1
|
Zhou Q, Hu H, Li Z. WDR2 regulates the orphan kinesin KIN-G to promote hook complex and Golgi biogenesis in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635568. [PMID: 39975200 PMCID: PMC11838399 DOI: 10.1101/2025.01.29.635568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The flagellum in Trypanosoma brucei plays crucial roles in cell locomotion, cell morphogenesis, and cell division, and its inheritance depends on the faithful duplication of multiple flagellum-associated structures. One of such cytoskeletal structures is a hairpin-like structure termed the hook complex composed of a fishhook-like structure and a centrin arm structure, whose cellular functions remain poorly understood. We recently identified KIN-G, an orphan kinesin that promotes hook complex and Golgi biogenesis. Here we report a WD40 repeats-containing protein named WDR2, which interacts with and regulates KIN-G. WDR2 co-localizes with KIN-G at the centrin arm, and knockdown of WDR2 disrupts hook complex integrity and morphology, inhibits flagellum attachment zone elongation and flagellum positioning, and eventually arrests cytokinesis. Knockdown of WDR2 also disrupts the maturation of the centrin arm-associated Golgi, thereby impairing Golgi biogenesis. WDR2 interacts with KIN-G via its N-terminal unknown motifs, the middle domain containing a coiled coil and a PB1 motif, and the C-terminal WD40 domain, and targets KIN-G to its subcellular location. These results uncover a regulatory role for WDR2 in recruiting KIN-G to regulate hook complex and Golgi biogenesis, thereby impacting flagellum inheritance and cell division plane positioning.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Huiqing Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
2
|
Zhou Q, Kurasawa Y, Hu H, Souza Onofre T, Li Z. An orphan kinesin in Trypanosoma brucei regulates hook complex assembly and Golgi biogenesis. mBio 2024; 15:e0263424. [PMID: 39475234 PMCID: PMC11633155 DOI: 10.1128/mbio.02634-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 11/20/2024] Open
Abstract
Kinesins are microtubule-based motor proteins that play diverse cellular functions by regulating microtubule dynamics and intracellular transport in eukaryotes. The early branching kinetoplastid protozoan Trypanosoma brucei has an expanded repertoire of kinetoplastid-specific kinesins and orphan kinesins, many of which have unknown functions. We report here the identification of an orphan kinesin named KIN-G that plays an essential role in maintaining hook complex integrity and promoting Golgi biogenesis in T. brucei. KIN-G localizes to the distal portion of the centrin arm of the flagellum-associated hook complex through association with the centrin arm protein TbCentrin4. Knockdown of KIN-G in T. brucei disrupts the integrity of the hook complex by reducing the length of the centrin arm and eliminating the shank part of the hook complex, thereby impairing flagellum attachment zone elongation and flagellum positioning, which leads to unequal cytokinesis. KIN-G associates with Golgi through a centrin arm-localized Golgi peripheral protein named CAAP1, which maintains Golgi-centrin arm association to facilitate Golgi biogenesis. Knockdown of KIN-G impairs Golgi biogenesis by disrupting CAAP1 at the centrin arm, thereby impairing the maturation of centrin arm-associated Golgi. In vitro microtubule gliding assays demonstrate that KIN-G is a plus end-directed motor protein, and its motor activity is required for hook complex assembly and Golgi biogenesis. Together, these results identify a kinesin motor protein for promoting hook complex assembly and uncover a control mechanism for Golgi biogenesis through KIN-G-mediated maintenance of Golgi-hook complex association.IMPORTANCETrypanosoma brucei has a motile flagellum, which controls cell motility, cell morphogenesis, cell division, and cell-cell communication, and a set of cytoskeletal structures, including the hook complex and the centrin arm, associates with the flagellum. Despite the essentiality of these flagellum-associated cytoskeletal structures, their mechanistic roles and the function of their associated proteins remain poorly understood. Here, we demonstrate that the orphan kinesin KIN-G functions to promote the biogenesis of the hook complex and the Golgi apparatus. KIN-G exerts this function by mediating the association between centrin arm and Golgi through the centrin arm protein TbCentrin4 and a novel Golgi scaffold protein named CAAP1, thereby bridging the two structures and maintaining their close association to facilitate the assembly of the two structures. These findings uncover the essential involvement of a kinesin motor protein in regulating the biogenesis of the hook complex and the Golgi in trypanosomes.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yasuhiro Kurasawa
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Huiqing Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Thiago Souza Onofre
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
3
|
Souza Onofre T, Pham KTM, Zhou Q, Li Z. The microtubule quartet protein SNAP1 in Trypanosoma brucei facilitates flagellum and cell division plane positioning by promoting basal body segregation. J Biol Chem 2023; 299:105340. [PMID: 37838178 PMCID: PMC10656233 DOI: 10.1016/j.jbc.2023.105340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023] Open
Abstract
The unicellular protozoan Trypanosoma brucei has a single flagellum that is involved in cell motility, cell morphogenesis, and cell division. Inheritance of the newly assembled flagellum during the cell cycle requires its correct positioning, which depends on the faithful duplication or segregation of multiple flagellum-associated cytoskeletal structures, including the basal body, the flagellum attachment zone, and the hook complex. Along the flagellum attachment zone sites a set of four microtubules termed the microtubule quartet (MtQ), whose molecular function remains enigmatic. We recently reported that the MtQ-localized protein NHL1 interacts with the microtubule-binding protein TbSpef1 and regulates flagellum inheritance by promoting basal body rotation and segregation. Here, we identified a TbSpef1- and NHL1-associated protein named SNAP1, which co-localizes with NHL1 and TbSpef1 at the proximal portion of the MtQ, depends on TbSpef1 for localization and is required for NHL1 localization to the MtQ. Knockdown of SNAP1 impairs the rotation and segregation of the basal body, the elongation of the flagellum attachment zone filament, and the positioning of the newly assembled flagellum, thereby causing mis-placement of the cell division plane, a halt in cleavage furrow ingression, and an inhibition of cytokinesis completion. Together, these findings uncover a coordinating role of SNAP1 with TbSpef1 and NHL1 in facilitating flagellum positioning and cell division plane placement for the completion of cytokinesis.
Collapse
Affiliation(s)
- Thiago Souza Onofre
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kieu T M Pham
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Qing Zhou
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
4
|
A Spef1-interacting microtubule quartet protein in Trypanosoma brucei promotes flagellar inheritance by regulating basal body segregation. J Biol Chem 2022; 298:102125. [PMID: 35697071 PMCID: PMC9257412 DOI: 10.1016/j.jbc.2022.102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
The human parasite Trypanosoma brucei contains a motile flagellum that determines the plane of cell division, controls cell morphology, and mediates cell-cell communication. During the cell cycle, inheritance of the newly formed flagellum requires its correct positioning toward the posterior of the cell, which depends on the faithful segregation of multiple flagellum-associated cytoskeletal structures including the basal body, the flagellar pocket collar, the flagellum attachment zone, and the hook complex. A specialized group of four microtubules termed the microtubule quartet (MtQ) originates from the basal body and runs through the flagellar pocket collar and the hook complex to extend, along the flagellum attachment zone, toward the anterior of the cell. However, the physiological function of the MtQ is poorly understood, and few MtQ-associated proteins have been identified and functionally characterized. We report here that an MtQ-localized protein named NHL1 interacts with the microtubule-binding protein TbSpef1 and depends on TbSpef1 for its localization to the MtQ. We show that RNAi-mediated knockdown of NHL1 impairs the segregation of flagellum-associated cytoskeletal structures, resulting in mispositioning of the new flagellum. Furthermore, knockdown of NHL1 also causes misplacement of the cell division plane in dividing trypanosome cells, halts cleavage furrow ingression, and inhibits completion of cytokinesis. These findings uncover a crucial role for the MtQ-associated protein NHL1 in regulating basal body segregation to promote flagellar inheritance in T. brucei.
Collapse
|
5
|
Zhou J, Liu H, Lin Y, Zhao J. Membrane Occupation and Recognition Nexus (MORN) motif controls protein localization and function. FEBS Lett 2022; 596:1839-1850. [PMID: 35568981 DOI: 10.1002/1873-3468.14378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 11/06/2022]
Abstract
Membrane Occupation and Recognition Nexus (MORN) motif was first defined in 2000, when it was identified in the junctophilin protein family. Dozens of studies have been published ever since, mainly focusing on the function of a given MORN motif-containing protein in parasites, plants or animal cells. Proteins with MORN motifs are not only expressed in most animal and plant cell types but also significantly differ in their intracellular localization, suggesting that the MORN motifs may fulfil multiple physiological functions. Recent studies have found that MORN motif-containing proteins junctophilin 1/2 and MORN3 play a role in cardiac hypertrophy, skeletal muscle fiber stability and cancer. Hence, MORN motif-containing proteins may be exploited to develop improved treatments for various pathological conditions, such as cardiovascular diseases. Here, we review current research on MORN motif-containing proteins in different organisms and provide both ideas and approaches for follow-up exploration of their functions and applications.
Collapse
Affiliation(s)
- Jinrun Zhou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, P. R. China
| | - Honghong Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, P. R. China
| | - Yushuang Lin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, P. R. China
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
6
|
Perdomo D, Berdance E, Lallinger-Kube G, Sahin A, Dacheux D, Landrein N, Cayrel A, Ersfeld K, Bonhivers M, Kohl L, Robinson DR. TbKINX1B: a novel BILBO1 partner and an essential protein in bloodstream form Trypanosoma brucei. Parasite 2022; 29:14. [PMID: 35262485 PMCID: PMC8906236 DOI: 10.1051/parasite/2022015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/20/2022] [Indexed: 12/17/2022] Open
Abstract
The flagellar pocket (FP) of the pathogen Trypanosoma brucei is an important single copy structure that is formed by the invagination of the pellicular membrane. It is the unique site of endo- and exocytosis and is required for parasite pathogenicity. The FP consists of distinct structural sub-domains with the least explored being the flagellar pocket collar (FPC). TbBILBO1 is the first-described FPC protein of Trypanosoma brucei. It is essential for parasite survival, FP and FPC biogenesis. In this work, we characterize TbKINX1B, a novel TbBILBO1 partner. We demonstrate that TbKINX1B is located on the basal bodies, the microtubule quartet (a set of four microtubules) and the FPC in T. brucei. Down-regulation of TbKINX1B by RNA interference in bloodstream forms is lethal, inducing an overall disturbance in the endomembrane network. In procyclic forms, the RNAi knockdown of TbKINX1B leads to a minor phenotype with a small number of cells displaying epimastigote-like morphologies, with a misplaced kinetoplast. Our results characterize TbKINX1B as the first putative kinesin to be localized both at the basal bodies and the FPC with a potential role in transporting cargo along with the microtubule quartet.
Collapse
Affiliation(s)
- Doranda Perdomo
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Elodie Berdance
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Gertrud Lallinger-Kube
- Department of Genetics, Bldg. NW1, University of Bayreuth, Universitätsstraße 30 95440 Bayreuth Germany
| | - Annelise Sahin
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Denis Dacheux
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
- Institut Polytechnique de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Nicolas Landrein
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Anne Cayrel
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Klaus Ersfeld
- Department of Genetics, Bldg. NW1, University of Bayreuth, Universitätsstraße 30 95440 Bayreuth Germany
| | - Mélanie Bonhivers
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Linda Kohl
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, CP52 61 rue Buffon 75231 Paris Cedex 05 France
| | - Derrick R. Robinson
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| |
Collapse
|
7
|
Structural and functional studies of the first tripartite protein complex at the Trypanosoma brucei flagellar pocket collar. PLoS Pathog 2021; 17:e1009329. [PMID: 34339455 PMCID: PMC8360560 DOI: 10.1371/journal.ppat.1009329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/12/2021] [Accepted: 07/04/2021] [Indexed: 11/19/2022] Open
Abstract
The flagellar pocket (FP) is the only endo- and exocytic organelle in most trypanosomes and, as such, is essential throughout the life cycle of the parasite. The neck of the FP is maintained enclosed around the flagellum via the flagellar pocket collar (FPC). The FPC is a macromolecular cytoskeletal structure and is essential for the formation of the FP and cytokinesis. FPC biogenesis and structure are poorly understood, mainly due to the lack of information on FPC composition. To date, only two FPC proteins, BILBO1 and FPC4, have been characterized. BILBO1 forms a molecular skeleton upon which other FPC proteins can, theoretically, dock onto. We previously identified FPC4 as the first BILBO1 interacting partner and demonstrated that its C-terminal domain interacts with the BILBO1 N-terminal domain (NTD). Here, we report by yeast two-hybrid, bioinformatics, functional and structural studies the characterization of a new FPC component and BILBO1 partner protein, BILBO2 (Tb927.6.3240). Further, we demonstrate that BILBO1 and BILBO2 share a homologous NTD and that both domains interact with FPC4. We have determined a 1.9 Å resolution crystal structure of the BILBO2 NTD in complex with the FPC4 BILBO1-binding domain. Together with mutational analyses, our studies reveal key residues for the function of the BILBO2 NTD and its interaction with FPC4 and evidenced a tripartite interaction between BILBO1, BILBO2, and FPC4. Our work sheds light on the first atomic structure of an FPC protein complex and represents a significant step in deciphering the FPC function in Trypanosoma brucei and other pathogenic kinetoplastids. Trypanosomes belong to a group of zoonotic, protist, parasites that are found in Africa, Asia, South America, and Europe and are responsible for severe human and animal diseases. They all have a common structure called the flagellar pocket (FP). In most trypanosomes, all macromolecular exchanges between the trypanosome and the environment occur via the FP. The FP is thus essential for cell viability and evading the host immune response. We have been studying the flagellar pocket collar (FPC), an enigmatic macromolecular structure at the neck of the FP, and demonstrated its essentiality for the biogenesis of the FP. We demonstrated that BILBO1 is an essential protein of the FPC that interacts with other proteins including a microtubule-binding protein FPC4. Here we identify another bona fide FPC protein, BILBO2, so named because of close similarity with BILBO1 in protein localization and functional domains. We demonstrate that BILBO1 and BILBO2 share a common N-terminal domain involved in the interaction with FPC4, and illustrate a tripartite interaction between BILBO1, BILBO2, and FPC4. Our study also provides the first atomic view of two FPC components. These data represent an additional step in deciphering the FPC structure and function in T. brucei.
Collapse
|
8
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
9
|
Halliday C, de Castro-Neto A, Alcantara CL, Cunha-E-Silva NL, Vaughan S, Sunter JD. Trypanosomatid Flagellar Pocket from Structure to Function. Trends Parasitol 2021; 37:317-329. [PMID: 33308952 DOI: 10.1016/j.pt.2020.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
The trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. are flagellate eukaryotic parasites that cause serious diseases in humans and animals. These parasites have cell shapes defined by a subpellicular microtubule array and all share a number of important cellular features. One of these is the flagellar pocket, an invagination of the cell membrane around the proximal end of the flagellum, which is an important organelle for endo/exocytosis. The flagellar pocket plays a crucial role in parasite pathogenicity and persistence in the host and has a great influence on cell morphogenesis and cell division. Here, we compare the morphology and function of the flagellar pockets between different trypanosomatids, with their life cycles and ecological niches likely influencing these differences.
Collapse
Affiliation(s)
- Clare Halliday
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Artur de Castro-Neto
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Carolina L Alcantara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Narcisa L Cunha-E-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| |
Collapse
|
10
|
Pham KTM, Hu H, Li Z. Maintenance of hook complex integrity and centrin arm assembly facilitates flagellum inheritance in Trypanosoma brucei. J Biol Chem 2020; 295:12962-12974. [PMID: 32675283 DOI: 10.1074/jbc.ra120.014237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/08/2020] [Indexed: 11/06/2022] Open
Abstract
Inheritance of the newly assembled flagellum in the human parasite Trypanosoma brucei depends on the faithful duplication and segregation of multiple flagellum-associated cytoskeletal structures, including the hook complex and its associated centrin arm. The biological functions of this unique hook complex-centrin arm assembly remain poorly understood. Here, we report a hook complex-associated protein named BOH2 that plays an essential role in promoting flagellum inheritance. BOH2 localizes to the hooked part of the hook complex by bridging the hook complex, the centrin arm, and the flagellum attachment zone filament. Depletion of BOH2 caused the loss of the shank part of the hook complex and its associated protein TbSmee1, disrupted the assembly of the centrin arm and the recruitment of centrin arm-associated protein CAAP1, inhibited the assembly of the flagellum attachment zone, and caused flagellum mispositioning and detachment. These results demonstrate crucial roles of BOH2 in maintaining hook complex integrity and promoting centrin arm formation and suggest that proper assembly of the hook complex-centrin arm structure facilitates flagellum inheritance.
Collapse
Affiliation(s)
- Kieu T M Pham
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Huiqing Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
11
|
Abstract
Trypanosomes have complex life cycles within which there are both proliferative and differentiation cell divisions. The coordination of the cell cycle to achieve these different divisions is critical for the parasite to infect both host and vector. From studying the regulation of the proliferative cell cycle of the Trypanosoma brucei procyclic life cycle stage, three subcycles emerge that control the duplication and segregation of (a) the nucleus, (b) the kinetoplast, and (c) a set of cytoskeletal structures. We discuss how the clear dependency relationships within these subcycles, and the potential for cross talk between them, are likely required for overall cell cycle coordination. Finally, we look at the implications this interdependence has for proliferative and differentiation divisions through the T. brucei life cycle and in related parasitic trypanosomatid species.
Collapse
Affiliation(s)
- Richard J Wheeler
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom;
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom;
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom;
| |
Collapse
|
12
|
Pham KTM, Zhou Q, Kurasawa Y, Li Z. BOH1 cooperates with Polo-like kinase to regulate flagellum inheritance and cytokinesis initiation in Trypanosoma brucei. J Cell Sci 2019; 132:jcs230581. [PMID: 31217284 PMCID: PMC6679579 DOI: 10.1242/jcs.230581] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/11/2019] [Indexed: 12/30/2022] Open
Abstract
Trypanosoma brucei possesses a motile flagellum that determines cell morphology and the cell division plane. Inheritance of the newly assembled flagellum during the cell cycle is controlled by the Polo-like kinase homolog TbPLK, which also regulates cytokinesis initiation. How TbPLK is targeted to its subcellular locations remains poorly understood. Here we report the trypanosome-specific protein BOH1 that cooperates with TbPLK to regulate flagellum inheritance and cytokinesis initiation in the procyclic form of T. brucei BOH1 localizes to an unusual sub-domain in the flagellum-associated hook complex, bridging the hook complex, the centrin arm and the flagellum attachment zone. Depletion of BOH1 disrupts hook-complex morphology, inhibits centrin-arm elongation and abolishes flagellum attachment zone assembly, leading to flagellum mis-positioning and detachment. Further, BOH1 deficiency impairs the localization of TbPLK and the cytokinesis regulator CIF1 to the cytokinesis initiation site, providing a molecular mechanism for its role in cytokinesis initiation. These findings reveal the roles of BOH1 in maintaining hook-complex morphology and regulating flagellum inheritance, and establish BOH1 as an upstream regulator of the TbPLK-mediated cytokinesis regulatory pathway.
Collapse
Affiliation(s)
- Kieu T M Pham
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qing Zhou
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yasuhiro Kurasawa
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
13
|
Hilton NA, Sladewski TE, Perry JA, Pataki Z, Sinclair-Davis AN, Muniz RS, Tran HL, Wurster JI, Seo J, de Graffenried CL. Identification of TOEFAZ1-interacting proteins reveals key regulators of Trypanosoma brucei cytokinesis. Mol Microbiol 2018; 109:306-326. [PMID: 29781112 PMCID: PMC6359937 DOI: 10.1111/mmi.13986] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2018] [Indexed: 01/07/2023]
Abstract
The protist parasite Trypanosoma brucei is an obligate extracellular pathogen that retains its highly polarized morphology during cell division and has evolved a novel cytokinetic process independent of non-muscle myosin II. The polo-like kinase homolog TbPLK is essential for transmission of cell polarity during division and for cytokinesis. We previously identified a putative TbPLK substrate named Tip of the Extending FAZ 1 (TOEFAZ1) as an essential kinetoplastid-specific component of the T. brucei cytokinetic machinery. We performed a proximity-dependent biotinylation identification (BioID) screen using TOEFAZ1 as a means to identify additional proteins that are involved in cytokinesis. Using quantitative proteomic methods, we identified nearly 500 TOEFAZ1-proximal proteins and characterized 59 in further detail. Among the candidates, we identified an essential putative phosphatase that regulates the expression level and localization of both TOEFAZ1 and TbPLK, a previously uncharacterized protein that is necessary for the assembly of a new cell posterior, and a microtubule plus-end directed orphan kinesin that is required for completing cleavage furrow ingression. The identification of these proteins provides new insight into T. brucei cytokinesis and establishes TOEFAZ1 as a key component of this essential and uniquely configured process in kinetoplastids.
Collapse
Affiliation(s)
- Nicholas A. Hilton
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Thomas E. Sladewski
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Jenna A. Perry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Zemplen Pataki
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Amy N. Sinclair-Davis
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Richard S. Muniz
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Holly L. Tran
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Jenna I. Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Jiwon Seo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912
| | | |
Collapse
|
14
|
Perry JA, Sinclair-Davis AN, McAllaster MR, de Graffenried CL. TbSmee1 regulates hook complex morphology and the rate of flagellar pocket uptake in Trypanosoma brucei. Mol Microbiol 2018; 107:344-362. [PMID: 29178204 PMCID: PMC5777864 DOI: 10.1111/mmi.13885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/26/2023]
Abstract
Trypanosoma brucei uses multiple mechanisms to evade detection by its insect and mammalian hosts. The flagellar pocket (FP) is the exclusive site of uptake from the environment in trypanosomes and shields receptors from exposure to the host. The FP neck is tightly associated with the flagellum via a series of cytoskeletal structures that include the hook complex (HC) and the centrin arm. These structures are implicated in facilitating macromolecule entry into the FP and nucleating the flagellum attachment zone (FAZ), which adheres the flagellum to the cell surface. TbSmee1 (Tb927.10.8820) is a component of the HC and a putative substrate of polo-like kinase (TbPLK), which is essential for centrin arm and FAZ duplication. We show that depletion of TbSmee1 in the insect-resident (procyclic) form of the parasite causes a 40% growth decrease and the appearance of multinucleated cells that result from defective cytokinesis. Cells lacking TbSmee1 contain HCs with aberrant morphology and show delayed uptake of both fluid-phase and membrane markers. TbPLK localization to the tip of the new FAZ is also blocked. These results argue that TbSmee1 is necessary for maintaining HC morphology, which is important for the parasite's ability to take up molecules from its environment.
Collapse
Affiliation(s)
- Jenna A. Perry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Amy N. Sinclair-Davis
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Michael R. McAllaster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | | |
Collapse
|
15
|
Albisetti A, Florimond C, Landrein N, Vidilaseris K, Eggenspieler M, Lesigang J, Dong G, Robinson DR, Bonhivers M. Interaction between the flagellar pocket collar and the hook complex via a novel microtubule-binding protein in Trypanosoma brucei. PLoS Pathog 2017; 13:e1006710. [PMID: 29091964 PMCID: PMC5683654 DOI: 10.1371/journal.ppat.1006710] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 11/13/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022] Open
Abstract
Trypanosoma brucei belongs to a group of unicellular, flagellated parasites that are responsible for human African trypanosomiasis. An essential aspect of parasite pathogenicity is cytoskeleton remodelling, which occurs during the life cycle of the parasite and is accompanied by major changes in morphology and organelle positioning. The flagellum originates from the basal bodies and exits the cell body through the flagellar pocket (FP) but remains attached to the cell body via the flagellum attachment zone (FAZ). The FP is an invagination of the pellicular membrane and is the sole site for endo- and exocytosis. The FAZ is a large complex of cytoskeletal proteins, plus an intracellular set of four specialised microtubules (MtQ) that elongate from the basal bodies to the anterior end of the cell. At the distal end of the FP, an essential, intracellular, cytoskeletal structure called the flagellar pocket collar (FPC) circumvents the flagellum. Overlapping the FPC is the hook complex (HC) (a sub-structure of the previously named bilobe) that is also essential and is thought to be involved in protein FP entry. BILBO1 is the only functionally characterised FPC protein and is necessary for FPC and FP biogenesis. Here, we used a combination of in vitro and in vivo approaches to identify and characterize a new BILBO1 partner protein-FPC4. We demonstrate that FPC4 localises to the FPC, the HC, and possibly to a proximal portion of the MtQ. We found that the C-terminal domain of FPC4 interacts with the BILBO1 N-terminal domain, and we identified the key amino acids required for this interaction. Interestingly, the FPC4 N-terminal domain was found to bind microtubules. Over-expression studies highlight the role of FPC4 in its association with the FPC, HC and FPC segregation. Our data suggest a tripartite association between the FPC, the HC and the MtQ.
Collapse
Affiliation(s)
- Anna Albisetti
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Célia Florimond
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Nicolas Landrein
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Keni Vidilaseris
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Marie Eggenspieler
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Johannes Lesigang
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Gang Dong
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Derrick Roy Robinson
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Mélanie Bonhivers
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| |
Collapse
|
16
|
Sinclair-Davis AN, McAllaster MR, de Graffenried CL. A functional analysis of TOEFAZ1 uncovers protein domains essential for cytokinesis in Trypanosoma brucei. J Cell Sci 2017; 130:3918-3932. [PMID: 28993462 DOI: 10.1242/jcs.207209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/05/2017] [Indexed: 12/27/2022] Open
Abstract
The parasite Trypanosoma brucei is highly polarized, including a flagellum that is attached along the cell surface by the flagellum attachment zone (FAZ). During cell division, the new FAZ positions the cleavage furrow, which ingresses from the anterior tip of the cell towards the posterior. We recently identified TOEFAZ1 (for 'Tip of the Extending FAZ protein 1') as an essential protein in trypanosome cytokinesis. Here, we analyzed the localization and function of TOEFAZ1 domains by performing overexpression and RNAi complementation experiments. TOEFAZ1 comprises three domains with separable functions: an N-terminal α-helical domain that may be involved in FAZ recruitment, a central intrinsically disordered domain that keeps the morphogenic kinase TbPLK at the new FAZ tip, and a C-terminal zinc finger domain necessary for TOEFAZ1 oligomerization. Both the N-terminal and C-terminal domains are essential for TOEFAZ1 function, but TbPLK retention at the FAZ is not necessary for cytokinesis. The feasibility of alternative cytokinetic pathways that do not employ TOEFAZ1 are also assessed. Our results show that TOEFAZ1 is a multimeric scaffold for recruiting proteins that control the timing and location of cleavage furrow ingression.
Collapse
Affiliation(s)
- Amy N Sinclair-Davis
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Michael R McAllaster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
17
|
Wei L, Zhao X, Wang R, Fu Y, Chai B, Liang A. Expression of a MORN repeat protein from Euplotes octocarinatus requires a +1 programmed ribosomal frameshifting. Biosci Biotechnol Biochem 2017; 81:1327-1334. [PMID: 28317463 DOI: 10.1080/09168451.2017.1301804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Analysis of transcriptome revealed that a membrane occupation and recognition nexus (MORN) repeat protein-encoding gene of Euplotes octocarinatus (Eo-morn-9-31) was a candidate for programmed +1 ribosomal frameshifting (+1 PRF). In this study, a dual-luciferase assay was performed to detect its expression. The result showed that the MORN repeat protein (Eo-MORN-9-31) could be produced by the +1 PRF event during the process of translation in yeast and the frameshifting efficiency was about 4-5%. We further confirmed its reality by western blot and mass spectrometry. This study provided experimental evidence indicating that the expression of the Eo-MORN-9-31 of E. octocarinatus required the +1 PRF.
Collapse
Affiliation(s)
- Lili Wei
- a Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology , Shanxi University , Taiyuan , China
| | - Xuemei Zhao
- a Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology , Shanxi University , Taiyuan , China
| | - Ruanlin Wang
- a Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology , Shanxi University , Taiyuan , China
| | - Yuejun Fu
- a Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology , Shanxi University , Taiyuan , China
| | - Baofeng Chai
- a Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology , Shanxi University , Taiyuan , China
| | - Aihua Liang
- a Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology , Shanxi University , Taiyuan , China
| |
Collapse
|
18
|
Perdomo D, Bonhivers M, Robinson DR. The Trypanosome Flagellar Pocket Collar and Its Ring Forming Protein-TbBILBO1. Cells 2016; 5:cells5010009. [PMID: 26950156 PMCID: PMC4810094 DOI: 10.3390/cells5010009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 12/11/2022] Open
Abstract
Sub-species of Trypanosoma brucei are the causal agents of human African sleeping sickness and Nagana in domesticated livestock. These pathogens have developed an organelle-like compartment called the flagellar pocket (FP). The FP carries out endo- and exocytosis and is the only structure this parasite has evolved to do so. The FP is essential for parasite viability, making it an interesting structure to evaluate as a drug target, especially since it has an indispensible cytoskeleton component called the flagellar pocket collar (FPC). The FPC is located at the neck of the FP where the flagellum exits the cell. The FPC has a complex architecture and division cycle, but little is known concerning its organization. Recent work has focused on understanding how the FP and the FPC are formed and as a result of these studies an important calcium-binding, polymer-forming protein named TbBILBO1 was identified. Cellular biology analysis of TbBILBO1 has demonstrated its uniqueness as a FPC component and until recently, it was unknown what structural role it played in forming the FPC. This review summarizes the recent data on the polymer forming properties of TbBILBO1 and how these are correlated to the FP cytoskeleton.
Collapse
Affiliation(s)
- Doranda Perdomo
- CNRS, Microbiology Fundamental and Pathogenicity, UMR 5234, F-33000 Bordeaux, France.
| | - Mélanie Bonhivers
- CNRS, Microbiology Fundamental and Pathogenicity, UMR 5234, F-33000 Bordeaux, France.
| | - Derrick R Robinson
- CNRS, Microbiology Fundamental and Pathogenicity, UMR 5234, F-33000 Bordeaux, France.
| |
Collapse
|