | - Dante G. Minichetti
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Alice Maxfield
- Division of Otolaryngology-Head and Neck Surgery, Brigham and Women’s Hospital and Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA
| | - Rachel Roditi
- Division of Otolaryngology-Head and Neck Surgery, Brigham and Women’s Hospital and Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA
| | | | - Xin Wang
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Wenjiang Deng
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Nora A. Barrett
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Kathleen M. Buchheit
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Tanya M. Laidlaw
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Joshua A. Boyce
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Lora G. Bankova
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Adam L. Haber
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
7
|
Zhu H, Liu X, Wang X, Li Y, Ma F, Tan B, Zhou P, Fu F, Su R. Gβγ subunit inhibitor decreases DOM-induced head twitch response via the PLCβ/IP3/Ca 2+/ERK and cAMP signaling pathways. Eur J Pharmacol 2023; 957:176038. [PMID: 37657742 DOI: 10.1016/j.ejphar.2023.176038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
AIMS (-)-2,5-dimethoxy-4-methylamphetamine (DOM) induces the head-twitch response (HTR) primarily by activating the serotonin 5-hydroxytryptamine 2A receptor (5-HT2A receptor) in mice. However, the mechanisms underlying 5-HT2A receptor activation and the HTR remain elusive. Gβγ subunits are a potential treatment target in numerous diseases. The present study investigated the mechanism whereby Gβγ subunits influence DOM-induced HTR. MAIN METHODS The effects of the Gβγ inhibitor 3',4',5',6'-tetrahydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one (gallein) and antagonistic peptide βARKct (β-adrenergic receptor kinase C-terminal fragment) on DOM-induced HTR were studied via an HTR test. The activation of the phospholipase C β (PLCβ)/inositol triphosphate (IP3)/calcium (Ca2+) signaling pathway and extracellular signal-regulated kinase (ERK) following Gβγ subunit inhibition was detected by western blotting, Homogeneous Time-Resolved Fluorescence (HTRF) inositol phosphate (IP1) assay and Fluorometric Imaging Plate Reader (FLIPR) calcium 6 assay. The Gβγ subunit-mediated regulation of cyclic adenosine monophosphate (cAMP) was assessed via a GloSensor™ cAMP assay. KEY FINDINGS The Gβγ subunit inhibitors gallein and βARKct reduced DOM-induced HTR in C57BL/6J mice. Like the 5-HT2A receptor-selective antagonist (R)-[2,3-di(methoxy)phenyl]-[1-[2-(4-fluorophenyl)ethyl]piperidin-4-yl]methanol (M100907), gallein inhibited PLCβ phosphorylation (pPLCβ), IP1 production, Ca2+ transients, ERK1/2 phosphorylation (pERK1/2) and cAMP accumulation induced by DOM in human embryonic kidney (HEK) 293T cells stably or transiently transfected with the human 5-HT2A receptor. Moreover, PLCβ protein inhibitor 1-[6-[[(8R,9S,13S,14S,17S)-3-methoxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-17-yl]amino]hexyl]pyrrole-2,5-dione (U73122) (10 nmol/mouse), intracellular Ca2+ blocker 6-[6-[6-[5-acetamido-4,6-dihydroxy-2-(sulfooxymethyl)oxan-3-yl]oxy-2-carboxy-4-hydroxy-5-sulfooxyoxan-3-yl]oxy-2-(hydroxymethyl)-5-(sulfoamino)-4-sulfooxyoxan-3-yl]oxy-3,4-dihydroxy-5-sulfooxyoxane-2-carboxylic acid (heparin) (5 nmol/mouse), L-type Ca2+ channel blocker 3-O-(2-methoxyethyl) 5-O-propan-2-yl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (nimodipine) (4 mg/kg), mitogen extracellular regulating kinase 1/2 (MEK1/2) inhibitor (Z)-3-amino-3-(4-aminophenyl)sulfanyl-2-[2-(trifluoromethyl)phenyl]prop-2-enenitrile (SL327) (30 mg/kg), and Gαs protein selective antagonist 4,4',4″,4‴-(Carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic acid (NF449) (10 nmol/mouse) reduced DOM-induced HTR in C57BL/6J mice. SIGNIFICANCE The Gβγ subunits potentially mediate the HTR after 5-HT2A receptor activation via the PLCβ/IP3/Ca2+/ERK1/2 and cAMP signaling pathways. Inhibitors targeting the Gβγ subunits potentially inhibit the hallucinogenic effects of 5-HT2A receptor agonists.
Collapse
Affiliation(s)
- Huili Zhu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China; School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Xiaoqian Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Xiaoxuan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Yulei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Fang Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Bo Tan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Peilan Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Fenghua Fu
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
8
|
Perniss A, Boonen B, Tonack S, Thiel M, Poharkar K, Alnouri MW, Keshavarz M, Papadakis T, Wiegand S, Pfeil U, Richter K, Althaus M, Oberwinkler J, Schütz B, Boehm U, Offermanns S, Leinders-Zufall T, Zufall F, Kummer W. A succinate/SUCNR1-brush cell defense program in the tracheal epithelium. SCIENCE ADVANCES 2023; 9:eadg8842. [PMID: 37531421 PMCID: PMC10396310 DOI: 10.1126/sciadv.adg8842] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
Host-derived succinate accumulates in the airways during bacterial infection. Here, we show that luminal succinate activates murine tracheal brush (tuft) cells through a signaling cascade involving the succinate receptor 1 (SUCNR1), phospholipase Cβ2, and the cation channel transient receptor potential channel subfamily M member 5 (TRPM5). Stimulated brush cells then trigger a long-range Ca2+ wave spreading radially over the tracheal epithelium through a sequential signaling process. First, brush cells release acetylcholine, which excites nearby cells via muscarinic acetylcholine receptors. From there, the Ca2+ wave propagates through gap junction signaling, reaching also distant ciliated and secretory cells. These effector cells translate activation into enhanced ciliary activity and Cl- secretion, which are synergistic in boosting mucociliary clearance, the major innate defense mechanism of the airways. Our data establish tracheal brush cells as a central hub in triggering a global epithelial defense program in response to a danger-associated metabolite.
Collapse
Affiliation(s)
- Alexander Perniss
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Brett Boonen
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
- Laboratory of Ion Channel Research, VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sarah Tonack
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Moritz Thiel
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Krupali Poharkar
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Mohamad Wessam Alnouri
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Maryam Keshavarz
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Tamara Papadakis
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Silke Wiegand
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Uwe Pfeil
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University, Giessen, Germany
| | - Mike Althaus
- Physiology Group, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | - Johannes Oberwinkler
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Burkhard Schütz
- Institute of Anatomy and Cell Biology, Philipps University Marburg, Marburg, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Stefan Offermanns
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Wolfgang Kummer
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
9
|
Billipp TE, Fung C, Webeck LM, Sargent DB, Gologorsky MB, McDaniel MM, Kasal DN, McGinty JW, Barrow KA, Rich LM, Barilli A, Sabat M, Debley JS, Myers R, Howitt MR, von Moltke J. Tuft cell-derived acetylcholine regulates epithelial fluid secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533208. [PMID: 36993541 PMCID: PMC10055254 DOI: 10.1101/2023.03.17.533208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Tuft cells are solitary chemosensory epithelial cells that can sense lumenal stimuli at mucosal barriers and secrete effector molecules to regulate the physiology and immune state of their surrounding tissue. In the small intestine, tuft cells detect parasitic worms (helminths) and microbe-derived succinate, and signal to immune cells to trigger a Type 2 immune response that leads to extensive epithelial remodeling spanning several days. Acetylcholine (ACh) from airway tuft cells has been shown to stimulate acute changes in breathing and mucocilliary clearance, but its function in the intestine is unknown. Here we show that tuft cell chemosensing in the intestine leads to release of ACh, but that this does not contribute to immune cell activation or associated tissue remodeling. Instead, tuft cell-derived ACh triggers immediate fluid secretion from neighboring epithelial cells into the intestinal lumen. This tuft cell-regulated fluid secretion is amplified during Type 2 inflammation, and helminth clearance is delayed in mice lacking tuft cell ACh. The coupling of the chemosensory function of tuft cells with fluid secretion creates an epithelium-intrinsic response unit that effects a physiological change within seconds of activation. This response mechanism is shared by tuft cells across tissues, and serves to regulate the epithelial secretion that is both a hallmark of Type 2 immunity and an essential component of homeostatic maintenance at mucosal barriers.
Collapse
Affiliation(s)
- Tyler E. Billipp
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Connie Fung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lily M. Webeck
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Derek B. Sargent
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Matthew B. Gologorsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Margaret M. McDaniel
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Darshan N. Kasal
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - John W. McGinty
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kaitlyn A. Barrow
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Lucille M. Rich
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | | | - Mark Sabat
- Takeda Pharmaceuticals, San Diego, California, USA
| | - Jason S. Debley
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Seattle Children’s Hospital, University of Washington, Seattle, WA, USA
| | | | - Michael R. Howitt
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|