1
|
Ghamangiz S, Jafari A, Maleki-Kakelar H, Azimi H, Mazloomi E. Reprogram to heal: Macrophage phenotypes as living therapeutics. Life Sci 2025; 371:123601. [PMID: 40189197 DOI: 10.1016/j.lfs.2025.123601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/15/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
Macrophages represent a crucial cell type within the immune system, exhibiting significant adaptability that allows for the transformation into various phenotypes in response to their surrounding environment. This review investigates the characteristics of various macrophage phenotypes and their functional roles in disease pathogenesis and resolution. The M1 phenotype, recognized for its inflammatory attributes, plays a pivotal role in combating infections and tumors; however, it may also contribute to tissue injury, persistent inflammation, and the pathogenesis of autoimmune and inflammatory diseases. Conversely, the M2 phenotype is associated with anti-inflammatory activities and tissue repair processes. But this is not the end of the story and researches illustrated novel phenotypes that may provide new approaches and therapeutic opportunities. Recent progress in characterizing distinct macrophage phenotypes has enabled the development of innovative therapeutic strategies for chronic inflammatory conditions, autoimmune disorders, and cancers. This review underscores the critical role of macrophage polarization, illustrating how various stimuli can influence macrophage fate and modify their responses. Additionally, it explores the implications of macrophage plasticity on disease progression and treatment efficacy. A comprehensive understanding of these dynamics is essential for the advancement of targeted immunotherapies, which possess the potential to transform treatment strategies for a variety of medical conditions.
Collapse
Affiliation(s)
- Sheyda Ghamangiz
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Maleki-Kakelar
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Azimi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ebrahim Mazloomi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Yang A, Zhang H, Zhang H, Li N, Chen C, Yang X, Tian J, Sun J, Li G, Sun Y, Liu B, Jiang Y. Pitavastatin and resveratrol bio-nanocomplexes against hyperhomocysteinemia-induced atherosclerosis via blocking ferroptosis-related lipid deposition. J Control Release 2025; 381:113598. [PMID: 40043912 DOI: 10.1016/j.jconrel.2025.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/14/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
Atherosclerosis (AS) therapy has been commonly based on lipid-lowering agents (e.g., statins), supplemented by other therapies, such as anti-inflammatory agents and antioxidants, through traditional Chinese herbs. Ferroptosis, a form of regulated cell death characterized by iron-dependent lipid peroxidation, has been implicated in the progression of AS, particularly in macrophages. In the study, we constructed a macrophage targeted hybridization nanodrug of HMLRPP, which used Pit-loaded Poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) and Res-loaded liposomes as nano-core, then, coated with a macrophage membrane hybridized by hyaluronic acid. The nanodrug prolonged blood circulation time and achieved optimal Res and Pit accumulation in the atherosclerotic plaques by effectively evading immune system clearance. In vivo studies demonstrated that HMLRPP NPs significantly attenuated plaque progression, characterized by decreased plaque area, less lipid deposition, and increased collagen. Meanwhile, HMLRPP NPs inhibited macrophage ferroptosis by decreasing the expression of β-Hydroxybutyrate dehydrogenase 1 (BDH1), Orosomucoid 1 (ORM1) and enhancing the expression of Ribosomal protein S27-like (RPS27L), which resulted in the alleviation of lipid accumulation and inflammation. Our data suggest that the HMLRPP nanodrug delivery system with ferroptosis-regulating capability provides a feasible therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Anning Yang
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; College of Biology, Hunan University, Changsha 410082, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan 750004, China
| | - Hongwen Zhang
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan 750004, China
| | - Huiping Zhang
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410000, China
| | - Nan Li
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan 750004, China
| | - Cong Chen
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiaoling Yang
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan 750004, China
| | - Jue Tian
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan 750004, China
| | - Jianmin Sun
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan 750004, China
| | - Guizhong Li
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan 750004, China
| | - Yue Sun
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan 750004, China.
| | - Bin Liu
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; College of Biology, Hunan University, Changsha 410082, China.
| | - Yideng Jiang
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan 750004, China.
| |
Collapse
|
3
|
Zhang G, Yin X, Tang X, Wang K, Liu Y, Gong L, Tian Z. Integrated metabolomics and network pharmacology analysis to reveal the mechanisms of naringin against atherosclerosis. J Pharm Pharmacol 2025; 77:621-634. [PMID: 39946214 DOI: 10.1093/jpp/rgae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/02/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVES The purpose of this study was to explore the mechanism of naringin in atherosclerotic mice from the perspective of network pharmacology and non-targeted metabolomics. METHODS ApoE-/- mice were induced to establish an atherosclerotic model to explore the pharmacodynamics and potential mechanism of naringin in atherosclerosis (AS). Pathological section and blood lipid levels were used to evaluate the intervention effects. The core targets, metabolites, and related pathways of naringin alleviating atherosclerotic were predicted through network pharmacology and metabolomics analysis. Furthermore, the inflammatory factors and pathway-related protein expression were detected using ELISA and Western blot methods. KEY FINDINGS It turned out that compared with the model group, the naringin could reduce the development degree in atherosclerotic mice. The network pharmacology suggested that PI3K-AKT pathway was an important mechanism for naringin to interfere with AS. Serum metabolic data were collected and analyzed, and a total of 27 potential biomarkers were identified, involving vitamin B6 metabolism, arginine metabolism, and retinol metabolism. The experiment verified that naringin inhibited inflammation in AS through the PI3K-AKT/TLR4/NF-κB pathway. CONCLUSIONS This study provides a strategy combining metabolomics and network pharmacology to explore the alleviation of AS by naringin and offers a new idea for its application.
Collapse
Affiliation(s)
- Gaoning Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaoyi Yin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiao Tang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Kexin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yifan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lili Gong
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhenhua Tian
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| |
Collapse
|
4
|
Huang R, Yong X, Li T, Wen H, Zhou X, Liao Y, You J, Yu C, Xu P, Wang Y, Wen D, Xia T, Yang H, Chen Y, Xu L, Zhong X, Li X, Xu Z, Zhou C. 15-Lipoxygenase-2 deficiency induces foam cell formation that can be restored by salidroside through the inhibition of arachidonic acid effects. Open Life Sci 2025; 20:20251091. [PMID: 40321157 PMCID: PMC12048898 DOI: 10.1515/biol-2025-1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 05/08/2025] Open
Abstract
15-Lipoxygenase-2 (15-Lox-2) is one of the key enzymes in arachidonic acid (AA) metabolic pathway, which belongs to the unsaturated fatty acid metabolic pathway. This pathway is involved in the foam cell transformation of macrophages during the progression of atherosclerosis (AS). The role of salidroside (SAL) in cardiovascular diseases has been extensively studied, but its impact on macrophage foam cell formation has not yet been clearly clarified. We aimed to determine the effects of 15-Lox-2 deficiency on macrophage (Ana-1 cell) foam cell formation, and those of SAL on 15-Lox-2-deficient macrophages. 15-Lox-2-deficient macrophages were generated using short hairpin RNA. Results indicated that 15-Lox-2 expression in the aorta of atherosclerotic patients is lower than that of the normal group. Additionally, 15-Lox-2 deficiency dramatically promoted macrophage uptake of oxidized low-density lipoprotein (ox-LDL) and increased the Cyclin D1 level while dramatically decreasing caspase3 expression. Furthermore, inflammation, complement, and TNF-α signaling pathways, along with IL1α, IL1β, IL18, and Cx3cl1, were activated in 15-Lox-2-deficient macrophages. These changes were alleviated by SAL through inhibiting AA effects, and the effects of AA on macrophages could be inhibited by SAL. Consistently, phospholipase A2-inhibitor arachidonyl trifluoromethyl ketone (AACOCF3) restored these changes. In summary, SAL reversed the effects of 15-Lox-2 deficiency on macrophages by inhibiting excessive AA and may be a promising therapeutic potential in treating atherosclerosis resulting from 15-Lox-2 deficiency.
Collapse
Affiliation(s)
- Rong Huang
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, No. 234, Fujiang Road, Nanchong, Sichuan, 637000, China
| | - Xi Yong
- Department of Vascular Surgery, Department of Nuclear Medicine, Radiotherapy Department, Department of Oncology, Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Tingting Li
- Department of Pharmacy, Second Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Huling Wen
- Department of Vascular Surgery, Department of Nuclear Medicine, Radiotherapy Department, Department of Oncology, Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xing Zhou
- Translational Medicine Research Center, Institute of Hepatobiliary Research, School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yichen Liao
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, No. 234, Fujiang Road, Nanchong, Sichuan, 637000, China
| | - Jun You
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, No. 234, Fujiang Road, Nanchong, Sichuan, 637000, China
| | - Chunlei Yu
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, No. 234, Fujiang Road, Nanchong, Sichuan, 637000, China
| | - Peng Xu
- Department of Vascular Surgery, Department of Nuclear Medicine, Radiotherapy Department, Department of Oncology, Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yuquan Wang
- Department of Vascular Surgery, Department of Nuclear Medicine, Radiotherapy Department, Department of Oncology, Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Dan Wen
- Department of Vascular Surgery, Department of Nuclear Medicine, Radiotherapy Department, Department of Oncology, Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Tianqin Xia
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, No. 234, Fujiang Road, Nanchong, Sichuan, 637000, China
| | - Hao Yang
- Translational Medicine Research Center, Institute of Hepatobiliary Research, School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yanqin Chen
- Translational Medicine Research Center, Institute of Hepatobiliary Research, School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lei Xu
- Translational Medicine Research Center, Institute of Hepatobiliary Research, School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaorong Zhong
- Translational Medicine Research Center, Institute of Hepatobiliary Research, School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xianfu Li
- Department of Vascular Surgery, Department of Nuclear Medicine, Radiotherapy Department, Department of Oncology, Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhengmin Xu
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, No. 234, Fujiang Road, Nanchong, Sichuan, 637000, China
| | - Chunyang Zhou
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, No. 234, Fujiang Road, Nanchong, Sichuan, 637000, China
| |
Collapse
|
5
|
Li Y, Shi H, Zou Y, Guan Y, Liu N, Liu B. Unraveling the immune activation mechanisms of DAMPs in coronary artery disease through transcriptomic and single-cell analyses. Cytokine 2025; 191:156952. [PMID: 40306092 DOI: 10.1016/j.cyto.2025.156952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/09/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
This study employs transcriptomics and single-cell analysis to delve into the mechanisms by which damage-associated molecular patterns (DAMPs) trigger immune activation in coronary artery disease (CAD). We obtained RNA-seq data from the GSE202625 and GSE242046 datasets, as well as single-cell RNA-seq data from the GSE159677 dataset, all sourced from the GEO database. Through differential expression analysis, we identified 821 differentially expressed genes (DEGs), comprising 389 upregulated and 432 downregulated genes, which are likely closely associated with the pathological processes of CAD. Notably, the genes P2RY14 and IFIH1 exhibited significant expression differences in CAD, suggesting their potential involvement in immune responses and inflammatory processes. Our findings indicate a significant infiltration and activation of immune cells in CAD patients, particularly T cells and macrophages. The activation of these cells is likely linked to the release of DAMPs and the activation of pattern recognition receptors (PRRs), thereby triggering local and systemic inflammatory responses. Single-cell analysis further revealed distinct clustering patterns of immune cells, especially T cells and B cells, in CAD patients compared to healthy controls. Dendritic cells and macrophages play particularly critical roles in the development of CAD. Dendritic cells bridge innate and adaptive immune responses by presenting antigens to T lymphocytes, potentially either promoting or inhibiting the progression of atherosclerosis. Macrophages exhibit polarization during the atherosclerosis process, with M1-type macrophages tending to promote inflammatory responses, while M2-type macrophages may exert anti-inflammatory effects.
Collapse
Affiliation(s)
- Yinghao Li
- Department of Cardiology, The Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun, Jilin Province 130041, China
| | - Henghe Shi
- Department of Cardiology, The Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun, Jilin Province 130041, China
| | - Yifei Zou
- Department of Cardiology, The Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun, Jilin Province 130041, China
| | - Yinuo Guan
- Department of Cardiology, The Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun, Jilin Province 130041, China
| | - Ning Liu
- Department of Cardiology, The Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun, Jilin Province 130041, China.
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun, Jilin Province 130041, China.
| |
Collapse
|
6
|
Lang F, Li Y, Yao R, Jiang M. Osteopontin in Chronic Inflammatory Diseases: Mechanisms, Biomarker Potential, and Therapeutic Strategies. BIOLOGY 2025; 14:428. [PMID: 40282293 PMCID: PMC12024743 DOI: 10.3390/biology14040428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), atherosclerosis, and inflammatory bowel disease (IBD), pose major global health concerns. These disorders are marked by persistent inflammation, immune system dysfunction, tissue injury, and fibrosis, ultimately leading to severe organ dysfunction and diminished quality of life. Osteopontin (OPN), a multifunctional extracellular matrix protein, plays a crucial role in immune regulation, inflammation, and tissue remodeling. It promotes immune cell recruitment, stimulates pro-inflammatory cytokine production, and contributes to fibrosis through interactions with integrins and CD44 receptors. Additionally, OPN activates key inflammatory pathways, including NF-κB, MAPK, and PI3K/Akt, further aggravating tissue damage in chronic inflammatory conditions. Our review highlights the role of OPN in chronic inflammation, its potential as a biomarker, and its therapeutic implications. We explore promising preclinical approaches, such as monoclonal antibodies, small molecule inhibitors, and natural compounds like curcumin, which have demonstrated potential in mitigating OPN-driven inflammation. However, challenges persist in selectively targeting OPN while maintaining its essential physiological roles, including bone remodeling and wound healing. Our review offers insights into therapeutic strategies and future research directions.
Collapse
Affiliation(s)
- Fuyuan Lang
- Queen Mary College, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang 330001, China; (F.L.); (Y.L.); (R.Y.)
| | - Yuanheng Li
- Queen Mary College, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang 330001, China; (F.L.); (Y.L.); (R.Y.)
| | - Ruizhe Yao
- Queen Mary College, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang 330001, China; (F.L.); (Y.L.); (R.Y.)
| | - Meixiu Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| |
Collapse
|
7
|
Jinson S, Zhang Z, Lancaster GI, Murphy AJ, Morgan PK. Iron, lipid peroxidation, and ferroptosis play pathogenic roles in atherosclerosis. Cardiovasc Res 2025; 121:44-61. [PMID: 39739567 DOI: 10.1093/cvr/cvae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
Oxidation of lipids, excessive cell death, and iron deposition are prominent features of human atherosclerotic plaques. While extensive research has established the detrimental roles of lipid oxidation and apoptosis in atherosclerosis development, the involvement of iron in atherogenesis is not yet fully understood. With the emergence of an iron-dependent form of cell death termed ferroptosis, new attention has been brought to the complex inter-play among iron, ferroptosis, and atherosclerosis. Mechanistically, ferroptosis is caused by the lethal accumulation of iron-mediated lipid peroxides. Emerging studies have underscored ferroptosis as a contributor to worsened atherosclerosis. Herein, we review the evidence that oxidative damage and iron overload in the context of atherosclerosis may promote ferroptosis within plaques. Furthermore, we summarize recent findings of lipid peroxidation, thereby potentially ferroptosis, in various plaque cell types-such as endothelial cells, macrophages, dendritic cells, T cells, and vascular smooth muscle cells-across different stages of atherosclerosis. Understanding how these processes influence atherosclerotic plaque progression may permit targeting stage-dependent ferroptosis in each cell population and could provide a rationale for developing cell type-specific intervention strategies to mitigate atherogenic ferroptosis effectively.
Collapse
Affiliation(s)
- Swetha Jinson
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Ziyang Zhang
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Graeme I Lancaster
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Pooranee K Morgan
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| |
Collapse
|
8
|
Jafarzadeh S, Nemati M, Zandvakili R, Jafarzadeh A. Modulation of M1 and M2 macrophage polarization by metformin: Implications for inflammatory diseases and malignant tumors. Int Immunopharmacol 2025; 151:114345. [PMID: 40024215 DOI: 10.1016/j.intimp.2025.114345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Macrophages perform an essential role in the body's defense mechanisms and tissue homeostasis. These cells exhibit plasticity and are categorized into two phenotypes, including classically activated/M1 pro-inflammatory and alternatively activated/M2 anti-inflammatory phenotypes. Functional deviation in macrophage polarization occurs in different pathological conditions that need correction. In addition to antidiabetic impacts, metformin also possesses multiple biological activities, including immunomodulatory, anti-inflammatory, anti-tumorigenic, anti-aging, cardioprotective, hepatoprotective, and tissue-regenerative properties. Metformin can influence the polarization of macrophages toward M1 and M2 phenotypes. The ability of metformin to support M2 polarization and suppress M1 polarization could enhance its anti-inflammatory properties and potentiate its protective effects in conditions such as chronic inflammatory diseases, atherosclerosis, and obesity. However, in metformin-treated tumors, the proportion of M2 macrophages is decreased, while the frequency ratio of M1 macrophages is increased, indicating that metformin can modulate macrophage polarization from a pro-tumoral M2 state to an anti-tumoral M1 phenotype in malignancies. Metformin affects macrophage polarization through AMPK-dependent and independent pathways involving factors, such as NF-κB, mTOR, ATF, AKT/AS160, SIRT1, STAT3, HO-1, PGC-1α/PPAR-γ, and NLRP3 inflammasome. By modulating cellular metabolism and apoptosis, metformin can also influence macrophage polarization. This review provides comprehensive evidence regarding metformin's effects on macrophage polarization and the underlying mechanisms. The polarization-inducing capabilities of metformin may provide significant therapeutic applications in various inflammatory diseases and malignant tumors.
Collapse
Affiliation(s)
- Sara Jafarzadeh
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran; Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
9
|
Xie B, Tian L, Liu C, Li J, Tian X, Zhang R, Zhang F, Liu Z, Cheng Y. Disruption of the eEF1A1/ARID3A/PKC-δ Complex by Neferine Inhibits Macrophage Glycolytic Reprogramming in Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416158. [PMID: 39973763 PMCID: PMC12005739 DOI: 10.1002/advs.202416158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Indexed: 02/21/2025]
Abstract
Glycolytic reprogramming of macrophages is a decisive factor in atherosclerosis (AS) plaque formation. Eukaryotic elongation factor 1A1 (eEF1A1) plays an important role in protein synthesis, ubiquitination degradation, and nuclear translocation. However, the potential function of eEF1A1 in AS has not yet been fully understood. Here, the natural small molecule neferine (Nef), which targets eEF1A1 to suppress macrophage glycolytic reprogramming is discovered. In this work, chemical genetics and non-modified target confirmation assays are used to confirm that eEF1A1 is a direct target of Nef. Mechanically, Nef disrupted the formation of the eEF1A1/ARID3A/PKC-δ complex, inhibits phosphorylation of ARID3A at Thr491, and consequently prevents its nuclear translocation. Meanwhile, it is verified that ARID3A is a transcriptional regulator of enolase 2 (ENO2), an important enzyme in the glycolytic process. Nef suppresses ENO2 transcription activation by affecting ARID3A binding to the promoter region of ENO2, which results in macrophage glycolytic reprogramming inhibition and transformation of macrophages from M1 to M2. Collectively, these findings provide an attractive future direction for AS therapy by inhibiting ARID3A/ENO2-mediated macrophage glycolytic reprogramming by targeting eEF1A1.
Collapse
Affiliation(s)
- Baoping Xie
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Gannan Medical University), Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue EngineeringGannan Medical UniversityGanzhouJiangxi341000China
| | - Li‐Wen Tian
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Chenxu Liu
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Jiahua Li
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Xiaoyu Tian
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Fan Zhang
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacau999078China
| | - Yuanyuan Cheng
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| |
Collapse
|
10
|
Wang P, Chen W, Zhang J, Pan C, Lv Y, Sun Y, Wang Y, Ma X, Gao C, Chen T, Wu A, Zheng J. Advances in the treatment of atherosclerotic plaque based on nanomaterials. Nanomedicine (Lond) 2025; 20:869-881. [PMID: 40109186 PMCID: PMC11988221 DOI: 10.1080/17435889.2025.2480049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
Atherosclerosis is the leading cause of cardiovascular disease worldwide, posing not only a significant threat to cardiovascular health but also impairing the function of multiple organs, with severe cases potentially being life-threatening. Consequently, the effective treatment of atherosclerosis is of paramount importance in reducing the mortality associated with cardiovascular diseases. With the advancement of nanomedicine and a deeper understanding of the pathological mechanisms underlying atherosclerosis, nanomaterials have emerged as promising platforms for precise diagnosis and targeted therapeutic strategies. These materials offer notable advantages, including targeted drug delivery, enhanced bioavailability, improved drug stability, and controlled release. This review provides an overview of the mechanisms underlying atherosclerotic plaque development and examines nanomaterial-based therapeutic approaches for managing atherosclerotic plaques, including therapies targeting cholesterol metabolism, anti-inflammatory strategies, macrophage clearance, and immunotherapy. Additionally, the paper discusses the current technical challenges associated with the clinical transformation of these therapies. Finally, the potential future integration of nanomaterials, smart nanomaterials, and artificial intelligence in the treatment of atherosclerosis is also explored.
Collapse
Affiliation(s)
- Pengyu Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, China
| | - Weiwei Chen
- Traditional Chinese Medicine Department, Minglou Street Community Health Service Center, Yingzhou, Ningbo, China
| | - Jingfeng Zhang
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, China
| | - Chunshu Pan
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, China
| | - Yagui Lv
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Yanzi Sun
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Yanan Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Xuehua Ma
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Changyong Gao
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Tianxiang Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Aiguo Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Jianjun Zheng
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, China
| |
Collapse
|
11
|
Yuan Y, Sun C, Liu X, Hu L, Wang Z, Li X, Zhang J, Li D, Zhang X, Wu M, Liu L. The Role of Neutrophil Extracellular Traps in Atherosclerosis: From the Molecular to the Clinical Level. J Inflamm Res 2025; 18:4421-4433. [PMID: 40162077 PMCID: PMC11955173 DOI: 10.2147/jir.s507330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
Atherosclerosis is a chronic inflammatory condition that is typified by the deposition of lipids and the subsequent inflammation of medium and large arteries. Neutrophil extracellular traps (NETs) are fibrous meshworks of DNA, histones, and granzymes expelled by activated neutrophils in response to a variety of pathogenic conditions. In addition to their role in pathogen eradication, NETs have been demonstrated to play a pivotal role in the development of atherosclerosis. This article presents a review of the bidirectional interactions in which atherosclerosis-related risk factors stimulate the formation of NETs, which in turn support disease progression. This article emphasizes the involvement of NETs in the various stages of atherogenesis and development, influencing multiple factors such as the vascular endothelium, platelets, the inflammatory milieu, and lipid metabolism. The findings of this study offer new insights and avenues for further investigation into the processes underlying the formation and regulation of the vascular inflammatory microenvironment in atherosclerosis. Finally, potential targeted therapeutic strategies for NETs are discussed to facilitate their progression to clinical practice (Graphical Abstract).
Collapse
Affiliation(s)
- Yongfang Yuan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| | - Changxin Sun
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xinyi Liu
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lanqing Hu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| | - Zeping Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| | - Xiaoya Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| | - Jingyi Zhang
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Dexiu Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| | - Xiaonan Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| | - Min Wu
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Longtao Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Mir MM, Jeelani M, Alharthi MH, Rizvi SF, Sohail SK, Wani JI, Sabah ZU, BinAfif WF, Nandi P, Alshahrani AM, Alfaifi J, Jehangir A, Mir R. Unraveling the Mystery of Insulin Resistance: From Principle Mechanistic Insights and Consequences to Therapeutic Interventions. Int J Mol Sci 2025; 26:2770. [PMID: 40141412 PMCID: PMC11942988 DOI: 10.3390/ijms26062770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Insulin resistance (IR) is a significant factor in the development and progression of metabolic-related diseases like dyslipidemia, T2DM, hypertension, nonalcoholic fatty liver disease, cardiovascular and cerebrovascular disorders, and cancer. The pathogenesis of IR depends on multiple factors, including age, genetic predisposition, obesity, oxidative stress, among others. Abnormalities in the insulin-signaling cascade lead to IR in the host, including insulin receptor abnormalities, internal environment disturbances, and metabolic alterations in the muscle, liver, and cellular organelles. The complex and multifaceted characteristics of insulin signaling and insulin resistance envisage their thorough and comprehensive understanding at the cellular and molecular level. Therapeutic strategies for IR include exercise, dietary interventions, and pharmacotherapy. However, there are still gaps to be addressed, and more precise biomarkers for associated chronic diseases and lifestyle interventions are needed. Understanding these pathways is essential for developing effective treatments for IR, reducing healthcare costs, and improving quality of patient life.
Collapse
Affiliation(s)
- Mohammad Muzaffar Mir
- Department of Clinical Biochemistry, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed Jeelani
- Department of Physiology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Syeda Fatima Rizvi
- Department of Pathology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (S.F.R.); (S.K.S.)
| | - Shahzada Khalid Sohail
- Department of Pathology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (S.F.R.); (S.K.S.)
| | - Javed Iqbal Wani
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.U.S.)
| | - Zia Ul Sabah
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.U.S.)
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Partha Nandi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Abdullah M. Alshahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Adnan Jehangir
- Biomedical Sciences Department, College of Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
13
|
Imamichi T, Yang J, Chen Q, Goswami S, Marquez M, Kariyawasam U, Sharma HN, Wiscovitch-Russo R, Li X, Aioi A, Adelsberger JW, Chang W, Higgins J, Sui H. Interleukin-27-polarized HIV-resistant M2 macrophages are a novel subtype of macrophages that express distinct antiviral gene profiles in individual cells: implication for the antiviral effect via different mechanisms in the individual cell-dependent manner. Front Immunol 2025; 16:1550699. [PMID: 40129989 PMCID: PMC11931227 DOI: 10.3389/fimmu.2025.1550699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction Interleukin (IL)-27 is an anti-viral cytokine. IL-27-treated monocyte-derived macrophages (27-Mac) suppressed HIV replication. Macrophages are generally divided into two subtypes, M1 and M2 macrophages. M2 macrophages can be polarized into M2a, M2b, M2c, and M2d by various stimuli. IL-6 and adenosine induce M2d macrophages. Since IL-27 is a member of the IL-6 family of cytokines, 27-Mac was considered M2d macrophages. In the current study, we compared biological function and gene expression profiles between 27-Mac and M2d subtypes. Methods Monocytes derived from health donors were differentiated to M2 using macrophage colony-stimulating factor. Then, the resulting M2 was polarized into different subtypes using IL-27, IL-6, or BAY60-658 (an adenosine analog). HIV replication was monitored using a p24 antigen capture assay, and the production of reactive oxygen species (ROS) was determined using a Hydrogen Peroxide Assay. Phagocytosis assay was run using GFP-labeled opsonized E. coli. Cytokine production was detected by the IsoPlexis system, and the gene expression profiles were analyzed using single-cell RNA sequencing (scRNA-seq). Results and Discussion 27-Mac and BAY60-658-polarized M2d (BAY-M2d) resisted HIV infection, but IL-6-polarized M2d (6-M2d) lacked the anti-viral effect. Although phagocytosis activity was comparable among the three macrophages, only 27-Mac, but neither 6-M2d nor BAY-M2d, enhanced the generation of ROS. The cytokine-producing profile of 27-Mac did not resemble that of the two subtypes. The scRNA-seq revealed that 27-Mac exhibited a different clustering pattern compared to other M2ds, and each 27-Mac expressed a distinct combination of anti-viral genes. Furthermore, 27-Mac did not express the biomarkers of M2a, M2b, and M2c. However, it significantly expressed CD38 (p<0.01) and secreted CXCL9 (p<0.001), which are biomarkers of M1. Conclusions These data suggest that 27-Mac may be classified as either an M1-like subtype or a novel subset of M2, which resists HIV infection mediated by a different mechanism in individual cells using different anti-viral gene products. Our results provide a new insight into the function of IL-27 and macrophages.
Collapse
Affiliation(s)
- Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Suranjana Goswami
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Mayra Marquez
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Udeshika Kariyawasam
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Homa Nath Sharma
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Rosana Wiscovitch-Russo
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Xuan Li
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Akihiro Aioi
- Laboratory of Basic Research, Septem-Soken, Osaka, Japan
| | - Joseph W. Adelsberger
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jeanette Higgins
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| |
Collapse
|
14
|
Qian T, Guo D, Sun L, Chi M, Ma X, Jin J. Crosstalk between lipid metabolism and macrophages in atherosclerosis: therapeutic potential of natural products. Front Cardiovasc Med 2025; 12:1529924. [PMID: 40099271 PMCID: PMC11911464 DOI: 10.3389/fcvm.2025.1529924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Atherosclerosis is a highly prevalent cardiovascular condition that affects individuals worldwide. Despite ongoing research into its treatment and prevention, atherosclerotic cardiovascular disease continues to exhibit high morbidity and mortality rates. The accumulation of low-density lipoprotein cholesterol is considered a major contributor to the development of atherosclerosis, with abnormalities in lipid metabolism playing a significant role in its pathogenesis. Lipid metabolism and macrophage function are intricately interconnected, with lipid metabolism being influenced by macrophage inflammatory responses, while macrophage activity is regulated by alterations in lipid metabolism. The interaction between these two processes plays a critical role in the progression of atherosclerosis. Natural products have shown considerable promise in treating a variety of diseases, including atherosclerosis. Moreover, the modulation of lipid metabolism and macrophage crosstalk represents a key mechanism through which natural products may exert their effects. This research aims to provide new insights into the current state of research on the role of natural products in regulating this pathway and the interplay between lipid metabolism and macrophages in the context of atherosclerosis, offering potential directions for the future.
Collapse
Affiliation(s)
- Taoming Qian
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Donghao Guo
- Department of Cardiovascular Disease 1, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lu Sun
- Department of Cardiovascular Disease 1, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ming Chi
- Department of Cardiovascular Disease 1, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoshuang Ma
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Juan Jin
- Department of Cardiovascular Disease 1, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
15
|
Li D, Li Y, Yang S, Zhang X, Cao Y, Zhao R, Zhao Y, Jin X, Lu J, Wang X, Wang Q, Liu L, Wu M. Polydatin combined with hawthorn flavonoids alleviate high fat diet induced atherosclerosis by remodeling the gut microbiota and glycolipid metabolism. Front Pharmacol 2025; 16:1515485. [PMID: 40098615 PMCID: PMC11911193 DOI: 10.3389/fphar.2025.1515485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Background Atherosclerosis is a widely studied pathophysiological foundation of cardiovascular diseases. Inflammation and dyslipidemia are risk factors that promote the formation of atherosclerotic plaques. The gut microbiota and their metabolites are considered independent risk factors for atherosclerosis. Polydatin combined with hawthorn flavonoids, as the extracts of Polygonum cuspidatum Sieb. et Zucc. and Crataegus pinnatifida Bunge, have shown excellent cardiovascular protective effects. However, the underlying mechanism requires further investigation. Our study aimed to explore the anti-atherosclerotic mechanism through gut microbiota and their metabolites. Methods ApoE-/- mice were fed either a normal-chow diet or a high-fat diet. The polydatin combined with hawthorn flavonoids group received varied doses of polydatin and hawthorn flavonoids: a high dose (polydatin 200 mg/kg daily; hawthorn flavonoids 100 mg/kg daily), a medium dose (polydatin 100 mg/kg daily; hawthorn flavonoids 50 mg/kg daily), and a low dose (polydatin 50 mg/kg daily; hawthorn flavonoids 25 mg/kg daily). The control and model groups were administered distilled water (0.2 mL daily). The experiment lasted for 24 weeks. Results Polydatin combined with hawthorn flavonoids administration significantly reduced lipid and inflammatory cytokine levels, meanwhile, the atherosclerotic lesions in a high-fat diet-induced ApoE-/- mice were significantly decreased. Additionally, polydatin combined with hawthorn flavonoids also inhibited the enhancement of trimethylamine N-oxide (TMAO), trimethylamine (TMA) levels of HFD-induced ApoE-/- mice by regulating the expression of hepatic flavin-containing enzyme monooxygenase 3 (FMO3). 16S rRNA sequencing results demonstrated that high-dose polydatin combined with hawthorn flavonoids treatment increased the abundance of Actinobacteriota, Atopobiaceae and Coriobacteriaea_UCG-002, and decreased the abundance of Desulfobacterota. Norank_f_Muribaculaceae was enriched in the medium-dose polydatin combined with hawthorn flavonoids and simvastatin groups, and Lactobacillus was mainly increased in the simvastatin and the low-dose polydatin combined with hawthorn flavonoids groups. According to the metagenetic results, functional annotations also suggested that the biological processes of each group mainly focused on metabolism-related processes. Specifically, polydatin combined with hawthorn flavonoids may regulate the abundance of TMA-producing bacteria (Coriobacteriaceae, Desulfovibrio, Muribaculum, and Clostridium) and related enzymes in glycolipid metabolic pathways to exert an important effect on the prevention of atherosclerosis. Conclusion Our results suggested that polydatin combined with hawthorn flavonoids could regulate the glucolipid metabolism-related pathway, attenuate inflammatory cytokine levels, and reduce atherosclerotic plaques by remodeling gut microbiota.
Collapse
Affiliation(s)
- Dan Li
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- The Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yujuan Li
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaonan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Aerospace Center Hospital, Beijing, China
| | - Yixi Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Jin
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Lu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyue Wang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiutao Wang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Jin Q, Lin B, Lu L. Potential therapeutic value of dietary polysaccharides in cardiovascular disease: Extraction, mechanisms, applications, and challenges. Int J Biol Macromol 2025; 296:139573. [PMID: 39793800 DOI: 10.1016/j.ijbiomac.2025.139573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/22/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Dietary polysaccharides, recognised as significant natural bioactive compounds, have demonstrated promising potential for the prevention and treatment of cardiovascular disease (CVD). This review provides an overview of the biological properties and classification of polysaccharides, with particular emphasis on their extraction and purification methods. The paper then explores the diverse mechanisms by which polysaccharides exert their effects in CVD, including their antioxidant activity, protection against ischemia-reperfusion injury, anti-apoptotic properties, protection against diabetic cardiomyopathy, anticoagulant and antithrombotic effects, prevention of ventricular remodeling, and protection against vascular injury. Furthermore, this paper summarises the current status of clinical trials involving polysaccharides in CVD and analyzes the support and challenges posed by these studies for the practical application of polysaccharides. Finally, the major challenges facing the therapeutic use of polysaccharides in CVD are discussed, particularly the issues of low bioavailability and lack of standardized quality control. Through this review, we aimed to provide a reference and guidance for further research on and application of dietary polysaccharides in CVD.
Collapse
Affiliation(s)
- Qiqi Jin
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Bin Lin
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou 325000, China.
| | - Lingfen Lu
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou 325000, China.
| |
Collapse
|
17
|
Liu Q, Li F, Hu S, Ding N, Ma F, Hao Y, Li G, Xiong J, Zhang H, Jiang Y. Pyruvate dehydrogenase alleviates macrophage autophagy in Hcy-induced ApoE -/- mice. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39980347 DOI: 10.3724/abbs.2025021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
Macrophages play a protective role in atherosclerosis, whereas homocysteine (Hcy) is recognized as an independent risk factor for atherosclerosis. Defects in macrophage autophagy contribute to the formation of atherosclerotic plaques, and dysregulated energy metabolism is closely linked to the process of autophagy. However, the regulation of macrophage autophagy by pyruvate dehydrogenase (PDH), a key component of the PDH complex involved in energy and metabolic homeostasis, remains poorly understood in the context of atherosclerosis induced by Hcy. In our study, proteomic profiling identifies 748 upregulated proteins and 760 downregulated proteins in Hcy-treated macrophages. KEGG pathway analysis reveals significant enrichment of differentially expressed proteins in metabolism-related pathways, including those related to the biosynthesis of amino acids, carbon metabolism, and glycolysis/gluconeogenesis. Additionally, we explore the role of PDH in mediating Hcy-induced atherosclerosis in ApoE -/- mice. The results show a marked reduction in PDH expression and activity in Hcy-treated macrophages, leading to impaired autophagy. Notably, PDH activation enhances the assembly of the autophagy initiator ULK1-FIP200-Atg13 complex through the modulation of the AMPK/mTOR signaling pathway, suggesting a potential therapeutic target for Hcy-induced atherosclerosis.
Collapse
Affiliation(s)
- Qiujun Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Feng Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
- Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Shutong Hu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ning Ding
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Fang Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yinju Hao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
| | - Guizhong Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Jiantuan Xiong
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Huiping Zhang
- Department of Medical Genetics, Maternal and Child Health of Hunan Province, Changsha 410008, China
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
18
|
Patil S, Kata R, Teichner E, Subtirelu R, Ghonim M, Ghonim M, Al-Daoud O, Ismoilov M, Herpin L, Ayubcha C, Werner T, Høilund-Carlsen PF, Alavi A. Associations of subclinical microcalcification and inflammation with carotid atheroma development: a dual-tracer PET/CT study. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07127-z. [PMID: 39939531 DOI: 10.1007/s00259-025-07127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
PURPOSE Carotid artery atherosclerosis, a significant manifestation of cardiovascular disease (CVD) and leading cause of stroke, develops through a gradual process of arterial inflammation and calcification. This study explores the relationship between arterial inflammation (18 F-FDG PET/CT) and vascular calcification (18 F-NaF PET/CT) in the left and right common carotid arteries (LCC/RCC) and their association with CVD and thromboembolic risk in patients with subclinical atherosclerosis. METHODS A cohort of 115 subjects (73 healthy volunteers, 42 at-risk for CVD) underwent 18 F-NaF and 18 F-FDG PET/CT imaging. Radiotracer uptake was quantitatively assessed by measuring the average blood-pool-corrected mean standardized uptake value (aSUVmean). RESULTS Relative to healthy volunteers, at-risk subjects had greater uptake of NaF and FDG (10-22% and 16-27% higher, respectively, in both arteries, p < 0.05). On multivariate regression, NaF aSUVmean correlated with age and BMI (p < 0.01), and FDG aSUVmean correlated with BMI (p ≤ 0.01), fibrinogen (p < 0.01 in LCC only), and total cholesterol (p = 0.02 in RCC only). NaF aSUVmean increased with elevated 10-year CVD risk (p = 0.003 in LCC only), while no significant trend was seen for FDG. NaF and FDG aSUVmean increased with elevated thromboembolic risk in both arteries (p < 0.05). No correlations between NaF and FDG aSUVmean were observed (p > 0.05). CONCLUSION 18 F-NaF PET/CT may serve as a prognostic tool for carotid microcalcification and subclinical atherosclerosis, while the utility of 18 F-FDG PET/CT remains uncertain. CLINICAL TRIAL REGISTRATION "Cardiovascular Molecular Calcification Assessed by 18F-NaF PET CT (CAMONA)", NCT01724749, https://clinicaltrials.gov/study/NCT01724749 .
Collapse
Affiliation(s)
- Shiv Patil
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rithvik Kata
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Eric Teichner
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Robert Subtirelu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mohanad Ghonim
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Ain Shams University, Cairo, Egypt
| | - Mohamed Ghonim
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Ain Shams University, Cairo, Egypt
| | - Omar Al-Daoud
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Miraziz Ismoilov
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lancelot Herpin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Thomas Werner
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Dong X, Xu H, He B, Zhang M, Miu W, Huang Z, Chen C. FIBRINOGEN-LIKE PROTEIN 2 PROTECTS THE AGGRAVATION OF HYPERTRIGLYCERIDEMIA ON THE SEVERITY OF HYPERTRIGLYCERIDEMIA ACUTE PANCREATITIS BY REGULATING MACROPHAGES. Shock 2025; 63:327-337. [PMID: 39527492 DOI: 10.1097/shk.0000000000002503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
ABSTRACT Objective: The mechanisms underlying the increased severity of hypertriglyceridemia acute pancreatitis (HTG-AP) remain poorly understood. Fibrinogen-like protein 2 (FGL2) has been identified as a regulator of macrophage activity, mediating immune suppression. This study aims to examine the role of FGL2 in the susceptibility to severe conditions of HTG-AP. Methods: Both wild-type and FGL2 gene knockout C57BL/6 mice were utilized to establish HTG, AP, and HTG-AP models using P-407 and/or caerulein. Serum levels of triglycerides, total cholesterol, amylase, and lipase were assessed via biochemical analysis. Pancreatic and lung tissue injuries were evaluated using hematoxylin and eosin staining. TNF-α, IL-1β, and IL-6 levels in serum and pancreatic tissues were quantified using enzyme-linked immunosorbent assay. Immunohistochemistry was used to assess the expression of FGL2, the macrophage marker CD68, and M1/M2 macrophage markers iNOS/CD163. Results: The animal models were successfully established. Compared to wild-type mice, FGL2 knockout resulted in increased pathological injury scores in the pancreas and lungs, as well as elevated TNF-α, IL-1β, and IL-6 levels in serum and pancreatic tissue in the HTG group, with more pronounced effects observed in the HTG-AP group. The AP group alone did not exhibit significant changes due to FGL2 knockout. Further analysis revealed that FGL2 knockout increased CD68 expression but reduced CD163 expression in the pancreatic tissues in the HTG group. In the HTG-AP group, there was a marked increase in CD68 and iNOS expressions, coupled with a reduction in CD163 expression. Conclusion: FGL2 knockout in HTG and HTG-AP mice resulted in increased inflammatory responses and a significant imbalance in M2 macrophages. These findings suggest that FGL2 plays a crucial role in mitigating the aggravation of HTG on the severity of HTG-AP by modulating macrophage activity.
Collapse
Affiliation(s)
- Xiuli Dong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haibo Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interventional Pulmonology of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Baiqi He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interventional Pulmonology of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Meijuan Zhang
- Department of Medical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wanqi Miu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interventional Pulmonology of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Zhiming Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chengshui Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interventional Pulmonology of Zhejiang Province, Wenzhou, Zhejiang Province, China
| |
Collapse
|
20
|
Liu Y, Hu W, Yang F, Zou S, Ren H, Zuo Y, Qu L. Chitinase-3-like Protein 1 Reduces the Stability of Atherosclerotic Plaque via Impairing Macrophagic Efferocytosis. J Cardiovasc Transl Res 2025; 18:3-16. [PMID: 39813006 DOI: 10.1007/s12265-024-10576-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
CHI3L1 is strongly associated with atherosclerosis, but its role in macrophages remains unknown. In this study, we observed a significant up-regulation of CHI3L1 in both carotid plaques and serum of symptomatic patients, and demonstrated that CHI3L1 impairs the efferocytosis of macrophages by down-regulating crucial efferocytic mediator MFGE8 through inhibiting ATF2, which binds directly to the enhancer of MFGE8. In human plaques, we observed a negative correlation between CHI3L1 expression and both ATF2 and MFGE8 levels, further proved their involvement in plaque destabilization. Using Ldlr-/- mice with tandem carotid stenosis surgery, we demonstrated that administration of CHI3L1 protein resulted in enlarged atherosclerotic necrotic cores and decreased MFGE8 and ATF2 levels. Conversely, treatment with a CHI3L1 blocking antibody exhibited the opposite trend.In conclusion, CHI3L1 destabilizes atherosclerotic plaque by impairing macrophagic efferocytosis through the down-regulation of ATF2-induced MFGE8 expression. Targeting CHI3L1 may offer a promising therapeutic strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yandong Liu
- Department of Geriatrics, 905, Hospital of PLA NAVY, Shanghai, China
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Affiliated to the Naval Medical University, Shanghai, 200003, China
| | - Weilin Hu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Affiliated to the Naval Medical University, Shanghai, 200003, China
| | - Futang Yang
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Affiliated to the Naval Medical University, Shanghai, 200003, China
| | - Sili Zou
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Affiliated to the Naval Medical University, Shanghai, 200003, China
| | - Huiqiong Ren
- Department of Geriatrics, 905, Hospital of PLA NAVY, Shanghai, China.
| | - Yong Zuo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lefeng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Affiliated to the Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
21
|
Li C, Wen Q, Zhu G, Zhang Y, Wang Y, Luo D, Wu J. Association of the panimmune-inflammatory value (PIV) with all-cause and cardiovascular mortality in maintenance hemodialysis patients: a propensity score matching retrospective study. Int Urol Nephrol 2025; 57:571-583. [PMID: 39254905 DOI: 10.1007/s11255-024-04203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE The panimmune-inflammatory value (PIV) is a novel inflammatory indicator. However, its role in maintenance hemodialysis (MHD) remains unclear. Our goal was to explore the predictive value of PIV for cardiovascular and all-cause mortality in MHD patients. METHODS In this retrospective cohort study, 507 patients receiving MHD between November 2017 and December 2022 were enrolled. The PIV value was calculated as follows: neutrophil count × monocyte count × platelet count/lymphocyte count. Patients were divided into two groups on the basis of the median PIV. Propensity score matching (PSM) was used to adjust for imbalances in baseline information between groups. Kaplan‒Meier curves, Cox regression, the Fine‒Gray competing risk model, and restricted cubic spline (RCS) curves were used to analyze the relationship between PIV and mortality. RESULTS By the end of follow-up, 126 deaths had occurred, 91 of which were due to cardiovascular disease. The Kaplan‒Meier curves demonstrated that MHD patients with higher PIV levels had a poorer prognosis for all-cause death (p = 0.019). PIV levels were linked to all-cause death in multivariate Cox proportional risk regression (HR = 1.76; 95% CI 1.14, 2.72; p = 0.011). The Fine‒Gray model revealed a greater cumulative incidence of cardiovascular death in the higher PIV group (p = 0.035). PIV levels were linked to cardiovascular mortality in the Fine‒Gray competing risk model (HR = 2.06; 95% CI 1.25, 3.42; p = 0.005). The RCS revealed a nonlinear relationship between PIV and mortality risk (p < 0.05). Using 63 years of age as the threshold, we observed a multiplicative interaction effect between age and PIV for all-cause mortality (p = 0.006). CONCLUSION In MHD patients, PIV is an independent hazard factor for cardiovascular-related mortality and all-cause mortality.
Collapse
Affiliation(s)
- Chunmin Li
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, 216 Guanshan Road, Wuhan, 430074, People's Republic of China
| | - Qian Wen
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, 216 Guanshan Road, Wuhan, 430074, People's Republic of China
| | - Geli Zhu
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, 216 Guanshan Road, Wuhan, 430074, People's Republic of China
| | - Yanxia Zhang
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, 216 Guanshan Road, Wuhan, 430074, People's Republic of China
| | - Yuan Wang
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, 216 Guanshan Road, Wuhan, 430074, People's Republic of China
| | - Dan Luo
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, 216 Guanshan Road, Wuhan, 430074, People's Republic of China
| | - Jun Wu
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, 216 Guanshan Road, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
22
|
Xu M, Ran D, Hu J, Mao J, Qiao D, Zhang Z, Liang X, Zhang L, Nie Y, Yang H, Zhou X, Li C. Multifunctional Prussian blue nanozymes alleviate atherosclerosis through inhibiting the inflammation feedback loop. J Mater Chem B 2025; 13:1459-1473. [PMID: 39692245 DOI: 10.1039/d4tb01926a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Atherosclerosis (AS) is a lipid-driven chronic inflammatory disease characterized by the presence of numerous proinflammatory cytokines, massive reactive oxygen species (ROS) and excess lipids, which together result in an overall inflammatory positive feedback loop in the plaque focus. Due to its excellent enzyme-like activity in ROS scavenging and inflammation inhibition, as well as its photothermal effects in the lipid efflux ability of foam cells, Prussian blue (PB) has greater potential in preventing inflammatory factor loops for enhanced treatment of AS than traditional nanozymes. In this study, the multifunctional nanozyme BSA@PB/Cur was synthesized by self-assembly of bovine serum albumin (BSA) with PB and further encapsulation of the anti-inflammatory drug curcumin (Cur). The in vitro results showed that BSA@PB/Cur could effectively scavenge ROS and inhibit the expression of the inflammatory cytokines TNF-α and IL-1β as well as enhance the expression of ABCA1 and ABCG1 in foam cells, promote cholesterol efflux and inhibit foam cell formation. The in vivo experimental results demonstrated that BSA@PB/Cur could target plaque locations, significantly efflux the lipid content, and decrease the matrix metalloproteinase expression. This research provides a potential strategy for alleviating the persistent inflammatory feedback loop within the plaque microenvironment for AS treatment.
Collapse
Affiliation(s)
- Maochang Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Dan Ran
- Department of Cardiovascular Medicine, Pengzhou People's Hospital, Chengdu, Sichuan 611930, China
| | - Jian Hu
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
- Department of General Surgery, Suining First People's Hospital, Suining, Sichuan 629000, China
| | - Jingying Mao
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Dehui Qiao
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Li Zhang
- Health Management Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Yang
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiangyu Zhou
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
- Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
- Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
23
|
Okan T, Altın C, Topaloglu C, Doruk M, Yılmaz MB. Diagnostic Potential of CTRP5 and Chemerin for Coronary Artery Disease: A Study by Coronary Computed Tomography Angiography. Diagnostics (Basel) 2025; 15:206. [PMID: 39857090 PMCID: PMC11765540 DOI: 10.3390/diagnostics15020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: As an endocrine organ, adipose tissue produces adipokines that influence coronary artery disease (CAD). The objective of this study was to assess the potential value of CTRP5 and chemerin in differentiating coronary computed tomography angiography (CCTA)-confirmed coronary artery disease (CAD) versus non-CAD. Secondarily, within the CCTA-confirmed CAD group, the aim was to investigate the relationship between the severity and extent of CAD, as determined by coronary artery calcium score (CACS), and the levels of CTRP5 and chemerin. Methods: Consecutive individuals with chest pain underwent CCTA to evaluate coronary artery anatomy and were divided into two groups. The CCTA-confirmed CAD group included patients with any atherosclerotic plaque (soft, mixed, or calcified) regardless of calcification, while the non-CAD group consisted of individuals without plaques on CCTA, with zero CACS, and without ischemia on stress ECG. Secondarily, in the CCTA-confirmed CAD group, the severity and extent of CAD were evaluated using CACS. Blood samples were collected and stored at -80 °C for analysis of CTRP5 and chemerin levels via ELISA. Results: Serum CTRP5 and chemerin levels were significantly higher in the CAD group compared to the non-CAD group (221.83 ± 103.81 vs. 149.35 ± 50.99 ng/mL, p = 0.003 and 105.02 ± 35.62 vs. 86.07 ± 19.47 ng/mL, p = 0.005, respectively). Receiver operating characteristic (ROC) analysis showed that a CTRP5 cutoff of 172.30 ng/mL had 70% sensitivity and 73% specificity for identifying CAD, while a chemerin cutoff of 90.46 ng/mL had 61% sensitivity and 62% specificity. A strong positive correlation was observed between CTRP5 and chemerin, but neither adipokine showed a correlation with the Agatston score, a measure of CAD severity and extent, nor with coronary artery stenosis as determined by CCTA. Conclusions: CTRP5 and chemerin were significantly elevated in the CCTA-confirmed CAD group compared to the non-CAD group, with CTRP5 showing greater sensitivity and specificity. However, neither adipokine was linked to CAD severity and extent, differing from findings based on invasive coronary angiography (ICA). CTRP5 may serve as a promising "all-or-none biomarker" for CAD presence.
Collapse
Affiliation(s)
- Taha Okan
- Cardiology Department, Kardiya Medical Center, 35550 Izmir, Turkey
- Cardiology Department, Faculty of Medicine, Izmir Economy University, 35550 Izmir, Turkey; (C.A.); (C.T.)
| | - Cihan Altın
- Cardiology Department, Faculty of Medicine, Izmir Economy University, 35550 Izmir, Turkey; (C.A.); (C.T.)
| | - Caner Topaloglu
- Cardiology Department, Faculty of Medicine, Izmir Economy University, 35550 Izmir, Turkey; (C.A.); (C.T.)
| | - Mehmet Doruk
- Izmir Endocrinology Clinic, 35500 Izmir, Turkey;
| | - Mehmet Birhan Yılmaz
- Cardiology Department, Faculty of Medicine, Dokuz Eylul University, 35340 Izmir, Turkey;
| |
Collapse
|
24
|
Jiang X, Huang H. The therapeutic potential of apigenin against atherosclerosis. Heliyon 2025; 11:e41272. [PMID: 39811295 PMCID: PMC11732486 DOI: 10.1016/j.heliyon.2024.e41272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/02/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Apigenin is a natural flavonoid abundantly found in fruits, vegetables, and medicinal plants. It possesses protective effects against cancer, metabolic syndrome, dyslipidemia, etc. Atherosclerosis, a chronic immune-mediated inflammatory disease, is the underlying cause of coronary heart disease, stroke, and myocardial infarction. Numerous in vivo and in vitro studies have shown a protective effect of apigenin against atherosclerosis, attributed to its antioxidant and anti-inflammatory properties, as well as its antihypertensive effect and regulation of lipid metabolism. This study aimed to review the effects and mechanisms of apigenin against atherosclerosis for the first time. Apigenin displays encouraging results, and this review confirms the potential value of apigenin as a candidate medication for atherosclerosis.
Collapse
Affiliation(s)
- Xueqiang Jiang
- Sinopharm Dongfeng General Hospital, Hubei Clinical Research Center of Hypertension, Hubei University of Medicine, Shiyan, 442008, China
| | - Huimin Huang
- Sinopharm Dongfeng General Hospital, Hubei Clinical Research Center of Hypertension, Hubei University of Medicine, Shiyan, 442008, China
- Department of Pharmacy, Xi'an Jiaotong University, Xi'an, 710003, China
| |
Collapse
|
25
|
Ma Y, Wu S, Lai J, Wan Q, Hu J, Liu Y, Zhou Z, Wu J. Exploring the comorbidity mechanisms between atherosclerosis and hashimoto's thyroiditis based on microarray and single-cell sequencing analysis. Sci Rep 2025; 15:1792. [PMID: 39805933 PMCID: PMC11730997 DOI: 10.1038/s41598-025-85112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
Atherosclerosis (AS) is a chronic vascular disease characterized by inflammation of the arterial wall and the formation of cholesterol plaques. Hashimoto's thyroiditis (HT) is an autoimmune disorder marked by chronic inflammation and destruction of thyroid tissue. Although previous studies have identified common risk factors between AS and HT, the specific etiology and pathogenic mechanisms underlying these associations remain unclear. We obtained relevant datasets for AS and HT from the Gene Expression Omnibus (GEO). By employing the Limma package, we pinpointed common differentially expressed genes (DEGs) and discerned co-expression modules linked to AS and HT via Weighted Gene Co-expression Network Analysis (WGCNA). We elucidated gene functions and regulatory networks across various biological scenarios through enrichment and pathway analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Core genes were identified using Cytoscape software and further validated with external datasets. We also conducted immune infiltration analysis on these core genes utilizing the CIBERSORT method. Lastly, Single-cell analysis was instrumental in uncovering common diagnostic markers. Based on differential analysis and WGCNA, we identified 119 candidate genes within the cohorts for AS and HT. KEGG and GO enrichment analyses indicate that these genes are significantly involved in antigen processing and presentation, along with various immune-inflammatory pathways. Two pivotal genes, PTPRC and TYROBP, were identified using five algorithms from the cytoHubba plugin. Validation through external datasets confirmed their substantial diagnostic value for AS and HT. Moreover, the results of Gene Set Enrichment Analysis (GSEA) indicated that these core genes are significantly enriched in various receptor interactions and signaling pathways. Immune infiltration analysis revealed a strong association of lymphocytes and macrophages with the pathogenesis of AS and HT. Single-cell analysis demonstrated predominant expression of the core genes in macrophages, monocytes, T cells and Common Myeloid Progenitor (CMP). This study proposes that an aberrant immune response might represent a shared pathogenic mechanism in AS and HT. The genes PTPRC and TYROBP are identified as critical potential biomarkers and therapeutic targets for these comorbid conditions. Furthermore, the core genes and their interactions with immune cells could serve as promising targets for future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yirong Ma
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shuguang Wu
- Neurology Department, Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Nanchang, China
| | - Junyu Lai
- Cardiology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qiang Wan
- Cardiology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jingxuan Hu
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yanhong Liu
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ziyi Zhou
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jianguang Wu
- Cardiology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China.
| |
Collapse
|
26
|
Wang P, Li Z, Song Y, Zhang B, Fan C. Resveratrol-driven macrophage polarization: unveiling mechanisms and therapeutic potential. Front Pharmacol 2025; 15:1516609. [PMID: 39872049 PMCID: PMC11770351 DOI: 10.3389/fphar.2024.1516609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/23/2024] [Indexed: 01/29/2025] Open
Abstract
Resveratrol, a polyphenolic compound known for its diverse biological activities, has demonstrated multiple pharmacological effects, including anti-inflammatory, anti-aging, anti-diabetic, anti-cancer, and cardiovascular protective properties. Recent studies suggest that these effects are partly mediated through the regulation of macrophage polarization, wherein macrophages differentiate into pro-inflammatory M1 or anti-inflammatory M2 phenotypes. Our review highlights how resveratrol modulates macrophage polarization through various signaling pathways to achieve therapeutic effects. For example, resveratrol can activate the senescence-associated secretory phenotype (SASP) pathway and inhibit the signal transducer and activator of transcription (STAT3) and sphingosine-1-phosphate (S1P)-YAP signaling axes, promoting M1 polarization or suppressing M2 polarization, thereby inhibiting tumor growth. Conversely, it can promote M2 polarization or suppress M1 polarization by inhibiting the NF-κB signaling pathway or activating the PI3K/Akt and AMP-activated protein kinase (AMPK) pathways, thus alleviating inflammatory responses. Notably, the effect of resveratrol on macrophage polarization is concentration-dependent; moderate concentrations tend to promote M1 polarization, while higher concentrations may favor M2 polarization. This concentration dependence offers new perspectives for clinical treatment but also underscores the necessity for precise dosage control when using resveratrol. In summary, resveratrol exhibits significant potential in regulating macrophage polarization and treating related diseases.
Collapse
Affiliation(s)
- Panting Wang
- Department of Neurosurgery West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing Sichuan University, Chengdu, China
| | - Zixi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixuan Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bowei Zhang
- Southwest Institute of Technical Physics, Chengdu, China
| | - Chaofeng Fan
- Department of Neurosurgery West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Fang F, Wang E, Fang M, Yue H, Yang H, Liu X. Macrophage-based pathogenesis and theranostics of vulnerable plaques. Theranostics 2025; 15:1570-1588. [PMID: 39816684 PMCID: PMC11729549 DOI: 10.7150/thno.105256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025] Open
Abstract
Vulnerable plaques, which are high-risk features of atherosclerosis, constitute critical elements in the disease's progression due to their formation and rupture. Macrophages and macrophage-derived foam cells are pivotal in inducing vulnerability within atherosclerotic plaques. Thus, understanding macrophage contributions to vulnerable plaques is essential for advancing the comprehension of atherosclerosis and devising novel therapeutic and diagnostic strategies. This review provides an overview of the pathological characteristics of vulnerable plaques, emphasizes macrophages' critical role, and discusses advanced strategies for their diagnosis and treatment. It aims to present a comprehensive macrophage-centered perspective for addressing vulnerable plaques in atherosclerosis.
Collapse
Affiliation(s)
- Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Erxiang Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Mengjia Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongyan Yue
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hanqiao Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Yadav VK, Gupta R, Assiri AA, Uddin J, Ishaqui AA, Kumar P, Orayj KM, Tahira S, Patel A, Choudhary N. Role of Nanotechnology in Ischemic Stroke: Advancements in Targeted Therapies and Diagnostics for Enhanced Clinical Outcomes. J Funct Biomater 2025; 16:8. [PMID: 39852564 PMCID: PMC11766075 DOI: 10.3390/jfb16010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Each year, the number of cases of strokes and deaths due to this is increasing around the world. This could be due to work stress, lifestyles, unhealthy food habits, and several other reasons. Currently, there are several traditional methods like thrombolysis and mechanical thrombectomy for managing strokes. The current approach has several limitations, like delayed diagnosis, limited therapeutic delivery, and risks of secondary injuries. So, there is a need for some effective and reliable methods for the management of strokes, which could help in early diagnosis followed by the treatment of strokes. Nanotechnology has played an immense role in managing strokes, and recently, it has emerged as a transformative solution offering innovative diagnostic tools and therapeutic strategies. Nanoparticles (NPs) belonging to several classes, including metallic (metallic and metal oxide), organic (lipids, liposome), and carbon, can cross the blood-brain barrier and may exhibit immense potential for managing various strokes. Moreover, these NPs have exhibited promise in improving imaging specificity and therapeutic delivery by precise drug delivery and real-time monitoring of treatment efficacy. Nanomaterials like cerium oxide (CeO2) and liposome-encapsulated agents have neuroprotective properties that reduce oxidative stress and promote neuroregeneration. In the present article, the authors have emphasized the significant advancements in the nanomedicine management of stroke, including NPs-based drug delivery systems, neuroprotective and neuroregenerative therapies, and multimodal imaging advancements.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot 360003, Gujarat, India
| | - Rachna Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382021, Gujarat, India;
| | - Abdullah A. Assiri
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; (A.A.A.); (A.A.I.); (K.M.O.)
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia;
| | - Azfar A. Ishaqui
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; (A.A.A.); (A.A.I.); (K.M.O.)
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India;
| | - Khalid M. Orayj
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; (A.A.A.); (A.A.I.); (K.M.O.)
| | - Shazia Tahira
- Institute of Professional Psychology, Bahria University Karachi Campus, Karachi 75260, Pakistan;
- Department of Psychiatry, Jinnah Postgraduate Medical Centre, Karachi 75510, Pakistan
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India;
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India;
- Department of Lifesciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India
| |
Collapse
|
29
|
Jain SM, Nagainallur Ravichandran S, Murali Kumar M, Banerjee A, Sun-Zhang A, Zhang H, Pathak R, Sun XF, Pathak S. Understanding the molecular mechanism responsible for developing therapeutic radiation-induced radioresistance of rectal cancer and improving the clinical outcomes of radiotherapy - A review. Cancer Biol Ther 2024; 25:2317999. [PMID: 38445632 PMCID: PMC10936619 DOI: 10.1080/15384047.2024.2317999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
Rectal cancer accounts for the second highest cancer-related mortality, which is predominant in Western civilizations. The treatment for rectal cancers includes surgery, radiotherapy, chemotherapy, and immunotherapy. Radiotherapy, specifically external beam radiation therapy, is the most common way to treat rectal cancer because radiation not only limits cancer progression but also significantly reduces the risk of local recurrence. However, therapeutic radiation-induced radioresistance to rectal cancer cells and toxicity to normal tissues are major drawbacks. Therefore, understanding the mechanistic basis of developing radioresistance during and after radiation therapy would provide crucial insight to improve clinical outcomes of radiation therapy for rectal cancer patients. Studies by various groups have shown that radiotherapy-mediated changes in the tumor microenvironment play a crucial role in developing radioresistance. Therapeutic radiation-induced hypoxia and functional alterations in the stromal cells, specifically tumor-associated macrophage (TAM) and cancer-associated fibroblasts (CAF), play a crucial role in developing radioresistance. In addition, signaling pathways, such as - the PI3K/AKT pathway, Wnt/β-catenin signaling, and the hippo pathway, modulate the radiation responsiveness of cancer cells. Different radiosensitizers, such as small molecules, microRNA, nanomaterials, and natural and chemical sensitizers, are being used to increase the effectiveness of radiotherapy. This review highlights the mechanism responsible for developing radioresistance of rectal cancer following radiotherapy and potential strategies to enhance the effectiveness of radiotherapy for better management of rectal cancer.
Collapse
Affiliation(s)
- Samatha M Jain
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Shruthi Nagainallur Ravichandran
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Makalakshmi Murali Kumar
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Alexander Sun-Zhang
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Hong Zhang
- School of Medicine, Department of Medical Sciences, Orebro University, Örebro, Sweden
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| |
Collapse
|
30
|
Shin JH, Shin SH. A Comprehensive Review of Naringenin, a Promising Phytochemical with Therapeutic Potential. J Microbiol Biotechnol 2024; 34:2425-2438. [PMID: 39572023 PMCID: PMC11733549 DOI: 10.4014/jmb.2410.10006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 12/31/2024]
Abstract
Disorders, including cancer, metabolic disorders, and neurodegenerative diseases, can threaten human health; therefore, disease prevention is essential. Naringenin, a phytochemical with low toxicity, has been used in various disease prevention studies. This study aimed to comprehensively review the effects of naringenin on human health. First, we introduced the general characteristics of naringenin and its pharmacokinetic features when absorbed in the body. Next, we summarized the inhibitory effects of naringenin on colorectal, gastric, lung, breast, ovarian, cervical, prostate, bladder, liver, pancreatic, and skin cancers in preclinical studies. Lastly, we investigated the inhibitory effects of naringenin on metabolic disorders, including diabetes, obesity, hyperlipidemia, hypertension, cardiac toxicity, hypertrophy, steatosis, liver disease, and arteriosclerosis, as well as on neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. In conclusion, naringenin may serve as a significant natural compound that benefits human health.
Collapse
Affiliation(s)
- Jun Hong Shin
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Ho Shin
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Bio & Medical Bigdata (BK4 Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
31
|
Wang J, Qin S, Zhang X, Zhi J. Identification of Macrophage-Associated Novel Drug Targets in Atherosclerosis Based on Integrated Transcriptome Features. J Chem Inf Model 2024; 64:9009-9020. [PMID: 39568158 DOI: 10.1021/acs.jcim.4c01558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
BACKGROUND This study explores the pathological mechanisms of atherosclerosis (AS), focusing on the role of macrophages in its formation and development, and potential therapeutic targets. METHODS The heterogeneity of the AS single-cell data set GSE131778 was analyzed using Seurat. Tissue sequencing data GSE28829 and GSE43292 were analyzed for immune cell abundance using CIBERSORT. Differential genes were identified, and WGCNA was used to create a coexpression network. Hub genes were identified using MCODE and CytoHubba and analyzed with GO and KEGG enrichment analysis, GSVA, and immune infiltration analysis. DrugBank identified potential drugs, and molecular docking verified drug binding to key targets. Key targets were experimentally validated. RESULTS Nineteen cell clusters were identified in the GSE131778 data set, classified into ten cell types. Macrophages in AS and normal tissues were identified based on cell abundance. CIBERSORT showed a significant increase in cell cluster 9 in AS samples. Thirty-two hub genes, including CD86, LILRB2, and IRF8, were validated. GO and KEGG analyses indicated Hub genes primarily affect immune functions. GSVA identified 29 significantly increased pathways in AS samples. Immune infiltration analysis revealed a positive correlation between IRF8, CD86, and LILRB2 expression and macrophage content. Molecular docking suggested CD86 as a potential drug target for AS. qRT-PCR confirmed increased IRF8 and CD86 expression. CONCLUSIONS CD86, LILRB2, and IRF8 are highly expressed in foam cell samples, with CD86 forming hydrogen bonds with several AS drugs, indicating CD86 as a promising target for AS treatment.
Collapse
Affiliation(s)
- Jingzhi Wang
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Sida Qin
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xiaohui Zhang
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jixin Zhi
- The Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
32
|
Song J, Cao C, Wang Z, Li H, Yang L, Kang J, Meng H, Li L, Liu J. Mechanistic insights into the regression of atherosclerotic plaques. Front Physiol 2024; 15:1473709. [PMID: 39628943 PMCID: PMC11611857 DOI: 10.3389/fphys.2024.1473709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
Atherosclerosis is a major contributor to cardiovascular diseases and mortality globally. The progression of atherosclerotic disease results in the expansion of plaques and the development of necrotic cores. Subsequent plaque rupture can lead to thrombosis, occluding blood vessels, and end-organ ischemia with consequential ischemic injury. Atherosclerotic plaques are formed by the accumulation of lipid particles overloaded in the subendothelial layer of blood vessels. Abnormally elevated blood lipid levels and impaired endothelial function are the initial factors leading to atherosclerosis. The atherosclerosis research has never been interrupted, and the previous view was that the pathogenesis of atherosclerosis is an irreversible and chronic process. However, recent studies have found that the progression of atherosclerosis can be halted when patients' blood lipid levels are reversed to normal or lower. A large number of studies indicates that it can inhibit the progression of atherosclerosis lesions and promote the regression of atherosclerotic plaques and necrotic cores by lowering blood lipid levels, improving the repair ability of vascular endothelial cells, promoting the reverse cholesterol transport in plaque foam cells and enhancing the ability of macrophages to phagocytize and clear the necrotic core of plaque. This article reviews the progress of research on the mechanism of atherosclerotic plaque regression. Our goal is to provide guidance for developing better therapeutic approaches to atherosclerosis by reviewing and analyzing the latest scientific findings.
Collapse
Affiliation(s)
- Jianshu Song
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
- Research Institute of Traditional Chinese Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ce Cao
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Ziyan Wang
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Haoran Li
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
- Research Institute of Traditional Chinese Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lili Yang
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Jing Kang
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Hongxu Meng
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Lei Li
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Jianxun Liu
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
33
|
Li W, Huang Y, Liu J, Zhou Y, Sun H, Fan Y, Liu F. Defective macrophage efferocytosis in advanced atherosclerotic plaque and mitochondrial therapy. Life Sci 2024; 359:123204. [PMID: 39491771 DOI: 10.1016/j.lfs.2024.123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/02/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease primarily affecting large and medium-sized arterial vessels, characterized by lipoprotein disorders, intimal thickening, smooth muscle cell proliferation, and the formation of vulnerable plaques. Macrophages (MΦs) play a vital role in the inflammatory response throughout all stages of atherosclerotic development and are considered significant therapeutic targets. In early lesions, macrophage efferocytosis rapidly eliminates harmful cells. However, impaired efferocytosis in advanced plaques perpetuates the inflammatory microenvironment of AS. Defective efferocytosis has emerged as a key factor in atherosclerotic pathogenesis and the progression to severe cardiovascular disease. Herein, this review probes into investigate the potential mechanisms at the cellular, molecular, and organelle levels underlying defective macrophage efferocytosis in advanced lesion plaques. In the inflammatory microenvironments of AS with interactions among diverse inflammatory immune cells, impaired macrophage efferocytosis is strongly linked to multiple factors, such as a lower absolute number of phagocytes, the aberrant expression of crucial molecules, and impaired mitochondrial energy provision in phagocytes. Thus, focusing on molecular targets to enhance macrophage efferocytosis or targeting mitochondrial therapy to restore macrophage metabolism homeostasis has emerged as a potential strategy to mitigate the progression of advanced atherosclerotic plaque, providing various treatment options.
Collapse
Affiliation(s)
- Wanling Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yaqing Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hongyu Sun
- The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yonghong Fan
- The General Hospital of Western Theater Command, Chengdu 610083, China.
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
34
|
Peng L, Hu XZ, Liu ZQ, Liu WK, Huang Q, Wen Y. Therapeutic potential of resveratrol through ferroptosis modulation: insights and future directions in disease therapeutics. Front Pharmacol 2024; 15:1473939. [PMID: 39386035 PMCID: PMC11461341 DOI: 10.3389/fphar.2024.1473939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Resveratrol, a naturally occurring polyphenolic compound, has captivated the scientific community with its promising therapeutic potential across a spectrum of diseases. This review explores the complex role of resveratrol in modulating ferroptosis, a newly identified form of programmed cell death, and its potential implications for managing cardiovascular and cerebrovascular disorders, cancer, and other conditions. Ferroptosis is intricately linked to the pathogenesis of diverse diseases, with resveratrol exerting multifaceted effects on this process. It mitigates ferroptosis by modulating lipid peroxidation, iron accumulation, and engaging with specific cellular receptors, thereby manifesting profound therapeutic benefits in cardiovascular and cerebrovascular conditions, as well as oncological settings. Moreover, resveratrol's capacity to either suppress or induce ferroptosis through the modulation of signaling pathways, including Sirt1 and Nrf2, unveils novel therapeutic avenues. Despite resveratrol's limited bioavailability, advancements in molecular modification and drug delivery optimization have amplified its clinical utility. Future investigations are poised to unravel the comprehensive mechanisms underpinning resveratrol's action and expand its therapeutic repertoire. We hope this review could furnish a detailed and novel insight into the exploration of resveratrol in the regulation of ferroptosis and its therapeutic prospects.
Collapse
Affiliation(s)
- Liu Peng
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xi-Zhuo Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhi-Qiang Liu
- Department of General Surgery, Deyang Sixth People’s Hospital, Deyang, China
| | - Wen-Kai Liu
- Department of General Surgery, Deyang Sixth People’s Hospital, Deyang, China
| | - Qun Huang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Wen
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Wang S, Su Y, Li J, Wang T, Pan H, Pan W. Membrane-camouflaged biomimetic nanoplatform with arsenic complex for synergistic reinforcement of liver cancer therapy. Nanomedicine (Lond) 2024; 19:2187-2210. [PMID: 39229815 PMCID: PMC11485747 DOI: 10.1080/17435889.2024.2393076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Aim: Arsenic has excellent anti-advanced liver cancer effects through a variety of pathways, but its severe systemic toxicity forces the need for a safe and effective delivery strategy.Methods: Based on the chelating metal ion properties of polydopamine (PDA), arsenic was immobilized on an organic carrier, and a M1-like macrophage cell membrane (MM)-camouflaged manganese-arsenic complex mesoporous polydopamine (MnAsOx@MP@M) nanoplatform was successfully constructed. MnAsOx@MP@M was evaluated at the cellular level for tumor inhibition and tumor localization, and in vivo for its anti-liver cancer effect in a Hepa1-6 tumor-bearing mouse model.Results: The nanoplatform targeted the tumor site through the natural homing property of MM, completely degraded and released drugs to kill tumor cells in an acidic environment, while playing an immunomodulatory role in promoting tumor-associated macrophages (TAMs) repolarization.Conclusion: MnAsOx@MP@M has synergistically enhanced the targeted therapeutics against liver cancer via nanotechnology and immunotherapy, and it is expected to become a safe and multifunctional treatment platform in clinical oncology.
Collapse
Affiliation(s)
- Shu Wang
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yupei Su
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiayang Li
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tianyi Wang
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hao Pan
- Liaoning University, Shenyang, 110036, China
- Key Laboratory of Key Technology Research & Evaluation of Chemical Drug Quality Control, Shenyang, Liaoning, China
| | - Weisan Pan
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
36
|
Kłosowicz M, Leksa D, Bartusik-Aebisher D, Myśliwiec A, Dynarowicz K, Aebisher D. Biomarkers That Seem to Have the Greatest Impact on Promoting the Formation of Atherosclerotic Plaque in Current Scientific Research. Curr Issues Mol Biol 2024; 46:9503-9522. [PMID: 39329916 PMCID: PMC11430558 DOI: 10.3390/cimb46090564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that causes degenerative and productive changes in the arteries. The resulting atherosclerotic plaques restrict the vessel lumen, causing blood flow disturbances. Plaques are formed mainly in large- and medium-sized arteries, usually at bends and forks where there is turbulence in blood flow. Depending on their location, they can lead to various disease states such as myocardial infarction, stroke, renal failure, peripheral vascular diseases, or sudden cardiac death. In this work, we reviewed the literature on the early detection of atherosclerosis markers in the application of photodynamic therapy to atherosclerosis-related diseases. Herein, we described the roles of C-reactive protein, insulin, osteopontin, osteoprotegerin, copeptin, the TGF-β cytokine family, and the amino acid homocysteine. Also, we discuss the role of microelements such as iron, copper, zinc, and Vitamin D in promoting the formation of atherosclerotic plaque. Dysregulation of the administered compounds is associated with an increased risk of atherosclerosis. Additionally, taking into account the pathophysiology of atherosclerotic plaque formation, we believe that maintaining homeostasis in the range of biomarkers mentioned in this article is crucial for slowing down the process of atherosclerotic plaque development and the stability of plaque that is already formed.
Collapse
Affiliation(s)
- Maksymilian Kłosowicz
- English Division Science Club, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
- Department of Photomedicine and Physical Chemistry, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Dawid Leksa
- Rzeszów Center for Vascular and Endovascular Surgery, 35-010 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
| | - David Aebisher
- English Division Science Club, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
- Department of Photomedicine and Physical Chemistry, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
| |
Collapse
|
37
|
Munteanu C, Galaction AI, Poștaru M, Rotariu M, Turnea M, Blendea CD. Hydrogen Sulfide Modulation of Matrix Metalloproteinases and CD147/EMMPRIN: Mechanistic Pathways and Impact on Atherosclerosis Progression. Biomedicines 2024; 12:1951. [PMID: 39335465 PMCID: PMC11429404 DOI: 10.3390/biomedicines12091951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory condition marked by endothelial dysfunction, lipid accumulation, inflammatory cell infiltration, and extracellular matrix (ECM) remodeling within arterial walls, leading to plaque formation and potential cardiovascular events. Key players in ECM remodeling and inflammation are matrix metalloproteinases (MMPs) and CD147/EMMPRIN, a cell surface glycoprotein expressed on endothelial cells, vascular smooth muscle cells (VSMCs), and immune cells, that regulates MMP activity. Hydrogen sulfide (H₂S), a gaseous signaling molecule, has emerged as a significant modulator of these processes including oxidative stress mitigation, inflammation reduction, and vascular remodeling. This systematic review investigates the mechanistic pathways through which H₂S influences MMPs and CD147/EMMPRIN and assesses its impact on atherosclerosis progression. A comprehensive literature search was conducted across PubMed, Scopus, and Web of Science databases, focusing on studies examining H₂S modulation of MMPs and CD147/EMMPRIN in atherosclerosis contexts. Findings indicate that H₂S modulates MMP expression and activity through transcriptional regulation and post-translational modifications, including S-sulfhydration. By mitigating oxidative stress, H₂S reduces MMP activation, contributing to plaque stability and vascular remodeling. H₂S also downregulates CD147/EMMPRIN expression via transcriptional pathways, diminishing inflammatory responses and vascular cellular proliferation within plaques. The dual regulatory role of H₂S in inhibiting MMP activity and downregulating CD147 suggests its potential as a therapeutic agent in stabilizing atherosclerotic plaques and mitigating inflammation. Further research is warranted to elucidate the precise molecular mechanisms and to explore H₂S-based therapies for clinical application in atherosclerosis.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Mădălina Poștaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Corneliu Dan Blendea
- Department of Medical-Clinical Disciplines, General Surgery, Faculty of Medicine, "Titu Maiorescu" University of Bucharest, 0400511 Bucharest, Romania
| |
Collapse
|
38
|
Del Barrio Calvo C, Bindila L. Integrated cellular 4D-TIMS lipidomics and transcriptomics for characterization of anti-inflammatory and anti-atherosclerotic phenotype of MyD88-KO macrophages. Front Cell Dev Biol 2024; 12:1450971. [PMID: 39247623 PMCID: PMC11377276 DOI: 10.3389/fcell.2024.1450971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction: Recent progress in cell isolation technologies and high-end omic technologies has allowed investigation of single cell sets across multiple omic domains and a thorough exploration of cellular function and various functional stages. While most multi-omic studies focused on dual RNA and protein analysis of single cell population, it is crucial to include lipid and metabolite profiling to comprehensively elucidate molecular mechanisms and pathways governing cell function, as well as phenotype at different functional stages. Methods: To address this gap, a cellular lipidomics and transcriptomics phenotyping approach employing simultaneous extraction of lipids, metabolites, and RNA from single cell populations combined with untargeted cellular 4 dimensional (4D)-lipidomics profiling along with RNA sequencing was developed to enable comprehensive multi-omic molecular profiling from the lowest possible number of cells. Reference cell models were utilized to determine the minimum number of cells required for this multi-omics analysis. To demonstrate the feasibility of higher resolution cellular multi-omics in early-stage identification of cellular phenotype changes in pathological and physiological conditions we implemented this approach for phenotyping of macrophages in two different activation stages: MyD88-knockout macrophages as a cellular model for atherosclerosis protection, and wild type macrophages. Results and Discussion: This multi-omic study enabled the determination of the lipid content remodeling in macrophages with anti-inflammatory and atherosclerotic protective function acquired by MyD88-KO, hence expedites the understanding of the molecular mechanisms behind immune cells effector functionality and of possible molecular targets for therapeutic intervention. An enriched functional role of phosphatidylcholine and plasmenyl/plasmalogens was shown here to accompany genetic changes underlying macrophages acquisition of anti-inflammatory function, finding that can serve as reference for macrophages reprogramming studies and for general immune and inflammation response to diseases.
Collapse
Affiliation(s)
- Carla Del Barrio Calvo
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center, Mainz, Germany
| | - Laura Bindila
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center, Mainz, Germany
| |
Collapse
|
39
|
Sütő B, Kun J, Bagoly T, Németh T, Pintér E, Kardos D, Helyes Z. Plasma Somatostatin Levels Are Lower in Patients with Coronary Stenosis and Significantly Increase after Stent Implantation. J Clin Med 2024; 13:4727. [PMID: 39200869 PMCID: PMC11355572 DOI: 10.3390/jcm13164727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Background/Objectives: Stimulated capsaicin-sensitive peptidergic sensory nerves release somatostatin (SST), which has systemic anti-inflammatory and analgesic effects, correlating with the severity of tissue injury. Previous studies suggest that SST release into the systemic circulation is likely to serve as a protective mechanism during thoracic and orthopedic surgeries, scoliosis operations, and septic conditions, all involving significant tissue damage, pain, and inflammation. In a severe systemic inflammation rat model, SST released from sensory nerves into the bloodstream enhanced innate defense, reducing mortality. Inflammation is the key pathophysiological process responsible for the formation, progression, instability, and healing of atherosclerotic plaques. Methods: We measured SST-like immunoreactivity (SST-LI) in the plasma of healthy volunteers in different age groups and also that of stable angina patients with coronary heart disease (CHD) using ELISA and tracked changes during invasive coronary interventions (coronarography) with and without stent implantation. Samples were collected at (1) pre-intervention, (2) after coronarography, (3) 2 h after coronarography initiation and coronary stent placement, and (4) the next morning. Results: There was a strong negative correlation between SST-LI concentrations and age; the plasma SST-LI of older healthy volunteers (47-73 years) was significantly lower than in young ones (24-27 years). Baseline SST-LI in CHD patients who needed stents was significantly reduced compared to those not requiring stents. Plasma SST-LI significantly increased two hours post stent insertion and the next morning compared to pre-intervention levels. Conclusions: Age-related SST decrease might be a consequence of lower gene expression within specific hypo-thalamic nuclei as has been previously demonstrated in rodent animals. Reperfusion of ischemic myocardium post-stent implantation may trigger SST release, potentially offering protective benefits in coronary heart disease. Investigating this SST-mediated mechanism could offer valuable insights for future therapies.
Collapse
Affiliation(s)
- Balázs Sütő
- Department of Anaesthesia and Intensive Therapy, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
- Hungarian Centre for Genomics and Bioinformatics, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, 1117 Budapest, Hungary
| | - Teréz Bagoly
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Timea Németh
- Department of Languages for Biomedical Purposes and Communication, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, 1117 Budapest, Hungary
- Hungarian Research Network (HUN-REN-PTE), Chronic Pain Research Group, University of Pécs, 7624 Pécs, Hungary
| | - Dorottya Kardos
- Department of Anaesthesia and Intensive Therapy, General District Hospital Szekszárd, 7100 Szekszárd, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, 1117 Budapest, Hungary
- Hungarian Research Network (HUN-REN-PTE), Chronic Pain Research Group, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
40
|
Liu S, Huang J, Luo J, Bian Q, Weng Y, Li L, Chen J. Therapeutic biomaterials with liver X receptor agonists based on the horizon of material biology to regulate atherosclerotic plaque regression in situ for devices surface engineering. Regen Biomater 2024; 11:rbae089. [PMID: 39165884 PMCID: PMC11335375 DOI: 10.1093/rb/rbae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024] Open
Abstract
Percutaneous coronary interventional is the main treatment for coronary atherosclerosis. At present, most studies focus on blood components and smooth muscle cells to achieve anticoagulation or anti-proliferation effects, while the mediated effects of materials on macrophages are also the focus of attention. Macrophage foam cells loaded with elevated cholesterol is a prominent feature of atherosclerotic plaque. Activation of liver X receptor (LXR) to regulate cholesterol efflux and efferocytosis and reduce the number of macrophage foam cells in plaque is feasible for the regression of atherosclerosis. However, cholesterol efflux promotion remains confined to targeted therapies. Herein, LXR agonists (GW3965) were introduced on the surface of the material and delivered in situ to atherogenic macrophages to improve drug utilization for anti-atherogenic therapy and plaque regression. LXR agonists act as plaque inhibition mediated by multichannel regulation macrophages, including lipid metabolism (ABCA1, ABCG1 and low-density lipoprotein receptor), macrophage migration (CCR7) and efferocytosis (MerTK). Material loaded with LXR agonists significantly reduced plaque burden in atherosclerotic model rats, most importantly, it did not cause hepatotoxicity and adverse reactions such as restenosis and thrombosis after material implantation. Both in vivo and in vitro evaluations confirmed its anti-atherosclerotic capability and safety. Overall, multi-functional LXR agonist-loaded materials with pathological microenvironment regulation effect are expected to be promising candidates for anti-atherosclerosis and have potential applications in cardiovascular devices surface engineering.
Collapse
Affiliation(s)
- Sainan Liu
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jinquan Huang
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiayan Luo
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qihao Bian
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yajun Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Li Li
- School of Health Management, West China University, Chengdu 610039, China
| | - Junying Chen
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
41
|
Wei K, Yu L, Li J, Gao J, Chen L, Liu M, Zhao X, Li M, Shi D, Ma X. Platelet-derived exosomes regulate endothelial cell inflammation and M1 macrophage polarization in coronary artery thrombosis via modulating miR-34a-5p expression. Sci Rep 2024; 14:17429. [PMID: 39075107 PMCID: PMC11286768 DOI: 10.1038/s41598-024-67654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
As the important factors in coronary artery thrombosis, endothelial injury and M1 macrophage polarization are closely related to the expression of miR-34a-5p. Exosomes in plasma are mainly derived from platelets and play an important role in thrombosis. Based on these facts, this study was conducted to investigate the acting mechanism of platelet-derived exosomes (PLT-exo) in the effects of endothelial injury and M1 macrophage polarization on coronary artery thrombosis. Firstly, rats were divided into the sham-operated group and the coronary microembolization (CME) group, and their plasma-derived exosomes were extracted to detect the expression of miR-34a-5p. Next, the PLT-exo were extracted from healthy volunteers and then co-cultured with ox-LDL-induced endothelial cells and LPS-induced macrophages, respectively. Subsequently, the expression of IL-1β, IL-6, TNF-α, and ICAM-1 in endothelial cells was measured, and the level of markers related to M1 macrophage polarization and Sirt1/NF-κB pathway was detected. Finally, the above indicators were examined again after PLT-exo combined with miR-34a-5p mimic were co-cultured with endothelial cells and macrophages, respectively. The results demonstrated that the expression of miR-34a-5p in the CME group was up-regulated compared with the sham-operated group. In cell experiments, PLT-exo modulated the Sirt1/NF-κB pathway by inhibiting the expression of intracellular miR-34a-5p and down-regulated the expression of IL-1β, IL-6, TNF-α, and ICAM-1 in endothelial cells and M1 macrophage polarization. After the transfection with miR-34a-5p mimic, endothelial cell inflammatory injury and M1 macrophage polarization increased to varying degrees. In conclusion, PLT-exo can alleviate coronary artery thrombosis by reducing endothelial cell inflammation and M1 macrophage polarization via inhibiting miR-34a-5p expression. In contrast, miR-34a-5p overexpression in PLT-exo may exacerbate these pathological injuries in coronary artery thrombosis.
Collapse
Affiliation(s)
- Kangkang Wei
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
- Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, 100091, China
| | - Lintong Yu
- Beijing University of Chinese Medicine, Beijing, 100091, China
| | - Jinming Li
- Shandong Provincial Third Hospital, Jinan, 250031, China
| | - Jie Gao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Li Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Min Liu
- Beijing University of Chinese Medicine, Beijing, 100091, China
| | - Xiaohan Zhao
- Beijing University of Chinese Medicine, Beijing, 100091, China
| | - Min Li
- Beijing University of Chinese Medicine, Beijing, 100091, China
| | - Dazhuo Shi
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
- Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, 100091, China.
| | - Xiaojuan Ma
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
42
|
Ezenabor EH, Adeyemi AA, Adeyemi OS. Gut Microbiota and Metabolic Syndrome: Relationships and Opportunities for New Therapeutic Strategies. SCIENTIFICA 2024; 2024:4222083. [PMID: 39041052 PMCID: PMC11262881 DOI: 10.1155/2024/4222083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/10/2024] [Accepted: 07/04/2024] [Indexed: 07/24/2024]
Abstract
Since its discovery, numerous studies have shown the role of the microbiota in well-being and disease. The gut microbiota represents an essential factor that plays a multidirectional role that affects not just the gut but also other parts of the body, including the brain, endocrine system, humoral system, immune system, and metabolic pathways, as well as host-microbiome interactions. Through a comprehensive analysis of existing literature using the desktop research methodology, this review elucidates the mechanisms by which gut microbiota dysbiosis contributes to metabolic dysfunction, including obesity, dyslipidaemia, hypertension, atherosclerosis, hyperuricemia, and hyperglycaemia. Furthermore, it examines the bidirectional communication pathways between gut microbiota and host metabolism, highlighting the role of microbial-derived metabolites, immune modulation, and gut barrier integrity in shaping metabolic homeostasis. Importantly, the review identifies promising therapeutic strategies targeting the gut microbiota as potential interventions for metabolic syndrome, including probiotics, prebiotics, symbiotics, dietary modifications, and faecal microbiota transplantation. By delineating the bidirectional interactions between gut microbiota and metabolic syndrome, the review not only advances our understanding of disease pathophysiology but also underscores the potential for innovative microbiota-based interventions to mitigate the global burden of metabolic syndrome and its associated complications.
Collapse
Affiliation(s)
- Emmanuel Henry Ezenabor
- Department of BiochemistryMedicinal Biochemistry, Nanomedicine & Toxicology LaboratoryBowen University, Iwo 232102, Osun State, Nigeria
| | - Aishat Abimbola Adeyemi
- Department of BiochemistryMedicinal Biochemistry, Nanomedicine & Toxicology LaboratoryBowen University, Iwo 232102, Osun State, Nigeria
| | - Oluyomi Stephen Adeyemi
- Department of BiochemistryMedicinal Biochemistry, Nanomedicine & Toxicology LaboratoryBowen University, Iwo 232102, Osun State, Nigeria
| |
Collapse
|
43
|
Peiu SN, Iosep DG, Danciu M, Scripcaru V, Ianole V, Mocanu V. Ghrelin Expression in Atherosclerotic Plaques and Perivascular Adipose Tissue: Implications for Vascular Inflammation in Peripheral Artery Disease. J Clin Med 2024; 13:3737. [PMID: 38999303 PMCID: PMC11242600 DOI: 10.3390/jcm13133737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Atherosclerosis, a leading cause of peripheral artery disease (PAD), is driven by lipid accumulation and chronic inflammation within arterial walls. Objectives: This study investigates the expression of ghrelin, an anti-inflammatory peptide hormone, in plaque morphology and inflammation in patients with PAD, highlighting its potential role in age-related vascular diseases and metabolic syndrome. Methods: The analysis specifically focused on the immunohistochemical expression of ghrelin in atherosclerotic plaques and perivascular adipose tissue (PVAT) from 28 PAD patients. Detailed immunohistochemical staining was performed to identify ghrelin within these tissues, comparing its presence in various plaque types and assessing its association with markers of inflammation and macrophage polarization. Results: Significant results showed a higher prevalence of calcification in fibro-lipid plaques (63.1%) compared to fibrous plaques, with a notable difference in inflammatory infiltration between the two plaque types (p = 0.027). Complicated plaques exhibited increased ghrelin expression, suggesting a modulatory effect on inflammatory processes, although this did not reach statistical significance. The correlation between ghrelin levels and macrophage presence, especially the pro-inflammatory M1 phenotype, indicates ghrelin's involvement in the inflammatory dynamics of atherosclerosis. Conclusions: The findings propose that ghrelin may influence plaque stability and vascular inflammation, pointing to its therapeutic potential in managing atherosclerosis. The study underlines the necessity for further research to clarify ghrelin's impact on vascular health, particularly in the context of metabolic syndrome and age-related vascular alterations.
Collapse
Affiliation(s)
- Sorin Nicolae Peiu
- Vascular Surgery Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Morpho-Functional Sciences II (Physiopathology) Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Diana Gabriela Iosep
- Pathology Department, "Sf. Spiridon" Emergency Clinical Hospital, 700111 Iasi, Romania
- Morpho-Functional Department-Morphopathology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihai Danciu
- Pathology Department, "Sf. Spiridon" Emergency Clinical Hospital, 700111 Iasi, Romania
- Morpho-Functional Department-Morphopathology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Veronica Scripcaru
- Morpho-Functional Department-Morphopathology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Victor Ianole
- Morpho-Functional Department-Morphopathology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Veronica Mocanu
- Morpho-Functional Sciences II (Physiopathology) Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
44
|
Lei L, Li Y, Li M, Xin H, Tian X, Zhang Y, Shi W, Cong B. Pathological changes in the spleen of mice subjected to different time courses of restraint stress. Sci Rep 2024; 14:13543. [PMID: 38866996 PMCID: PMC11169231 DOI: 10.1038/s41598-024-64475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
The objective of this study was to investigate spleen pathology and immune cell subset alterations in mice exposed to acute and chronic restraint stress over various timeframes. A deeper understanding of stress-induced spleen injuries can provide new insights into the mechanisms underlying stress-induced disorders. C57BL/6N mice were restrained for different durations (1, 3, 7, 14 and 21 days) for 6-8 h daily. The control mice were observed at the same time points. Post restraint, behavioural experiments were conducted to assess spleen weight, gross morphology and microscopic histological changes. Immunohistochemical staining was used to detect changes in glucocorticoid receptor (GR) expression, immune cell subsets and cell proliferation in response to stress. Our analysis revealed significant behavioural abnormalities in the stressed mice. In particular, there was an increase in the nuclear expression of GR beginning on Day 3, and it peaked on Day 14. The spleens of stressed mice displayed a reduction in size, disordered internal tissue structure and reduced cell proliferation. NK cells and M2-type macrophages exhibited immune cell subset alterations under stress, whereas T or B cells remained unaltered. Restraint stress can lead to pathomorphological alterations in spleen morphology, cell proliferation and immune cell counts in mice. These findings suggest that stress-induced pathological changes can disrupt immune regulation during stress.
Collapse
Affiliation(s)
- Lei Lei
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, No.361 Zhongshan Dong Road, Shijiazhuang, 050017, China
| | - Yingmin Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, No.361 Zhongshan Dong Road, Shijiazhuang, 050017, China
| | - Meili Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, No.361 Zhongshan Dong Road, Shijiazhuang, 050017, China
| | - Hongjian Xin
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, No.361 Zhongshan Dong Road, Shijiazhuang, 050017, China
| | - Xiaofei Tian
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, No.361 Zhongshan Dong Road, Shijiazhuang, 050017, China
| | - Yifan Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, No.361 Zhongshan Dong Road, Shijiazhuang, 050017, China
| | - Weibo Shi
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, No.361 Zhongshan Dong Road, Shijiazhuang, 050017, China.
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, No.361 Zhongshan Dong Road, Shijiazhuang, 050017, China.
| |
Collapse
|
45
|
Ma Y, Lai J, Wan Q, Chen Z, Sun L, Zhang Q, Guan C, Li Q, Wu J. Identification of common mechanisms and biomarkers for dermatomyositis and atherosclerosis based on bioinformatics analysis. Skin Res Technol 2024; 30:e13808. [PMID: 38899746 PMCID: PMC11187814 DOI: 10.1111/srt.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Dermatomyositis (DM) manifests as an autoimmune and inflammatory condition, clinically characterized by subacute progressive proximal muscle weakness, rashes or both along with extramuscular manifestations. Literature indicates that DM shares common risk factors with atherosclerosis (AS), and they often co-occur, yet the etiology and pathogenesis remain to be fully elucidated. This investigation aims to utilize bioinformatics methods to clarify the crucial genes and pathways that influence the pathophysiology of both DM and AS. METHOD Microarray datasets for DM (GSE128470, GSE1551, GSE143323) and AS (GSE100927, GSE28829, GSE43292) were retrieved from the Gene Expression Omnibus (GEO) database. The weighted gene co-expression network analysis (WGCNA) was used to reveal their co-expressed modules. Differentially expression genes (DEGs) were identified using the "limma" package in R software, and the functions of common DEGs were determined by functional enrichment analysis. A protein-protein interaction (PPI) network was established using the STRING database, with central genes evaluated by the cytoHubba plugin, and validated through external datasets. Immune infiltration analysis of the hub genes was conducted using the CIBERSORT method, along with Gene Set Enrichment Analysis (GSEA). Finally, the NetworkAnalyst platform was employed to examine the transcription factors (TFs) responsible for regulating pivotal crosstalk genes. RESULTS Utilizing WGCNA analysis, a total of 271 overlapping genes were pinpointed. Subsequent DEG analysis revealed 34 genes that are commonly found in both DM and AS, including 31 upregulated genes and 3 downregulated genes. The Degree Centrality algorithm was applied separately to the WGCNA and DEG collections to select the 15 genes with the highest connectivity, and crossing the two gene sets yielded 3 hub genes (PTPRC, TYROBP, CXCR4). Validation with external datasets showed their diagnostic value for DM and AS. Analysis of immune infiltration indicates that lymphocytes and macrophages are significantly associated with the pathogenesis of DM and AS. Moreover, GSEA analysis suggested that the shared genes are enriched in various receptor interactions and multiple cytokines and receptor signaling pathways. We coupled the 3 hub genes with their respective predicted genes, identifying a potential key TF, CBFB, which interacts with all 3 hub genes. CONCLUSION This research utilized comprehensive bioinformatics techniques to explore the shared pathogenesis of DM and AS. The three key genes, including PTPRC, TYROBP, and CXCR4, are related to the pathogenesis of DM and AS. The central genes and their correlations with immune cells may serve as potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Yirong Ma
- Jiangxi University of Traditional Chinese MedicineNanchangJiangxiChina
| | - Junyu Lai
- Department of cardiovascularAffiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchangJiangxiChina
| | - Qiang Wan
- Department of cardiovascularAffiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchangJiangxiChina
| | - Zhengtao Chen
- Department of cardiovascularAffiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchangJiangxiChina
| | - Liqiang Sun
- Department of cardiovascularAffiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchangJiangxiChina
| | - Qinhe Zhang
- Jiangxi University of Traditional Chinese MedicineNanchangJiangxiChina
| | - Chengyan Guan
- Jiangxi University of Traditional Chinese MedicineNanchangJiangxiChina
| | - Qiming Li
- Jiangxi University of Traditional Chinese MedicineNanchangJiangxiChina
| | - Jianguang Wu
- Department of cardiovascularAffiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchangJiangxiChina
| |
Collapse
|
46
|
Ghinea N, Liehn EA, Grommes J, Delattre DD, Olesen TK. Follicle-stimulating hormone receptor expression in advanced atherosclerotic plaques. Sci Rep 2024; 14:10176. [PMID: 38702476 PMCID: PMC11068877 DOI: 10.1038/s41598-024-60962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Experimental evidence indicates that follicle-stimulating hormone (FSH), an essential hormone for reproduction, can act directly on endothelial cells inducing atherosclerosis activation and development. However, it remains unknown whether the FSH-receptor (FSHR) is expressed in human atherosclerosis plaques. To demonstrate the FSHR presence, we used immunohistochemical and immunoelectron microscopy involving a specific monoclonal antibody FSHR1A02 that recognizes an epitope present in the FSHR-ectodomain. In all 55 patients with atherosclerotic plaques located in carotid, coronary, femoral arteries, and iliac aneurysm, FSHR was selectively expressed in arterial endothelium covering atherosclerotic plaques and endothelia lining intraplaque neovessels. Lymphatic neovessels were negative for FSHR. M1-macrophages, foam cells, and giant multinucleated cells were also FSHR-positive. FSHR was not detected in normal internal thoracic artery. Immunoelectron microscopy performed in ApoEKO/hFSHRKI mice with atherosclerotic plaques, after injection in vivo with mouse anti-hFSHR monoclonal antibody FSHR1A02 coupled to colloidal gold, showed FSHR presence on the luminal surface of arterial endothelial cells covering atherosclerotic plaques. Therefore, FSHR can bind, internalize, and deliver into the plaque circulating ligands to FSHR-positive cells. In conclusion, we report FSHR expression in endothelial cells, M1-macrophages, M1-derived foam cells, giant multinucleated macrophages, and osteoclasts associated with human atherosclerotic plaques.
Collapse
Affiliation(s)
- Nicolae Ghinea
- Département Recherche Translationnelle, Centre de Recherche, Institut Curie, 26 rue d'Ulm, 75005, Paris, France.
- FSHR Theranostics SAS, 11 Rue de Rungis, 75013, Paris, France.
| | - Elisa Anamaria Liehn
- Institute of Molecular Medicine, University of Southern Denmark, 25 J.B. Winslow Vej, 5230, Odense, Denmark
- National Institute of Pathology "Victor Babes", Splaiul Independentei 99-101, 050096, Bucharest, Romania
- National Heart Centre Singapore, 5 Hospital Dr, Singapore, 169609, Singapore
| | | | | | | |
Collapse
|
47
|
Ferreira J, Roque S, Lima Carneiro A, Longatto‐Filho A, Vila I, Cunha C, Silva C, Mesquita A, Cotter J, Correia‐Neves M, Mansilha A, Cunha PG. Reversion of the Inflammatory Markers in Patients With Chronic Limb-Threatening Ischemia. J Am Heart Assoc 2024; 13:e031922. [PMID: 38606780 PMCID: PMC11262488 DOI: 10.1161/jaha.123.031922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/23/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Peripheral artery disease is characterized by an intense inflammatory process that can be associated with a higher mortality rate, particularly in chronic limb-threatening ischemia (CLTI). This study aims to compare the evolution of inflammatory markers between patients with claudication with those with CLTI at 3, 6, and 12 months. METHODS AND RESULTS An observational, single-center, and prospective study was conducted. A total of 119 patients with peripheral artery disease (65 with claudication and 54 with CLTI) were observed and inflammatory markers collected at admission and 3, 6, and 12 months. At admission, patients with CLTI, when compared with patients with claudication, had significantly higher serum levels of C-reactive protein and fibrinogen (positive acute-phase proteins) and lower serum level of albumin, total cholesterol, and high-density lipoprotein (negative acute-phase proteins): C-reactive protein (g/dL), 2.90 (25th-75th percentile, 2.90-4.90) versus 6.80 (25th-75th percentile, 2.90-53.26) (P=0.000); fibrinogen (mg/dL), 293.00 (25th-75th percentile, 269.25-349.00) versus 415.50 (25th-75th percentile, 312.00-615.75) (P=0.000); total cholesterol (mg/dL), 161.79±95% [152.74-170.85] versus 146.42%±95% [135.30-157.53] (P=0.034); high-density lipoprotein (mg/dL), 50.00 (25th-75th percentile, 41.00-60.00) versus 37.00 (25th-75th percentile, 30.00-45.50) (P=0.000); albumin (g/dL): 4.00 (25th-75th percentile, 3.70-4.20) versus 3.60 (25th-75th percentile, 3.10-4.00) (P=0.003). The association between CLTI and total cholesterol was lost after adjusting for confounders. Three months after the resolution of the CLTI, there was an increase in the levels of negative acute-phase proteins and a decrease in positive acute-phase proteins. These inflammatory proteins did not register an evolution in patients with claudication. The differences in the inflammatory proteins between groups disappeared at 6 months. CONCLUSIONS CLTI has an inflammatory environment that can be partially reverted after resolution of the ischemic process, emphasizing the importance of timely intervention.
Collapse
Affiliation(s)
- Joana Ferreira
- Vascular Surgery Department—Physiology and SurgeryCentro Hospitalar Universitário de São JoãoPortoPortugal
- Life and Health Science Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s—PT Government Associated LaboratoryBragaPortugal
- Academic Center Hospital da Senhora da OliveiraGuimarãesPortugal
- Clinical Academic Center Hospital de Trás‐os‐Montes e Alto Douro—Professor Doutor Nuno Grande—CACTMADVila RealPortugal
| | - Susana Roque
- Life and Health Science Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s—PT Government Associated LaboratoryBragaPortugal
| | | | - Adhemar Longatto‐Filho
- Life and Health Science Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s—PT Government Associated LaboratoryBragaPortugal
- Department of Pathology (LIM‐14)University of São Paulo School of MedicineSão PauloBrazil
- Molecular Oncology Research CenterBarretos Cancer HospitalBarretosSão PauloBrazil
| | - Isabel Vila
- Academic Center Hospital da Senhora da OliveiraGuimarãesPortugal
- Center for the Research and Treatment of Arterial Hypertension and Cardiovascular Risk,Hospital da Senhora da OliveiraGuimarãesPortugal
- Internal Medicine DepartmentHospital da Senhora da Oliveira, GuimarãesBragaPortugal
| | - Cristina Cunha
- Academic Center Hospital da Senhora da OliveiraGuimarãesPortugal
- Center for the Research and Treatment of Arterial Hypertension and Cardiovascular Risk,Hospital da Senhora da OliveiraGuimarãesPortugal
- Internal Medicine DepartmentHospital da Senhora da Oliveira, GuimarãesBragaPortugal
| | - Cristina Silva
- Academic Center Hospital da Senhora da OliveiraGuimarãesPortugal
- Center for the Research and Treatment of Arterial Hypertension and Cardiovascular Risk,Hospital da Senhora da OliveiraGuimarãesPortugal
- Internal Medicine DepartmentHospital da Senhora da Oliveira, GuimarãesBragaPortugal
| | - Amílcar Mesquita
- Vascular Surgery Department—Hospital da Senhora da OliveiraGuimarãesPortugal
| | - Jorge Cotter
- Life and Health Science Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s—PT Government Associated LaboratoryBragaPortugal
- Academic Center Hospital da Senhora da OliveiraGuimarãesPortugal
- Center for the Research and Treatment of Arterial Hypertension and Cardiovascular Risk,Hospital da Senhora da OliveiraGuimarãesPortugal
- Internal Medicine DepartmentHospital da Senhora da Oliveira, GuimarãesBragaPortugal
| | - Margarida Correia‐Neves
- Life and Health Science Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s—PT Government Associated LaboratoryBragaPortugal
| | - Armando Mansilha
- Vascular Surgery Department—Physiology and SurgeryCentro Hospitalar Universitário de São JoãoPortoPortugal
- Department of Angiology and Vascular SurgeryCentro Hospitalar Universitário de São JoãoPortoPortugal
- Faculty of MedicineUniversity of PortoPortoPortugal
| | - Pedro Guimarães Cunha
- Life and Health Science Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s—PT Government Associated LaboratoryBragaPortugal
- Academic Center Hospital da Senhora da OliveiraGuimarãesPortugal
- Center for the Research and Treatment of Arterial Hypertension and Cardiovascular Risk,Hospital da Senhora da OliveiraGuimarãesPortugal
- Internal Medicine DepartmentHospital da Senhora da Oliveira, GuimarãesBragaPortugal
| |
Collapse
|
48
|
Lv N, Wang L, Zeng M, Wang Y, Yu B, Zeng W, Jiang X, Suo Y. Saponins as therapeutic candidates for atherosclerosis. Phytother Res 2024; 38:1651-1680. [PMID: 38299680 DOI: 10.1002/ptr.8128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
Drug development for atherosclerosis, the underlying pathological state of ischemic cardiovascular diseases, has posed a longstanding challenge. Saponins, classified as steroid or triterpenoid glycosides, have shown promising therapeutic potential in the treatment of atherosclerosis. Through an exhaustive examination of scientific literature spanning from May 2013 to May 2023, we identified 82 references evaluating 37 types of saponins in terms of their prospective impacts on atherosclerosis. These studies suggest that saponins have the potential to ameliorate atherosclerosis by regulating lipid metabolism, inhibiting inflammation, suppressing apoptosis, reducing oxidative stress, and modulating smooth muscle cell proliferation and migration, as well as regulating gut microbiota, autophagy, endothelial senescence, and angiogenesis. Notably, ginsenosides exhibit significant potential and manifest essential pharmacological attributes, including lipid-lowering, anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects. This review provides a comprehensive examination of the pharmacological attributes of saponins in atherosclerosis, with particular emphasis on their role in the regulation of lipid metabolism regulation and anti-inflammatory effects. Thus, saponins may warrant further investigation as a potential therapy for atherosclerosis. However, due to various reasons such as low oral bioavailability, the clinical application of saponins in the treatment of atherosclerosis still needs further exploration.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yijing Wang
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou people's hospital, Ganzhou, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou people's hospital, Ganzhou, China
| |
Collapse
|
49
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
50
|
Allen J, Dames SS, Foldi CJ, Shultz SR. Psychedelics for acquired brain injury: a review of molecular mechanisms and therapeutic potential. Mol Psychiatry 2024; 29:671-685. [PMID: 38177350 DOI: 10.1038/s41380-023-02360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
Acquired brain injury (ABI), such as traumatic brain injury and stroke, is a leading cause of disability worldwide, resulting in debilitating acute and chronic symptoms, as well as an increased risk of developing neurological and neurodegenerative disorders. These symptoms can stem from various neurophysiological insults, including neuroinflammation, oxidative stress, imbalances in neurotransmission, and impaired neuroplasticity. Despite advancements in medical technology and treatment interventions, managing ABI remains a significant challenge. Emerging evidence suggests that psychedelics may rapidly improve neurobehavioral outcomes in patients with various disorders that share physiological similarities with ABI. However, research specifically focussed on psychedelics for ABI is limited. This narrative literature review explores the neurochemical properties of psychedelics as a therapeutic intervention for ABI, with a focus on serotonin receptors, sigma-1 receptors, and neurotrophic signalling associated with neuroprotection, neuroplasticity, and neuroinflammation. The promotion of neuronal growth, cell survival, and anti-inflammatory properties exhibited by psychedelics strongly supports their potential benefit in managing ABI. Further research and translational efforts are required to elucidate their therapeutic mechanisms of action and to evaluate their effectiveness in treating the acute and chronic phases of ABI.
Collapse
Affiliation(s)
- Josh Allen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Shannon S Dames
- Psychedelic-Assisted Therapy Post-Graduate Program, Health Sciences and Human Services, Vancouver Island University, Nanaimo, BC, Canada
| | - Claire J Foldi
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Centre for Trauma and Mental Health Research, Health Sciences and Human Services, Vancouver Island University, Nanaimo, BC, Canada.
| |
Collapse
|