1
|
Zhang C, Ying Y, Ru Y, Wu Z, Tian Y, Shen P, Cao S, Zhang J, Liu R. Association between FIB-4 index and lower extremity arterial disease in MASLD patients: a cross-sectional study. Lipids Health Dis 2025; 24:103. [PMID: 40114160 PMCID: PMC11924756 DOI: 10.1186/s12944-025-02516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with an elevated risk of cardiovascular conditions, such as lower extremity arterial disease (LEAD). The Fibrosis-4 (FIB-4) index, a non-invasive marker of liver fibrosis, may have predictive value for LEAD in patients with MASLD. This study aimed to explore the association between FIB-4 and LEAD in a cohort of patients with MASLD. METHODS This cross-sectional study included 481 participants with MASLD, selected from a comprehensive health check-up database. Participants were categorized into three groups based on their FIB-4 index (< 1.3, 1.3-2.66, > 2.66) and underwent duplex ultrasonography to diagnose LEAD. Logistic regression models were employed to evaluate the association between FIB-4 and LEAD, adjusting for demographic, metabolic, and lipid-related factors. Subgroup analyses were performed by sex, age, diabetes mellitus status, hypertension, dyslipidemia, smoking status. RESULTS The prevalence of LEAD increased with FIB-4 levels, from 51.3% in the low FIB-4 group to 86.5% in the high FIB-4 group (p < 0.001). In fully adjusted models, higher FIB-4 levels were significantly associated with LEAD (adjusted odds ratio [OR]: 3.54, 95% confidence interval [CI]: 1.39-9.01) in the high FIB-4 group compared to the low group. As a continuous variable, each unit increase in FIB-4 was associated with a 66% higher likelihood of LEAD (adjusted OR: 1.66, 95% CI: 1.12-2.26, P < 0.001). Subgroup analyses did not reveal significant interactions (P for interaction > 0.05). CONCLUSIONS Higher FIB-4 levels are independently associated with the prevalence of LEAD in MASLD patients, although subgroup analyses did not reveal significant interactions. This suggests that further studies with larger sample sizes are needed to explore these relationships more comprehensively.
Collapse
Affiliation(s)
- Chunxia Zhang
- Department of Cardiology, Ningbo Medical Center LiHuiLi Hospital (The Affiliated LiHuiLi Hospital of Ningbo University), Ningbo, Zhejiang, China
| | - Yuchen Ying
- Department of Cardiology, Ningbo Medical Center LiHuiLi Hospital (The Affiliated LiHuiLi Hospital of Ningbo University), Ningbo, Zhejiang, China
| | - Yuanhui Ru
- Gastrointestinal Endoscopy Center, Ningbo Medical Center LiHuiLi Hospital (The Affiliated LiHuiLi Hospital of Ningbo University), Ningbo, Zhejiang, China
| | - Ziliang Wu
- Department of Interventional Radiology, Ningbo Medical Center LiHuiLi Hospital (The Affiliated LiHuiLi Hospital of Ningbo University), Ningbo, Zhejiang, China
| | - Yumeng Tian
- School of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Pingping Shen
- Department of Radiology, Ningbo Municipal Hospital of Traditional Chinese Medicine(TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang, China
| | - Shiyuan Cao
- School of Medical Imaging, Bengbu Medical University, Anhui, Bengbu, China
| | - Jing Zhang
- Department of Radiology, Ningbo Beilun Xiaogang Street Community Health Service Center, Ningbo, Zhejiang, China
| | - Ri Liu
- Department of Interventional Radiology, Ningbo Medical Center LiHuiLi Hospital (The Affiliated LiHuiLi Hospital of Ningbo University), Ningbo, Zhejiang, China.
| |
Collapse
|
2
|
Sheptulina AF, Liusina EO, Zlobovskaya OA, Kiselev AR, Drapkina OM. Possible Role of Platelets in the Development and Progression of Non-Alcoholic Fatty Liver Disease. FRONT BIOSCI-LANDMRK 2025; 30:26748. [PMID: 40152376 DOI: 10.31083/fbl26748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 03/29/2025]
Abstract
To date, an increasing body of evidence supports the potential role of activated platelets in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). This is likely due to their ability to secrete biologically active substances that regulate liver regeneration processes, ensure hemostasis, and participate in the immune response. Additionally, several studies have demonstrated the efficacy of antiplatelet agents in reducing inflammation, the severity of liver fibrosis, and the progression of fibrosis in non-alcoholic steatohepatitis (NASH). Since NAFLD is not an independent indication for antiplatelet therapy, the primary evidence regarding their efficacy in NAFLD has been derived from studies using animal models of NAFLD or in patients with concomitant cardiovascular diseases. This narrative review will discuss the main functions of platelets, their unique interactions with liver cells, and the outcomes of these interactions, as well as the results of studies evaluating the efficacy and safety of antiplatelet therapy in patients with NAFLD.
Collapse
Affiliation(s)
- Anna F Sheptulina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Ekaterina O Liusina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Olga A Zlobovskaya
- Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency, 123182 Moscow, Russia
| | - Anton R Kiselev
- Coordinating Center for Fundamental Research, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Oxana M Drapkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| |
Collapse
|
3
|
Zhang S, Wu J, Wang L, Zhang C, Zhang Y, Feng Y. Exploring the hepatic-ophthalmic axis through immune modulation and cellular dynamics in diabetic retinopathy and non-alcoholic fatty liver disease. Hum Genomics 2025; 19:19. [PMID: 40011971 DOI: 10.1186/s40246-025-00730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Dysfunctions within the liver system are intricately linked to the progression of diabetic retinopathy (DR) and non-alcoholic fatty liver disease (NAFLD). This study leverages systematic analysis to elucidate the complex cross-talk and communication pathways among diverse cell populations implicated in the pathogenesis of DR and NAFLD. METHODS Single-cell RNA sequencing data for proliferative diabetic retinopathy (PDR) and NAFLD were retrieved from the Gene Expression Omnibus (GEO) database. Differential gene expression analysis was conducted and followed by pseudo-time analysis to delineate dynamic changes in core cells and differentially expressed genes (DEGs). CellChat was employed to predict intercellular communication and signaling pathways. Additionally, gene set enrichment and variation analyses (GSEA and GSVA) were performed to uncover key functional enrichments. RESULTS Our comparative analysis of the two datasets focused on T cells, macrophages and endothelial cells, revealing SYNE2 as a notable DEG. Notably, common genes including PYHIN1, SLC38A1, ETS1 (T cells), PPFIBP1, LIFR, HSPG2 (endothelial cells), and MSR1 (macrophages), emerged among the top 50 DEGs across these cell types. The CD45 signaling pathway was pivotal for T cells and macrophages, exerting profound effects on other cells in both PDR and NAFLD. Moreover, GSEA and GSVA underscored their involvement in cellular communication, immune modulation, energy metabolism, mitotic processes. CONCLUSION The comprehensive investigation of T cells, macrophages, endothelial cells, and the CD45 signaling pathway advances our understanding of the intricate biological processes underpinning DR and NAFLD. This research underscores the imperative of exploring immune-related cell interactions, shedding light on novel therapeutic avenues in these disease contexts.
Collapse
Affiliation(s)
- Shuyan Zhang
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiajun Wu
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Leilei Wang
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yinjian Zhang
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Zisis M, Chondrogianni ME, Androutsakos T, Rantos I, Oikonomou E, Chatzigeorgiou A, Kassi E. Linking Cardiovascular Disease and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): The Role of Cardiometabolic Drugs in MASLD Treatment. Biomolecules 2025; 15:324. [PMID: 40149860 PMCID: PMC11940321 DOI: 10.3390/biom15030324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
The link between cardiovascular disease (CVD) and metabolic dysfunction-associated steatotic liver disease (MASLD) is well-established at both the epidemiological and pathophysiological levels. Among the common pathophysiological mechanisms involved in the development and progression of both diseases, oxidative stress and inflammation, insulin resistance, lipid metabolism deterioration, hepatokines, and gut dysbiosis along with genetic factors have been recognized to play a pivotal role. Pharmacologic interventions with drugs targeting common modifiable cardiometabolic risk factors, such as T2DM, dyslipidemia, and hypertension, are a reasonable strategy to prevent CVD development and progression of MASLD. Recently, a novel drug for metabolic dysfunction-associated steatohepatitis (MASH), resmetirom, has shown positive effects regarding CVD risk, opening new opportunities for the therapeutic approach of MASLD and CVD. This review provides current knowledge on the epidemiologic association of MASLD to CVD morbidity and mortality and enlightens the possible underlying pathophysiologic mechanisms linking MASLD with CVD. The role of cardiometabolic drugs such as anti-hypertensive drugs, hypolipidemic agents, glucose-lowering medications, acetylsalicylic acid, and the thyroid hormone receptor-beta agonist in the progression of MASLD is also discussed. Metformin failed to prove beneficial effects in MASLD progression. Studies on the administration of thiazolinediones in MASLD suggest effectiveness in improving steatosis, steatohepatitis, and fibrosis, while newer categories of glucose-lowering agents such as GLP-1Ra and SGLT-2i are currently being tested for their efficacy across the whole spectrum of MASLD. Statins alone or in combination with ezetimibe have yielded promising results. The conduction of long-duration, large, high-quality, randomized-controlled trials aiming to assess by biopsy the efficacy of cardiometabolic drugs to reverse MASLD progression is of great importance.
Collapse
Affiliation(s)
- Marios Zisis
- Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (M.Z.); (I.R.)
| | - Maria Eleni Chondrogianni
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Ilias Rantos
- Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (M.Z.); (I.R.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Thoracic Diseases Hospital of Athens, University of Athens Medical School, 11527 Athens, Greece;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Bourganou MV, Chondrogianni ME, Kyrou I, Flessa CM, Chatzigeorgiou A, Oikonomou E, Lambadiari V, Randeva HS, Kassi E. Unraveling Metabolic Dysfunction-Associated Steatotic Liver Disease Through the Use of Omics Technologies. Int J Mol Sci 2025; 26:1589. [PMID: 40004054 PMCID: PMC11855544 DOI: 10.3390/ijms26041589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now referred to as metabolic dysfunction-associated steatotic liver disease (MASLD), is the most prevalent liver disorder globally, linked to obesity, type 2 diabetes, and cardiovascular risk. Understanding its potential progression from simple steatosis to cirrhosis and hepatocellular carcinoma (HCC) is crucial for patient management and treatment strategies. The disease's complexity requires innovative approaches for early detection and personalized care. Omics technologies-such as genomics, transcriptomics, proteomics, metabolomics, and exposomics-are revolutionizing the study of MASLD. These high-throughput techniques allow for a deeper exploration of the molecular mechanisms driving disease progression. Genomics can identify genetic predispositions, whilst transcriptomics and proteomics reveal changes in gene expression and protein profiles during disease evolution. Metabolomics offers insights into the metabolic alterations associated with MASLD, while exposomics links environmental exposures to MASLD progression and pathology. By integrating data from various omics platforms, researchers can map out the intricate biochemical pathways involved in liver disease progression. This review discusses the roles of omics technologies in enhancing the understanding of disease progression and highlights potential diagnostic and therapeutic targets within the MASLD spectrum, emphasizing the need for non-invasive tools in disease staging and treatment development.
Collapse
Affiliation(s)
- Maria V. Bourganou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
| | - Maria Eleni Chondrogianni
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Kyrou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- College of Health, Psychology and Social Care, University of Derby, Derby DE22 IGB, UK
| | - Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Thoracic Diseases Hospital of Athens, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vaia Lambadiari
- 2nd Department of Internal-Medicine, Diabetes Centre, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
6
|
Teimouri A, Ebrahimpour Z, Feizi A, Iraj B, Saffari E, Akbari M, Karimifar M. Pre-diabetes and cardiovascular risk factors in NAFLD patients: a retrospective comparative analysis. Front Endocrinol (Lausanne) 2025; 16:1416407. [PMID: 39991738 PMCID: PMC11842249 DOI: 10.3389/fendo.2025.1416407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 01/13/2025] [Indexed: 02/25/2025] Open
Abstract
Objectives Insulin resistance plays a critical role in the pathophysiology of diabetes mellitus and non-alcoholic fatty liver disease (NAFLD). Moreover, insulin resistance has a central role in atherogensis as the major leading cause of cardiovascular disease (CVD). The aim of the present study was to assess the frequency of pre-diabetes and evaluate the cardiometabolic risk factors among NAFLD patients, comparing those with pre-diabetes to those with normal glucose tolerance. Methods In the current retrospective case-control study, the data of 1031 NAFLD patients was retrieved. Based on blood glucose levels, 337 diabetics, 340 pre-diabetes, and, 354 normal glucose patients were diagnosed. After excluding diabetic NAFLD patients, 694 individuals were divided into two groups: normal glucose and pre-diabetes. Various variables, such as age, anthropometric measurements, hypertension, systolic and diastolic blood pressure, and lipid profiles, were extracted from patient files. Statistical analysis was conducted to assess cardiovascular risk factors in NAFLD patients. Results Higher age, female gender, higher BMI, triglyceride, waist and hip circumference and waist-to-hip ratio were found in pre-diabetic NAFLD individuals compared with normoglycemic ones (P-value<0.05). Multivariable age-, sex-, BMI- and smoking- adjusted logistic regression showed a predicting role of pre-diabetes and NAFLD concurrence with metabolic syndrome (P-value<0.001, OR:4.31, 95% CI: 2.95- 6.29), but not CVD (P-value=0.353, OR:1.37, 95% CI: 0.71- 2.61). Conclusion In this study, nearly one-third of NAFLD patients had pre-diabetes. The mean value of age, BMI, TG, waist and Hip circumference was significantly higher in pre-diabetic patients. The concurrence of pre-diabetes and NAFLD was a predicting factor for metabolic syndrome, but not CVD events.
Collapse
Affiliation(s)
- Azam Teimouri
- Isfahan Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Ebrahimpour
- Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bijan Iraj
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elahe Saffari
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Akbari
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mozhgan Karimifar
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Mo H, Yue P, Li Q, Tan Y, Yan X, Liu X, Xu Y, Luo Y, Palihati S, Yi C, Zhang H, Yuan M, Yang B. The role of liver sinusoidal endothelial cells in metabolic dysfunction-associated steatotic liver diseases and liver cancer: mechanisms and potential therapies. Angiogenesis 2025; 28:14. [PMID: 39899173 DOI: 10.1007/s10456-025-09969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Liver sinusoidal endothelial cells (LSECs), with their unique morphology and function, have garnered increasing attention in chronic liver disease research. This review summarizes the critical roles of LSECs under physiological conditions and in two representative chronic liver diseases: metabolic dysfunction-associated steatotic liver disease (MASLD) and liver cancer. Under physiological conditions, LSECs act as selective barriers, regulating substance exchange and hepatic blood flow. Interestingly, LSECs exhibit contrasting roles at different stages of disease progression: in the early stages, they actively resist disease advancement and help restore sinusoidal homeostasis; whereas in later stages, they contribute to disease worsening. During this transition, LSECs undergo capillarization, lose their characteristic markers, and become dysfunctional. As the disease progresses, LSECs closely interact with hepatocytes, hepatic stellate cells, various immune cells, and tumor cells, driving processes such as steatosis, inflammation, fibrosis, angiogenesis, and carcinogenesis. Consequently, targeting LSECs represents a promising therapeutic strategy for chronic liver diseases. Relevant therapeutic targets and potential drugs are summarized in this review.
Collapse
Affiliation(s)
- Hanjun Mo
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Pengfei Yue
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Qiaoqi Li
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yinxi Tan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Xinran Yan
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyue Liu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuanwei Xu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Medical Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Chengdu, 610075, Sichuan, China
| | - Suruiya Palihati
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Cheng Yi
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, China.
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, 610041, China.
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China.
| | - Biao Yang
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Xue J, Zhao L, Shao L, Zhang H, Feng Y, Shuai P. Higher risk of carotid plaque among lean individuals with non-alcoholic fatty liver disease: A retrospective study. PLoS One 2025; 20:e0316997. [PMID: 39899517 PMCID: PMC11790118 DOI: 10.1371/journal.pone.0316997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/19/2024] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Lean individual with non-alcoholic fatty liver disease (L-NAFLD) is a prominent area of research, yet its pathogenesis and association with other diseases such as atherosclerotic cardiovascular disease remain uncertain. OBJECT A retrospective study, investigate the association between non-alcoholic fatty liver disease (NAFLD) and carotid plaque (CP) in lean [body mass index (BMI) <24Kg/m2] and non-lean (BMI≥24Kg/m2) populations, as well as identify the related influence factors. METHOD 3,587 participants were eligible and categorized into 4 groups based on the presence with CP and BMI, binary logistic regression analysis was utilized alongside other statistical methods. RESULTS L-NAFLD participants had a 1.395-fold higher risk of CP compared to lean individuals without NAFLD. Age, gender, systolic blood pressure, low-density lipoprotein cholesterol, fasting blood glucose, and Fibrosis-4 index (FIB-4) were identified as independent risk factors with cutoff values lower than the normal upper limits. However, this association was not observed among non-lean participants, regardless of confounding factors adjustment. Moreover, the impact of FIB-4 on the association of NAFLD and CP was more significant in lean CP participants (OR = 1.360 for 1.30 ~ 2.67, and OR = 2.002 for >2.67~<3.48) than in non-lean CP ones. CONCLUSION The L-NAFLD population had a higher risk of CP, while lean CP individuals experienced more severe liver fibrosis. Implementing stricter management of risk factors may improve the health status of high-risk populations.
Collapse
Affiliation(s)
- Jiangfeng Xue
- Department of Health Management, The People’s Hospital of Yubei District of Chongqing, Chongqing, China
| | - Lun Zhao
- Department of Digestive System Disease, The People’s Hospital of Yubei District of Chongqing, Chongqing, China
| | - Liang Shao
- Department of Sohome Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan Province, China
| | - Huiwang Zhang
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan Province, China
| | - Yewei Feng
- Department of Health Management, The People’s Hospital of Yubei District of Chongqing, Chongqing, China
| | - Ping Shuai
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan Province, China
| |
Collapse
|
9
|
Du P, Jiang J, Liu Y, Lv H. Correlation between vascular endothelial function and bone mineral density in type 2 diabetes mellitus patients with MAFLD. Acta Cardiol 2025; 80:30-38. [PMID: 39654473 DOI: 10.1080/00015385.2024.2436813] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/29/2024] [Accepted: 11/25/2024] [Indexed: 02/06/2025]
Abstract
OBJECTIVE The relationship between vascular endothelial function and bone mineral density (BMD) in T2DM patients with metabolic dysfunction associated fatty liver (MAFLD) is still unclear. This study aims to analyse the correlation between vascular endothelial function and BMD or fracture risk in T2DM patients with MAFLD. METHODS A total of 872 T2DM patients aged ≥50 years were enrolled and divided into two groups according to the diagnostic criteria of MAFLD: MAFLD (+) and MAFLD (-). Flow-mediated dilation (FMD) was measured by high-resolution ultrasound to reflect vascular endothelial function. BMD was measured by dual-energy X-ray bone densitometry, and FRAX scores were calculated for 10-year hip fracture risk (HF1) and major osteoporotic fracture risk (MOF). RESULTS After multivariate adjustment, there was no significant correlation between FMD and BMD in MAFLD (-) group (p > 0.05). In MAFLD (+) and FMD < 4% group, FMD was positively correlated with WB, LS, and FN BMD, while FMD was negatively correlated with fracture risk and osteoporotic fracture history, and this correlation was only observed in female patients. However, FMD was not correlated with BMD and fracture risk and osteoporotic fracture history in 4%≤FMD ≤ 7% and FMD > 7% groups. CONCLUSIONS The association of FMD with BMD in T2DM patients with MAFLD varies according to FMD level. The decrease of FMD is associated with reduced BMD and increased fracture risk in female patients with FMD < 4% group. FMD may be an influential factor for the occurrence and development of osteoporosis, and has some clinical value in early diagnosis of osteoporosis in T2DM patients with MAFLD.
Collapse
Affiliation(s)
- Peiyan Du
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Jianxiang Jiang
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yurong Liu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Haihong Lv
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| |
Collapse
|
10
|
Zhao Z, Ma C, Wang L, Xia Y, Li J, Yang W, Pang J, Ding H, Wang H, Bai L, Shang F, Zhang F. miR-92a aggravates metabolic syndrome via KLF2/miR-483 axis. J Diabetes Investig 2025. [PMID: 39891525 DOI: 10.1111/jdi.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/26/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025] Open
Abstract
OBJECTIVE To exam the role of miR-92a/KLF2/miR-483 in the pathogenesis of metabolic syndrome. METHODS In this study, the serum of healthy controls and patients with metabolic syndrome were collected to detect the circulating level of miR-92a and miR-483. In vitro cultured HUVECs, overexpression or suppression of miR-92a, miR-483 or KLF2 to determine the relationship among miR-92a, KLF2 and miR-483. Ang II, ox-LDL, or high glucose treatment were used to mimic the metabolic syndrome. HUVECs or HepG2 cells were treated with Telmisartan, Atorvastatin, or metformin, the miR-483 and its target gene expression was detected. In animal experiment, ob/ob mice were chose to confirm the changes of miR-92a, KLF2, and miR-483. RESULTS Compared with the healthy controls, the level of miR-92a was significantly increased, while miR-483 level was remarkably decreased in the patients with metabolic syndrome. In vitro cultured HUVECS, overexpression of miR-92a significantly reduced the expression of miR-483, but overexpression of miR-483 had no effect on miR-92a. Overexpression of KLF2 could downregulate miR-483 level, while inhibition of KLF2 had the opposite effect. When HUVECs and HepG2 were stimulated with Ang II, ox-LDL and high glucose, the expression of miR-483 was significantly decreased and its target genes was increased. Anti-miR-92a could reverse the effect. Furthermore, Telmisartan, Atorvastatin, and Metformin significantly increased miR-483 expression and decreased its target gene expression, which could be reversed by miR-92a mimic. The level of miR-92a was significantly increased in HepG2 cells, which were treated with exosomes derived from endothelial cells with miR-92a overexpression. ob/ob mice showed the similar effects. CONCLUSIONS Endothelial dysfunction and fatty liver are critically involved in the pathogenesis of metabolic syndrome. MicroRNAs can mediate the cellular communication between vascular endothelial cells (ECs) and distal cell. Serum miR-92a level was higher in metabolic syndrome patients than controls. KLF2 is the target gene of miR-92a, which can increase the production of miR-483, miR-483 acts on its target genes CTGF, ET-1, and β-catenin to protect cell function. EC miR-92a is secreted out of cells into the blood, circulates through the blood to the liver, and continues to exert its biological effects after being absorbed by hepatocytes. LNA-miR-92a administration reversed endothelial cell damage and fatty liver caused by metabolic syndrome by affecting the KLF2/miR-483 pathway.
Collapse
Affiliation(s)
- Zhe Zhao
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | - Longzhi Wang
- Translational Medicine Centre, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Yuhang Xia
- Department of Cardiology, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Jun Li
- Department of Cardiology, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Wei Yang
- Translational Medicine Centre, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Juan Pang
- Translational Medicine Centre, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Hui Ding
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Haifeng Wang
- Department of Laboratory, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Liang Bai
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fenqing Shang
- Translational Medicine Centre, Xi'an Chest Hospital, Xi'an, Shaanxi, China
- Department of Cardiology, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Feng Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Li N, Liu C, Lu Z, Wu W, Zhang F, Qiu L, Shen C, Sheng D, Liu Z. Establishing of a risk prediction model for metabolic dysfunction-associated steatotic liver disease: a retrospective cohort study. BMC Gastroenterol 2025; 25:39. [PMID: 39875811 PMCID: PMC11773756 DOI: 10.1186/s12876-025-03598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVES Over 30% of people worldwide suffer from metabolic dysfunction-associated steatotic liver disease (MASLD), a significant global health issue. Identifying and preventing high-risk individuals for MASLD early is crucial. The purpose of our study is to investigate the factors related to the development of MASLD and develop a risk prediction model for its occurrence. METHODS The study included 5107 subjects, divided into training and validation groups in a 7:3 ratio using a random number table method. Collinearity diagnosis and Cox regression were used to identify factors associated with MASLD incidence, and a risk prediction model was created. The model's accuracy, reliability, and clinical applicability were assessed. RESULTS Our study indicated that male, body mass index (BMI), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), fasting plasma glucose (FPG), serum uric acid to creatinine ratio (SUA/Cr) and white blood cell (WBC) were associated with MASLD incidence. The elements were determined to be crucial for creating a risk prediction model. The model showed strong discriminative potential with a C-index of 0.783 and the time-dependent AUCs of 0.781, 0.789, 0.814 and 0.796 for 1-4 years in the training group, and a C-index of 0.788 and the time-dependent AUCs of 0.798, 0.782, 0.787 and 0.825 for 1-4 years in validation. Calibration curves confirmed the model's accuracy, and decision curve analysis (DCA) validated its clinical utility. CONCLUSIONS The model may provide clinical physicians with a reliable method for identifying high-risk populations for MASLD and serve as a guide for developing prediction models for other diseases.
Collapse
Affiliation(s)
- Nan Li
- Health Management Center, the First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China
| | - Chenbing Liu
- Health Management Center, the First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China
| | - Zhangfan Lu
- Health Management Center, the First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China
| | - Wenjian Wu
- Health Management Center, the First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China
| | - Feng Zhang
- Health Management Center, the First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China
| | - Lihong Qiu
- Health Management Center, the First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China
| | - Chao Shen
- Health Management Center, the First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China
| | - Di Sheng
- Health Management Center, the First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China
| | - Zhong Liu
- Health Management Center, the First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Zhu N, Li Y, Lin Y, Cui X, Li X. Association between neutrophil-to-high-density lipoprotein cholesterol ratio and non-alcoholic fatty liver disease or metabolic dysfunction-associated steatotic liver disease: evidence from NHANES 2017-2020. Front Med (Lausanne) 2025; 11:1491858. [PMID: 39882525 PMCID: PMC11774988 DOI: 10.3389/fmed.2024.1491858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD) is closely associated with chronic inflammation and lipid metabolism disorders. The neutrophil-to-high-density lipoprotein cholesterol ratio (NHR) is an integrative marker reflecting inflammatory responses and lipid metabolism disorders and is associated with various diseases. This cross-sectional study aimed to determine the association between NHR and NAFLD, MASLD, and liver fibrosis. Methods Data for this study were obtained from the 2017-2020 National Health and Nutrition Examination Survey (NHANES), we employed weighted multiple regression and restricted cubic spline (RCS) analysis to assess the relationship between NHR and NAFLD, MASLD, and liver fibrosis. Additionally, we performed stratified analyses based on gender, age, body mass index, diabetes, hypertension, smoking status, and history of cardiovascular disease to evaluate the consistency of these associations across different subgroups. Results A total of 6,526 participants were included in the study. 2,839 (weighted 44.1%) participants were diagnosed with NAFLD and 2,813 (weighted 43.7%) participants were diagnosed with MASLD. After adjusting for confounders, NHR was positively associated with the risk of NAFLD/MASLD, and the correlation was particularly significant in the subgroups of females, those without hypertension, and those without diabetes (p < 0.05). By the NHR quartile, the risk of NAFLD/MASLD increased progressively with higher NHR levels (P for trend <0.001). In addition, RCS analysis showed a nonlinear association between NHR and NAFLD/MASLD and liver fibrosis (P-non-linear <0.05). Conclusion NHR may serve as a potential marker for NAFLD/MASLD and liver fibrosis, and lowering NHR levels could help reduce the incidence of these conditions.
Collapse
Affiliation(s)
- Na Zhu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanyan Li
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yingying Lin
- Center of Integrative Medicine, Peking University Ditan Teaching Hospital, Beijing, China
| | - XinYu Cui
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xin Li
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Center of Integrative Medicine, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
13
|
El-Sayed SM, El-Sayed GA, Mansour M A, Haridy Ahmed E, Kamar SA. A comparative study on the effect of melatonin and orlistat combination versus orlistat alone on high fat diet-induced hepatic changes in the adult male albino rats (a histological and morphometric study). Ultrastruct Pathol 2025; 49:20-38. [PMID: 39679624 DOI: 10.1080/01913123.2024.2438380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the extremely usual reason of chronic liver disease, extending from simple hepatic steatosis (HS), nonalcoholic steatohepatitis (NASH) to advanced hepatic fibrosis and cirrhosis. Though orlistat is a Food and Drug Administration (FDA) approved drug for long-duration management of obesity, few cases of severe hepatic insult were declared. Melatonin is an efficient antioxidant; it also regulates metabolic processes that lead to fat accumulation and obesity. AIM OF THE WORK The current research aimed to compare the impact of orlistat, melatonin, and their combination on the structural changes of the hepatic tissue of adult male albino rats supplied with high fat diet (HFD). MATERIAL AND METHODS Thirty adult male albino rats divided into five groups. Liver specimens were divided into two parts. One-half was processed to obtain paraffin blocks, and the other half was processed to obtain semithin sections. Morphometric study and statistical analysis were done. RESULTS Hepatic tissue from the HFD group showed steatosis, ballooning, and inflammation and all these parameters were moderately improved - except for inflammation which worsened with therapy. Combined orlistat and melatonin-treated groups showed marked improvement of all parameters as well as marked improvement in the hepatic fibrosis.Orlistat/Melatonin combination therapy is both safe and effective in comparison to orlistat and melatonin monotherapy.
Collapse
Affiliation(s)
- Sayed M El-Sayed
- Anatomy and Embryology Department, Ain Shams University, Cairo, Egypt
| | - Gehan A El-Sayed
- Anatomy and Embryology Department, Ain Shams University, Cairo, Egypt
| | - Mansour M A
- Anatomy and Embryology Department, Ain Shams University, Cairo, Egypt
| | - Enas Haridy Ahmed
- Anatomy and Embryology Department, Ain Shams University, Cairo, Egypt
- Faculty of Medicine, Hail University, Hail, Kingdom of Saudi Arabia
| | - Sherif A Kamar
- Anatomy and Embryology Department, Ain Shams University, Cairo, Egypt
- Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
14
|
Orfanidou M, Polyzos SA. Retinopathy in Metabolic Dysfunction-Associated Steatotic Liver Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 61:38. [PMID: 39859020 PMCID: PMC11766779 DOI: 10.3390/medicina61010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a multisystemic disease, i.e., influencing various organ systems beyond the liver and, thus, contributing to comorbidities. Characterized by excessive fat accumulation in the hepatocytes, MASLD is frequently linked to metabolic syndrome components, such as obesity, insulin resistance, dyslipidemia, and hypertension. Therefore, exploring the intricate connection between MASLD and other organ systems, including the eyes, seems to be essential. In this context, retinopathy has been investigated for its potential association with MASLD, since both conditions share common pathogenetic pathways. Chronic low-grade inflammation, oxidative stress, insulin resistance, and endothelial dysfunction are only some of those mechanisms contributing to disease progression and, possibly, determining the bidirectional interplay between the liver and retinal pathology. This narrative review aims to summarize data concerning the multisystemicity of MASLD, primarily focusing on its potential association with the eyes and, particularly, retinopathy. Identifying this possible association may emphasize the need for early screening and integrated management approaches that address the liver and eyes as interconnected components within the framework of a systemic disease. Further research is necessary to delineate the precise mechanisms and develop targeted interventions to mitigate the bidirectional impact between the liver and eyes, aiming to reduce the overall burden of disease and improve patient outcomes.
Collapse
Affiliation(s)
- Myrsini Orfanidou
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- First Department of Ophthalmology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stergios A. Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
15
|
Liu B, Sun X, Li X, Lu F, Xing G, Ma G, Ran Y, Hu SP. Associations of C-reactive protein to lymphocyte ratio and metabolic-dysfunction-associated steatotic liver disease: evidence from NHANES 2017-2018. BMC Gastroenterol 2024; 24:475. [PMID: 39719591 DOI: 10.1186/s12876-024-03458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/14/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND This study aimed to investigate the association between Metabolic-dysfunction-associated steatotic liver disease(MASLD)and C-reactive protein/lymphocyte ratio (CLR). METHODS MASLD was defined as a Controlled Attenuation Parameter (CAP ≥ 274dB/m) and CLR = C-reactive protein/lymphocyte. A multifactor linear regression model was used to test the relationship between MASLD and CLR. Smoothed curves and threshold effects analyses were fitted to describe nonlinear relationships. Subgroup analyses and interaction tests were then performed according to gender, prevalence of diabetes, ethnicity, and smoking status. RESULTS A total of 1846 participants from the NHANES database were included in this study. In the unadjusted model and model 1 (adjusted for age, sex, and race), CLR was positively associated with MASLD pathogenicity. Unadjusted model (OR = 1.04, 95% CI: 1.02-1.07, P = 0.0017), model 1 (OR = 1.04, 95% CI: 1.01-1.07, P = 0.0056). The results of the fitted smoothed curves showed that CLR and the risk of developing MASLD were nonlinear. Interaction tests and subgroup analyses confirmed that there were no significant interactions between CLR and MASLD causation with gender, race, prevalence of diabetes mellitus, and smoking status(P interaction>0.05). CONCLUSIONS This study shows that CLR is positively associated with the risk of developing MASLD Targeting CLR levels may be a new approach to treating MASLD.
Collapse
Affiliation(s)
- Bowen Liu
- Shenzhen Hospital of Beijing University of Traditional Chinese Medicine (Long Gang), Shenzhen, Guangdong, China.
| | - Xiaomei Sun
- Shenzhen Hospital of Beijing University of Traditional Chinese Medicine (Long Gang), Shenzhen, Guangdong, China.
| | - Xiaobin Li
- Shenzhen Hospital of Beijing University of Traditional Chinese Medicine (Long Gang), Shenzhen, Guangdong, China
| | - Fenping Lu
- Shenzhen Hospital of Beijing University of Traditional Chinese Medicine (Long Gang), Shenzhen, Guangdong, China
| | - Guangyan Xing
- Shenzhen Hospital of Beijing University of Traditional Chinese Medicine (Long Gang), Shenzhen, Guangdong, China
| | - Guiping Ma
- Shenzhen Hospital of Beijing University of Traditional Chinese Medicine (Long Gang), Shenzhen, Guangdong, China
| | - Yun Ran
- Shenzhen Hospital of Beijing University of Traditional Chinese Medicine (Long Gang), Shenzhen, Guangdong, China
| | - Shi Ping Hu
- Shenzhen Hospital of Beijing University of Traditional Chinese Medicine (Long Gang), Shenzhen, Guangdong, China.
| |
Collapse
|
16
|
Madariaga Traconis AP, Uribe-Esquivel M, Barbero Becerra VJ. Exploring the Role of Peroxisome Proliferator-Activated Receptors and Endothelial Dysfunction in Metabolic Dysfunction-Associated Steatotic Liver Disease. Cells 2024; 13:2055. [PMID: 39768147 PMCID: PMC11674254 DOI: 10.3390/cells13242055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The endothelium is a well known regulator of vascular homeostasis. Several factors can influence the balance of the bioavailability of active substances. This imbalance can lead to inflammation and, consequently, endothelial dysfunction, which is an underlying pathology in cardiovascular disease that commonly coexists with metabolic and chronic diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD). In MASLD, a reduction in nitric oxide availability is observed, and as a result, hepatic stellate cells and liver sinusoidal endothelial cells are activated. Considering the extensive research dedicated to finding several targets with diagnostic and therapeutic effects, nuclear hormone receptors such as peroxisome proliferator-activated receptors have been highlighted as being highly influential in the gut-liver-adipose axis and are considered potential regulators of metabolism and inflammation in several pathologies. Currently, PPAR agonists are widely explored in clinical trials and experimental studies. Agents such as lanifibranor, elafibranor, daidzein, and Icariin have shown promise in improving the metabolic, hepatic, and cardiovascular health of patients with MASLD. This review aims to provide a comprehensive overview of the role of peroxisome proliferator-activated receptors in endothelial dysfunction and MASLD, exploring their mechanisms in disease progression and potential pharmacological targeting.
Collapse
Affiliation(s)
- Ana Paula Madariaga Traconis
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
- Latin American University, Cuernavaca Campus, Mexico City 62290, Mexico
| | | | | |
Collapse
|
17
|
Smith EE, Biessels GJ, Gao V, Gottesman RF, Liesz A, Parikh NS, Iadecola C. Systemic determinants of brain health in ageing. Nat Rev Neurol 2024; 20:647-659. [PMID: 39375564 PMCID: PMC11926994 DOI: 10.1038/s41582-024-01016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/09/2024]
Abstract
Preservation of brain health is a worldwide priority. The traditional view is that the major threats to the ageing brain lie within the brain itself. Consequently, therapeutic approaches have focused on protecting the brain from these presumably intrinsic pathogenic processes. However, an increasing body of evidence has unveiled a previously under-recognized contribution of peripheral organs to brain dysfunction and damage. Thus, in addition to the well-known impact of diseases of the heart and endocrine glands on the brain, accumulating data suggest that dysfunction of other organs, such as gut, liver, kidney and lung, substantially affects the development and clinical manifestation of age-related brain pathologies. In this Review, a framework is provided to indicate how organ dysfunction can alter brain homeostasis and promote neurodegeneration, with a focus on dementia. We delineate the associations of subclinical dysfunction in specific organs with dementia risk and provide suggestions for public health promotion and clinical management.
Collapse
Affiliation(s)
- Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Virginia Gao
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Arthur Liesz
- Institute for Stroke and Dementia Research, University Medical Center Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Neal S Parikh
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Dai CY, Tsai YM, Chang CY, Tsai HP, Wu KL, Wu YY, Wu LY, Jian SF, Tsai PH, Ong CT, Sun CH, Hsu YL. Reconstruction of the Hepatic Microenvironment and Pathological Changes Underlying Type II Diabetes through Single-Cell RNA Sequencing. Int J Biol Sci 2024; 20:5531-5547. [PMID: 39494341 PMCID: PMC11528452 DOI: 10.7150/ijbs.99176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
The global prevalence of type 2 diabetes mellitus (T2DM) continues to rise. Therefore, it has become a major concern health issue worldwide. T2DM leads to various complications, including metabolic-associated fatty liver disease (MAFLD). However, comprehensive studies on MAFLD as a diabetic complication at different stages are still lacking. Using advanced single-cell RNA-seq technology, we explored changes of livers in two T2DM murine models. Our findings revealed that increase activation of hepatic stellate cells (HSCs) exacerbated the development of MAFLD to steatohepatitis by upregulating transforming growth factor β1 induced transcript 1 (Tgfb1i1). Upregulated thioredoxin-interacting protein (Txnip) contributed to hepatocyte damage by impairing reactive oxygen species clearance. Additionally, the capillarization of liver sinusoidal endothelial cells correlated with Fabp4 overexpression in endothelial cells. A novel subset of Kupffer cells (KCs) that expressed Cd36 exhibited an activated phenotype, potentially participating in inflammation in the liver of diabetic mice. Furthermore, ligand-receptor pair analysis indicated that activated HSCs interacted with hepatocytes or KCs through Thbs2 and Lamb2 in late-stage diseases. The reduction in cell-cell interactions within hepatocytes in diabetic mice, reflects that the mechanisms regulating liver homeostasis is disrupted. This research underscores the importance of dynamics in diabetic MAFLD, and provides new insights for targeted therapies.
Collapse
Affiliation(s)
- Chia-Yen Dai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Hepato/Billiary/Pancreatic, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ying-Ming Tsai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chao-Yuan Chang
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kuan-Li Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Hepato/Billiary/Pancreatic, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Yuan Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ling-Yu Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shu-Fang Jian
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pei-Hsun Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chai-Tung Ong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Hui Sun
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- National Pingtung University of Science and Technology, Department of Biological Science and Technology, Pingtung, 912, Taiwan
| |
Collapse
|
19
|
Minetti ET, Hamburg NM, Matsui R. Drivers of cardiovascular disease in metabolic dysfunction-associated steatotic liver disease: the threats of oxidative stress. Front Cardiovasc Med 2024; 11:1469492. [PMID: 39411175 PMCID: PMC11473390 DOI: 10.3389/fcvm.2024.1469492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now known as metabolic-associated steatotic liver disease (MASLD), is the most common liver disease worldwide, with a prevalence of 38%. In these patients, cardiovascular disease (CVD) is the number one cause of mortality rather than liver disease. Liver abnormalities per se due to MASLD contribute to risk factors such as dyslipidemia and obesity and increase CVD incidents. In this review we discuss hepatic pathophysiological changes the liver of MASLD leading to cardiovascular risks, including liver sinusoidal endothelial cells, insulin resistance, and oxidative stress with a focus on glutathione metabolism and function. In an era where there is an increasingly robust recognition of what causes CVD, such as the factors included by the American Heart Association in the recently developed PREVENT equation, the inclusion of liver disease may open doors to how we approach treatment for MASLD patients who are at risk of CVD.
Collapse
Affiliation(s)
| | | | - Reiko Matsui
- Whitaker Cardiovascular Institute, Section of Vascular Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
20
|
Zheng H, Sechi LA, Navarese EP, Casu G, Vidili G. Metabolic dysfunction-associated steatotic liver disease and cardiovascular risk: a comprehensive review. Cardiovasc Diabetol 2024; 23:346. [PMID: 39342178 PMCID: PMC11439309 DOI: 10.1186/s12933-024-02434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease (NAFLD), poses a significant global health challenge due to its increasing prevalence and strong association with cardiovascular disease (CVD). This comprehensive review summarizes the current knowledge on the MASLD-CVD relationship, compares analysis of how different terminologies for fatty liver disease affect cardiovascular (CV) risk assessment using different diagnostic criteria, explores the pathophysiological mechanisms connecting MASLD to CVD, the influence of MASLD on traditional CV risk factors, the role of noninvasive imaging techniques and biomarkers in the assessment of CV risk in patients with MASLD, and the implications for clinical management and prevention strategies. By incorporating current research and clinical guidelines, this review provides a comprehensive overview of the complex interplay between MASLD and cardiovascular health.
Collapse
Affiliation(s)
- Haixiang Zheng
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- Complex Structure of Microbiology and Virology, AOU Sassari, 07100, Sassari, Italy
| | - Eliano Pio Navarese
- Clinical and Experimental Cardiology, Clinical and Interventional Cardiology, University of Sassari, Sassari, Italy
| | - Gavino Casu
- Clinical and Experimental Cardiology, Clinical and Interventional Cardiology, University of Sassari, Sassari, Italy
| | - Gianpaolo Vidili
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, Azienda Ospedaliero, 07100, Sassari, Italy.
| |
Collapse
|
21
|
Lyu X, Liu B, Li Y, Wang Y, Miskovsky J, Gaitanis M, Promrat K, Wu WC. Impact of Non-Alcoholic Fatty Liver Disease on Sepsis Inpatient Outcomes: A Nationwide Sample Analysis (2000-2019). J Clin Med 2024; 13:5737. [PMID: 39407795 PMCID: PMC11476451 DOI: 10.3390/jcm13195737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Patients with Non-Alcoholic Fatty Liver Disease (NAFLD) are reported to have an increased risk of developing severe infections, leading to hospitalizations with sepsis. However, data regarding the impact of comorbid NAFLD on in-hospital outcomes of patients with sepsis is scarce. Methods: This nationwide retrospective observational study using discharge data from the National Inpatient Sample (NIS), Healthcare Cost and Utilization Project (HCUP), and Agency for Healthcare Research and Quality included 21,057,911 adult patients who were admitted to hospitals in the United States between 2000 and 2019 with a primary discharge diagnosis of sepsis. These patients were categorized according to the presence or absence of comorbid NAFLD. The twenty-year trend of nationwide NAFLD prevalence among sepsis inpatients was elucidated. Multivariable logistic regression analysis was used to analyze NAFLD's impact on sepsis outcomes. Results: In the twenty-year study period, the prevalence of NALFD among sepsis inpatients trended up from 1.2% in 2000 to 4.2% in 2019. Similar trends were observed in regional analysis. While overall sepsis mortality decreased, comorbid NAFLD in sepsis patients was consistently associated with a higher adjusted in-hospital all-cause mortality rate (adjusted odds ratio (OR), 1.19; 95% confidence interval (CI), 1.07-1.32), higher odds of developing septic shock, and higher likelihood of development of multi-organ dysfunction. Conclusions: Comorbid NAFLD in the stage of NASH or cirrhosis is associated with higher in-hospital all-cause mortality and worse clinical outcomes in sepsis inpatients. Addressing this rising epidemic will be of paramount importance to improve sepsis in-hospital outcomes.
Collapse
Affiliation(s)
- Xiuhong Lyu
- Department of Epidemiology, School of Public Health, Brown University, 121 South Main Street, Providence, RI 02903, USA;
- Department of Adult Medicine, Brockton Neighborhood Health Center, 63 Main Street, Brockton, MA 02301, USA
| | - Bolun Liu
- Department of Hospital Internal Medicine, Mayo Clinic Health System, 1025 Marsh Street, Mankato, MN 56001, USA;
| | - Yiting Li
- Division of Gastroenterology and Hepatology, University of New–Mexico Health Science Center, 2500 Marble Ave., Albuquerque, NM 87106, USA
| | - Yichen Wang
- Division of Hospital Medicine, The Hospital of the University of Pennsylvania, Penn Presbyterian Medical Center, 3400 Spruce Street, Philadelphia, PA 19104, USA;
| | - John Miskovsky
- Department of Internal Medicine, Roger Williams Medical Center, 825 Chalkstone Ave., Providence, RI 02908, USA;
| | - Melissa Gaitanis
- Department of Infectious Disease, Providence VA Medical Center, 830 Chalkstone Ave., Providence, RI 02903, USA;
| | - Kittichai Promrat
- Providence VA Medical Center, Section of Gastroenterology, 830 Chalkstone Ave., Providence, RI 02908, USA;
| | - Wen-Chih Wu
- Department of Medicine, Division of Cardiology, Warren Alpert School of Medicine, Brown University, 222 Richmond St, Providence, RI 02903, USA
- Department of Epidemiology, Brown University School of Public Health, 121 South Main Street, Providence, RI 02903, USA
- Center of Innovation for Long Term Services & Support, Veterans Affairs Medical Center, 830 Chalkstone Ave., Providence, RI 02908, USA
| |
Collapse
|
22
|
Méndez-García LA, Escobedo G, Baltazar-Pérez I, Ocampo-Aguilera NA, Arreola-Miranda JA, Cid-Soto MA, Alfaro-Cruz A, González-Chávez A, Ocaña-Guzmán AR, Solleiro-Villavicencio H. Exploring the Th2 Response in Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A Potential Modulator of the Renin-Angiotensin System (RAS) Pathway in Hypertension Development. Life (Basel) 2024; 14:1080. [PMID: 39337863 PMCID: PMC11433558 DOI: 10.3390/life14091080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now referred to as metabolic dysfunction-associated steatotic liver disease (MASLD), is alarmingly increasing alongside the cases of obesity worldwide. MASLD is an underestimated metabolic abnormality closely linked with a higher risk of developing systemic arterial hypertension (SAH). However, the underlying mechanism of association between MASLD and SAH remains unknown. Inflammation may link these two entities by regulating the renin-angiotensin system (RAS). For this reason, in this study, we evaluated the hepatic expression of a cytokine profile and critical molecules in the RAS pathway in patients with morbid obesity and MASLD, both with SAH. We found a statistically significant correlation between ACE levels and the cytokines IL-4, IL-10, and IL-13 of Th2 response. Furthermore, according to a multiple linear regression analysis, the cytokines IL-4 and IL-13 were the best predictors of ACE levels. Moreover, we observed increased hepatic IL-13 expression in patients with morbid obesity, MASLD, and SAH compared to those without SAH. These results allow us to propose, for the first time, that the Th2 response, through regulating the RAS, could play a critical role in developing SAH in individuals with MASLD and obesity.
Collapse
Affiliation(s)
- Lucía Angélica Méndez-García
- Immunometabolism Laboratory, General Hospital of Mexico “Eduardo Liceaga”, Mexico City 06720, Mexico; (G.E.); (I.B.-P.); (N.A.O.-A.); (J.A.A.-M.)
| | - Galileo Escobedo
- Immunometabolism Laboratory, General Hospital of Mexico “Eduardo Liceaga”, Mexico City 06720, Mexico; (G.E.); (I.B.-P.); (N.A.O.-A.); (J.A.A.-M.)
| | - Itzel Baltazar-Pérez
- Immunometabolism Laboratory, General Hospital of Mexico “Eduardo Liceaga”, Mexico City 06720, Mexico; (G.E.); (I.B.-P.); (N.A.O.-A.); (J.A.A.-M.)
- Genomics Sciences Program, Oncogenomics and Cancer Proteomics Laboratory, Autonomous University of Mexico City, Avenue San Lorenzo 290, Mexico City 03100, Mexico
| | - Nydia Angélica Ocampo-Aguilera
- Immunometabolism Laboratory, General Hospital of Mexico “Eduardo Liceaga”, Mexico City 06720, Mexico; (G.E.); (I.B.-P.); (N.A.O.-A.); (J.A.A.-M.)
- Genomics Sciences Program, Oncogenomics and Cancer Proteomics Laboratory, Autonomous University of Mexico City, Avenue San Lorenzo 290, Mexico City 03100, Mexico
| | - José Alfonso Arreola-Miranda
- Immunometabolism Laboratory, General Hospital of Mexico “Eduardo Liceaga”, Mexico City 06720, Mexico; (G.E.); (I.B.-P.); (N.A.O.-A.); (J.A.A.-M.)
- Genomics Sciences Program, Oncogenomics and Cancer Proteomics Laboratory, Autonomous University of Mexico City, Avenue San Lorenzo 290, Mexico City 03100, Mexico
| | - Miguel Angel Cid-Soto
- Sequencing Laboratory, Division of Research Development, National Medical Center “Siglo XXI”, Mexican Social Security Institute, Mexico City 06720, Mexico;
| | - Ana Alfaro-Cruz
- Pathological Anatomy Department, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico;
| | - Antonio González-Chávez
- Comprehensive Care Clinic for Patients with Diabetes and Obesity (CAIDO), General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico;
| | | | - Helena Solleiro-Villavicencio
- Genomics Sciences Program, Oncogenomics and Cancer Proteomics Laboratory, Autonomous University of Mexico City, Avenue San Lorenzo 290, Mexico City 03100, Mexico
| |
Collapse
|
23
|
Shen Q, Yang M, Wang S, Chen X, Chen S, Zhang R, Xiong Z, Leng Y. The pivotal role of dysregulated autophagy in the progression of non-alcoholic fatty liver disease. Front Endocrinol (Lausanne) 2024; 15:1374644. [PMID: 39175576 PMCID: PMC11338765 DOI: 10.3389/fendo.2024.1374644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinicopathologic syndrome characterized by excessive fat deposition in hepatocytes and a major cause of end-stage liver disease. Autophagy is a metabolic pathway responsible for degrading cytoplasmic products and damaged organelles, playing a pivotal role in maintaining the homeostasis and functionality of hepatocytes. Recent studies have shown that pharmacological intervention to activate or restore autophagy provides benefits for liver function recovery by promoting the clearance of lipid droplets (LDs) in hepatocytes, decreasing the production of pro-inflammatory factors, and inhibiting activated hepatic stellate cells (HSCs), thus improving liver fibrosis and slowing down the progression of NAFLD. This article summarizes the physiological process of autophagy, elucidates the close relationship between NAFLD and autophagy, and discusses the effects of drugs on autophagy and signaling pathways from the perspectives of hepatocytes, kupffer cells (KCs), and HSCs to provide assistance in the clinical management of NAFLD.
Collapse
Affiliation(s)
- Qiaohui Shen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ming Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Song Wang
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xingyu Chen
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Sulan Chen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhuang Xiong
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yan Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
24
|
Cebi M, Yilmaz Y. Immune system dysregulation in the pathogenesis of non-alcoholic steatohepatitis: unveiling the critical role of T and B lymphocytes. Front Immunol 2024; 15:1445634. [PMID: 39148730 PMCID: PMC11324455 DOI: 10.3389/fimmu.2024.1445634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by the excessive accumulation of fat within the cytoplasm of hepatocytes (exceeding 5% of liver weight) in individuals without significant alcohol consumption, has rapidly evolved into a pressing global health issue, affecting approximately 25% of the world population. This condition, closely associated with obesity, type 2 diabetes, and the metabolic syndrome, encompasses a spectrum of liver disorders ranging from simple steatosis without inflammation to non-alcoholic steatohepatitis (NASH) and cirrhotic liver disease. Recent research has illuminated the complex interplay between metabolic and immune responses in the pathogenesis of NASH, underscoring the critical role played by T and B lymphocytes. These immune cells not only contribute to necroinflammatory changes in hepatic lobules but may also drive the onset and progression of liver fibrosis. This narrative review aims to provide a comprehensive exploration of the effector mechanisms employed by T cells, B cells, and their respective subpopulations in the pathogenesis of NASH. Understanding the immunological complexity of NASH holds profound implications for the development of targeted immunotherapeutic strategies to combat this increasingly prevalent and burdensome metabolic liver disease.
Collapse
Affiliation(s)
- Merve Cebi
- Department of Medical Biology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
- The Global NASH Council, Washington, DC, United States
| |
Collapse
|
25
|
Batta A, Hatwal J. Excess cardiovascular mortality in men with non-alcoholic fatty liver disease: A cause for concern! World J Cardiol 2024; 16:380-384. [PMID: 39086893 PMCID: PMC11287457 DOI: 10.4330/wjc.v16.i7.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as the commonest cause of chronic liver disease worldwide in recent years. With time, our understanding of NAFLD has evolved from an isolated liver condition to a systemic disease with significant manifestations beyond the liver. Amongst them, cardiovascular diseases (CVDs) are the most important and clinically relevant. Recent research supports a strong independent link between NALFD and CVD beyond the shared risk factors and pathophysiology. Female sex hormones are well known to not only protect against CVD in pre-menopausal females, but also contribute to improved adipose tissue function and preventing its systemic deposition. Recent research highlights the increased risk of major adverse cardiovascular-cerebral events (MACCE) amongst male with NAFLD compared to females. Further, racial variation was observed in MACCE outcomes in NAFLD, with excess mortality in the Native Americans and Asian Pacific Islanders compared to the other races.
Collapse
Affiliation(s)
- Akash Batta
- Department of Cardiology, Dayanand Medical College and Hospital, Ludhiana 141001, Punjab, India.
| | - Juniali Hatwal
- Department of Internal Medicine, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| |
Collapse
|
26
|
Liu P, Liang WL, Huang RT, Chen XX, Zou DH, Kurihara H, Li YF, Xu YH, Ouyang SH, He RR. Hepatic microcirculatory disturbance in liver diseases: intervention with traditional Chinese medicine. Front Pharmacol 2024; 15:1399598. [PMID: 39108760 PMCID: PMC11300221 DOI: 10.3389/fphar.2024.1399598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/25/2024] [Indexed: 04/18/2025] Open
Abstract
The liver, a complex parenchymal organ, possesses a distinctive microcirculatory system crucial for its physiological functions. An intricate interplay exists between hepatic microcirculatory disturbance and the manifestation of pathological features in diverse liver diseases. This review updates the main characteristics of hepatic microcirculatory disturbance, including hepatic sinusoidal capillarization, narrowing of sinusoidal space, portal hypertension, and pathological angiogenesis, as well as their formation mechanisms. It also summarized the detection methods for hepatic microcirculation. Simultaneously, we have also reviewed the characteristics of microcirculatory disturbance in diverse liver diseases such as acute liver failure, hepatic ischemia-reperfusion injury, viral hepatitis, non-alcoholic fatty liver disease, hepatic fibrosis, hepatic cirrhosis, and hepatocellular carcinoma. Finally, this review also summarizes the advancement in hepatic microcirculation attributed to traditional Chinese medicine (TCM) and its active metabolites, providing novel insights into the application of TCM in treating liver diseases.
Collapse
Affiliation(s)
- Pei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Wan-Li Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Rui-Ting Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Xin-Xing Chen
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - De-Hua Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - You-Hua Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Shu-Hua Ouyang
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Rong-Rong He
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| |
Collapse
|
27
|
Wu X, Yuan C, Pan J, Zhou Y, Pan X, Kang J, Ren L, Gong L, Li Y. CXCL9, IL2RB, and SPP1, potential diagnostic biomarkers in the co-morbidity pattern of atherosclerosis and non-alcoholic steatohepatitis. Sci Rep 2024; 14:16364. [PMID: 39013959 PMCID: PMC11252365 DOI: 10.1038/s41598-024-66287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a hepatocyte inflammation based on hepatocellular steatosis, yet there is no effective drug treatment. Atherosclerosis (AS) is caused by lipid deposition in the endothelium, which can lead to various cardiovascular diseases. NASH and AS share common risk factors, and NASH can also elevate the risk of AS, causing a higher morbidity and mortality rate for atherosclerotic heart disease. Therefore, timely detection and diagnosis of NASH and AS are particularly important. In this study, differential gene expression analysis and weighted gene co-expression network analysis were performed on the AS (GSE100927) and NASH (GSE89632) datasets to obtain common crosstalk genes, respectively. Then, candidate Hub genes were screened using four topological algorithms and externally validated in the GSE43292 and GSE63067 datasets to obtain Hub genes. Furthermore, immune infiltration analysis and gene set variation analysis were performed on the Hub genes to explore the underlying mechanisms. The DGIbd database was used to screen candidate drugs for AS and NASH. Finally, a NASH model was constructed using free fatty acid-induced human L02 cells, an AS model was constructed using lipopolysaccharide-induced HUVECs, and a co-morbidity model was constructed using L02 cells and HUVECs to verify Hub gene expression. The result showed that a total of 113 genes common to both AS and NASH were identified as crosstalk genes, and enrichment analysis indicated that these genes were mainly involved in the regulation of immune and metabolism-related pathways. 28 candidate Hub genes were screened according to four topological algorithms, and CXCL9, IL2RB, and SPP1 were identified as Hub genes after in vitro experiments and external dataset validation. The ROC curves and SVM modeling demonstrated the good diagnostic efficacy of these three Hub genes. In addition, the Hub genes are strongly associated with immune cell infiltration, especially macrophages and γ-δ T cell infiltration. Finally, five potential therapeutic drugs were identified. has-miR-185 and hsa-miR-335 were closely related to AS and NASH. This study demonstrates that CXCL9, IL2RB, and SPP1 may serve as potential biomarkers for the diagnosis of the co-morbidity patterns of AS and NASH and as potential targets for drug therapy.
Collapse
Affiliation(s)
- Xize Wu
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226000, Jiangsu, China
| | - Changbin Yuan
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
| | - Jiaxiang Pan
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China
| | - Yi Zhou
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
| | - Xue Pan
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
- Dazhou Vocational College of Chinese Medicine, Dazhou, 635000, Sichuan, China
| | - Jian Kang
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
| | - Lihong Ren
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226000, Jiangsu, China.
| | - Lihong Gong
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China.
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China.
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110847, Liaoning, China.
| | - Yue Li
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China.
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110847, Liaoning, China.
| |
Collapse
|
28
|
Korsmo HW, Ekperikpe US, Daehn IS. Emerging Roles of Xanthine Oxidoreductase in Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:712. [PMID: 38929151 PMCID: PMC11200862 DOI: 10.3390/antiox13060712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Xanthine Oxidoreductase (XOR) is a ubiquitous, essential enzyme responsible for the terminal steps of purine catabolism, ultimately producing uric acid that is eliminated by the kidneys. XOR is also a physiological source of superoxide ion, hydrogen peroxide, and nitric oxide, which can function as second messengers in the activation of various physiological pathways, as well as contribute to the development and the progression of chronic conditions including kidney diseases, which are increasing in prevalence worldwide. XOR activity can promote oxidative distress, endothelial dysfunction, and inflammation through the biological effects of reactive oxygen species; nitric oxide and uric acid are the major products of XOR activity. However, the complex relationship of these reactions in disease settings has long been debated, and the environmental influences and genetics remain largely unknown. In this review, we give an overview of the biochemistry, biology, environmental, and current clinical impact of XOR in the kidney. Finally, we highlight recent genetic studies linking XOR and risk for kidney disease, igniting enthusiasm for future biomarker development and novel therapeutic approaches targeting XOR.
Collapse
Affiliation(s)
| | | | - Ilse S. Daehn
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1243, New York, NY 10029, USA
| |
Collapse
|
29
|
Rahmouni K. Neural Circuits Underlying Reciprocal Cardiometabolic Crosstalk: 2023 Arthur C. Corcoran Memorial Lecture. Hypertension 2024; 81:1233-1243. [PMID: 38533662 PMCID: PMC11096079 DOI: 10.1161/hypertensionaha.124.22066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The interplay of various body systems, encompassing those that govern cardiovascular and metabolic functions, has evolved alongside the development of multicellular organisms. This evolutionary process is essential for the coordination and maintenance of homeostasis and overall health by facilitating the adaptation of the organism to internal and external cues. Disruption of these complex interactions contributes to the development and progression of pathologies that involve multiple organs. Obesity-associated cardiovascular risks, such as hypertension, highlight the significant influence that metabolic processes exert on the cardiovascular system. This cardiometabolic communication is reciprocal, as indicated by substantial evidence pointing to the ability of the cardiovascular system to affect metabolic processes, with pathophysiological implications in disease conditions. In this review, I outline the bidirectional nature of the cardiometabolic interaction, with special emphasis on the impact that metabolic organs have on the cardiovascular system. I also discuss the contribution of the neural circuits and autonomic nervous system in mediating the crosstalk between cardiovascular and metabolic functions in health and disease, along with the molecular mechanisms involved.
Collapse
Affiliation(s)
- Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Veterans Affairs Health Care System, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
30
|
Li X, Zhou W, Hu G. The association between non-alcoholic fatty liver disease and urinary incontinence among adult females in the United States. BMC Public Health 2024; 24:1373. [PMID: 38778285 PMCID: PMC11110403 DOI: 10.1186/s12889-024-18578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) and urinary incontinence (UI) are both highly prevalent and age-related diseases. Nevertheless, the link between NAFLD and UI is unclear. Hence, the study was designed to evaluate the association between the NAFLD and UI (including UI types) in a nationally representative sample of United States (US) female adults. METHODS We conducted this study used data from U.S. female adults in the National Health and Nutrition Examination Survey (NHANES) 2017-March 2020 (pre-pandemic) cycles. The diagnosis of NAFLD is based on Vibration controlled transient elastography (VCTE) and absence of know liver diseases and significant alcohol consumption. The diagnosis and types of UI were assessment using a self-report questionnaire. Multivariable logistic regression models were used to analyze the association between NALFD and UI. Stratified analyses based on age, obesity, race, educational level, married status, PIR, and smoking status were conducted. RESULTS Of the 2149 participants, the mean (95% CI) age was 53.9 (52.7-55.0), 686 (61.1%) were Non-Hispanic White. UI was significantly more common in participants with NAFLD [490 (64.7%)] than those without NAFLD [552 (44.9%)]. Adjusted for age, race/ethnicity, marital status, educational level, family poverty income ratio (PIR) status, alanine aminotransferase (ALT), aspartate aminotransferase (AST), smoking status, obesity, type 2 diabetes mellitus (T2DM), hypertension and insulin resistance (IR) in a multivariable logistic regression model, NALFD were associated with UI [OR: 1.93, 95%CI 1.23-3.02, P = 0.01] and urge UI [OR: 1.55, 95%CI 1.03-2.33, P = 0.03], while patients with NAFLD did not show an increased odds in stress UI and mixed UI when compared with those without NAFLD subject (P > 0.05). In the subgroup analyses, NAFLD remained significantly associated with UI, particularly among those participants without obesity (OR: 2.69, 95% CI 1.84-4.00) and aged ≥ 60 years (OR: 2.20, 95% CI 1.38-3.51). CONCLUSIONS Among US female adults, NAFLD has a strong positive correlation with UI. Given that NAFLD is a modifiable disease, these results may help clinicians to target female patients with NAFLD for treatments and interventions that may help prevent the occurrence of UI and reduce the symptoms of UI.
Collapse
Affiliation(s)
- Xinyuan Li
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Weiwei Zhou
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, People's Republic of China.
| | - Guangsheng Hu
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, People's Republic of China.
| |
Collapse
|
31
|
Wang S, Li X, Zhang B, Li Y, Chen K, Qi H, Gao M, Rong J, Liu L, Wan Y, Dong X, Yan M, Ma L, Li P, Zhao T. Tangshen formula targets the gut microbiota to treat non-alcoholic fatty liver disease in HFD mice: A 16S rRNA and non-targeted metabolomics analyses. Biomed Pharmacother 2024; 173:116405. [PMID: 38484559 DOI: 10.1016/j.biopha.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Tangshen formula (TSF) has an ameliorative effect on hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD), but the role played by the gut microbiota in this process is unknown. METHOD We conducted three batches of experiments to explore the role played by the gut microbiota: TSF administration, antibiotic treatment, and fecal microbial transplantation. NAFLD mice were induced with a high-fat diet to investigate the ameliorative effects of TSF on NAFLD features and intestinal barrier function. 16S rRNA sequencing and serum untargeted metabolomics were performed to further investigate the modulatory effects of TSF on the gut microbiota and metabolic dysregulation in the body. RESULTS TSF ameliorated insulin resistance, hypercholesterolemia, lipid metabolism disorders, inflammation, and impairment of intestinal barrier function. 16S rRNA sequencing analysis revealed that TSF regulated the composition of the gut microbiota and increased the abundance of beneficial bacteria. Antibiotic treatment and fecal microbiota transplantation confirmed the importance of the gut microbiota in the treatment of NAFLD with TSF. Subsequently, untargeted metabolomics identified 172 differential metabolites due to the treatment of TSF. Functional predictions suggest that metabolisms of choline, glycerophospholipid, linoleic acid, alpha-linolenic acid, and arachidonic acid are the key metabolic pathways by which TSF ameliorates NAFLD and this may be influenced by the gut microbiota. CONCLUSION TSF treats the NAFLD phenotype by remodeling the gut microbiota and improving metabolic profile, suggesting that TSF is a functional gut microbial and metabolic modulator for the treatment of NAFLD.
Collapse
Affiliation(s)
- Shaopeng Wang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China; College of Pharmacy, Shandong Second Medical University, Weifang, PR China
| | - Xin Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Bo Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Yuxi Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Kexu Chen
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China; College of Pharmacy, Shandong Second Medical University, Weifang, PR China
| | - Huimin Qi
- College of Pharmacy, Shandong Second Medical University, Weifang, PR China
| | - Mengqi Gao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Jin Rong
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Lin Liu
- Zoucheng Market Supervision Administration, Jining, PR China
| | - Yuzhou Wan
- Research and Development Department, Nanjing Denovo Pharma Co., Ltd, Nanjing, PR China
| | - Xi Dong
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Meihua Yan
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Liang Ma
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China.
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, State Key Laboratory of Rsepiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China.
| |
Collapse
|
32
|
Wang L, He W, Wang X, Wang J, Wei X, Wu D, Wu Y. Potential diagnostic markers shared between non-alcoholic fatty liver disease and atherosclerosis determined by machine learning and bioinformatic analysis. Front Med (Lausanne) 2024; 11:1322102. [PMID: 38606153 PMCID: PMC11007109 DOI: 10.3389/fmed.2024.1322102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
Background Evidence indicates that chronic non-alcoholic fatty liver disease (NAFLD) can increase the risk of atherosclerosis (AS), but the underlying mechanism remains unclear. Objective This study is intended for confirming key genes shared between NAFLD and AS, and their clinical diagnostic value to establish a foundation for searching novel therapeutic targets. Methods We downloaded the Gene Expression Omnibus (GEO) datasets, GSE48452 and GSE89632 for NAFLD and GSE100927, GSE40231 and GSE28829 for AS. The progression of NAFLD co-expression gene modules were recognized via weighted gene co-expression network analysis (WGCNA). We screened for differentially expressed genes (DEGs) associated with AS and identified common genes associated with NAFLD and AS using Venn diagrams. We investigated the most significant core genes between NAFLD and AS using machine learning algorithms. We then constructed a diagnostic model by creating a nomogram and evaluating its performance using ROC curves. Furthermore, the CIBERSORT algorithm was utilized to explore the immune cell infiltration between the two diseases, and evaluate the relationship between diagnostic genes and immune cells. Results The WGCNA findings associated 1,129 key genes with NAFLD, and the difference analysis results identified 625 DEGs in AS, and 47 genes that were common to both diseases. We screened the core RPS6KA1 and SERPINA3 genes associated with NAFLD and AS using three machine learning algorithms. A nomogram and ROC curves demonstrated that these genes had great clinical meaning. We found differential expression of RPS6KA1 in patients with steatosis and NASH, and of SERPINA3 only in those with NASH compared with normal individuals. Immune infiltration findings revealed that macrophage and mast cell infiltration play important roles in the development of NAFLD and AS. Notably, SERPINA3 correlated negatively, whereas RPS6KA1 correlated positively with macrophages and mast cells. Conclusion We identified RPS6KA1 and SERPINA3 as potential diagnostic markers for NAFLD and AS. The most promising marker for a diagnosis of NAFLD and AS might be RPS6KA1, whereas SERPINA3 is the most closely related gene for NASH and AS. We believe that further exploration of these core genes will reveal the etiology and a pathological relationship between NAFLD and AS.
Collapse
Affiliation(s)
- Lihong Wang
- Department of Pharmacy, Fuzhou Second General Hospital, Fuzhou, China
| | - Wenhui He
- Department of Orthopedic Research Institute, Fuzhou Second General Hospital, Fuzhou, China
| | - Xilin Wang
- Department of Pharmacy, Fuzhou Second General Hospital, Fuzhou, China
| | - Jianrong Wang
- Department of Pharmacy, Fuzhou Second General Hospital, Fuzhou, China
| | - Xiaojuan Wei
- Department of Pharmacy, Fuzhou Second General Hospital, Fuzhou, China
| | - Dongzhi Wu
- Department of Orthopedic Research Institute, Fuzhou Second General Hospital, Fuzhou, China
| | - Yundan Wu
- Department of Pharmacy, The Third Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
33
|
Chondrogianni ME, Kyrou I, Androutsakos T, Flessa CM, Menenakos E, Chatha KK, Aranan Y, Papavassiliou AG, Kassi E, Randeva HS. Anti-osteoporotic treatments in the era of non-alcoholic fatty liver disease: friend or foe. Front Endocrinol (Lausanne) 2024; 15:1344376. [PMID: 38524631 PMCID: PMC10957571 DOI: 10.3389/fendo.2024.1344376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/05/2024] [Indexed: 03/26/2024] Open
Abstract
Over the last years non-alcoholic fatty liver disease (NAFLD) has grown into the most common chronic liver disease globally, affecting 17-38% of the general population and 50-75% of patients with obesity and/or type 2 diabetes mellitus (T2DM). NAFLD encompasses a spectrum of chronic liver diseases, ranging from simple steatosis (non-alcoholic fatty liver, NAFL) and non-alcoholic steatohepatitis (NASH; or metabolic dysfunction-associated steatohepatitis, MASH) to fibrosis and cirrhosis with liver failure or/and hepatocellular carcinoma. Due to its increasing prevalence and associated morbidity and mortality, the disease-related and broader socioeconomic burden of NAFLD is substantial. Of note, currently there is no globally approved pharmacotherapy for NAFLD. Similar to NAFLD, osteoporosis constitutes also a silent disease, until an osteoporotic fracture occurs, which poses a markedly significant disease and socioeconomic burden. Increasing emerging data have recently highlighted links between NAFLD and osteoporosis, linking the pathogenesis of NAFLD with the process of bone remodeling. However, clinical studies are still limited demonstrating this associative relationship, while more evidence is needed towards discovering potential causative links. Since these two chronic diseases frequently co-exist, there are data suggesting that anti-osteoporosis treatments may affect NAFLD progression by impacting on its pathogenetic mechanisms. In the present review, we present on overview of the current understanding of the liver-bone cross talk and summarize the experimental and clinical evidence correlating NAFLD and osteoporosis, focusing on the possible effects of anti-osteoporotic drugs on NAFLD.
Collapse
Affiliation(s)
- Maria Eleni Chondrogianni
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Endocrine Unit, 1st Department of Propaupedic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Kyrou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Centre for Health & Life Sciences, Coventry University, Coventry, United Kingdom
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- College of Health, Psychology and Social Care, University of Derby, Derby, United Kingdom
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Menenakos
- 5th Surgical Clinic, Department of Surgery, ‘Evgenidion Hospital’, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Kamaljit Kaur Chatha
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Department of Biochemistry and Immunology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Yekaterina Aranan
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Endocrine Unit, 1st Department of Propaupedic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Centre for Health & Life Sciences, Coventry University, Coventry, United Kingdom
| |
Collapse
|
34
|
Vassilopoulos A, Kalligeros M, Vassilopoulos S, Shehadeh F, Benitez G, Kaczynski M, Lazaridou I, Promrat K, Wands JR, Mylonakis E. Prevalence of Steatotic Liver Disease Among US Adults with Rheumatoid Arthritis. Dig Dis Sci 2024; 69:989-1003. [PMID: 38183561 DOI: 10.1007/s10620-023-08225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/28/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND The prevalence of steatotic liver disease (SLD) among patients with rheumatoid arthritis (RA) remains largely unknown. AIMS To investigate the prevalence of SLD and liver fibrosis among patients with RA. METHODS We utilized data from the United States (US)-based National Health and Nutrition Examination Survey (NHANES) 2017-2020 cycle. After applying established sample weights, we estimated the age-adjusted prevalence of SLD and its subclassifications (CAP ≥ 285 dB/m), high-risk NASH (FAST score) and liver fibrosis (LSM) among participants with self-reported RA. Multivariable logistic regression was performed to identify independent risk factors for metabolic dysfunction associated SLD (MASLD), high-risk NASH and fibrosis, respectively, among participants with RA. We present adjusted odds ratios (aORs) and 95% confidence intervals (CIs). RESULTS Age-adjusted prevalence of MASLD among US adults with RA was 34.91% (95% CI: 24.02-47.65%). We also found that the age-adjusted prevalence of high-risk NASH (FAST score > 0.35) and significant fibrosis (LSM > 8.6 kPa) was 12.97% (95% CI: 6.89-23.07%) and 10.35% (95% CI: 5.55-18.48%), respectively. BMI ≥ 30 kg/m2, (aOR 6.23; 95% CI: 1.95-19.88), diabetes (aOR 5.90; 95% CI: 1.94-17.94), and dyslipidemia (aOR 2.83; 95% CI: 1.12-7.11) were independently associated with higher odds of MASLD among participants with RA. Diabetes (aOR 19.34; 95% CI: 4.69-79.70) was also independently associated with high-risk NASH. CONCLUSIONS The prevalence of MASLD, high-risk NASH, and liver fibrosis among patients with RA is equal or higher than the general population. Future studies of large cohorts are needed to substantiate the role of systemic inflammation in the pathophysiology of MASLD.
Collapse
Affiliation(s)
- Athanasios Vassilopoulos
- Division of Internal Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Markos Kalligeros
- Division of Internal Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Stephanos Vassilopoulos
- Division of Internal Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Fadi Shehadeh
- Houston Methodist Research Institute, Houston, TX, USA
- Department of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Gregorio Benitez
- Division of Internal Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Matthew Kaczynski
- Division of Internal Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Ingrid Lazaridou
- Division of Internal Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Kittichai Promrat
- Division of Gastroenterology and Hepatology, Providence VA Medical Center, Providence, RI, USA
| | - Jack R Wands
- Liver Research Center, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Eleftherios Mylonakis
- Department of Medicine, Houston Methodist Hospital, Smith Tower 1001, Fannin, Houston, TX, 6550, 77030, USA.
| |
Collapse
|
35
|
Minciuna I, Taru MG, Procopet B, Stefanescu H. The Interplay between Liver Sinusoidal Endothelial Cells, Platelets, and Neutrophil Extracellular Traps in the Development and Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease. J Clin Med 2024; 13:1406. [PMID: 38592258 PMCID: PMC10932189 DOI: 10.3390/jcm13051406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a societal burden due to the lack of effective treatment and incomplete pathophysiology understanding. This review explores the intricate connections among liver sinusoidal endothelial cells (LSECs), platelets, neutrophil extracellular traps (NETs), and coagulation disruptions in MASLD pathogenesis. In MASLD's early stages, LSECs undergo capillarization and dysfunction due to excessive dietary macronutrients and gut-derived products. Capillarization leads to ischemic changes in hepatocytes, triggering pro-inflammatory responses in Kupffer cells (KCs) and activating hepatic stellate cells (HSCs). Capillarized LSECs show a pro-inflammatory phenotype through adhesion molecule overexpression, autophagy loss, and increased cytokines production. Platelet interaction favors leucocyte recruitment, NETs formation, and liver inflammatory foci. Liver fibrosis is facilitated by reduced nitric oxide, HSC activation, profibrogenic mediators, and increased angiogenesis. Moreover, platelet attachment, activation, α-granule cargo release, and NETs formation contribute to MASLD progression. Platelets foster fibrosis and microthrombosis, leading to parenchymal extinction and fibrotic healing. Additionally, platelets promote tumor growth, epithelial-mesenchymal transition, and tumor cell metastasis. MASLD's prothrombotic features are exacerbated by insulin resistance, diabetes, and obesity, manifesting as increased von Willebrand factor, platelet hyperaggregability, hypo-fibrinolysis, and a prothrombotic fibrin clot structure. Improving LSEC health and using antiplatelet treatment appear promising for preventing MASLD development and progression.
Collapse
Affiliation(s)
- Iulia Minciuna
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
- Deaprtment IV, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Madalina Gabriela Taru
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
- Deaprtment IV, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Bogdan Procopet
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
- Deaprtment IV, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Horia Stefanescu
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
| |
Collapse
|
36
|
Fu L, Guldiken N, Remih K, Karl AS, Preisinger C, Strnad P. Serum/Plasma Proteome in Non-Malignant Liver Disease. Int J Mol Sci 2024; 25:2008. [PMID: 38396688 PMCID: PMC10889128 DOI: 10.3390/ijms25042008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The liver is the central metabolic organ and produces 85-90% of the proteins found in plasma. Accordingly, the plasma proteome is an attractive source of liver disease biomarkers that reflects the different cell types present in this organ, as well as the processes such as responses to acute and chronic injury or the formation of an extracellular matrix. In the first part, we summarize the biomarkers routinely used in clinical evaluations and their biological relevance in the different stages of non-malignant liver disease. Later, we describe the current proteomic approaches, including mass spectrometry and affinity-based techniques, that allow a more comprehensive assessment of the liver function but also require complex data processing. The many approaches of analysis and interpretation and their potential caveats are delineated. While these advances hold the promise to transform our understanding of liver diseases and support the development and validation of new liver-related drugs, an interdisciplinary collaboration is needed.
Collapse
Affiliation(s)
- Lei Fu
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| | - Nurdan Guldiken
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| | - Katharina Remih
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| | - Anna Sophie Karl
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| | - Christian Preisinger
- Proteomics Facility, Interdisciplinary Centre for Clinical Research (IZKF), Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Pavel Strnad
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| |
Collapse
|
37
|
Krznaric J, Papic N, Vrsaljko N, Gjurasin B, Kutlesa M, Vince A. Steatotic Liver Disease and Sepsis Outcomes-A Prospective Cohort Study (SepsisFAT). J Clin Med 2024; 13:798. [PMID: 38337491 PMCID: PMC10856507 DOI: 10.3390/jcm13030798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Background: While it has been shown that steatotic liver disease (SLD) is associated with systemic changes in immune response, the impact of SLD on sepsis outcomes has not yet been established. The aim of this study was to investigate the association between SLD and sepsis severity and outcomes. Methods: A prospective observational study included consecutively hospitalized adult patients with community-acquired sepsis during a 16-month period. Results: Of the 378 included patients (49.5% male, median age of 69, IQR 57-78 years), 174 (46%) were diagnosed with SLD. Patients with SLD were older and more frequently fulfilled the criteria for metabolic syndrome. There were no differences in the source and etiology of sepsis between the groups. Patients with SLD exhibited a higher incidence of acute kidney injury (29.3% vs. 17.6%), the need for renal replacement therapy (16.1% vs. 8.8%), and more frequent use of invasive mechanical ventilation (29.3% vs. 18.1%). In-hospital mortality was significantly higher in the SLD group (18.39% vs. 9.8%). The multivariable analysis indicated that SLD was associated with mortality (HR 2.82, 95% CI 1.40-5.71) irrespective of the other elements within metabolic syndrome. Conclusions: SLD might be associated with higher sepsis in-hospital mortality, and more frequent development of acute kidney and respiratory insufficiency requiring more critical care support.
Collapse
Affiliation(s)
- Juraj Krznaric
- Department of Infectology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.K.); (M.K.); (A.V.)
- Department for Adult Intensive Care and Neuroinfections, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia; (N.V.); (B.G.)
| | - Neven Papic
- Department of Infectology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.K.); (M.K.); (A.V.)
- Department for Viral Hepatitis, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia
| | - Nina Vrsaljko
- Department for Adult Intensive Care and Neuroinfections, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia; (N.V.); (B.G.)
| | - Branimir Gjurasin
- Department for Adult Intensive Care and Neuroinfections, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia; (N.V.); (B.G.)
| | - Marko Kutlesa
- Department of Infectology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.K.); (M.K.); (A.V.)
- Department for Adult Intensive Care and Neuroinfections, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia; (N.V.); (B.G.)
| | - Adriana Vince
- Department of Infectology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.K.); (M.K.); (A.V.)
- Department for Viral Hepatitis, University Hospital for Infectious Diseases Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
38
|
Madir A, Grgurevic I, Tsochatzis EA, Pinzani M. Portal hypertension in patients with nonalcoholic fatty liver disease: Current knowledge and challenges. World J Gastroenterol 2024; 30:290-307. [PMID: 38313235 PMCID: PMC10835535 DOI: 10.3748/wjg.v30.i4.290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Portal hypertension (PH) has traditionally been observed as a consequence of significant fibrosis and cirrhosis in advanced non-alcoholic fatty liver disease (NAFLD). However, recent studies have provided evidence that PH may develop in earlier stages of NAFLD, suggesting that there are additional pathogenetic mechanisms at work in addition to liver fibrosis. The early development of PH in NAFLD is associated with hepatocellular lipid accumulation and ballooning, leading to the compression of liver sinusoids. External compression and intra-luminal obstacles cause mechanical forces such as strain, shear stress and elevated hydrostatic pressure that in turn activate mechanotransduction pathways, resulting in endothelial dysfunction and the development of fibrosis. The spatial distribution of histological and functional changes in the periportal and perisinusoidal areas of the liver lobule are considered responsible for the pre-sinusoidal component of PH in patients with NAFLD. Thus, current diagnostic methods such as hepatic venous pressure gradient (HVPG) measurement tend to underestimate portal pressure (PP) in NAFLD patients, who might decompensate below the HVPG threshold of 10 mmHg, which is traditionally considered the most relevant indicator of clinically significant portal hypertension (CSPH). This creates further challenges in finding a reliable diagnostic method to stratify the prognostic risk in this population of patients. In theory, the measurement of the portal pressure gradient guided by endoscopic ultrasound might overcome the limitations of HVPG measurement by avoiding the influence of the pre-sinusoidal component, but more investigations are needed to test its clinical utility for this indication. Liver and spleen stiffness measurement in combination with platelet count is currently the best-validated non-invasive approach for diagnosing CSPH and varices needing treatment. Lifestyle change remains the cornerstone of the treatment of PH in NAFLD, together with correcting the components of metabolic syndrome, using nonselective beta blockers, whereas emerging candidate drugs require more robust confirmation from clinical trials.
Collapse
Affiliation(s)
- Anita Madir
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, Zagreb 10000, Croatia
| | - Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb 10000, Croatia
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and University College London, London NW3 2PF, United Kingdom
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
39
|
Pezzino S, Luca T, Castorina M, Puleo S, Latteri S, Castorina S. Role of Perturbated Hemostasis in MASLD and Its Correlation with Adipokines. Life (Basel) 2024; 14:93. [PMID: 38255708 PMCID: PMC10820028 DOI: 10.3390/life14010093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise, making it one of the most prevalent chronic liver disorders. MASLD encompasses a range of liver pathologies, from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH) with inflammation, hepatocyte damage, and fibrosis. Interestingly, the liver exhibits close intercommunication with fatty tissue. In fact, adipose tissue could contribute to the etiology and advancement of MASLD, acting as an endocrine organ that releases several hormones and cytokines, with the adipokines assuming a pivotal role. The levels of adipokines in the blood are altered in people with MASLD, and recent research has shed light on the crucial role played by adipokines in regulating energy expenditure, inflammation, and fibrosis in MASLD. However, MASLD disease is a multifaceted condition that affects various aspects of health beyond liver function, including its impact on hemostasis. The alterations in coagulation mechanisms and endothelial and platelet functions may play a role in the increased vulnerability and severity of MASLD. Therefore, more attention is being given to imbalanced adipokines as causative agents in causing disturbances in hemostasis in MASLD. Metabolic inflammation and hepatic injury are fundamental components of MASLD, and the interrelation between these biological components and the hemostasis pathway is delineated by reciprocal influences, as well as the induction of alterations. Adipokines have the potential to serve as the shared elements within this complex interrelationship. The objective of this review is to thoroughly examine the existing scientific knowledge on the impairment of hemostasis in MASLD and its connection with adipokines, with the aim of enhancing our comprehension of the disease.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
| | - Tonia Luca
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | | | - Stefano Puleo
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
| | - Saverio Latteri
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Sergio Castorina
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
40
|
Li Y, Wu X, Pan J, Gong L, Min D. Hepatocyte steatosis activates macrophage inflammatory response accelerating atherosclerosis development. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:751-765. [PMID: 38105677 PMCID: PMC10764189 DOI: 10.3724/zdxbyxb-2023-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/15/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVES To investigate the mechanism of comorbidity between non-alcoholic fatty liver disease (NAFLD) and atherosclerosis (AS) based on metabolomics and network pharmacology. METHODS Six ApoE-/- mice were fed with a high-fat diet for 16 weeks as a comorbid model of NAFLD and AS (model group). Normal diet was given to 6 wildtype C57BL/6J mice (control group). Serum samples were taken from both groups for a non-targeted metabolomics assay to identify differential metabolites. Network pharmacology was applied to explore the possible mechanistic effects of differential metabolites on AS and NAFLD. An in vitro comorbid cell model was constructed using NCTC1469 cells and RAW264.7 macrophage. Cellular lipid accumulation, cell viability, morphology and function of mitochondria were detected with oil red O staining, CCK-8 assay, transmission electron microscopy and JC-1 staining, respectively. RESULTS A total of 85 differential metabolites associated with comorbidity of NAFLD and AS were identified. The top 20 differential metabolites were subjected to network pharmacology analysis, which showed that the core targets of differential metabolites related to AS and NAFLD were STAT3, EGFR, MAPK14, PPARG, NFKB1, PTGS2, ESR1, PPARA, PTPN1 and SCD. The Kyoto Encyclopedia of Genes and Genomes showed the top 10 signaling pathways were PPAR signaling pathway, AGE-RAGE signaling pathway in diabetic complications, alcoholic liver disease, prolactin signaling pathway, insulin resistance, TNF signaling pathway, hepatitis B, the relax in signaling pathway, IL-17 signaling pathway and NAFLD. Experimental validation showed that lipid metabolism-related genes PPARG, PPARA, PTPN1, and SCD were significantly changed in hepatocyte models, and steatotic hepatocytes affected the expression of macrophage inflammation-related genes STAT3, NFKB1 and PTGS2; steatotic hepatocytes promoted the formation of foam cells and exacerbated the accumulation of lipids in foam cells; the disrupted morphology, impaired function, and increased reactive oxygen species production were observed in steatotic hepatocyte mitochondria, while the formation of foam cells aggravated mitochondrial damage. CONCLUSIONS Abnormal lipid metabolism and inflammatory response are distinctive features of comorbid AS and NAFLD. Hepatocyte steatosis causes mitochondrial damage, which leads to mitochondrial dysfunction, increased reactive oxygen species and activation of macrophage inflammatory response, resulting in the acceleration of AS development.
Collapse
Affiliation(s)
- Yue Li
- Department of Cardiology, the First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China.
| | - Xize Wu
- Department of Critical Care Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong 226000, Jiangsu Province, China
- Graduate School of Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Jiaxiang Pan
- Department of Cardiology, the First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Lihong Gong
- Department of Cardiology, the First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China.
| | - Dongyu Min
- Experimental Center of Traditional Chinese Medicine, the First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China.
| |
Collapse
|
41
|
Caturano A, Albanese G, Di Martino A, Coppola C, Russo V, Galiero R, Rinaldi L, Monda M, Marfella R, Sasso FC, Salvatore T. Predictive Value of Fatty Liver Index for Long-Term Cardiovascular Events in Patients Receiving Liver Transplantation: The COLT Study. Biomedicines 2023; 11:2866. [PMID: 37893240 PMCID: PMC10604265 DOI: 10.3390/biomedicines11102866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND AND AIMS Cardiovascular disease (CVD) is the leading cause of early mortality in orthotopic liver transplantation (OLT) patients. The fatty liver index (FLI) is strongly associated with carotid and coronary atherosclerosis, as well as cardiovascular mortality, surpassing traditional risk factors. Given the lack of data on FLI as a predictor of cardiovascular events in OLT recipients, we conducted a retrospective study to examine this topic. METHODS AND RESULTS We performed a multicenter retrospective analysis of adult OLT recipients who had regular follow-up visits every three to six months (or more frequently if necessary) from January 1995 to December 2020. The minimum follow-up period was two years post-intervention. Anamnestic, clinical, anthropometric and laboratory data were collected, and FLI was calculated for all patients. CLINICAL TRIAL gov registration ID NCT05895669. A total of 110 eligible patients (median age 57 years [IQR: 50-62], 72.7% male) were followed for a median duration of 92.3 months (IQR: 45.7-172.4) post-liver transplantation. During this period, 16 patients (14.5%) experienced at least one adverse cardiovascular event (including fatal and non-fatal myocardial infarction and stroke). Receiver Operating Characteristic (ROC) analysis identified a cut-off value of 66.0725 for predicting cardiovascular events after OLT, with 86.7% sensitivity and 63.7% specificity (68% vs. 31%; p = 0.001). Kaplan-Meier analysis showed that patients with FLI > 66 had significantly reduced cardiovascular event-free survival than those with FLI ≤ 66 (log-rank: 0.0008). Furthermore, multivariable Cox regression analysis demonstrated that FLI > 66 and pre-OLT smoking were independently associated with increased cardiovascular risk. CONCLUSIONS Our findings suggest that FLI > 66 and pre-OLT smoking predict cardiovascular risk in adult OLT recipients.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy (R.M.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy (R.M.)
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy (R.M.)
- Area Stabiese Hospital, 80053 Naples, Italy
| | | | - Vincenzo Russo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy (R.M.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy (R.M.)
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
42
|
Velliou RI, Legaki AI, Nikolakopoulou P, Vlachogiannis NI, Chatzigeorgiou A. Liver endothelial cells in NAFLD and transition to NASH and HCC. Cell Mol Life Sci 2023; 80:314. [PMID: 37798474 PMCID: PMC11072568 DOI: 10.1007/s00018-023-04966-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered as the hepatic manifestation of metabolic syndrome, which is characterised by obesity, insulin resistance, hypercholesterolemia and hypertension. NAFLD is the most frequent liver disease worldwide and more than 10% of NAFLD patients progress to the inflammatory and fibrotic stage of non-alcoholic steatohepatitis (NASH), which can lead to end-stage liver disease including hepatocellular carcinoma (HCC), the most frequent primary malignant liver tumor. Liver sinusoidal endothelial cells (LSEC) are strategically positioned at the interface between blood and hepatic parenchyma. LSECs are highly specialized cells, characterised by the presence of transcellular pores, called fenestrae, and exhibit anti-inflammatory and anti-fibrotic characteristics under physiological conditions. However, during NAFLD development they undergo capillarisation and acquire a phenotype similar to vascular endothelial cells, actively promoting all pathophysiological aspects of NAFLD, including steatosis, inflammation, and fibrosis. LSEC dysfunction is critical for the progression to NASH and HCC while restoring LSEC homeostasis appears to be a promising approach to prevent NAFLD progression and its complications and even reverse tissue damage. In this review we present current information on the role of LSEC throughout the progressive phases of NAFLD, summarising in vitro and in vivo experimental evidence and data from human studies.
Collapse
Affiliation(s)
- Rallia-Iliana Velliou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Aigli-Ioanna Legaki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Polyxeni Nikolakopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Nikolaos I Vlachogiannis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece.
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
43
|
Ma Y, Dai T, Lei Y, Zhang L, Ma L, Liu M, An S, Zheng J, Zhuo K, Kong L, Gao P. Panoramic quantitative phase imaging of adherent live cells in a microfluidic environment. BIOMEDICAL OPTICS EXPRESS 2023; 14:5182-5198. [PMID: 37854568 PMCID: PMC10581813 DOI: 10.1364/boe.498602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/12/2023] [Accepted: 09/02/2023] [Indexed: 10/20/2023]
Abstract
Understanding how cells respond to external stimuli is crucial. However, there are a lack of inspection systems capable of simultaneously stimulating and imaging cells, especially in their natural states. This study presents a novel microfluidic stimulation and observation system equipped with flat-fielding quantitative phase contrast microscopy (FF-QPCM). This system allowed us to track the behavior of organelles in live cells experiencing controlled microfluidic stimulation. Using this innovative imaging platform, we successfully quantified the cellular response to shear stress including directional cellular shrinkage and mitochondrial distribution change in a label-free manner. Additionally, we detected and characterized the cellular response, particularly mitochondrial behavior, under varying fluidic conditions such as temperature and drug induction time. The proposed imaging platform is highly suitable for various microfluidic applications at the organelle level. We advocate that this platform will significantly facilitate life science research in microfluidic environments.
Collapse
Affiliation(s)
- Ying Ma
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Taiqiang Dai
- State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an 710000, China
| | - Yunze Lei
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Linlin Zhang
- State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an 710000, China
| | - Lin Ma
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Min Liu
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Sha An
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Juanjuan Zheng
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Kequn Zhuo
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Liang Kong
- State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an 710000, China
| | - Peng Gao
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| |
Collapse
|
44
|
Tseng TS, Lin WT, Ting PS, Huang CK, Chen PH, Gonzalez GV, Lin HY. Sugar-Sweetened Beverages and Artificially Sweetened Beverages Consumption and the Risk of Nonalcoholic Fatty Liver (NAFLD) and Nonalcoholic Steatohepatitis (NASH). Nutrients 2023; 15:3997. [PMID: 37764782 PMCID: PMC10534429 DOI: 10.3390/nu15183997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are fast becoming the most common chronic liver disease and are often preventable with healthy dietary habits and weight management. Sugar-sweetened beverage (SSB) consumption is associated with obesity and NAFLD. However, the impact of different types of SSBs, including artificially sweetened beverages (ASBs), is not clear after controlling for total sugar intake and total caloric intake. The aim of this study was to examine the association between the consumption of different SSBs and the risk of NAFLD and NASH in US adults. The representativeness of 3739 US adults aged ≥20 years old who had completed 24 h dietary recall interviews and measurements, including dietary, SSBs, smoking, physical activity, and liver stiffness measurements, were selected from the National Health and Nutrition Examination Survey 2017-2020 surveys. Chi-square tests, t-tests, and weighted logistic regression models were utilized for analyses. The prevalence of NASH was 20.5%, and that of NAFLD (defined without NASH) was 32.7% of US. adults. We observed a higher prevalence of NASH/NAFLD in men, Mexican-Americans, individuals with sugar intake from SSBs, light-moderate alcohol use, lower physical activity levels, higher energy intake, obesity, and medical comorbidities. Heavy sugar consumption through SSBs was significantly associated with NAFLD (aOR = 1.60, 95% CI = 1.05-2.45). In addition, the intake of ASBs only (compared to the non-SSB category) was significantly associated with NAFLD (aOR = 1.78, 95% CI = 1.04-3.05), after adjusting for demographic, risk behaviors, and body mass index. A higher sugar intake from SSBs and exclusive ASB intake are both associated with the risk of NAFLD.
Collapse
Affiliation(s)
- Tung-Sung Tseng
- Behavior and Community Health Sciences Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Wei-Ting Lin
- Social, Behavioral, and Population Sciences, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA;
| | - Peng-Sheng Ting
- Division of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Chiung-Kuei Huang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Po-Hung Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 1830 East Monument Street, 4th Floor, Baltimore, MD 21287, USA;
| | - Gabrielle V. Gonzalez
- Behavior and Community Health Sciences Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| |
Collapse
|
45
|
Yang K, Song M. New Insights into the Pathogenesis of Metabolic-Associated Fatty Liver Disease (MAFLD): Gut-Liver-Heart Crosstalk. Nutrients 2023; 15:3970. [PMID: 37764755 PMCID: PMC10534946 DOI: 10.3390/nu15183970] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolism-associated fatty liver disease (MAFLD) is a multifaceted disease that involves complex interactions between various organs, including the gut and heart. It is defined by hepatic lipid accumulation and is related to metabolic dysfunction, obesity, and diabetes. Understanding the intricate interplay of the gut-liver-heart crosstalk is crucial for unraveling the complexities of MAFLD and developing effective treatment and prevention strategies. The gut-liver crosstalk participates in the regulation of the metabolic and inflammatory processes through host-microbiome interactions. Gut microbiota have been associated with the development and progression of MAFLD, and its dysbiosis contributes to insulin resistance, inflammation, and oxidative stress. Metabolites derived from the gut microbiota enter the systemic circulation and influence both the liver and heart, resulting in the gut-liver-heart axis playing an important role in MAFLD. Furthermore, growing evidence suggests that insulin resistance, endothelial dysfunction, and systemic inflammation in MAFLD may contribute to an increased risk of cardiovascular disease (CVD). Additionally, the dysregulation of lipid metabolism in MAFLD may also lead to cardiac dysfunction and heart failure. Overall, the crosstalk between the liver and heart involves a complex interplay of molecular pathways that contribute to the development of CVD in patients with MAFLD. This review emphasizes the current understanding of the gut-liver-heart crosstalk as a foundation for optimizing patient outcomes with MAFLD.
Collapse
Affiliation(s)
| | - Myeongjun Song
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
46
|
Robea MA, Balmus IM, Girleanu I, Huiban L, Muzica C, Ciobica A, Stanciu C, Cimpoesu CD, Trifan A. Coagulation Dysfunctions in Non-Alcoholic Fatty Liver Disease-Oxidative Stress and Inflammation Relevance. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1614. [PMID: 37763733 PMCID: PMC10535217 DOI: 10.3390/medicina59091614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases. Its incidence is progressively rising and it is possibly becoming a worldwide epidemic. NAFLD encompasses a spectrum of diseases accounting for the chronic accumulation of fat within the hepatocytes due to various causes, excluding excessive alcohol consumption. In this study, we aimed to focus on finding evidence regarding the implications of oxidative stress and inflammatory processes that form the multifaceted pathophysiological tableau in relation to thrombotic events that co-occur in NAFLD and associated chronic liver diseases. Recent evidence on the pathophysiology of NAFLD suggests that a complex pattern of multidirectional components, such as prooxidative, proinflammatory, and prothrombotic components, better explains the multiple factors that promote the mechanisms underlying the fatty acid excess and subsequent processes. As there is extensive evidence on the multi-component nature of NAFLD pathophysiology, further studies could address the complex interactions that underlie the development and progression of the disease. Therefore, this study aimed to describe possible pathophysiological mechanisms connecting the molecular impairments with the various clinical manifestations, focusing especially on the interactions among oxidative stress, inflammation, and coagulation dysfunctions. Thus, we described the possible bidirectional modulation among coagulation homeostasis, oxidative stress, and inflammation that occurs in the various stages of NAFLD.
Collapse
Affiliation(s)
- Madalina Andreea Robea
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.R.); (I.-M.B.); (C.D.C.)
| | - Ioana-Miruna Balmus
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.R.); (I.-M.B.); (C.D.C.)
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Alexandru Lapusneanu Street, No. 26, 700057 Iasi, Romania
| | - Irina Girleanu
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.G.); (L.H.); (C.M.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Laura Huiban
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.G.); (L.H.); (C.M.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Cristina Muzica
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.G.); (L.H.); (C.M.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No. 20A, 700505 Iasi, Romania
- Centre of Biomedical Research, Romanian Academy, Carol I Avenue, No. 8, 700506 Iasi, Romania;
- Academy of Romanian Scientists, Splaiul Independentei nr. 54, Sector 5, 050094 Bucuresti, Romania
| | - Carol Stanciu
- Centre of Biomedical Research, Romanian Academy, Carol I Avenue, No. 8, 700506 Iasi, Romania;
| | - Carmen Diana Cimpoesu
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.R.); (I.-M.B.); (C.D.C.)
- Department of Emergency Medicine, Emergency County Hospital “Sf. Spiridon”, 700111 Iasi, Romania
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, Blvd. Independentei 1, 700111 Iasi, Romania
| | - Anca Trifan
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.G.); (L.H.); (C.M.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
- Centre of Biomedical Research, Romanian Academy, Carol I Avenue, No. 8, 700506 Iasi, Romania;
| |
Collapse
|
47
|
Garcia NA, Mellergaard M, Gonzalez-King H, Salomon C, Handberg A. Comprehensive Strategy for Identifying Extracellular Vesicle Surface Proteins as Biomarkers for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:13326. [PMID: 37686134 PMCID: PMC10487973 DOI: 10.3390/ijms241713326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disorder that has become a global health concern due to its increasing prevalence. There is a need for reliable biomarkers to aid in the diagnosis and prognosis of NAFLD. Extracellular vesicles (EVs) are promising candidates in biomarker discovery, as they carry proteins that reflect the pathophysiological state of the liver. In this review, we developed a list of EV proteins that could be used as diagnostic biomarkers for NAFLD. We employed a multi-step strategy that involved reviewing and comparing various sources of information. Firstly, we reviewed papers that have studied EVs proteins as biomarkers in NAFLD and papers that have studied circulating proteins as biomarkers in NAFLD. To further identify potential candidates, we utilized the EV database Vesiclepedia.org to qualify each protein. Finally, we consulted the Human Protein Atlas to search for candidates' localization, focusing on membrane proteins. By integrating these sources of information, we developed a comprehensive list of potential EVs membrane protein biomarkers that could aid in diagnosing and monitoring NAFLD. In conclusion, our multi-step strategy for identifying EV-based protein biomarkers for NAFLD provides a comprehensive approach that can also be applied to other diseases. The protein candidates identified through this approach could have significant implications for the development of non-invasive diagnostic tests for NAFLD and improve the management and treatment of this prevalent liver disorder.
Collapse
Affiliation(s)
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Hernan Gonzalez-King
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland, Brisbane, QLD 4029, Australia
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| |
Collapse
|
48
|
Allameh A, Niayesh-Mehr R, Aliarab A, Sebastiani G, Pantopoulos K. Oxidative Stress in Liver Pathophysiology and Disease. Antioxidants (Basel) 2023; 12:1653. [PMID: 37759956 PMCID: PMC10525124 DOI: 10.3390/antiox12091653] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
The liver is an organ that is particularly exposed to reactive oxygen species (ROS), which not only arise during metabolic functions but also during the biotransformation of xenobiotics. The disruption of redox balance causes oxidative stress, which affects liver function, modulates inflammatory pathways and contributes to disease. Thus, oxidative stress is implicated in acute liver injury and in the pathogenesis of prevalent infectious or metabolic chronic liver diseases such as viral hepatitis B or C, alcoholic fatty liver disease, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Moreover, oxidative stress plays a crucial role in liver disease progression to liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Herein, we provide an overview on the effects of oxidative stress on liver pathophysiology and the mechanisms by which oxidative stress promotes liver disease.
Collapse
Affiliation(s)
- Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran; (A.A.); (R.N.-M.); (A.A.)
| | - Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran; (A.A.); (R.N.-M.); (A.A.)
| | - Azadeh Aliarab
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran; (A.A.); (R.N.-M.); (A.A.)
| | - Giada Sebastiani
- Chronic Viral Illness Services, McGill University Health Center, Montreal, QC H4A 3J1, Canada;
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Kostas Pantopoulos
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
49
|
Jaiswal V, Ang SP, Huang H, Momi NK, Hameed M, Naz S, Batra N, Ishak A, Doshi N, Gera A, Sharath M, Waleed MS, Raj N, Aguilera Alvarez VH. Association between nonalcoholic fatty liver disease and atrial fibrillation and other clinical outcomes: a meta-analysis. J Investig Med 2023; 71:591-602. [PMID: 37002665 DOI: 10.1177/10815589231164777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The association between nonalcoholic fatty liver disease (NAFLD) with cardiovascular and cerebrovascular outcomes, as well as their clinical impact, has yet to be established in the literature. This meta-analysis aims to evaluate the association between the NAFLD patients and the risk of atrial fibrillation (AF), heart failure (HF), stroke, cardiovascular mortality (CVM), and revascularization incidence. We performed a systematic literature search using PubMed, Embase, Scopus, and Cochrane libraries for relevant articles from inception until August 2022. A total of 12 cohort studies with 18,055,072 patients (2,938,753 NAFLD vs 15,116,319 non-NAFLD) were included in our analysis. The mean age of the NAFLD patients group and the non-NAFLD group was comparable (55.68 vs 55.87). The most common comorbidities among the NAFLD patients group included hypertension (38% vs 24%) and diabetes mellitus (14% vs 8%). The mean follow-up duration was 6.26 years. The likelihood of AF (risk ratio (RR), 1.42 (95% CI 1.19, 1.68), p < 0.001), HF (RR, 1.43(95% CI 1.03, 2.00), p < 0.001), stroke (RR, 1.26(95% CI 1.16, 1.36), p < 0.001), revascularization (RR, 4.06(95% CI 1.44, 11.46), p = 0.01), and CVM (RR, 3.10(95% CI 1.43, 6.73), p < 0.001) was significantly higher in the NAFLD patients group compared to that of the non-NAFLD group. However, all-cause mortality was comparable between both the groups of patients (RR, 1.30 (95% CI 0.63, 2.67), p = 0.48). In conclusion, the patients with NAFLD are at increased risk of AF, HF, and CVM.
Collapse
Affiliation(s)
- Vikash Jaiswal
- JCCR Cardiology, Varanasi, Uttar Pradesh, India
- Department of Research and Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Song Peng Ang
- Division of Internal Medicine, Rutgers Health/Community Medical Center, Toms River, NJ, USA
| | - Helen Huang
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Maha Hameed
- Department of Research and Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Sidra Naz
- The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Nitya Batra
- Department of Internal Medicine, Beaumont Hospital, Royal Oak, MI, USA
| | - Angela Ishak
- Department of Research and Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Neel Doshi
- Department of Medicine, Pravara Institute of Medical Science, Ahmednagar, Maharashtra, India
| | - Asmita Gera
- Department of Research and Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Medha Sharath
- Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| | | | - Nishchita Raj
- JCCR Cardiology, Varanasi, Uttar Pradesh, India
- B.P Koirala Institute of Health Science, Dharan, Nepal
| | | |
Collapse
|
50
|
Yi Q, Yang J, Wu Y, Wang Y, Cao Q, Wen W. Immune microenvironment changes of liver cirrhosis: emerging role of mesenchymal stromal cells. Front Immunol 2023; 14:1204524. [PMID: 37539053 PMCID: PMC10395751 DOI: 10.3389/fimmu.2023.1204524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 08/05/2023] Open
Abstract
Cirrhosis is a progressive and diffuse liver disease characterized by liver tissue fibrosis and impaired liver function. This condition is brought about by several factors, including chronic hepatitis, hepatic steatosis, alcohol abuse, and other immunological injuries. The pathogenesis of liver cirrhosis is a complex process that involves the interaction of various immune cells and cytokines, which work together to create the hepatic homeostasis imbalance in the liver. Some studies have indicated that alterations in the immune microenvironment of liver cirrhosis are closely linked to the development and prognosis of the disease. The noteworthy function of mesenchymal stem cells and their paracrine secretion lies in their ability to promote the production of cytokines, which in turn enhance the self-repairing capabilities of tissues. The objective of this review is to provide a summary of the alterations in liver homeostasis and to discuss intercellular communication within the organ. Recent research on MSCs is yielding a blueprint for cell typing and biomarker immunoregulation. Hopefully, as MSCs researches continue to progress, novel therapeutic approaches will emerge to address cirrhosis.
Collapse
Affiliation(s)
- Qiuyun Yi
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jinxian Yang
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ying Wu
- Department of Breast and Thyroid Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Ying Wang
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Qiqi Cao
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wen Wen
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|