1
|
Li X, Su Q, Xue J, Wei S. Mechanisms, structure-activity relationships, and skin applications of natural polysaccharides in anti-aging: A review. Int J Biol Macromol 2025:143320. [PMID: 40258559 DOI: 10.1016/j.ijbiomac.2025.143320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/03/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
Natural polysaccharides, a class of biological macromolecules found in nature, have recently attracted considerable interest owing to their notable anti-aging capabilities. This article provides a comprehensive review of the intricate mechanisms through which natural polysaccharides combat aging, as well as their applications in addressing skin aging. Primarily, these polysaccharides manifest their anti-aging effects via diverse pathways, such as antioxidation, gut microbiota regulation, metabolic modulation, and immune system regulation. The anti-aging efficacy of natural polysaccharides is intrinsically linked to their structure-activity relationships, with critical determinants including molecular weight, monosaccharide composition, and chemical architecture. Polysaccharides with lower molecular weights typically demonstrate enhanced biological activity, whereas specific monosaccharide configurations and chemical modifications can markedly augment their anti-aging potential. The utilization of natural polysaccharides in skin aging holds significant promise, offering benefits such as anti-aging, wrinkle reduction, anti-glycation, and the facilitation of skin regeneration. In conclusion, this article synthesizes the advancements in research on natural polysaccharides within the anti-aging sector and forecasts future trajectories, to establish a robust foundation for the innovation of new polysaccharide-derived anti-aging formulations.
Collapse
Affiliation(s)
- Xiujuan Li
- Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Qingqi Su
- Skills Training Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Jingwei Xue
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China.
| | - Song Wei
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China.
| |
Collapse
|
2
|
Wanga R, Danzeng Z, Yang J, Qu J, Zhu R, Li H, Tang H, Li C, Zhao K. Identification and exploration of the potential antiaging role of the novel antioxidant peptide DGGY derived from yak milk proteins. J Dairy Sci 2025:S0022-0302(25)00268-1. [PMID: 40252762 DOI: 10.3168/jds.2025-26381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/23/2025] [Indexed: 04/21/2025]
Abstract
Yak milk has substantial nutritional value yet remains underutilized for high-value applications. Because yak milk is a rich source of bioactive peptides due to its elevated protein composition, this study investigated yak milk-derived peptides with antioxidant properties and their potential antiaging mechanisms. First, 8 major yak milk proteins were hydrolyzed in silico via BIOPEP. Compared with other enzymes, proteinase K plus subtilisin could generate more antioxidant peptides. Six potential antioxidant peptides were efficiently screened in silico; DGGY presented the strongest hydroxyl radical scavenging rate, and its antioxidant activity was further verified in Caenorhabditis elegans. Additionally, the results of network pharmacology analysis suggested an antiaging role of DGGY, which was validated in C. elegans; specifically, supplementation with DGGY (50 and 300 μg/mL) significantly extended the life span of C. elegans by regulating the expression of related genes (including sod-3, snk-1, daf-16, daf-2, and hsp-16.2). In summary, a novel yak milk protein-derived antioxidant peptide, DGGY, was efficiently screened and found to exert potential antiaging effects. This study provides a method for the high-value utilization of yak milk and novel information for antiaging research.
Collapse
Affiliation(s)
- Rubin Wanga
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, P. R. China 315100; Zhejiang Key Laboratory of Intelligent Food Logistics and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China 310021
| | - Zhandu Danzeng
- Agricultural and Rural Bureau of Naqu, Naqu, Tibet Autonomous Region, China 852000
| | - Jinyong Yang
- Agricultural and Rural Bureau of Naqu, Naqu, Tibet Autonomous Region, China 852000; Zhejiang Animal Husbandry Technology Promotion and Breeding Poultry Monitoring General Station, Hangzhou, China 310020
| | - Jiu Qu
- Agricultural and Rural Bureau of Naqu, Naqu, Tibet Autonomous Region, China 852000
| | - Ruikai Zhu
- Zhejiang Key Laboratory of Intelligent Food Logistics and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China 310021
| | - Huanhuan Li
- Zhejiang Key Laboratory of Intelligent Food Logistics and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China 310021
| | - Honggang Tang
- Zhejiang Key Laboratory of Intelligent Food Logistics and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China 310021
| | - Caiyan Li
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, P. R. China 315100.
| | - Ke Zhao
- Zhejiang Key Laboratory of Intelligent Food Logistics and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China 310021.
| |
Collapse
|
3
|
Zeinali Nia E, Najjar Sadeghi R, Ebadi M, Faghihi M. ERK1/2 gene expression and hypomethylation of Alu and LINE1 elements in patients with type 2 diabetes with and without cataract: Impact of hyperglycemia-induced oxidative stress. J Diabetes Investig 2025; 16:689-706. [PMID: 39804191 PMCID: PMC11970314 DOI: 10.1111/jdi.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 04/05/2025] Open
Abstract
AIMS This study aimed to delineate the effect of hyperglycemia on the Alu/LINE-1 hypomethylation and in ERK1/2 genes expression in type 2 diabetes with and without cataract. METHODS This study included 58 diabetic patients without cataracts, 50 diabetic patients with cataracts, and 36 healthy controls. After DNA extraction and bisulfite treatment, LINE-1 and Alu methylation levels were assessed using Real-time MSP. ERK1/2 gene expression was analyzed through real-time PCR. Total antioxidant capacity (TAC), and fasting plasma glucose (FPG) were measured using colorimetric methods. Statistical analysis was performed with SPSS23, setting the significance level at P < 0.05. RESULTS The TAC levels were significantly lower for cataract and diabetic groups than controls (259.31 ± 122.99, 312.43 ± 145.46, 372.58 ± 132.95 nanomole of Trolox equivalent) with a significant correlation between FPG and TAC levels in both the cataract and diabetic groups (P < 0.05). Alu and LINE-1 sequences were found to be statistically hypomethylated in diabetic and cataract patients compared to controls. In these groups, TAC levels were directly correlated with Alu methylation (P < 0.05) but not LINE-1. ERK1/2 gene expression was significantly higher in diabetic and cataract patients, showing increases of 2.41-fold and 1.43-fold for ERK1, and 1.27-fold and 1.5 for ERK2, respectively. ERK1 expression correlated significantly with FPG levels. A reverse correlation was observed between TAC levels and ERK1/2 expression. CONCLUSIONS Our findings indicate that hyperglycemia-induced oxidative stress may alter ERK1/2 gene expression patterns and induce aberrant hypomethylation in Alu and LINE-1 sequences. These aberrant changes may play a contributing role in diabetic complications such as cataracts.
Collapse
Affiliation(s)
- Elham Zeinali Nia
- Department of Biochemistry, Faculty of Basic SciencesIslamic Azad University Damghan BranchDamghanIran
| | - Ruhollah Najjar Sadeghi
- Department of Clinical Biochemistry, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Mostafa Ebadi
- Department of Biochemistry, Faculty of Basic SciencesIslamic Azad University Damghan BranchDamghanIran
| | - Mohammad Faghihi
- Department of Medical SciencesShahid Beheshti UniversityTehranIran
| |
Collapse
|
4
|
Zhou F, Aw AJ, Erdmann-Pham DD, Fischer J, Song YS. Robust and Adaptive Non-Parametric Tests for Detecting General Distributional Shifts in Gene Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641952. [PMID: 40161649 PMCID: PMC11952341 DOI: 10.1101/2025.03.06.641952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Differential expression analysis is crucial in genomics, yet existing methods primarily focus on detecting mean shifts. Variance shifts in gene expression are well-documented in studies of cellular signaling pathways, and more recently they have characterized aging, thus motivating the need for flexible detection approaches that include tests of expression variance changes. In this work, we present QRscore (Quantile Rank Score), a general method for detecting distributional shifts in gene expression by extending the Mann-Whitney test into a flexible family of rank-based tests. Here, we focus on implementing QRscore to detect shifts in mean and variance in gene expression, using weights designed from negative binomial (NB) and zero-inflated negative binomial (ZINB) models to combine the strengths of parametric and non-parametric approaches. We show through simulations that QRscore not only achieves high statistical power while controlling the false discovery rate (FDR), but also outperforms existing methods in detecting variance shifts and mean shifts. Applying QRscore to bulk RNA-seq data from the Genotype-Tissue Expression (GTEx) project, we identified numerous differentially dispersed genes and differentially expressed genes across 33 tissues. Notably, many genes have significant variance shifts but non-significant mean shifts. QRscore augments the genome bioinformatics toolkit by offering a powerful and flexible approach for differential expression analysis. QRscore is available in R, at https://github.com/songlab-cal/QRscore.
Collapse
Affiliation(s)
- Fanding Zhou
- Biostatistics Division, University of California, Berkeley
| | - Alan J. Aw
- Department of Statistics, University of California, Berkeley
- Department of Genetics, University of Pennsylvania
| | | | | | - Yun S. Song
- Department of Statistics, University of California, Berkeley
- Computer Science Division, University of California, Berkeley
| |
Collapse
|
5
|
Liang H, Li S, Peng X, Xiao H. Overview of the epigenetic/cytotoxic dual-target inhibitors for cancer therapy. Eur J Med Chem 2025; 285:117235. [PMID: 39788061 DOI: 10.1016/j.ejmech.2024.117235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Epigenetic dysregulation plays a pivotal role in the initiation and progression of various cancers, influencing critical processes such as tumor growth, invasion, migration, survival, apoptosis, and angiogenesis. Consequently, targeting epigenetic pathways has emerged as a promising strategy for anticancer drug discovery in recent years. However, the clinical efficacy of epigenetic inhibitors, such as HDAC inhibitors, has been limited, often accompanied by resistance. To overcome these challenges, innovative therapeutic approaches are required, including the combination of epigenetic inhibitors with cytotoxic agents or the design of dual-acting inhibitors that target both epigenetic and cytotoxic pathways. In this review, we provide a comprehensive overview of the structures, biological functions and inhibitors of epigenetic regulators (such as HDAC, LSD1, PARP, and BET) and cytotoxic targets (including tubulin and topoisomerase). Furthermore, we discuss recent advancement of combination therapies and dual-target inhibitors that target both epigenetic and cytotoxic pathways, with a particular focus on recent advances, including rational drug design, pharmacodynamics, pharmacokinetics, and clinical applications.
Collapse
Affiliation(s)
- Hailiu Liang
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Shuqing Li
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Xiaopeng Peng
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China; Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, PR China.
| | - Hao Xiao
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China; Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, PR China.
| |
Collapse
|
6
|
Newell ME, Aravindan A, Babbrah A, Halden RU. Epigenetic Biomarkers Driven by Environmental Toxins Associated with Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis in the United States: A Systematic Review. TOXICS 2025; 13:114. [PMID: 39997929 PMCID: PMC11860158 DOI: 10.3390/toxics13020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/18/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025]
Abstract
Environmental toxins and epigenetic changes have been linked to neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), and amyotrophic lateral sclerosis (ALS). This paper aimed to (i) identify environmental toxins associated with AD, PD, and ALS, (ii) locate potential industrial sources of toxins in the United States (U.S.), and (iii) assess epigenetic changes driven by exposure to toxins reported by patients. Environmental factors and epigenetic biomarkers of neurodegeneration were compiled from 69 studies in the literature using Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) and geographic information system approaches. Some 127 environmental toxins have been associated or putatively associated with AD, PD, or ALS, with four toxic metals (As, Cd, Mn, and Hg) common to all three of these neurodegenerative diseases. Environmental toxins associated with epigenetic changes (e.g., DNA methylation) in patients include air pollutants, metals, and organic chemicals (e.g., pesticides, mycotoxins, and cyanotoxins). Geographic analysis showed that study locations (e.g., U.S., Europe, and East Asia) were selected by researchers based on convenience of access rather than exposure risk and disease prevalence. We conclude that several toxins and epigenetic markers shared among neurodegenerative diseases could serve as attractive future targets guiding environmental quality improvements and aiding in early disease detection.
Collapse
Affiliation(s)
- Melanie Engstrom Newell
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Environmental Health Engineering, Tempe, AZ 85287, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Anumitha Aravindan
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Environmental Health Engineering, Tempe, AZ 85287, USA
- Barrett, The Honors College, Arizona State University, Tempe, AZ 85287, USA
| | - Ayesha Babbrah
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Environmental Health Engineering, Tempe, AZ 85287, USA
- Barrett, The Honors College, Arizona State University, Tempe, AZ 85287, USA
| | - Rolf U. Halden
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Environmental Health Engineering, Tempe, AZ 85287, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
- Barrett, The Honors College, Arizona State University, Tempe, AZ 85287, USA
- School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
7
|
la Torre A, Lo Vecchio F, Angelillis VS, Gravina C, D’Onofrio G, Greco A. Reinforcing Nrf2 Signaling: Help in the Alzheimer's Disease Context. Int J Mol Sci 2025; 26:1130. [PMID: 39940900 PMCID: PMC11818887 DOI: 10.3390/ijms26031130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Oxidative stress plays a role in various pathophysiological diseases, including neurogenerative diseases, such as Alzheimer's disease (AD), which is the most prevalent neuro-pathology in the aging population. Oxidative stress has been reported to be one of the earliest pathological alterations in AD. Additionally, it was demonstrated that in older adults, there is a loss of free radical scavenging ability. The Nrf2 transcription factor is a key regulator in antioxidant defense systems, but, with aging, both the amount and the transcriptional activity of Nrf2 decrease. With the available treatments for AD being poorly effective, reinforcing the antioxidant defense systems via the Nrf2 pathway may be a way to prevent and treat AD. To highlight the predominant role of Nrf2 signaling in defending against oxidative stress and, therefore, against neurotoxicity, we present an overview of the natural compounds that exert their own neuroprotective roles through the activation of the Nrf2 pathway. This review is an opportunity to promote a holistic approach in the treatment of AD and to highlight the need to further refine the development of new potential Nrf2-targeting drugs.
Collapse
Affiliation(s)
- Annamaria la Torre
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (F.L.V.); (C.G.)
| | - Filomena Lo Vecchio
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (F.L.V.); (C.G.)
| | - Valentina Soccorsa Angelillis
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (V.S.A.); (A.G.)
| | - Carolina Gravina
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (F.L.V.); (C.G.)
| | - Grazia D’Onofrio
- Clinical Psychology Service, Health Department, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Antonio Greco
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (V.S.A.); (A.G.)
| |
Collapse
|
8
|
Zhu K, Ni H, Hafeez E, Hu Y, Hu F, Du D, Chen D. Effects of Silibinin on Delaying Aging in Drosophila melanogaster. Antioxidants (Basel) 2025; 14:147. [PMID: 40002334 PMCID: PMC11851952 DOI: 10.3390/antiox14020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Aging is an inevitable physiological process, but delaying aging has always been an enduring human pursuit. Silibinin (SIL), derived from the seeds of the milk thistle plant, exhibits a broad spectrum of pharmacological properties, including anti-tumor effects, liver protection, inhibition of apoptosis, and alleviation of inflammation. However, whether it has anti-aging effects remains unclear. The SIL dietary supplement to Drosophila melanogaster prolonged lifespan, improved climbing ability, ameliorated age-associated intestinal barrier disruption, enhanced the resistance to oxidative stress, and increased the enzyme activities of superoxide dismutase (SOD) and catalase (CAT). Furthermore, RNA-seq results showed that SIL addition significantly upregulated 74 genes and downregulated 50 genes compared with the control. KEGG (Kyoto Encyclopedia of genes and genomes) analysis demonstrated that these differentially expressed genes were primarily involved in the Toll signaling pathway and endoplasmic reticulum proteins processing, six among which, including IM2, IM3, Drsl3, CG7556, GCS1, and TRAM, were particularly involved in the regulation by SIL supplementation. The results indicate that SIL exhibits anti-aging effects by enhancing antioxidant capacity and regulating aging-related signaling pathways. Therefore, SIL shows a potential application in anti-aging dietary regimens.
Collapse
Affiliation(s)
- Kai Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (K.Z.); (E.H.); (Y.H.); (F.H.)
| | - Hang Ni
- Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China;
| | - Eqra Hafeez
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (K.Z.); (E.H.); (Y.H.); (F.H.)
| | - Yaxuan Hu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (K.Z.); (E.H.); (Y.H.); (F.H.)
| | - Fan Hu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (K.Z.); (E.H.); (Y.H.); (F.H.)
| | - Dongsheng Du
- Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China;
| | - Dongsheng Chen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (K.Z.); (E.H.); (Y.H.); (F.H.)
| |
Collapse
|
9
|
Qi X, Ullah A, Yu W, Jin X, Liu H. Estimating the Genetic Risk of First-Degree Relatives for Chronic Diseases Using the Short Tandem Repeat Score as Model of Polygenic Inheritance. Biochem Genet 2024:10.1007/s10528-024-11003-0. [PMID: 39733222 DOI: 10.1007/s10528-024-11003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024]
Abstract
This study aims to establish a genetic risk assessment model based on a score of short tandem repeats (STRs) of polygenic inheritance. A total of 396 children and their biological parents were collected for STR genotyping. The numbers of tandem repeats of two alleles in one STR locus were assumed to be a quantitative genetic strength for disease incidence. The sums of 19 STR loci were considered a quantitative genetic strength per individual. Various thresholds of the STRs between paternal, maternal, and childhood data were recorded. As an exemplar, for thresholds of 25%, the first quarter = 1. All other samples = 0. The consistency rate for heredity (CH) was calculated from the difference in the morbidity of children between parents with and without disease groups. The ratio of observed CH to expected CH was defined as the heredity index (HI). Actual Pedigree data (finger-crossing test) confirmed the accuracy of the STR score. The genetic risk of first-degree relatives could be estimated using easily acquired data (incidence in an unrelated population). Our findings can provide a polygenic genetic model for estimating the incidence and genetic risk of chronic disease in first-degree relatives.
Collapse
Affiliation(s)
- Xia Qi
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Anwar Ullah
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Weijian Yu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xiaojun Jin
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Hui Liu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, People's Republic of China.
| |
Collapse
|
10
|
Hejazian SM, Hejazian SS, Mostafavi SM, Hosseiniyan SM, Montazersaheb S, Ardalan M, Zununi Vahed S, Barzegari A. Targeting cellular senescence in kidney diseases and aging: A focus on mesenchymal stem cells and their paracrine factors. Cell Commun Signal 2024; 22:609. [PMID: 39696575 DOI: 10.1186/s12964-024-01968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Cellular senescence is a phenomenon distinguished by the halting of cellular division, typically triggered by DNA injury or numerous stress-inducing factors. Cellular senescence is implicated in various pathological and physiological processes and is a hallmark of aging. The presence of accumulated senescent cells, whether transiently (acute senescence) or persistently (chronic senescence) plays a dual role in various conditions such as natural kidney aging and different kidney disorders. Elevations in senescent cells and senescence-associated secretory phenotype (SASP) levels correlate with decreased kidney function, kidney ailments, and age-related conditions. Strategies involving senotherapeutic agents like senolytics, senomorphics, and senoinflammation have been devised to specifically target senescent cells. Mesenchymal stem cells (MSCs) and their secreted factors may also offer alternative approaches for anti-senescence interventions. The MSC-derived secretome compromises significant therapeutic benefits in kidney diseases by facilitating tissue repair via anti-inflammatory, anti-fibrosis, anti-apoptotic, and pro-angiogenesis effects, thereby improving kidney function and mitigating disease progression. Moreover, by promoting the clearance of senescent cells or modulating their secretory profiles, MSCs could potentially reverse some age-related declines in kidney function.This review article intends to shed light on the present discoveries concerning the role of cellular senescence in kidney aging and diseases. Furthermore, it outlines the role of senotherapeutics utilized to alleviate kidney damage and aging. It also highlights the possible impact of MSCs secretome on mitigating kidney injury and prolonging lifespan across various models of kidney diseases as a novel senotherapy.
Collapse
Affiliation(s)
| | - Seyyed Sina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyedeh Mina Mostafavi
- Ayatollah Taleghani Hospital, Research Development Unit, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Das S, Manor U. Gene therapy for hearing loss: challenges and the promise of cellular plasticity and epigenetic modulation. Front Neurol 2024; 15:1511938. [PMID: 39722701 PMCID: PMC11668650 DOI: 10.3389/fneur.2024.1511938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Hearing loss can profoundly impact an individual's quality of life, affecting communication, social interactions, and overall well-being. Many people with hearing impairment report feelings of isolation, frustration, and decreased confidence in social settings, which can lead to withdrawal from activities they once enjoyed. Genetics plays a significant role in congenital hearing loss, accounting for approximately half of all cases. While gene therapy holds immense promise for restoring hearing function in cases of hereditary hearing loss (HHL), current methods face certain challenges that must be overcome to successfully develop therapeutic approaches. This review will explore these challenges and offer a perspective on how epigenetic modulation has the potential to address them, potentially revolutionizing the treatment of genetic hearing disorders.
Collapse
Affiliation(s)
| | - Uri Manor
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
12
|
Ramírez-Gallegos I, Marina-Arroyo M, López-González ÁA, Vallejos D, Martínez-Almoyna-Rifá E, Tárraga López PJ, Ramírez-Manent JI. Associations Between Metabolic Age, Sociodemographic Variables, and Lifestyle Factors in Spanish Workers. Nutrients 2024; 16:4207. [PMID: 39683600 DOI: 10.3390/nu16234207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Metabolic age is defined as an estimation of a person's age based on their basal metabolic rate (BMR) and other physiological health indicators. Unlike chronological age, which simply measures the number of years lived since birth, metabolic age is based on various health and fitness markers that estimate the body's "true" biological age and can be assessed using various methodologies, including bioimpedance. The aim of this study was to evaluate how age, sex, social class, smoking habits, physical activity, and adherence to the Mediterranean diet influence metabolic age. METHODS A cross-sectional, descriptive study was conducted on 8590 Spanish workers in the Balearic Islands. A series of sociodemographic variables and health-related habits were assessed, while metabolic age was measured using bioimpedance. A metabolic age exceeding chronological age by 12 years or more was considered high. A descriptive analysis of categorical variables was performed by calculating their frequency and distribution. By applying multivariate models, specifically multinomial logistic regression, we observe that all independent variables (sex, age, social class, physical activity, mediterranean diet, and smoking) show varying levels of association with the occurrence of high metabolic age values. Among these independent variables, those showing the highest degree of association, represented by odds ratios, are physical activity, adherence to the Mediterranean diet, and social class. In all cases, the observed differences demonstrate a high level of statistical significance (p < 0.001). RESULTS The factors with the greatest influence were physical inactivity, with an OR of 5.07; and low adherence to the Mediterranean diet, with an OR of 2.8; followed by social class, with an OR of 2.51. Metabolic age increased with chronological age and was higher in males, with an OR of 1.38. Smoking also had a negative impact on metabolic age, with an OR of 1.19. CONCLUSIONS Mediterranean diet is associated with a higher metabolic age. The most influential factors on metabolic age are physical activity and adherence to the Mediterranean diet, followed by the individual's socioeconomic class. Smoking also contributes to increased metabolic age, albeit to a lesser extent.
Collapse
Affiliation(s)
- Ignacio Ramírez-Gallegos
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07009 Palma, Balearic Islands, Spain
| | - Marta Marina-Arroyo
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07009 Palma, Balearic Islands, Spain
| | - Ángel Arturo López-González
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07009 Palma, Balearic Islands, Spain
- Faculty of Dentistry, University School ADEMA, 07009 Palma, Balearic Islands, Spain
- Balearic Islands Institute of Health Research (IDISBA), Balearic Islands Health Research Institute Foundation, 07010 Palma, Balearic Islands, Spain
- Balearic Islands Health Service, 07010 Palma, Balearic Islands, Spain
| | - Daniela Vallejos
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07009 Palma, Balearic Islands, Spain
| | - Emilio Martínez-Almoyna-Rifá
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07009 Palma, Balearic Islands, Spain
| | - Pedro Juan Tárraga López
- Faculty of Medicine, University of Castilla la Mancha, 02008 Albacete, Castilla-La Mancha, Spain
- SESCAM (Servicio Salud Castilla La Mancha), 45071 Toledo, Castilla-La Mancha, Spain
| | - José Ignacio Ramírez-Manent
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07009 Palma, Balearic Islands, Spain
- Balearic Islands Institute of Health Research (IDISBA), Balearic Islands Health Research Institute Foundation, 07010 Palma, Balearic Islands, Spain
- Balearic Islands Health Service, 07010 Palma, Balearic Islands, Spain
- Faculty of Medicine, University of the Balearic Islands, 07010 Palma, Balearic Islands, Spain
| |
Collapse
|
13
|
Quintero FA, Garraza M, Navazo B, Cesani MF. [Theories of biological aging: An integrative review]. Rev Esp Geriatr Gerontol 2024; 59:101530. [PMID: 38996713 DOI: 10.1016/j.regg.2024.101530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/21/2024] [Accepted: 06/12/2024] [Indexed: 07/14/2024]
Abstract
In this article, we review the main theories of biological aging, exploring the interaction of genetic, epigenetic, metabolic, immunological, and ecological factors in this process. For this purpose, we examine and discuss theories such as the allocation of metabolic resources, pleiotropic antagonism, genetic regulation, codon restriction, replicative senescence, action of free radicals, caloric restriction, catastrophic error, immunological theory, neuroendocrine theory, programmed aging, epigenetics of aging, grandmother and caregiver theories and ecological biophysical theory. We identify the contribution of different biological mechanisms to aging, emphasizing the complementarity of theories such as the allocation of metabolic resources, pleiotropic antagonism, and caloric restriction, providing a more comprehensive view of the phenomenon. In conclusion, we highlight the need to consider diverse perspectives in aging research, recognizing the absence of a single explanation. Integrating these theories is crucial to comprehensively understand the process and develop effective interventions in health and well-being in old age.
Collapse
Affiliation(s)
- Fabián Aníbal Quintero
- Laboratorio de Investigaciones en Ontogenia y Adaptación (LINOA). Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Mariela Garraza
- Laboratorio de Investigaciones en Ontogenia y Adaptación (LINOA). Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Bárbara Navazo
- Laboratorio de Investigaciones en Ontogenia y Adaptación (LINOA). Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - María Florencia Cesani
- Laboratorio de Investigaciones en Ontogenia y Adaptación (LINOA). Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
14
|
Ji X, Luo H, Li X, Wang S, Xia L, Ni M, Wang J, Peng C, Wu X, Tan R, Zhang X, Jiang H. Structural characterization, anti-aging activity and mechanisms investigation in vivo of a polysaccharide from Anthriscus sylvestris. Int J Biol Macromol 2024; 279:135256. [PMID: 39233161 DOI: 10.1016/j.ijbiomac.2024.135256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/22/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Anthriscus sylvestris (L.) Hoffm has a long history of use for anti-aging, although the anti-aging properties of its decoction ingredients have been seldom explored. This study marks the first detailed examination of the in vivo anti-aging activity of A. sylvestris roots polysaccharide (AP). Structural analyses revealed that AP is a neutral heteropolysaccharide with an average molecular weight (Mw) of 34.17 kDa, comprising glucose, xylose, galactose, mannose, and arabinose, with a backbone primarily of 1,4-α-D-Glc and minor branching at 1,4,6-α-D-Man. Its advanced structure is characterized by stable triple-helical chains and nanoscale agglomerated spherical particles. Using a D-gal-induced aging mouse model, further investigation showed that AP boosts the activity of various antioxidant enzymes via the Nrf2/HO-1/NQO1 signaling pathway. Aging-related immune decline was also mitigated by an increase in lymphocyte production in thymus. Moreover, AP reduced inflammation and downregulated aging genes p53 and p21 in hippocampus and liver tissues, enhanced the cholinergic system, and improved liver functions and lipid metabolism. The collective impact of these mechanisms underscores the robust anti-aging properties of AP. These findings highlight the anti-aging and immunomodulatory potential of A. sylvestris polysaccharide, broadening the understanding of its active components.
Collapse
Affiliation(s)
- Xiaoyun Ji
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Haimeng Luo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xianyan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Siwei Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Lijun Xia
- Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu 610100, PR China
| | - Maojun Ni
- Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu 610100, PR China
| | - Jingxia Wang
- Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu 610100, PR China
| | - Chaorong Peng
- Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu 610100, PR China
| | - Xiaoqing Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Rui Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiaobin Zhang
- Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu 610100, PR China.
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
15
|
He Y, Jia Y, Li Y, Wan Z, Lei Y, Liao X, Zhao Q, Li D. Accelerated biological aging: unveiling the path to cardiometabolic multimorbidity, dementia, and mortality. Front Public Health 2024; 12:1423016. [PMID: 39540094 PMCID: PMC11559589 DOI: 10.3389/fpubh.2024.1423016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Background Cardiometabolic multimorbidity (CMM) and aging are increasing public health concerns. This prospective study used UK Biobank cohort to investigate the relationship between biological aging and the trajectory of CMM to dementia and mortality. Methods CMM is the coexistence of at least two cardiometabolic diseases (CMD), including stroke, ischemic heart disease, and diabetes. Biological age was calculated using the KDM-BA and PhenoAge algorithms. Accelerated aging indicated biological age advances more rapidly than chronological age. Results The study included 415,147 individuals with an average age of 56.5 years. During the average 11-year follow-up period, CMD-free individuals with accelerated aging had a significantly greater risk of CMD (KDM-BA, HR 1.456; PhenoAge, HR 1.404), CMM (KDM-BA, HR 1.952; PhenoAge, HR 1.738), dementia (KDM-BA, HR 1.243; PhenoAge, HR 1.212), and mortality (KDM-BA, HR 1.821; PhenoAge, HR 2.047) in fully-adjusted Cox regression models (p < 0.05 for all). Accelerated aging had adjusted HRs of 1.489 (KDM-BA) and 1.488 (PhenoAge) for CMM, 1.434 (KDM-BA) and 1.514 (PhenoAge) for dementia, and 1.943 (KDM-BA) and 2.239 (PhenoAge) for mortality in participants with CMD at baseline (p < 0.05 for all). CMM significantly mediated accelerated aging's indirect effects on dementia by 13.7% (KDM-BA, HR) and 21.6% (PhenoAge); those on mortality were 4.7% (KDM-BA) and 5.2% (PhenoAge). The population attributable-risk of Life's Essential 8 score (≥80 vs. <80) were 0.79 and 0.43 for KDM-BA and PhenoAge accelerated aging, respectively. Conclusion Biological aging involves the entire trajectory of CMM from a CMD-free state to CMD, to CMM, and ultimately to dementia and death. Life's Essential 8 may be a potential target to counter age acceleration.
Collapse
Affiliation(s)
- Yi He
- Department of Neurology, Chengdu Seventh People’s Hospital, Chengdu, China
| | - Yu Jia
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yizhou Li
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zhi Wan
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Lei
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyang Liao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dongze Li
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Yao L, Yang C, Graff JC, Wang G, Wang G, Gu W. From Reactive to Proactive - The Future Life Design to Promote Health and Extend the Human Lifespan. Adv Biol (Weinh) 2024; 8:e2400148. [PMID: 39037380 DOI: 10.1002/adbi.202400148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/11/2024] [Indexed: 07/23/2024]
Abstract
Disease treatment and prevention have improved the human lifespan. Current studies on aging, such as the biological clock and senolytic drugs have focused on the medical treatments of various disorders and health maintenance. However, to efficiently extend the human lifespan to its theoretical maximum, medicine can take a further proactive approach and identify the inapparent disorders that affect the gestation, body growth, and reproductive stages of the so-called "healthy" population. The goal is to upgrade the standard health status to a new level by targeting the inapparent disorders. Thus, future research can shift from reaction, response, and prevention to proactive, quality promotion and vigor prolonging; from single disease-oriented to multiple dimension protocol for a healthy body; from treatment of symptom onset to keep away from disorders; and from the healthy aging management to a healthy promotion design beginning at the birth.
Collapse
Affiliation(s)
- Lan Yao
- College of Health management, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang, 150081, China
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Chengyuan Yang
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - J Carolyn Graff
- Department of Health Promotion and Disease Prevention, College of Nursing, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Guiying Wang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150007, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150007, China
| | - Weikuan Gu
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Research Service, Memphis VA Medical Center, 1030 Jefferson Avenue, Memphis, TN, 38104, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| |
Collapse
|
17
|
Liu XW, Xu HW, Yi YY, Zhang SB, Chang SJ, Pan W, Wang SJ. Inhibition of Mettl3 ameliorates osteoblastic senescence by mitigating m6A modifications on Slc1a5 via Igf2bp2-dependent mechanisms. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167273. [PMID: 38844111 DOI: 10.1016/j.bbadis.2024.167273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Age-related osteoporosis is characterized by a marked decrease in the number of osteoblasts, which has been partly attributed to the senescence of cells of the osteoblastic lineage. Epigenetic studies have provided new insights into the mechanisms of current osteoporosis treatments and bone repair pathophysiology. N6-methyladenosine (m6A) is a novel transcript modification that plays a major role in cellular senescence and is essential for skeletal development and internal environmental stability. Bioinformatics analysis revealed that the expression of the m6A reading protein Igf2bp2 was significantly higher in osteoporosis patients. However, the role of Igf2bp2 in osteoblast senescence has not been elucidated. In this study, we found that Igf2bp2 levels are increased in ageing osteoblasts induced by multiple repetition and H2O2. Increasing Igf2bp2 expression promotes osteoblast senescence by increasing the stability of Slc1a5 mRNA and inhibiting cell cycle progression. Additionally, Mettl3 was identified as Slc1a5 m6A-methylated protein with increased m6A modification. The knockdown of Mettl3 in osteoblasts inhibits the reduction of senescence, whereas the overexpression of Mettl3 promotes the senescence of osteoblasts. We found that administering Cpd-564, a specific inhibitor of Mettl3, induced increased bone mass and decreased bone marrow fat accumulation in aged rats. Notably, in an OVX rat model, Igf2bp2 small interfering RNA delivery also induced an increase in bone mass and decreased fat accumulation in the bone marrow. In conclusion, our study demonstrated that the Mettl3/Igf2bp2-Slc1a5 axis plays a key role in the promotion of osteoblast senescence and age-related bone loss.
Collapse
Affiliation(s)
- Xiao-Wei Liu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hao-Wei Xu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yu-Yang Yi
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shu-Bao Zhang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Sheng-Jie Chang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wei Pan
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shan-Jin Wang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
18
|
Ajayi AF, Oyovwi MO, Olatinwo G, Phillips AO. Unfolding the complexity of epigenetics in male reproductive aging: a review of therapeutic implications. Mol Biol Rep 2024; 51:881. [PMID: 39085654 DOI: 10.1007/s11033-024-09823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Epigenetics studies gene expression changes influenced by environmental and lifestyle factors, linked to health conditions like reproductive aging. Male reproductive aging causes sperm decline, conceiving difficulties, and increased genetic abnormalities. Recent research focuses on epigenetics' role in male reproductive aging. OBJECTIVES This review explores epigenetics and male reproductive aging, focusing on sperm quality, environmental and lifestyle factors' impact, and potential health implications for offspring. METHODS An extensive search of the literature was performed applying multiple databases, such as PubMed and Google Scholar. The search phrases employed were: epigenetics, male reproductive ageing, sperm quality, sperm quantity, environmental influences, lifestyle factors, and offspring health. This review only included articles that were published in English and had undergone a peer-review process. The literature evaluation uncovered that epigenetic alterations have a substantial influence on the process of male reproductive ageing. RESULT Research has demonstrated that variations in the quality and quantity of sperm that occur with ageing are linked to adjustments in DNA methylation and histone. Moreover, there is evidence linking epigenetic alterations in sperm to environmental and lifestyle factors, including smoking, alcohol intake, and exposure to contaminants. These alterations can have enduring impacts on the well-being of descendants, since they can shape the activation of genes and potentially elevate the likelihood of genetic disorders. In conclusion, epigenetics significantly influences male reproductive aging, with sperm quality and quantity influenced by environmental and lifestyle factors. CONCLUSION This underscores the need for comprehensive approaches to managing male reproductive health, and underscores the importance of considering epigenetics in diagnosis and treatment.
Collapse
Affiliation(s)
- Ayodeji Folorunsho Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
- Department of Physiology, Adeleke University, Ede, Osun State, Nigeria
| | | | - Goodness Olatinwo
- Department of Physiology, School of Basic Medical Sciences, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Akano Oyedayo Phillips
- Department of Physiology, School of Basic Medical Sciences, Babcock University, Ilishan Remo, Ogun State, Nigeria
| |
Collapse
|
19
|
Hu J, Yang F, Yang G, Pan J, Tan Y, Tang Y, Liu Y, Zhang H, Wang J. Integrating transcriptomics and metabolomics to reveal the protective effect and mechanism of Bushen Kangshuai Granules on the elderly people. Front Pharmacol 2024; 15:1361284. [PMID: 39135783 PMCID: PMC11317404 DOI: 10.3389/fphar.2024.1361284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Background: Aging is characterized by a decline in the adaptability and resistance of the body. In this study, Bushen Kangshuai Granules (BKG), as a kind of Chinese herbal formula, was developed and shown to alleviate aging-related symptoms. Methods: Self-controlled study combined with RNA-seq and metabonomics were used to expound the efficacy and safety of BKG and revealed the regulation mechanism of BKG treating aging. In vitro experiments were used to confirm the analytical results. The aging cell model of AC16 cells were treated with D-galactose. The RT-qPCR was used to detect the impact of BKG on telomere length. The DCFH-DA staining was used for detecting intracellular ROS. The targeted signaling pathway was selected and verified using Western blot. Results: After 8 weeks of treatment, BKG significantly reduced SOD level (p = 0.046), TCM aging symptoms (p < 0.001) and TNF-α level (p = 0.044) in the elderly participants. High-throughput sequencing showed that BKG reversed the expression of 70 and 79 age-related genes and metabolites, respectively. Further enrichment analysis indicated that BKG downregulated the PI3K-AKT signaling pathway, extracellular matrix (ECM)-receptor interaction, and Rap1 signaling pathway, while up-regulating sphingolipid metabolism. The results of in vitro experiments show that, after D-gal treatment, the viability and telomere length of AC16 cells significantly decreased (p < 0.05), while the expression of ROS increased (p < 0.05), BKG significantly increased the telomere length of AC16 cells and reduced the level of ROS expression (p < 0.05). In addition, BKG decreased the expression of THBS1, PDGFRA, and EPS8L1(p < 0.05), consistent with the RNA-seq results. Our results also showed that BKG affects PI3K-AKT signaling pathway. Conclusion: BKG can significantly improve aging-related symptoms and increase SOD levels, which may be associated with the reversal of the expression of various aging-related genes. The PI3K-AKT signaling pathway and sphingolipid metabolism may be potential mechanisms underlying BKG anti-aging effects.
Collapse
Affiliation(s)
- Jun Hu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmin Yang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Guang Yang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juhua Pan
- Research and Development Center of Traditional Chinese Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yumeng Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong Zhang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Alcaráz N, Salcedo-Tello P, González-Barrios R, Torres-Arciga K, Guzmán-Ramos K. Underlying Mechanisms of the Protective Effects of Lifestyle Factors On Age-Related Diseases. Arch Med Res 2024; 55:103014. [PMID: 38861840 DOI: 10.1016/j.arcmed.2024.103014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
The rise in life expectancy has significantly increased the occurrence of age-related chronic diseases, leading to escalating expenses for both society and individuals. Among the main factors influencing health and lifespan, lifestyle takes a forefront position. Specifically, nutrition, mental activity, and physical exercise influence the molecular and functional mechanisms that contribute to the prevention of major age-related diseases. Gaining deeper insights into the mechanisms that drive the positive effects of healthy lifestyles is valuable for creating interventions to prevent or postpone the development of chronic degenerative diseases. This review summarizes the main mechanisms that underlie the positive effect of lifestyle factors in counteracting the major age-related diseases involving brain health, musculoskeletal function, cancer, frailty, and cardiovascular diseases, among others. This knowledge will help to identify high-risk populations for targeted intervention trials and discover new biomarkers associated with healthy aging.
Collapse
Affiliation(s)
- Nicolás Alcaráz
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pamela Salcedo-Tello
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Instituto Nacional de Cancerología, Laboratorio de regulación de la cromatina y genómica, Mexico City, México
| | - Karla Torres-Arciga
- Instituto Nacional de Cancerología, Laboratorio de regulación de la cromatina y genómica, Mexico City, México; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Kioko Guzmán-Ramos
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Mexico State, Mexico.
| |
Collapse
|
21
|
Sato A, Kondo Y, Ishigami A. The evidence to date: implications of l-ascorbic acid in the pathophysiology of aging. J Physiol Sci 2024; 74:29. [PMID: 38730366 PMCID: PMC11088021 DOI: 10.1186/s12576-024-00922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
L-Ascorbic acid, commonly known as vitamin C, has been used not only for disease prevention and in complementary and alternative medicine, but also for anti-aging purposes. However, the scientific evidence is not yet sufficient. Here, we review the physiological functions of vitamin C and its relationship with various pathological conditions, including our previous findings, and discuss the prospects of its application in healthy longevity. In summary, vitamin C levels are associated with lifespan in several animal models. Furthermore, clinical studies have shown that the blood vitamin C levels are lower in middle-aged and older adults than in younger adults. Lower blood vitamin C levels have also been observed in various pathological conditions such as chronic kidney disease and chronic obstructive pulmonary disease in the elderly. These observations suggest the implications of vitamin C in age-related pathological mechanisms owing to its physiological functions.
Collapse
Affiliation(s)
- Ayami Sato
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan.
- Department of Nutritional Sciences, Faculty of Health and Sports Sciences, Toyo University, Tokyo, 115-8650, Japan.
| | - Yoshitaka Kondo
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| |
Collapse
|
22
|
Kritsi E, Christodoulou P, Tsiaka T, Georgiadis P, Zervou M. A Computational Approach for the Discovery of Novel DNA Methyltransferase Inhibitors. Curr Issues Mol Biol 2024; 46:3394-3407. [PMID: 38666943 PMCID: PMC11049320 DOI: 10.3390/cimb46040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Nowadays, the explosion of knowledge in the field of epigenetics has revealed new pathways toward the treatment of multifactorial diseases, rendering the key players of the epigenetic machinery the focus of today's pharmaceutical landscape. Among epigenetic enzymes, DNA methyltransferases (DNMTs) are first studied as inhibition targets for cancer treatment. The increasing clinical interest in DNMTs has led to advanced experimental and computational strategies in the search for novel DNMT inhibitors. Considering the importance of epigenetic targets as a novel and promising pharmaceutical trend, the present study attempted to discover novel inhibitors of natural origin against DNMTs using a combination of structure and ligand-based computational approaches. Particularly, a pharmacophore-based virtual screening was performed, followed by molecular docking and molecular dynamics simulations in order to establish an accurate and robust selection methodology. Our screening protocol prioritized five natural-derived compounds, derivatives of coumarins, flavones, chalcones, benzoic acids, and phenazine, bearing completely diverse chemical scaffolds from FDA-approved "Epi-drugs". Their total DNMT inhibitory activity was evaluated, revealing promising results for the derived hits with an inhibitory activity ranging within 30-45% at 100 µM of the tested compounds.
Collapse
Affiliation(s)
- Eftichia Kritsi
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (P.C.); (T.T.); (P.G.)
| | | | | | | | - Maria Zervou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (P.C.); (T.T.); (P.G.)
| |
Collapse
|
23
|
Mohabbat M, Arazi H. Effect of resistance training plus enriched probiotic supplement on sestrin2, oxidative stress, and mitophagy markers in elderly male Wistar rats. Sci Rep 2024; 14:7744. [PMID: 38565633 PMCID: PMC10987664 DOI: 10.1038/s41598-024-58462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
This study aimed to determine the effects of resistance training combined with a probiotic supplement enriched with vitamin D and leucine on sestrin2, oxidative stress, antioxidant defense, and mitophagy markers in aged Wistar rats. Thirty-five male rats were randomly assigned to two age groups (old with 18-24 months of age and young with 8-12 weeks of age) and then divided into five groups, including (1) old control (OC: n = 5 + 2 for reserve in all groups), (2) young control (YC: n = 5), (3) old resistance training (OR: n = 5), (4) old resistance training plus supplement (ORS: n = 5), and old supplement group (OS: n = 5). Training groups performed ladder climbing resistance training 3 times per week for 8 weeks. Training intensity was inserted progressively, with values equal to 65, 75, and 85, determining rats' maximal carrying load capacity. Each animal made 5 to 8 climbs in each training session, and the time of each climb was between 12 and 15 s, although the time was not the subject of the evaluation, and the climbing pattern was different in the animals. Old resistance plus supplement and old supplement groups received 1 ml of supplement 5 times per week by oral gavage in addition to standard feeding, 1 to 2 h post training sessions. Forty-eight hours after the end of the training program, 3 ml of blood samples were taken, and all rats were then sacrificed to achieve muscle samples. After 8 weeks of training, total antioxidant capacity and superoxide dismutase activity levels increased in both interventions. A synergistic effect of supplement with resistance training was observed for total antioxidant capacity, superoxide dismutase, and PTEN-induced kinase 1. Sestrin 2 decreased in intervention groups. These results suggest that resistance training plus supplement can boost antioxidant defense and mitophagy while potentially decreasing muscle strength loss.
Collapse
Affiliation(s)
- Majid Mohabbat
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, P.O. Box: 41635-1438, Rasht, Iran
| | - Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, P.O. Box: 41635-1438, Rasht, Iran.
| |
Collapse
|
24
|
Lopez-Jimenez F, Kapa S, Friedman PA, LeBrasseur NK, Klavetter E, Mangold KE, Attia ZI. Assessing Biological Age: The Potential of ECG Evaluation Using Artificial Intelligence: JACC Family Series. JACC Clin Electrophysiol 2024; 10:775-789. [PMID: 38597855 DOI: 10.1016/j.jacep.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 04/11/2024]
Abstract
Biological age may be a more valuable predictor of morbidity and mortality than a person's chronological age. Mathematical models have been used for decades to predict biological age, but recent developments in artificial intelligence (AI) have led to new capabilities in age estimation. Using deep learning methods to train AI models on hundreds of thousands of electrocardiograms (ECGs) to predict age results in a good, but imperfect, age prediction. The error predicting age using ECG, or the difference between AI-ECG-derived age and chronological age (delta age), may be a surrogate measurement of biological age, as the delta age relates to survival, even after adjusting for chronological age and other covariates associated with total and cardiovascular mortality. The relative affordability, noninvasiveness, and ubiquity of ECGs, combined with ease of access and potential to be integrated with smartphone or wearable technology, presents a potential paradigm shift in assessment of biological age.
Collapse
Affiliation(s)
- Francisco Lopez-Jimenez
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
| | - Suraj Kapa
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Paul A Friedman
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Eric Klavetter
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Kathryn E Mangold
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Zachi I Attia
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
25
|
Nel AE, Pavlisko EN, Roggli VL. The Interplay Between the Immune System, Tumor Suppressor Genes, and Immune Senescence in Mesothelioma Development and Response to Immunotherapy. J Thorac Oncol 2024; 19:551-564. [PMID: 38000500 DOI: 10.1016/j.jtho.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Despite efforts to ban asbestos mining and manufacturing, mesothelioma deaths in the United States have remained stable at approximately 2500 cases annually. This trend is not unique to the United States but is also a global phenomenon, associated with increased aging of populations worldwide. Although geoeconomic factors such as lack of regulations and continued asbestos manufacturing in resource-poor countries play a role, it is essential to consider biological factors such as immune senescence and increased genetic instability associated with aging. Recognizing that mesothelioma shares genetic instability and immune system effects with other age-related cancers is crucial because the impact of aging on mesothelioma is frequently assessed in the context of disease latency after asbestos exposure. Nevertheless, the long latency period, often cited as a reason for mesothelioma's elderly predominance, should not overshadow the shared mechanisms. This communication focuses on the role of immune surveillance in mesothelioma, particularly exploring the impact of immune escape resulting from altered TSG function during aging, contributing to the phylogenetic development of gene mutations and mesothelioma oncogenesis. The interplay between the immune system, TSGs, and aging not only shapes the immune landscape in mesothelioma but also contributes to the development of heterogeneous tumor microenvironments, significantly influencing responses to immunotherapy approaches and survival rates. By understanding the complex interplay between aging, TSG decline, and immune senescence, health care professionals can pave the way for more effective and personalized immunotherapies, ultimately offering hope for better outcomes in the fight against mesothelioma.
Collapse
Affiliation(s)
- Andre E Nel
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California; Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
| | | | - Victor L Roggli
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
26
|
Hart DA. The Heterogeneity of Post-Menopausal Disease Risk: Could the Basis for Why Only Subsets of Females Are Affected Be Due to a Reversible Epigenetic Modification System Associated with Puberty, Menstrual Cycles, Pregnancy and Lactation, and, Ultimately, Menopause? Int J Mol Sci 2024; 25:3866. [PMID: 38612676 PMCID: PMC11011715 DOI: 10.3390/ijms25073866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
For much of human evolution, the average lifespan was <40 years, due in part to disease, infant mortality, predators, food insecurity, and, for females, complications of childbirth. Thus, for much of evolution, many females did not reach the age of menopause (45-50 years of age) and it is mainly in the past several hundred years that the lifespan has been extended to >75 years, primarily due to public health advances, medical interventions, antibiotics, and nutrition. Therefore, the underlying biological mechanisms responsible for disease risk following menopause must have evolved during the complex processes leading to Homo sapiens to serve functions in the pre-menopausal state. Furthermore, as a primary function for the survival of the species is effective reproduction, it is likely that most of the advantages of having such post-menopausal risks relate to reproduction and the ability to address environmental stresses. This opinion/perspective will be discussed in the context of how such post-menopausal risks could enhance reproduction, with improved survival of offspring, and perhaps why such risks are preserved. Not all post-menopausal females exhibit risk for this set of diseases, and those who do develop such diseases do not have all of the conditions. The diseases of the post-menopausal state do not operate as a unified complex, but as independent variables, with the potential for some overlap. The how and why there would be such heterogeneity if the risk factors serve essential functions during the reproductive years is also discussed and the concept of sets of reversible epigenetic changes associated with puberty, pregnancy, and lactation is offered to explain the observations regarding the distribution of post-menopausal conditions and their potential roles in reproduction. While the involvement of an epigenetic system with a dynamic "modification-demodification-remodification" paradigm contributing to disease risk is a hypothesis at this point, validation of it could lead to a better understanding of post-menopausal disease risk in the context of reproduction with commonalities may also lead to future improved interventions to control such risk after menopause.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, and McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
27
|
Ibragimova M, Kussainova A, Aripova A, Bersimbaev R, Bulgakova O. The Molecular Mechanisms in Senescent Cells Induced by Natural Aging and Ionizing Radiation. Cells 2024; 13:550. [PMID: 38534394 PMCID: PMC10969416 DOI: 10.3390/cells13060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
This review discusses the relationship between cellular senescence and radiation exposure. Given the wide range of ionizing radiation sources encountered by people in professional and medical spheres, as well as the influence of natural background radiation, the question of the effect of radiation on biological processes, particularly on aging processes, remains highly relevant. The parallel relationship between natural and radiation-induced cellular senescence reveals the common aspects underlying these processes. Based on recent scientific data, the key points of the effects of ionizing radiation on cellular processes associated with aging, such as genome instability, mitochondrial dysfunction, altered expression of miRNAs, epigenetic profile, and manifestation of the senescence-associated secretory phenotype (SASP), are discussed. Unraveling the molecular mechanisms of cellular senescence can make a valuable contribution to the understanding of the molecular genetic basis of age-associated diseases in the context of environmental exposure.
Collapse
Affiliation(s)
- Milana Ibragimova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Assiya Kussainova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| |
Collapse
|
28
|
Dufek G, Katriel G, Snir S, Pellegrini M. Exponential dynamics of DNA methylation with age. J Theor Biol 2024; 579:111697. [PMID: 38142045 DOI: 10.1016/j.jtbi.2023.111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/04/2023] [Indexed: 12/25/2023]
Abstract
The association of DNA methylation with age has been extensively studied. Previous work has investigated the trajectories of methylation with age, and developed predictive biomarkers of age. However, we still have a limited understanding of the functional form of methylation-age dynamics. To address this we present a theoretical framework to model the dynamics of DNA methylation at single sites. We show that this model leads to convergence to a steady-state methylation level at an exponential rate. By fitting the model to a dataset that measures changes in DNA methylation in the brain from birth to old age, we show that the timescales of this exponential convergence are heterogeneous across sites. To model this heterogeneity we generated a simulation of CpG Methylation changes with time and investigated the functional form of the dynamics of methylation with age under the empirical distribution of timescales estimated from the dataset. The resulting dynamics of the average methylation of the system were characterized and were found to closely follow an exponential trajectory. We conclude that DNA methylation can be modeled as a system that starts out of equilibrium at birth and approaches equilibrium with age in an exponential fashion. These insights illustrate the importance of accounting for nonlinear dynamics when utilizing age associated DNA methylation changes for constructing biomarkers of aging. Thus DNA methylation, along with the exponentially increasing risk of mortality with age, further establishes the exponential nature of aging.
Collapse
Affiliation(s)
- Grant Dufek
- Department of Molecular, Cell and Developmental Biology; University of California, Los Angeles, CA 90095, USA
| | - Guy Katriel
- Department of Mathematics, Braude College of Engineering, Israel
| | - Sagi Snir
- Department of Evolutionary Biology, University of Haifa, Israel
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology; University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Koijam AS, Singh KD, Nameirakpam BS, Haobam R, Rajashekar Y. Drug addiction and treatment: An epigenetic perspective. Biomed Pharmacother 2024; 170:115951. [PMID: 38043446 DOI: 10.1016/j.biopha.2023.115951] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Drug addiction is a complex disease affected by numerous genetic and environmental factors. Brain regions in reward pathway, neuronal adaptations, genetic and epigenetic interactions causing transcriptional enhancement or repression of multiple genes induce different addiction phenotypes for varying duration. Addictive drug use causes epigenetic alterations and similarly epigenetic changes induced by environment can promote addiction. Epigenetic mechanisms include DNA methylation and post-translational modifications like methylation, acetylation, phosphorylation, ubiquitylation, sumoylation, dopaminylation and crotonylation of histones, and ADP-ribosylation. Non-coding RNAs also induce epigenetic changes. This review discusses these above areas and stresses the need for exploring epidrugs as a treatment alternative and adjunct, considering the limited success of current addiction treatment strategies. Epigenome editing complexes have lately been effective in eukaryotic systems. Targeted DNA cleavage techniques such as CRISPR-Cas9 system, CRISPR-dCas9 complexes, transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases (ZFNs) have been exploited as targeted DNA recognition or anchoring platforms, fused with epigenetic writer or eraser proteins and delivered by transfection or transduction methods. Efficacy of epidrugs is seen in various neuropsychiatric conditions and initial results in addiction treatment involving model organisms are remarkable. Epidrugs present a promising alternative treatment for addiction.
Collapse
Affiliation(s)
- Arunkumar Singh Koijam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Kabrambam Dasanta Singh
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Bunindro Singh Nameirakpam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal 795003, Manipur, India
| | - Yallappa Rajashekar
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India.
| |
Collapse
|
30
|
Zhang Y, Yang H, Jiang M, Nie X. Exploring the pathogenesis and treatment of IgA nephropathy based on epigenetics. Epigenomics 2023; 15:1017-1026. [PMID: 37909120 DOI: 10.2217/epi-2023-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
IgA nephropathy is the most common primary glomerulonephritis worldwide. However, its exact cause remains unclear, with known genetic factors explaining only 11% of the variation. Recently, researchers have turned their attention to epigenetic abnormalities in immune-related diseases, recognizing their significance in IgA nephropathy's development and progression. This emerging field has revolutionized our understanding of epigenetics in IgA nephropathy research. Though in its early stages, studying IgA nephropathy's epigenetics holds promise for unraveling its pathogenesis and identifying new biomarkers and therapies. This review aims to comprehensively analyze epigenetics' role in IgA nephropathy's development and suggest avenues for potential therapeutic interventions. In the future, assessing and modulating epigenetics may become integral in diagnosing, tailoring treatments and assessing prognoses for IgA nephropathy.
Collapse
Affiliation(s)
- Yunfan Zhang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
- Department of Pediatrics, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
| | - Huanhuan Yang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
- Department of Pediatrics, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
| | - Ming Jiang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
- Department of Pediatrics, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
| | - Xiaojing Nie
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
- Department of Pediatrics, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
- Department of Pediatrics, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| |
Collapse
|