1
|
Davari M, Khansari M, Hosseini S, Morovatshoar R, Azani A, Mirzohreh ST, Mahabadi MA, Ghasemi M, Meigoli MSS, Nematollahi SF, Pourranjbar S, Behfar Q, Baghdadi M, Hosseini AM. The Impact of Opioids on Epigenetic Modulation in Myocardial Ischemia and Reperfusion Injury: Focus on Non-coding RNAs. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10609-y. [PMID: 40198537 DOI: 10.1007/s12265-025-10609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025]
Abstract
Myocardial ischemia-reperfusion injury (IRI) is a major issue in cardiovascular medicine, marked by tissue damage from the restoration of blood flow after ischemia. Opioids, known for their pain-relieving properties, have emerged as potential cardioprotective agents in IRI. Recent research suggests opioids influence epigenetic mechanisms-such as histone modifications and non-coding RNAs (ncRNAs)-which are essential for regulating gene expression and cellular responses during myocardial IRI. This review delves into how opioids like remifentanil affect histone modifications, DNA methylation, and ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Remifentanil postconditioning (RPC) reduces apoptosis in cardiomyocytes through histone deacetylation, specifically downregulating histone deacetylase 3 (HDAC3). Similarly, opioids impact miRNAs such as miR- 206 - 3p and miR- 320 - 3p, and lncRNAs like TINCR and UCA1, which influence apoptosis, inflammation, and oxidative stress. Understanding these interactions highlights the potential for opioid-based therapies in mitigating IRI-induced myocardial damage.
Collapse
Affiliation(s)
- Mohsen Davari
- Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Mahmoud Khansari
- General Surgery Department, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Sahar Hosseini
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Reza Morovatshoar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Alireza Azani
- Department of Medical Genetic, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Seyedeh Tarlan Mirzohreh
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Mohammadjavad Ashrafi Mahabadi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Moein Ghasemi
- Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Mohammad Saeed Soleimani Meigoli
- School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Sima Foroughi Nematollahi
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Sina Pourranjbar
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Qumars Behfar
- National Institute for Health Research, Tehran University of Medical Sciences, Tehran, Iran.
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran.
| | - Mandana Baghdadi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran.
| | - Ahmad Mir Hosseini
- Mashhad University of Medical Sciences, Mashhad, Iran.
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran.
| |
Collapse
|
2
|
Nasiri R, Arefnezhad R, Baniasad K, Hosseini SA, Jeshari AS, Miri M, Lotfi A, Ghaemi MS, Amini-Salehi E, Fatemian H, Rezaei-Tazangi F, Kesharwani P, Tavakoli MR, Sahebkar A. Baicalin and baicalein against myocardial ischemia-reperfusion injury: A review of the current documents. Tissue Cell 2025; 93:102772. [PMID: 39923649 DOI: 10.1016/j.tice.2025.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a significant challenge in the treatment of ischemic heart disease (IHD), arising as a complication from reperfusion therapies designed to restore blood flow after an ischemic event. Despite the availability of various therapeutic strategies, finding an effective treatment for MIRI remains difficult. Baicalin and its aglycone form (baicalein), natural compounds derived from the Chinese skullcap plant (Scutellaria baicalensis), have shown promise due to their antioxidant, anti-inflammatory, and cardioprotective properties. This review aims to explore the potential of baicalin and baicalein as treatments for MIRI, with a focus on their molecular and cellular level effects. These natural agents can decrease oxidative stress by promoting antioxidant enzymes and decreasing harmful oxidative substances that damage cardiac cells. They also exert anti-inflammatory effects by blocking specific pathways that trigger the release of inflammatory mediators. Additionally, they also improve heart cell survival, infarct region, and overall cardiac function by inhibiting key signaling pathways involved in cell death. Research in both animal and cell models suggests that these flavonoids, especially baicalin, can restore cardiac health following MIRI, improving cardiac performance, and reducing cardiac damage. These findings underscore the potential of baicalin and baicalein as therapeutic options for MIRI. However, further research and clinical trials are necessary to elucidate their mechanisms fully and to develop baicalin into a viable treatment.
Collapse
Affiliation(s)
- Reza Nasiri
- School of Medicine, Shiraz University of Medial Sciences, Shiraz, Iran
| | - Reza Arefnezhad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Coenzyme R Research Institute, Tehran, Iran
| | - Kimia Baniasad
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Seyed Ali Hosseini
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mostafa Miri
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Lotfi
- Department of Medical Sciences, School of Medicine, Azerbaijan Medical University, Baku, Azerbaijan
| | - Mozhan Sadat Ghaemi
- Students Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Amini-Salehi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Fatemian
- School of Medicine, Shiraz University of Medial Sciences, Shiraz, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Marziye Ranjbar Tavakoli
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Zhang Y, Deng J, Chen T, Liu S, Tang Y, Zhao JR, Guo Z, Zhang W, Chen T. Formononetin alleviates no reflow after myocardial ischemia-reperfusion via modulation of gut microbiota to inhibit inflammation. Life Sci 2024; 358:123110. [PMID: 39374772 DOI: 10.1016/j.lfs.2024.123110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
Gut microflora plays an important role in relieving myocardial no-reflow (NR), formononetin (FMN) has potential effects on NR, however, the relationship between this effect and gut microflora remains unclear. This study aimed to evaluate the role of FMN in alleviating NR by regulating gut microflora. We used a myocardial NR rat model to confirm the effect and mechanism of action of FMN in alleviating NR. The rats were randomly divided into sham operation group (Sham), NR group, FMN group and sodium nitroprusside (SNP) group. Thioflavin S staining, Hematoxylin Eosin (HE), myocardial enzyme activity, ultrasonic cardiogram and RT-PCR detection showed that FMN could effectively reduce inflammatory cell infiltration, NR and ischemic area, improve cardiac structure and function and reduce TNF-α and NF-κB gene expression in NR rats. The results of 16S rRNA high-throughput sequencing showed that FMN could increase the abundance of anti-inflammatory bacteria such as Ligilactobacillus, Coprococcus, Blautia and Muribaculaceae and decrease the abundance of pro-inflammatory bacteria such as Treponema in Spirochaetota and Campylobacterota. The correlation between the differential bacteria in the gut microflora(anti-inflammatory bacteria and pro-inflammatory bacteria) and TNF-α and NF-κB, showed that they had a strong correlation. Therefore, the anti-NR mechanism of FMN may be related to increasing the abundance of anti-inflammatory bacteria and reducing the abundance of pro-inflammatory bacteria to inhibit inflammation. This study provides innovative mechanistic insights into the relationship between gut microbiota and myocardial protection, suggesting potential strategy for future treatment of NR.
Collapse
Affiliation(s)
- Yanyan Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China; National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Changsha 410208, China
| | - Jiaxin Deng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ting Chen
- The College of Acupuncture & Moxibustion and Tuina, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Siqi Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yan Tang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ji Rui Zhao
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhen Guo
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Ting Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China; National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Changsha 410208, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Lang A, Oehler D, Benkhoff M, Reinders Y, Barcik M, Shahrjerdi K, Kaldirim M, Sickmann A, Dannenberg L, Polzin A, Pfeiler S, Kelm M, Grandoch M, Jung C, Gerdes N. Mitochondrial Creatine Kinase 2 (Ckmt2) as a Plasma-Based Biomarker for Evaluating Reperfusion Injury in Acute Myocardial Infarction. Biomedicines 2024; 12:2368. [PMID: 39457679 PMCID: PMC11504053 DOI: 10.3390/biomedicines12102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Acute myocardial infarction (AMI), characterized by irreversible heart muscle damage and impaired cardiac function caused by myocardial ischemia, is a leading cause of global mortality. The damage associated with reperfusion, particularly mitochondrial dysfunction and reactive oxygen species (ROS) formation, has emerged as a crucial factor in the pathogenesis of cardiac diseases, leading to the recognition of mitochondrial proteins as potential markers for myocardial damage. This study aimed to identify differentially expressed proteins based on the type of cardiac injury, in particular those with and without reperfusion. METHODS Male C57Bl/6J mice were either left untreated, sham-operated, received non-reperfused AMI, or reperfused AMI. Twenty-four hours after the procedures, left ventricular (LV) function and morphological changes including infarct size were determined using echocardiography and triphenyl tetrazolium chloride (TTC) staining, respectively. In addition, plasma was isolated and subjected to untargeted mass spectrometry and, further on, the ELISA-based validation of candidate proteins. RESULTS We identified mitochondrial creatine kinase 2 (Ckmt2) as a differentially regulated protein in plasma of mice with reperfused but not non-reperfused AMI. Elevated levels of Ckmt2 were significantly associated with infarct size and impaired LV function following reperfused AMI, suggesting a specific involvement in reperfusion damage. CONCLUSIONS Our study highlights the potential of plasma Ckmt2 as a biomarker for assessing reperfusion injury and its impact on cardiac function and morphology in the acute phase of MI.
Collapse
Affiliation(s)
- Alexander Lang
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Daniel Oehler
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Marcel Benkhoff
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Yvonne Reinders
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., 44139 Dortmund, Germany; (Y.R.); (A.S.)
| | - Maike Barcik
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Khatereh Shahrjerdi
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Madlen Kaldirim
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., 44139 Dortmund, Germany; (Y.R.); (A.S.)
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Lisa Dannenberg
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Amin Polzin
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Susanne Pfeiler
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
| | - Malte Kelm
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Maria Grandoch
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany;
- Institute for Translational Pharmacology, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.L.); (D.O.); (M.B.); (M.B.); (K.S.); (M.K.); (L.D.); (A.P.); (S.P.); (M.K.); (C.J.)
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| |
Collapse
|
5
|
Huang XD, Jiang DS, Feng X, Fang ZM. The benefits of oral glucose-lowering agents: GLP-1 receptor agonists, DPP-4 and SGLT-2 inhibitors on myocardial ischaemia/reperfusion injury. Eur J Pharmacol 2024; 976:176698. [PMID: 38821168 DOI: 10.1016/j.ejphar.2024.176698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Myocardial infarction (MI) is a life-threatening cardiovascular disease that, on average, results in 8.5 million deaths worldwide each year. Timely revascularization of occluded vessels is a critical method of myocardial salvage. However, reperfusion paradoxically leads to the worsening of myocardial damage known as myocardial ischaemia/reperfusion injury (MI/RI). Therefore, reducing the size of myocardial infarction after reperfusion is critical and remains an important therapeutic goal. The susceptibility of the myocardium to MI/RI may be increased by diabetes. Currently, some traditional antidiabetic agents such as metformin reduce MI/RI by decreasing inflammation, inhibiting oxidative stress, and improving vascular endothelial function. This appears to be a new direction for the treatment of MI/RI. Recent cardiovascular outcome trials have shown that several oral antidiabetic agents, including glucagon-like peptide-1 receptor agonists (GLP-1RAs), dipeptidyl peptidase-4 inhibitors (DPP-4is), and sodium-glucose-linked transporter-2 inhibitors (SGLT-2is), not only have good antidiabetic effects but also have a protective effect on myocardial protection. This article aims to discuss the mechanisms and effects of oral antidiabetic agents, including GLP-1RAs, DPP-4is, and SGLT-2is, on MI/RI to facilitate their clinical application.
Collapse
Affiliation(s)
- Xu-Dong Huang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Cardiothoracic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xin Feng
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ze-Min Fang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Cardiothoracic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Pagliaro P, Weber NC, Femminò S, Alloatti G, Penna C. Gasotransmitters and noble gases in cardioprotection: unraveling molecular pathways for future therapeutic strategies. Basic Res Cardiol 2024; 119:509-544. [PMID: 38878210 PMCID: PMC11319428 DOI: 10.1007/s00395-024-01061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024]
Abstract
Despite recent progress, ischemic heart disease poses a persistent global challenge, driving significant morbidity and mortality. The pursuit of therapeutic solutions has led to the emergence of strategies such as ischemic preconditioning, postconditioning, and remote conditioning to shield the heart from myocardial ischemia/reperfusion injury (MIRI). These ischemic conditioning approaches, applied before, after, or at a distance from the affected organ, inspire future therapeutic strategies, including pharmacological conditioning. Gasotransmitters, comprising nitric oxide, hydrogen sulfide, sulfur dioxide, and carbon monoxide, play pivotal roles in physiological and pathological processes, exhibiting shared features such as smooth muscle relaxation, antiapoptotic effects, and anti-inflammatory properties. Despite potential risks at high concentrations, physiological levels of gasotransmitters induce vasorelaxation and promote cardioprotective effects. Noble gases, notably argon, helium, and xenon, exhibit organ-protective properties by reducing cell death, minimizing infarct size, and enhancing functional recovery in post-ischemic organs. The protective role of noble gases appears to hinge on their modulation of molecular pathways governing cell survival, leading to both pro- and antiapoptotic effects. Among noble gases, helium and xenon emerge as particularly promising in the field of cardioprotection. This overview synthesizes our current understanding of the roles played by gasotransmitters and noble gases in the context of MIRI and cardioprotection. In addition, we underscore potential future developments involving the utilization of noble gases and gasotransmitter donor molecules in advancing cardioprotective strategies.
Collapse
Affiliation(s)
- Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy.
- National Institute for Cardiovascular Research (INRC), 40126, Bologna, Italy.
| | - Nina C Weber
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science (ACS), Amsterdam, The Netherlands
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy
| | | | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy
- National Institute for Cardiovascular Research (INRC), 40126, Bologna, Italy
| |
Collapse
|
7
|
Lamb RJ, Griffiths K, Lip GYH, Sorokin V, Frenneaux MP, Feelisch M, Madhani M. ALDH2 polymorphism and myocardial infarction: From alcohol metabolism to redox regulation. Pharmacol Ther 2024; 259:108666. [PMID: 38763322 DOI: 10.1016/j.pharmthera.2024.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Acute myocardial infarction (AMI) remains a leading cause of death worldwide. Increased formation of reactive oxygen species (ROS) during the early reperfusion phase is thought to trigger lipid peroxidation and disrupt redox homeostasis, leading to myocardial injury. Whilst the mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2) is chiefly recognised for its central role in ethanol metabolism, substantial experimental evidence suggests an additional cardioprotective role for ALDH2 independent of alcohol intake, which mitigates myocardial injury by detoxifying breakdown products of lipid peroxidation including the reactive aldehydes, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). Epidemiological evidence suggests that an ALDH2 mutant variant with reduced activity that is highly prevalent in the East Asian population increases AMI risk. Additional studies have uncovered a strong association between coronary heart disease and this ALDH2 mutant variant. It appears this enzyme polymorphism (in particular, in ALDH2*2/2 carriers) has the potential to have wide-ranging effects on thiol reactivity, redox tone and therefore numerous redox-related signaling processes, resilience of the heart to cope with lifestyle-related and environmental stressors, and the ability of the whole body to achieve redox balance. In this review, we summarize the journey of ALDH2 from a mitochondrial reductase linked to alcohol metabolism, via pre-clinical studies aimed at stimulating ALDH2 activity to reduce myocardial injury to clinical evidence for its protective role in the heart.
Collapse
Affiliation(s)
- Reece J Lamb
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom
| | - Kayleigh Griffiths
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Danish Centre for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Vitaly Sorokin
- Department of Cardiac, Thoracic, and Vascular Surgery, National University Heart Centre, National University Health System, Singapore
| | | | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Melanie Madhani
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom.
| |
Collapse
|
8
|
Piel S, McManus MJ, Heye KN, Beaulieu F, Fazelinia H, Janowska JI, MacTurk B, Starr J, Gaudio H, Patel N, Hefti MM, Smalley ME, Hook JN, Kohli NV, Bruton J, Hallowell T, Delso N, Roberts A, Lin Y, Ehinger JK, Karlsson M, Berg RA, Morgan RW, Kilbaugh TJ. Effect of dimethyl fumarate on mitochondrial metabolism in a pediatric porcine model of asphyxia-induced in-hospital cardiac arrest. Sci Rep 2024; 14:13852. [PMID: 38879681 PMCID: PMC11180202 DOI: 10.1038/s41598-024-64317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Neurological and cardiac injuries are significant contributors to morbidity and mortality following pediatric in-hospital cardiac arrest (IHCA). Preservation of mitochondrial function may be critical for reducing these injuries. Dimethyl fumarate (DMF) has shown potential to enhance mitochondrial content and reduce oxidative damage. To investigate the efficacy of DMF in mitigating mitochondrial injury in a pediatric porcine model of IHCA, toddler-aged piglets were subjected to asphyxia-induced CA, followed by ventricular fibrillation, high-quality cardiopulmonary resuscitation, and random assignment to receive either DMF (30 mg/kg) or placebo for four days. Sham animals underwent similar anesthesia protocols without CA. After four days, tissues were analyzed for mitochondrial markers. In the brain, untreated CA animals exhibited a reduced expression of proteins of the oxidative phosphorylation system (CI, CIV, CV) and decreased mitochondrial respiration (p < 0.001). Despite alterations in mitochondrial content and morphology in the myocardium, as assessed per transmission electron microscopy, mitochondrial function was unchanged. DMF treatment counteracted 25% of the proteomic changes induced by CA in the brain, and preserved mitochondrial structure in the myocardium. DMF demonstrates a potential therapeutic benefit in preserving mitochondrial integrity following asphyxia-induced IHCA. Further investigation is warranted to fully elucidate DMF's protective mechanisms and optimize its therapeutic application in post-arrest care.
Collapse
Affiliation(s)
- Sarah Piel
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA.
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany.
| | - Meagan J McManus
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Kristina N Heye
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Forrest Beaulieu
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Hossein Fazelinia
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Joanna I Janowska
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Bryce MacTurk
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Jonathan Starr
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Hunter Gaudio
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Nisha Patel
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Martin E Smalley
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jordan N Hook
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Neha V Kohli
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - James Bruton
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Thomas Hallowell
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Nile Delso
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Anna Roberts
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Yuxi Lin
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Johannes K Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Otorhinolaryngology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | | | - Robert A Berg
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Ryan W Morgan
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Todd J Kilbaugh
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| |
Collapse
|
9
|
Xiao Y, Wang Q, Zhang H, Nederlof R, Bakker D, Siadari BA, Wesselink MW, Preckel B, Weber NC, Hollmann MW, Schomakers BV, van Weeghel M, Zuurbier CJ. Insulin and glycolysis dependency of cardioprotection by nicotinamide riboside. Basic Res Cardiol 2024; 119:403-418. [PMID: 38528175 PMCID: PMC11142987 DOI: 10.1007/s00395-024-01042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/27/2024]
Abstract
Decreased nicotinamide adenine dinucleotide (NAD+) levels contribute to various pathologies such as ageing, diabetes, heart failure and ischemia-reperfusion injury (IRI). Nicotinamide riboside (NR) has emerged as a promising therapeutic NAD+ precursor due to efficient NAD+ elevation and was recently shown to be the only agent able to reduce cardiac IRI in models employing clinically relevant anesthesia. However, through which metabolic pathway(s) NR mediates IRI protection remains unknown. Furthermore, the influence of insulin, a known modulator of cardioprotective efficacy, on the protective effects of NR has not been investigated. Here, we used the isolated mouse heart allowing cardiac metabolic control to investigate: (1) whether NR can protect the isolated heart against IRI, (2) the metabolic pathways underlying NR-mediated protection, and (3) whether insulin abrogates NR protection. NR protection against cardiac IRI and effects on metabolic pathways employing metabolomics for determination of changes in metabolic intermediates, and 13C-glucose fluxomics for determination of metabolic pathway activities (glycolysis, pentose phosphate pathway (PPP) and mitochondrial/tricarboxylic acid cycle (TCA cycle) activities), were examined in isolated C57BL/6N mouse hearts perfused with either (a) glucose + fatty acids (FA) ("mild glycolysis group"), (b) lactate + pyruvate + FA ("no glycolysis group"), or (c) glucose + FA + insulin ("high glycolysis group"). NR increased cardiac NAD+ in all three metabolic groups. In glucose + FA perfused hearts, NR reduced IR injury, increased glycolytic intermediate phosphoenolpyruvate (PEP), TCA intermediate succinate and PPP intermediates ribose-5P (R5P) / sedoheptulose-7P (S7P), and was associated with activated glycolysis, without changes in TCA cycle or PPP activities. In the "no glycolysis" hearts, NR protection was lost, whereas NR still increased S7P. In the insulin hearts, glycolysis was largely accelerated, and NR protection abrogated. NR still increased PPP intermediates, with now high 13C-labeling of S7P, but NR was unable to increase metabolic pathway activities, including glycolysis. Protection by NR against IRI is only present in hearts with low glycolysis, and is associated with activation of glycolysis. When activation of glycolysis was prevented, through either examining "no glycolysis" hearts or "high glycolysis" hearts, NR protection was abolished. The data suggest that NR's acute cardioprotective effects are mediated through glycolysis activation and are lost in the presence of insulin because of already elevated glycolysis.
Collapse
Affiliation(s)
- Y Xiao
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Q Wang
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
| | - H Zhang
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
| | - R Nederlof
- Institut für Herz- und Kreislaufphysiologie, Medizinische fakultät und Universitätsklinikum Düsseldorf, Heinrich- Heine- Universität Düsseldorf, Düsseldorf, Germany
| | - D Bakker
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
| | - B A Siadari
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - M W Wesselink
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - B Preckel
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
| | - N C Weber
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
| | - M W Hollmann
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
| | - B V Schomakers
- Laboratory Genetic Metabolic Diseases, Location Academic Medical Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Location Academic Medical Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - M van Weeghel
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Location Academic Medical Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Location Academic Medical Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands
| | - C J Zuurbier
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Pędzińska-Betiuk A, Schlicker E, Weresa J, Malinowska B. Re-evaluation of the cardioprotective effects of cannabinoids against ischemia-reperfusion injury according to the IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) criteria. Front Pharmacol 2024; 15:1382995. [PMID: 38873412 PMCID: PMC11170160 DOI: 10.3389/fphar.2024.1382995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 06/15/2024] Open
Abstract
Ischemic heart disease, associated with high morbidity and mortality, represents a major challenge for the development of drug-based strategies to improve its prognosis. Results of pre-clinical studies suggest that agonists of cannabinoid CB2 receptors and multitarget cannabidiol might be potential cardioprotective strategies against ischemia-reperfusion injury. The aim of our study was to re-evaluate the cardioprotective effects of cannabinoids against ischemia-reperfusion injury according to the IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) criteria published recently by the European Union (EU) CARDIOPROTECTION COST ACTION. To meet the minimum criteria of those guidelines, experiments should be performed (i) on healthy small animals subjected to ischemia with reperfusion lasting for at least 2 hours and (ii) confirmed in small animals with comorbidities and co-medications and (iii) in large animals. Our analysis revealed that the publications regarding cardioprotective effects of CB2 receptor agonists and cannabidiol did not meet all three strict steps of IMPACT. Thus, additional experiments are needed to confirm the cardioprotective activities of (endo)cannabinoids mainly on small animals with comorbidities and on large animals. Moreover, our publication underlines the significance of the IMPACT criteria for a proper planning of preclinical experiments regarding cardiac ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Jolanta Weresa
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
11
|
Trindade F. Could lncRNA CASC15 be a new target to limit myocardial ischemia/reperfusion injury? Rev Port Cardiol 2024; 43:85-86. [PMID: 37659654 DOI: 10.1016/j.repc.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023] Open
Affiliation(s)
- Fábio Trindade
- Cardiovascular R&D Center - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal.
| |
Collapse
|
12
|
Lamy A, Chertow GM, Jessen M, Collar A, Brown CD, Mack CA, Marzouk M, Scavo V, Washburn TB, Savage D, Smith J, Bennetts J, Assi R, Shults C, Arghami A, Butler J, Devereaux P, Zager R, Wang C, Snapinn S, Browne A, Rodriguez J, Ruiz S, Singh B. Effects of RBT-1 on preconditioning response biomarkers in patients undergoing coronary artery bypass graft or heart valve surgery: a multicentre, double-blind, randomised, placebo-controlled phase 2 trial. EClinicalMedicine 2024; 68:102364. [PMID: 38586479 PMCID: PMC10994969 DOI: 10.1016/j.eclinm.2023.102364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 04/09/2024] Open
Abstract
Background RBT-1 is a combination drug of stannic protoporfin (SnPP) and iron sucrose (FeS) that elicits a preconditioning response through activation of antioxidant, anti-inflammatory, and iron-scavenging pathways, as measured by heme oxygenase-1 (HO-1), interleukin-10 (IL-10), and ferritin, respectively. Our primary aim was to determine whether RBT-1 administered before surgery would safely and effectively elicit a preconditioning response in patients undergoing cardiac surgery. Methods This phase 2, double-blind, randomised, placebo-controlled, parallel-group, adaptive trial, conducted in 19 centres across the USA, Canada, and Australia, enrolled patients scheduled to undergo non-emergent coronary artery bypass graft (CABG) and/or heart valve surgery with cardiopulmonary bypass. Patients were randomised (1:1:1) to receive either a single intravenous infusion of high-dose RBT-1 (90 mg SnPP/240 mg FeS), low-dose RBT-1 (45 mg SnPP/240 mg FeS), or placebo within 24-48 h before surgery. The primary outcome was a preoperative preconditioning response, measured by a composite of plasma HO-1, IL-10, and ferritin. Safety was assessed by adverse events and laboratory parameters. Prespecified adaptive criteria permitted early stopping and enrichment. This trial is registered with ClinicalTrials.gov, NCT04564833. Findings Between Aug 4, 2021, and Nov 9, 2022, of 135 patients who were enrolled and randomly allocated to a study group (46 high-dose, 45 low-dose, 44 placebo), 132 (98%) were included in the primary analysis (46 high-dose, 42 low-dose, 44 placebo). At interim, the trial proceeded to full enrollment without enrichment. RBT-1 led to a greater preconditioning response than did placebo at high-dose (geometric least squares mean [GLSM] ratio, 3.58; 95% CI, 2.91-4.41; p < 0.0001) and low-dose (GLSM ratio, 2.62; 95% CI, 2.11-3.24; p < 0.0001). RBT-1 was generally well tolerated by patients. The primary drug-related adverse event was dose-dependent photosensitivity, observed in 12 (26%) of 46 patients treated with high-dose RBT-1 and in six (13%) of 45 patients treated with low-dose RBT-1 (safety population). Interpretation RBT-1 demonstrated a statistically significant cytoprotective preconditioning response and a manageable safety profile. Further research is needed. A phase 3 trial is planned. Funding Renibus Therapeutics, Inc.
Collapse
Affiliation(s)
- Andre Lamy
- Department of Perioperative Medicine and Surgery, Population Health Research Institute, Hamilton, Ontario, Canada
| | - Glenn M. Chertow
- Departments of Medicine and Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Jessen
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alonso Collar
- Department of Thoracic Surgery and Vascular Surgery, MyMichigan Health, Midland, MI, USA
| | - Craig D. Brown
- Department of Cardiac Surgery, New Brunswick Heart Centre, Saint John, New Brunswick, Canada
| | - Charles A. Mack
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Mohamed Marzouk
- Department of Cardiac Surgery, Québec Heart and Lung Institute, Québec, Québec, Canada
| | - Vincent Scavo
- Department of Cardiovascular and Thoracic Surgery, Lutheran Medical Group, Fort Wayne, Indiana, USA
| | - T Benton Washburn
- Department of Cardiothoracic Surgery, Huntsville Hospital Heart Center, Huntsville, AL, USA
| | - David Savage
- Department of Cardiothoracic Surgery, Indiana University Health, Bloomington, IN, USA
| | - Julian Smith
- Department of Surgery (School of Clinical Sciences at Monash Health), Monash University and Department of Cardiothoracic Surgery, Monash Health, Melbourne, Victoria, Australia
| | - Jayme Bennetts
- Department of Cardiothoracic Surgery, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
- Department of Surgery, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Roland Assi
- Department of Cardiac Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Christian Shults
- Department of Cardiac Surgery, MedStar Heart and Vascular Institute, Washington, DC, USA
| | - Arman Arghami
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, USA
| | - Javed Butler
- Department of Medicine, University of Mississippi, Jackson, MS, USA
- Baylor Scott and White Research Institute, Dallas, TX, USA
| | - P.J. Devereaux
- Department of Perioperative Medicine and Surgery, Population Health Research Institute, Hamilton, Ontario, Canada
| | - Richard Zager
- Department of Drug Development & Medical Affairs, Renibus Therapeutics Inc, Southlake, TX, USA
| | - Chao Wang
- Pharma Data Associates LLC, Piscataway, NJ, USA
| | - Steve Snapinn
- Seattle-Quilcene Biostatistics LLC, Seattle, WA, USA
| | - Austin Browne
- Department of Perioperative Medicine and Surgery, Population Health Research Institute, Hamilton, Ontario, Canada
| | - Jeannette Rodriguez
- Department of Drug Development & Medical Affairs, Renibus Therapeutics Inc, Southlake, TX, USA
| | - Stacey Ruiz
- Department of Drug Development & Medical Affairs, Renibus Therapeutics Inc, Southlake, TX, USA
| | - Bhupinder Singh
- Department of Drug Development & Medical Affairs, Renibus Therapeutics Inc, Southlake, TX, USA
| |
Collapse
|
13
|
Vahldieck C, Fels B, Löning S, Nickel L, Weil J, Kusche-Vihrog K. Prolonged Door-to-Balloon Time Leads to Endothelial Glycocalyx Damage and Endothelial Dysfunction in Patients with ST-Elevation Myocardial Infarction. Biomedicines 2023; 11:2924. [PMID: 38001925 PMCID: PMC10669223 DOI: 10.3390/biomedicines11112924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Damage to the endothelial glycocalyx (eGC) has been reported during acute ischemic events like ST-elevation myocardial infarction (STEMI). In STEMI, a door-to-balloon time (D2B) of <60 min was shown to reduce mortality and nonfatal complications. Here, we hypothesize that eGC condition is associated with D2B duration and endothelial function during STEMI. One hundred and twenty-six individuals were analyzed in this study (STEMI patients vs. age-/sex-matched healthy volunteers). After stimulating endothelial cells with patient/control sera, the eGC's nanomechanical properties (i.e., height/stiffness) were analyzed using the atomic force microscopy-based nanoindentation technique. eGC components were determined via ELISA, and measurements of nitric oxide levels (NO) were based on chemiluminescence. eGC height/stiffness (both p < 0.001), as well as NO concentration (p < 0.001), were reduced during STEMI. Notably, the D2B had a strong impact on the endothelial condition: a D2B > 60 min led to significantly higher serum concentrations of eGC components (syndecan-1: p < 0.001/heparan sulfate: p < 0.001/hyaluronic acid: p < 0.0001). A D2B > 60 min led to the pronounced loss of eGC height/stiffness (both, p < 0.001) with reduced NO concentrations (p < 0.01), activated the complement system (p < 0.001), and prolonged the hospital stay (p < 0.01). An increased D2B led to severe eGC shedding, with endothelial dysfunction in a temporal context. eGC components and pro-inflammatory mediators correlated with a prolonged D2B, indicating a time-dependent immune reaction during STEMI, with a decreased NO concentration. Thus, D2B is a crucial factor for eGC damage during STEMI. Clinical evaluation of the eGC condition might serve as an important predictor for the endothelial function of STEMI patients in the future.
Collapse
Affiliation(s)
- Carl Vahldieck
- Department of Anesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein Campus Luebeck, 23538 Luebeck, Germany
- Institute of Physiology, University of Luebeck, 23562 Luebeck, Germany; (B.F.); (K.K.-V.)
| | - Benedikt Fels
- Institute of Physiology, University of Luebeck, 23562 Luebeck, Germany; (B.F.); (K.K.-V.)
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, 23562 Luebeck, Germany
| | - Samuel Löning
- Institute of Physiology, University of Luebeck, 23562 Luebeck, Germany; (B.F.); (K.K.-V.)
| | - Laura Nickel
- Medizinische Klinik II, Sana Kliniken Luebeck, 23560 Luebeck, Germany (J.W.)
| | - Joachim Weil
- Medizinische Klinik II, Sana Kliniken Luebeck, 23560 Luebeck, Germany (J.W.)
| | - Kristina Kusche-Vihrog
- Institute of Physiology, University of Luebeck, 23562 Luebeck, Germany; (B.F.); (K.K.-V.)
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, 23562 Luebeck, Germany
| |
Collapse
|
14
|
Orellana-Urzúa S, Briones-Valdivieso C, Chichiarelli S, Saso L, Rodrigo R. Potential Role of Natural Antioxidants in Countering Reperfusion Injury in Acute Myocardial Infarction and Ischemic Stroke. Antioxidants (Basel) 2023; 12:1760. [PMID: 37760064 PMCID: PMC10525378 DOI: 10.3390/antiox12091760] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Stroke and acute myocardial infarction are leading causes of mortality worldwide. The latter accounts for approximately 9 million deaths annually. In turn, ischemic stroke is a significant contributor to adult physical disability globally. While reperfusion is crucial for tissue recovery, it can paradoxically exacerbate damage through oxidative stress (OS), inflammation, and cell death. Therefore, it is imperative to explore diverse approaches aimed at minimizing ischemia/reperfusion injury to enhance clinical outcomes. OS primarily arises from an excessive generation of reactive oxygen species (ROS) and/or decreased endogenous antioxidant potential. Natural antioxidant compounds can counteract the injury mechanisms linked to ROS. While promising preclinical results, based on monotherapies, account for protective effects against tissue injury by ROS, translating these models into human applications has yielded controversial evidence. However, since the wide spectrum of antioxidants having diverse chemical characteristics offers varied biological actions on cell signaling pathways, multitherapy has emerged as a valuable therapeutic resource. Moreover, the combination of antioxidants in multitherapy holds significant potential for synergistic effects. This study was designed with the aim of providing an updated overview of natural antioxidants suitable for preventing myocardial and cerebral ischemia/reperfusion injuries.
Collapse
Affiliation(s)
- Sofía Orellana-Urzúa
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | | | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| |
Collapse
|