1
|
Wu P, Wang Y, He D, Liu Y. Clinical Study on the Treatment of Upper Limb Dysfunction in Stroke Patients Using Ultrasound-Guided Electroacupuncture. J Mot Behav 2024; 57:165-170. [PMID: 39688516 DOI: 10.1080/00222895.2024.2439505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
This study aimed to compare the effects of electroacupuncture on traditional acupoints and muscle belly of different target muscles against upper limb dysfunction in stroke patients with hemiplegia. A total of thirty-nine stroke patients with subacute hemiplegia were randomly divided into the control group (n = 19) and observation group (n = 20). The control group was treated with physical therapy and normal electroacupuncture, while the observation group was treated with physical therapy and ultrasound-guided electroacupuncture on the muscle belly. After three weeks' intervention, the scores of Barthel Index, Fugl-Meyer assessment and Action Research Arm Test were compared between the two groups. Before the intervention, there were no significant differences in the scores of Barthel Index, Fugl-Meyer assessment and Action Research Arm Test between these two groups. After three weeks' intervention, there was significant increase in the scores of Barthel Index, Fugl-Meyer assessment, and Action Research Arm Test between the observation and control groups. Electroacupuncture on muscle belly under ultrasound guidance could significantly improve the performance of activities of daily living, motor function and the upper limb function in patients with subacute hemiplegia after stroke, and its effect was superior to electroacupuncture on the acupoints.
Collapse
Affiliation(s)
- Pinxia Wu
- Department of Vasculocardiology, Chuzhou First People's Hospital, Chuzhou, Anhui Province, China
| | - Yu Wang
- Department of Ultrasonic Diagnosis, Chuzhou First People's Hospital, Chuzhou, Anhui Province, China
| | - Dayan He
- Department of Neurology, Chuzhou First People's Hospital, Chuzhou, Anhui Province, China
| | - Yu Liu
- Department of Vasculocardiology, Chuzhou First People's Hospital, Chuzhou, Anhui Province, China
| |
Collapse
|
2
|
Rossi L, Mota BI, Valadão PAC, Magalhães-Gomes MPS, Oliveira BS, Guatimosim S, Navegantes LCC, Miranda AS, Prado MAM, Prado VF, Guatimosim C. Influence of β 2-adrenergic selective agonist formoterol on the motor unit of a mouse model of a congenital myasthenic syndrome with complete VAChT deletion. Neuropharmacology 2024; 260:110116. [PMID: 39151654 DOI: 10.1016/j.neuropharm.2024.110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Congenital Myasthenic Syndromes (CMS) are a set of genetic diseases that affect the neuromuscular transmission causing muscular weakness. The standard pharmacological treatment aims at ameliorating the myasthenic symptom by acetylcholinesterase inhibitors. Most patients respond well in the short and medium term, however, over time the beneficial effects rapidly fade, and the efficacy of the treatment diminishes. Increasing evidence shows that β2-adrenergic agonists can be a suitable choice for the treatment of neuromuscular disorders, including CMS, as they promote beneficial effects in the neuromuscular system. The exact mechanism on which they rely is not completely understood, although patients and animal models respond well to the treatment, especially over extended periods. Here, we report the use of the long-lasting specific β2-adrenergic agonist formoterol in a myasthenic mouse model (mnVAChT-KD), featuring deletion of VAChT (Vesicular Acetylcholine Transporter) specifically in the α-motoneurons. Our findings demonstrate that formoterol treatment (300 μg/kg/day; sc) for 30 days increased the neuromuscular junction area, induced skeletal muscle hypertrophy and altered fibre type composition in myasthenic mice. Interestingly, β2-adrenergic agonists have shown efficacy even in the absence of ACh (acetylcholine). Our data provide important evidence supporting the potential of β2-adrenergic agonists in treating neuromuscular disorders of pre-synaptic origin and characterized by disruptions in nerve-muscle communication, through a direct and beneficial action within the motor unit.
Collapse
Affiliation(s)
- Leonardo Rossi
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara I Mota
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Priscila A C Valadão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Matheus P S Magalhães-Gomes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Ciências Básicas, Faculdade Ciências Médicas de Minas Gerais, FCMMG, Belo Horizonte, Brazil
| | - Bruna S Oliveira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Silvia Guatimosim
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz C C Navegantes
- Departamento de Fisiologia, Escola de Medicina, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Aline S Miranda
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marco A M Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada; Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Vânia F Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada; Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Cristina Guatimosim
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Slater CR. Neuromuscular Transmission in a Biological Context. Compr Physiol 2024; 14:5641-5702. [PMID: 39382166 DOI: 10.1002/cphy.c240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Neuromuscular transmission is the process by which motor neurons activate muscle contraction and thus plays an essential role in generating the purposeful body movements that aid survival. While many features of this process are common throughout the Animal Kingdom, such as the release of transmitter in multimolecular "quanta," and the response to it by opening ligand-gated postsynaptic ion channels, there is also much diversity between and within species. Much of this diversity is associated with specialization for either slow, sustained movements such as maintain posture or fast but brief movements used during escape or prey capture. In invertebrates, with hydrostatic and exoskeletons, most motor neurons evoke graded depolarizations of the muscle which cause graded muscle contractions. By contrast, vertebrate motor neurons trigger action potentials in the muscle fibers which give rise to all-or-none contractions. The properties of neuromuscular transmission, in particular the intensity and persistence of transmitter release, reflect these differences. Neuromuscular transmission varies both between and within individual animals, which often have distinct tonic and phasic subsystems. Adaptive plasticity of neuromuscular transmission, on a range of time scales, occurs in many species. This article describes the main steps in neuromuscular transmission and how they vary in a number of "model" species, including C. elegans , Drosophila , zebrafish, mice, and humans. © 2024 American Physiological Society. Compr Physiol 14:5641-5702, 2024.
Collapse
|
4
|
Shen J, Sun Y, Liu X, Chai Y, Wang C, Xu J. Nerve Regeneration Potential of Antioxidant-Modified Black Phosphorus Quantum Dots in Peripheral Nerve Injury. ACS NANO 2024; 18:23518-23536. [PMID: 39150909 DOI: 10.1021/acsnano.4c07285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Peripheral nerve injury is a major societal concern. Black phosphorus (BP) has inherent advantages over cell-based therapies in regenerative medicine. However, controlling spontaneous degradation and size-dependent cytotoxicity remains challenging and poses difficulties for clinical translation. In this study, we constructed zero-dimensional BP quantum dots (QDs) modified with antioxidant β-carotene and comprehensively investigated them in Schwann cells (SCs) to elucidate their potential for peripheral nerve repair. In vitro experiments demonstrated that BPQD@β-carotene has an inappreciable toxicity and good biocompatibility, favoring neural regrowth, angiogenesis, and inflammatory regulation of SCs. Furthermore, the PI3K/Akt and Ras/ERK1/2 signaling pathways were activated in SCs at the genetic, protein, and metabolite levels. The BPQD@β-carotene-embedded GelMA/PEGDA scaffold enhanced functional recovery by promoting axon remyelination and regeneration and facilitating intraneural angiogenesis in peripheral nerve injury models of rats and beagle dogs. These results contribute to advancing knowledge of BP nanomaterials in tissue regeneration and show significant potential for application in translational medicine.
Collapse
Affiliation(s)
- Junjie Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| | - Chunyang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| |
Collapse
|
5
|
Zhou W, Rahman MSU, Sun C, Li S, Zhang N, Chen H, Han CC, Xu S, Liu Y. Perspectives on the Novel Multifunctional Nerve Guidance Conduits: From Specific Regenerative Procedures to Motor Function Rebuilding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307805. [PMID: 37750196 DOI: 10.1002/adma.202307805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Peripheral nerve injury potentially destroys the quality of life by inducing functional movement disorders and sensory capacity loss, which results in severe disability and substantial psychological, social, and financial burdens. Autologous nerve grafting has been commonly used as treatment in the clinic; however, its rare donor availability limits its application. A series of artificial nerve guidance conduits (NGCs) with advanced architectures are also proposed to promote injured peripheral nerve regeneration, which is a complicated process from axon sprouting to targeted muscle reinnervation. Therefore, exploring the interactions between sophisticated NGC complexes and versatile cells during each process including axon sprouting, Schwann cell dedifferentiation, nerve myelination, and muscle reinnervation is necessary. This review highlights the contribution of functional NGCs and the influence of microscale biomaterial architecture on biological processes of nerve repair. Progressive NGCs with chemical molecule induction, heterogenous topographical morphology, electroactive, anisotropic assembly microstructure, and self-powered electroactive and magnetic-sensitive NGCs are also collected, and they are expected to be pioneering features in future multifunctional and effective NGCs.
Collapse
Affiliation(s)
- Weixian Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Muhammad Saif Ur Rahman
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education Guangdong province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chengmei Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education Guangdong province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nuozi Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hao Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Charles C Han
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Nemeth C, Banik NL, Haque A. Disruption of Neuromuscular Junction Following Spinal Cord Injury and Motor Neuron Diseases. Int J Mol Sci 2024; 25:3520. [PMID: 38542497 PMCID: PMC10970763 DOI: 10.3390/ijms25063520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 02/01/2025] Open
Abstract
The neuromuscular junction (NMJ) is a crucial structure that connects the cholinergic motor neurons to the muscle fibers and allows for muscle contraction and movement. Despite the interruption of the supraspinal pathways that occurs in spinal cord injury (SCI), the NMJ, innervated by motor neurons below the injury site, has been found to remain intact. This highlights the importance of studying the NMJ in rodent models of various nervous system disorders, such as amyotrophic lateral sclerosis (ALS), Charcot-Marie-Tooth disease (CMT), spinal muscular atrophy (SMA), and spinal and bulbar muscular atrophy (SBMA). The NMJ is also involved in myasthenic disorders, such as myasthenia gravis (MG), and is vulnerable to neurotoxin damage. Thus, it is important to analyze the integrity of the NMJ in rodent models during the early stages of the disease, as this may allow for a better understanding of the condition and potential treatment options. The spinal cord also plays a crucial role in the functioning of the NMJ, as the junction relays information from the spinal cord to the muscle fibers, and the integrity of the NMJ could be disrupted by SCI. Therefore, it is vital to study SCI and muscle function when studying NMJ disorders. This review discusses the formation and function of the NMJ after SCI and potential interventions that may reverse or improve NMJ dysfunction, such as exercise, nutrition, and trophic factors.
Collapse
Affiliation(s)
- Colin Nemeth
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (C.N.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Naren L. Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (C.N.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (C.N.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| |
Collapse
|
7
|
Hörner SJ, Couturier N, Hafner M, Rudolf R. Schwann cells in neuromuscular in vitro models. Biol Chem 2024; 405:25-30. [PMID: 37357580 DOI: 10.1515/hsz-2023-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
Neuromuscular cell culture models are used to investigate synapse formation and function, as well as mechanisms of de-and regeneration in neuromuscular diseases. Recent developments including 3D culture technique and hiPSC technology have propelled their ability to complement insights from in vivo models. However, most cultures have not considered Schwann cells, the glial part of NMJs. In the following, a brief overview of different types of neuromuscular cocultures is provided alongside examples for studies that included Schwann cells. From these, findings concerning the effects of Schwann cells on those cultures are summarized and future lines of research are proposed.
Collapse
Affiliation(s)
- Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, D-68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, D-69117 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, D-68163 Mannheim, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, D-68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, D-69117 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, D-68163 Mannheim, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, D-68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, D-69117 Heidelberg, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, D-68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, D-69117 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, D-68163 Mannheim, Germany
- Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim Heidelberg University, D-68167 Mannheim, Germany
| |
Collapse
|
8
|
Ishihara H, Otani Y, Tanaka K, Miyajima H, Ngo HX, Fujitani M. Blocking insulin-like growth factor 1 receptor signaling pathway inhibits neuromuscular junction regeneration after botulinum toxin-A treatment. Cell Death Dis 2023; 14:609. [PMID: 37717026 PMCID: PMC10505167 DOI: 10.1038/s41419-023-06128-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
Botulinum toxin-A (BTX) administration into muscle is an established treatment for conditions with excessive muscle contraction. However, botulinum therapy has short-term effectiveness, and high-dose injection of BTX could induce neutralizing antibodies against BTX. Therefore, prolonging its effects could be beneficial in a clinical situation. Insulin-like growth factor-1 receptor (IGF1R) and its ligands, insulin-like growth factor (IGF) -I and II, regulate the physiological and pathological processes of the nervous system. It has been suggested that IGF1R is involved in the process after BTX administration, but the specific regeneration mechanism remains unclear. Therefore, this study aimed to determine how inhibition of IGF1R signaling pathway affects BTX-induced muscle paralysis. The results showed that anti-IGF1R antibody administration inhibited the recovery from BTX-induced neurogenic paralysis, and the synaptic components at the neuromuscular junction (NMJ), mainly post-synaptic components, were significantly affected by the antibody. In addition, the wet weight or frequency distribution of the cross-sectional area of the muscle fibers was regulated by IGF1R, and sequential antibody administration following BTX treatment increased the number of Pax7+-satellite cells in the gastrocnemius (GC) muscle, independent of NMJ recovery. Moreover, BTX treatment upregulated mammalian target of rapamycin (mTOR)/S6 kinase signaling pathway, HDAC4, Myog, Fbxo32/MAFbx/Atrogin-1 pathway, and transcription of synaptic components, but not autophagy. Finally, IGF1R inhibition affected only mTOR/S6 kinase translational signaling in the GC muscle. In conclusion, the IGF1R signaling pathway is critical for NMJ regeneration via specific translational signals. IGF1R inhibition could be highly beneficial in clinical practice by decreasing the number of injections and total dose of BTX due to the prolonged duration of the effect.
Collapse
Affiliation(s)
- Hiroki Ishihara
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
- Department of Rehabilitation, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
| | - Yoshinori Otani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
| | - Kazuki Tanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
- Department of Rehabilitation, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
| | - Hisao Miyajima
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
| | - Huy Xuan Ngo
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
| | - Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan.
| |
Collapse
|
9
|
Arosio B, Calvani R, Ferri E, Coelho-Junior HJ, Carandina A, Campanelli F, Ghiglieri V, Marzetti E, Picca A. Sarcopenia and Cognitive Decline in Older Adults: Targeting the Muscle-Brain Axis. Nutrients 2023; 15:nu15081853. [PMID: 37111070 PMCID: PMC10142447 DOI: 10.3390/nu15081853] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Declines in physical performance and cognition are commonly observed in older adults. The geroscience paradigm posits that a set of processes and pathways shared among age-associated conditions may also serve as a molecular explanation for the complex pathophysiology of physical frailty, sarcopenia, and cognitive decline. Mitochondrial dysfunction, inflammation, metabolic alterations, declines in cellular stemness, and altered intracellular signaling have been observed in muscle aging. Neurological factors have also been included among the determinants of sarcopenia. Neuromuscular junctions (NMJs) are synapses bridging nervous and skeletal muscle systems with a relevant role in age-related musculoskeletal derangement. Patterns of circulating metabolic and neurotrophic factors have been associated with physical frailty and sarcopenia. These factors are mostly related to disarrangements in protein-to-energy conversion as well as reduced calorie and protein intake to sustain muscle mass. A link between sarcopenia and cognitive decline in older adults has also been described with a possible role for muscle-derived mediators (i.e., myokines) in mediating muscle-brain crosstalk. Herein, we discuss the main molecular mechanisms and factors involved in the muscle-brain axis and their possible implication in cognitive decline in older adults. An overview of current behavioral strategies that allegedly act on the muscle-brain axis is also provided.
Collapse
Affiliation(s)
- Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Evelyn Ferri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Hélio José Coelho-Junior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Angelica Carandina
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Federica Campanelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Veronica Ghiglieri
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- San Raffaele University, 00168 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy
| |
Collapse
|
10
|
Leite APS, Pinto CG, Tibúrcio FC, Muller KS, Padovani CR, Barraviera B, Junior RSF, Leal CV, Matsumura CY, Matheus SMM. Acetylcholine receptors of the neuromuscular junctions present normal distribution after peripheral nerve injury and repair through nerve guidance associated with fibrin biopolymer. Injury 2023; 54:345-361. [PMID: 36446670 DOI: 10.1016/j.injury.2022.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 10/26/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Peripheral nerve injuries (PNI) lead to alterations in the Agrin-LRP4-MuSK pathway. This results in disaggregation of AChRs and change from epsilon (mature, innervated) to gamma (immature, denervated) subunit. Tubulization technique has been shown to be effective for PNI repair and it also allows the use of adjuvants, such as fibrin biopolymer (FB). This study evaluated the effect of the association of tubulization with FB after PNI on AChRs and associated proteins. Fifty-two adults male Wistar rats were used, distributed in 4 experimental groups: Sham Control (S), Denervated Control (D); Tubulization (TB) and Tubulization + Fibrin Biopolymer (TB+FB). Catwalk was performed every 15 days. Ninety days after surgery the right soleus muscles and ischiatic nerves were submitted to the following analyses: (a) morphological and morphometric analysis of AChRs by confocal microscopy; (b) morphological and morphometric analysis of the ischiatic nerve; (c) protein quantification of AChRs: alpha, gama, and epsilon, of Schwann cells, agrin, LRP4, MuSK, rapsyn, MMP3, MyoD, myogenin, MURF1 and atrogin-1. The main results were about the NMJs that in the TB+FB group presented morphological and morphometric approximation (compactness index; area of the AChRs and motor plate) to the S group. In addition, there were also an increase of S100 and AChRε protein expression and a decrease of MyoD. These positive association resulted in AChRs stabilization that potentiate the neuromuscular regeneration, which strengthens the use of TB for severe injuries repair and the beneficial effect of FB, along with tubulization technique.
Collapse
Affiliation(s)
- Ana Paula Silveira Leite
- Medical School, São Paulo State University (Unesp), Botucatu, SP, Brazil; Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu, SP, Brazil.
| | - Carina Guidi Pinto
- Medical School, São Paulo State University (Unesp), Botucatu, SP, Brazil; Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu, SP, Brazil
| | - Felipe Cantore Tibúrcio
- Medical School, São Paulo State University (Unesp), Botucatu, SP, Brazil; Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu, SP, Brazil
| | - Kevin Silva Muller
- Medical School, São Paulo State University (Unesp), Botucatu, SP, Brazil; Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu, SP, Brazil
| | - Carlos Roberto Padovani
- Division of Biostatistics, Department of Biostatistics, Vegetal Biology, Parasitology and Zoology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu, SP, Brazil
| | - Benedito Barraviera
- Medical School, São Paulo State University (Unesp), Botucatu, SP, Brazil; Center for the Study of Venoms and Venomous Animals (Cevap), São Paulo State University (Unesp), Botucatu, SP, Brazil
| | - Rui Seabra Ferreira Junior
- Center for the Study of Venoms and Venomous Animals (Cevap), São Paulo State University (Unesp), Botucatu, SP, Brazil
| | - Claudenete Vieira Leal
- School of Mechanical Engineering, University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Cintia Yuri Matsumura
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu, SP, Brazil
| | - Selma Maria Michelin Matheus
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu, SP, Brazil
| |
Collapse
|
11
|
Delbono O, Wang Z, Messi ML. Brainstem noradrenergic neurons: Identifying a hub at the intersection of cognition, motility, and skeletal muscle regulation. Acta Physiol (Oxf) 2022; 236:e13887. [PMID: 36073023 PMCID: PMC9588743 DOI: 10.1111/apha.13887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
Brainstem noradrenergic neuron clusters form a node integrating efferents projecting to distinct areas such as those regulating cognition and skeletal muscle structure and function, and receive dissimilar afferents through established circuits to coordinate organismal responses to internal and environmental challenges. Genetic lineage tracing shows the remarkable heterogeneity of brainstem noradrenergic neurons, which may explain their varied functions. They project to the locus coeruleus, the primary source of noradrenaline in the brain, which supports learning and cognition. They also project to pre-ganglionic neurons, which lie within the spinal cord and form synapses onto post-ganglionic neurons. The synapse between descending brainstem noradrenergic neurons and pre-ganglionic spinal neurons, and these in turn with post-ganglionic noradrenergic neurons located at the paravertebral sympathetic ganglia, support an anatomical hierarchy that regulates skeletal muscle innervation, neuromuscular transmission, and muscle trophism. Whether any noradrenergic neuron subpopulation is more susceptible to damaged protein deposit and death with ageing and neurodegeneration is a relevant question that answer will help us to detect neurodegeneration at an early stage, establish prognosis, and anticipate disease progression. Loss of muscle mass and strength with ageing, termed sarcopenia, may predict impaired cognition with ageing and neurodegeneration and establish an early time to start interventions aimed at reducing central noradrenergic neurons hyperactivity. Complex multidisciplinary approaches, including genetic tracing, specific circuit labelling, optogenetics and chemogenetics, electrophysiology, and single-cell transcriptomics and proteomics, are required to test this hypothesis pre-clinical.
Collapse
Affiliation(s)
- Osvaldo Delbono
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Zhong‐Min Wang
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - María Laura Messi
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
12
|
Vaca-Dempere M, Kumar A, Sica V, Muñoz-Cánoves P. Running skeletal muscle clocks on time- the determining factors. Exp Cell Res 2022; 413:112989. [PMID: 35081395 DOI: 10.1016/j.yexcr.2021.112989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 11/23/2022]
Abstract
Circadian rhythms generate 24 h-long oscillations, which are key regulators of many aspects of behavior and physiology. Recent circadian transcriptome studies have discovered rhythmicity at the transcriptional level of hundreds of skeletal muscle genes, with roles in skeletal muscle growth, maintenance, and metabolic functions. These rhythms allow this tissue to perform molecular functions at the appropriate time of the day in order to anticipate environmental changes. However, while the last decade of research has characterized several aspects of the skeletal muscle molecular clock, many still are unexplored, including its functions, regulatory mechanisms, and interactions with other tissues. The central clock is believed to be located in the suprachiasmatic nucleus (SCN) of the brain hypothalamus, providing entrainment to peripheral organs through humoral and neuronal signals. However, these mechanisms of action are still unknown. Conversely, muscle tissue can be entrained through extrinsic, SCN-independent factors, such as feeding and physical activity. In this review, we provide an overview of the recent research about the extrinsic and intrinsic factors required for skeletal muscle clock regulation. Furthermore, we discuss the need for future studies to elucidate the mechanisms behind this regulation, which will in turn help dissect the role of circadian disruption at the onset of aging and diseases.
Collapse
Affiliation(s)
- Mireia Vaca-Dempere
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), 08003, Barcelona, Spain
| | - Arun Kumar
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), 08003, Barcelona, Spain
| | - Valentina Sica
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), 08003, Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), 08003, Barcelona, Spain; ICREA, 08010, Barcelona, Spain; Spanish National Center on Cardiovascular Research (CNIC), 28029, Madrid, Spain.
| |
Collapse
|
13
|
Ren J, Tang X, Wang T, Wei X, Zhang J, Lu L, Liu Y, Yang B. A Dual-Modal Magnetic Resonance/Photoacoustic Imaging Tracer for Long-Term High-Precision Tracking and Facilitating Repair of Peripheral Nerve Injuries. Adv Healthc Mater 2022; 11:e2200183. [PMID: 35306758 DOI: 10.1002/adhm.202200183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/05/2022] [Indexed: 12/29/2022]
Abstract
Neuroanatomical tracing is considered a crucial technique to assess the axonal regeneration level after injury, but traditional tracers do not meet the needs of in vivo neural tracing in deep tissues. Magnetic resonance (MR) and photoacoustic (PA) imaging have high spatial resolution, great penetration depth, and rich contrast. Fe3 O4 nanoparticles may work well as a dual-modal diagnosis probe for neural tracers, with the potential to improve nerve regeneration. The present study combines antegrade neural tracing imaging therapy for the peripheral nervous system. Fe3 O4 @COOH nanoparticles are successfully conjugated with biotinylated dextran amine (BDA) to produce antegrade nano-neural tracers, which are encapsulated by microfluidic droplets to control leakage and allow sustained, slow release. They have many notable advantages over traditional tracers, including dual-modal real-time MR/PA imaging in vivo, long-duration release effect, and limitation of uncontrolled leakage. These multifunctional anterograde neural tracers have potential neurotherapeutic function, are reliable and may be used as a new platform for peripheral nerve injury imaging and treatment integration.
Collapse
Affiliation(s)
- Jingyan Ren
- Department of Hand Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Xiaoduo Tang
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Tao Wang
- Department of Hand Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Xin Wei
- Department of Hand Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Junhu Zhang
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Laijin Lu
- Department of Hand Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Yang Liu
- Department of Hand Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Bai Yang
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun Jilin 130012 China
| |
Collapse
|
14
|
Leicht BT, Kennedy C, Richardson C. Inflammatory Biochemical Mediators and Their Role in Myofascial Pain and Osteopathic Manipulative Treatment: A Literature Review. Cureus 2022; 14:e22252. [PMID: 35340500 PMCID: PMC8930233 DOI: 10.7759/cureus.22252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/05/2022] Open
|
15
|
Anderson JE. Key concepts in muscle regeneration: muscle "cellular ecology" integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function. Eur J Appl Physiol 2022; 122:273-300. [PMID: 34928395 PMCID: PMC8685813 DOI: 10.1007/s00421-021-04865-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022]
Abstract
This review identifies some key concepts of muscle regeneration, viewed from perspectives of classical and modern research. Early insights noted the pattern and sequence of regeneration across species was similar, regardless of the type of injury, and differed from epimorphic limb regeneration. While potential benefits of exercise for tissue repair was debated, regeneration was not presumed to deliver functional restoration, especially after ischemia-reperfusion injury; muscle could develop fibrosis and ectopic bone and fat. Standard protocols and tools were identified as necessary for tracking injury and outcomes. Current concepts vastly extend early insights. Myogenic regeneration occurs within the environment of muscle tissue. Intercellular cross-talk generates an interactive system of cellular networks that with the extracellular matrix and local, regional, and systemic influences, forms the larger gestalt of the satellite cell niche. Regenerative potential and adaptive plasticity are overlain by epigenetically regionalized responsiveness and contributions by myogenic, endothelial, and fibroadipogenic progenitors and inflammatory and metabolic processes. Muscle architecture is a living portrait of functional regulatory hierarchies, while cellular dynamics, physical activity, and muscle-tendon-bone biomechanics arbitrate regeneration. The scope of ongoing research-from molecules and exosomes to morphology and physiology-reveals compelling new concepts in muscle regeneration that will guide future discoveries for use in application to fitness, rehabilitation, and disease prevention and treatment.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
16
|
Xu TM, Chen B, Jin ZX, Yin XF, Zhang PX, Jiang BG. The anatomical, electrophysiological and histological observations of muscle contraction units in rabbits: a new perspective on nerve injury and regeneration. Neural Regen Res 2022; 17:228-232. [PMID: 34100460 PMCID: PMC8451562 DOI: 10.4103/1673-5374.315228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the conventional view a muscle is composed of intermediate structures before its further division into microscopic muscle fibers. Our experiments in mice have confirmed this intermediate structure is composed of the lamella cluster formed by motor endplates, the innervating nerve branches and the corresponding muscle fibers, which can be viewed as an independent structural and functional unit. In this study, we verified the presence of these muscle construction units in rabbits. The results showed that the muscular branch of the femoral nerve sent out 4–6 nerve branches into the quadriceps and the tibial nerve sent out 4–7 nerve branches into the gastrocnemius. When each nerve branch of the femoral nerve was stimulated from the most lateral to the medial, the contraction of the lateral muscle, intermediate muscle and medial muscle of the quadriceps could be induced by electrically stimulating at least one nerve branch. When stimulating each nerve branch of the tibial nerve from the lateral to the medial, the muscle contraction of the lateral muscle 1, lateral muscle 2, lateral muscle 3 and medial muscle of the gastrocnemius could be induced by electrically stimulating at least one nerve branch. Electrical stimulation of each nerve branch resulted in different electromyographical waves recorded in different muscle subgroups. Hematoxylin-eosin staining showed most of the nerve branches around the neuromuscular junctions consisted of one individual neural tract, a few consisted of two or more neural tracts. The muscles of the lower limb in the rabbit can be subdivided into different muscle subgroups, each innervated by different nerve branches, thereby allowing much more complex muscle activities than traditionally stated. Together, the nerve branches and the innervated muscle subgroups can be viewed as an independent structural and functional unit. This study was approved by the Animal Ethics Committee of Peking University People’s Hospital (approval No. 2019PHE027) on October 20, 2019.
Collapse
Affiliation(s)
- Ting-Min Xu
- Department of Trauma and Orthopedics, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| | - Bo Chen
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education; Trauma Center, Peking University People's Hospital; National Trauma Medical Center, Beijing, China
| | - Zong-Xue Jin
- Department of Rehabilitation, Peking University People's Hospital, Beijing, China
| | - Xiao-Feng Yin
- Department of Trauma and Orthopedics, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| | - Pei-Xun Zhang
- Department of Trauma and Orthopedics, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| | - Bao-Guo Jiang
- Department of Trauma and Orthopedics, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education; Trauma Center, Peking University People's Hospital; National Trauma Medical Center, Beijing, China
| |
Collapse
|
17
|
Roesl C, Evans ER, Dissanayake KN, Boczonadi V, Jones RA, Jordan GR, Ledahawsky L, Allen GCC, Scott M, Thomson A, Wishart TM, Hughes DI, Mead RJ, Shone CC, Slater CR, Gillingwater TH, Skehel PA, Ribchester RR. Confocal Endomicroscopy of Neuromuscular Junctions Stained with Physiologically Inert Protein Fragments of Tetanus Toxin. Biomolecules 2021; 11:1499. [PMID: 34680132 PMCID: PMC8534034 DOI: 10.3390/biom11101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 01/09/2023] Open
Abstract
Live imaging of neuromuscular junctions (NMJs) in situ has been constrained by the suitability of ligands for inert vital staining of motor nerve terminals. Here, we constructed several truncated derivatives of the tetanus toxin C-fragment (TetC) fused with Emerald Fluorescent Protein (emGFP). Four constructs, namely full length emGFP-TetC (emGFP-865:TetC) or truncations comprising amino acids 1066-1315 (emGFP-1066:TetC), 1093-1315 (emGFP-1093:TetC) and 1109-1315 (emGFP-1109:TetC), produced selective, high-contrast staining of motor nerve terminals in rodent or human muscle explants. Isometric tension and intracellular recordings of endplate potentials from mouse muscles indicated that neither full-length nor truncated emGFP-TetC constructs significantly impaired NMJ function or transmission. Motor nerve terminals stained with emGFP-TetC constructs were readily visualised in situ or in isolated preparations using fibre-optic confocal endomicroscopy (CEM). emGFP-TetC derivatives and CEM also visualised regenerated NMJs. Dual-waveband CEM imaging of preparations co-stained with fluorescent emGFP-TetC constructs and Alexa647-α-bungarotoxin resolved innervated from denervated NMJs in axotomized WldS mouse muscle and degenerating NMJs in transgenic SOD1G93A mouse muscle. Our findings highlight the region of the TetC fragment required for selective binding and visualisation of motor nerve terminals and show that fluorescent derivatives of TetC are suitable for in situ morphological and physiological characterisation of healthy, injured and diseased NMJs.
Collapse
Affiliation(s)
- Cornelia Roesl
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Elizabeth R. Evans
- Public Health England, National Infection Service, Porton Down, Salisbury SP4 0JG, UK; (E.R.E.); (C.C.S.)
| | - Kosala N. Dissanayake
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Veronika Boczonadi
- Applied Neuromuscular Junction Facility, Bio-Imaging Unit, Biosciences Institute, University of Newcastle-upon-Tyne, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (V.B.); (C.R.S.)
| | - Ross A. Jones
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Graeme R. Jordan
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Leire Ledahawsky
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Guy C. C. Allen
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Molly Scott
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Alanna Thomson
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Thomas M. Wishart
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
| | - David I. Hughes
- Spinal Cord Research Group, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Richard J. Mead
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Glossop Road, Sheffield S10 2HQ, UK;
| | - Clifford C. Shone
- Public Health England, National Infection Service, Porton Down, Salisbury SP4 0JG, UK; (E.R.E.); (C.C.S.)
| | - Clarke R. Slater
- Applied Neuromuscular Junction Facility, Bio-Imaging Unit, Biosciences Institute, University of Newcastle-upon-Tyne, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (V.B.); (C.R.S.)
| | - Thomas H. Gillingwater
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Paul A. Skehel
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Richard R. Ribchester
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| |
Collapse
|
18
|
Liu FD, Duan HM, Hao F, Zhao W, Gao YD, Hao P, Yang ZY, Li XG. Biomimetic chitosan scaffolds with long-term controlled release of nerve growth factor repairs 20-mm-long sciatic nerve defects in rats. Neural Regen Res 2021; 17:1146-1155. [PMID: 34558544 PMCID: PMC8552858 DOI: 10.4103/1673-5374.324860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although autogenous nerve transplantation is the gold standard for treating peripheral nerve defects of considerable length, it still has some shortcomings, such as insufficient donors and secondary injury. Composite chitosan scaffolds loaded with controlled release of nerve growth factor can promote neuronal survival and axonal regeneration after short-segment sciatic nerve defects. However, the effects on extended nerve defects remain poorly understood. In this study, we used chitosan scaffolds loaded with nerve growth factor for 8 weeks to repair long-segment (20 mm) sciatic nerve defects in adult rats. The results showed that treatment markedly promoted the recovery of motor and sensory functions. The regenerated sciatic nerve not only reconnected with neurons but neural circuits with the central nervous system were also reconstructed. In addition, the regenerated sciatic nerve reconnected the motor endplate with the target muscle. Therefore, this novel biomimetic scaffold can promote the regeneration of extended sciatic nerve defects and reconstruct functional circuits. This provides a promising method for the clinical treatment of extended peripheral nerve injury. This study was approved by the Animal Ethics Committee of Capital Medical University, China (approval No. AEEI-2017-033) on March 21, 2017.
Collapse
Affiliation(s)
- Fa-Dong Liu
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hong-Mei Duan
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Fei Hao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Yu-Dan Gao
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Peng Hao
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Zhao-Yang Yang
- Department of Neurobiology, Capital Medical University; Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xiao-Guang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University; Department of Neurobiology, Capital Medical University; Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
19
|
Dobrowolny G, Barbiera A, Sica G, Scicchitano BM. Age-Related Alterations at Neuromuscular Junction: Role of Oxidative Stress and Epigenetic Modifications. Cells 2021; 10:1307. [PMID: 34074012 PMCID: PMC8225025 DOI: 10.3390/cells10061307] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
With advancing aging, a decline in physical abilities occurs, leading to reduced mobility and loss of independence. Although many factors contribute to the physio-pathological effects of aging, an important event seems to be related to the compromised integrity of the neuromuscular system, which connects the brain and skeletal muscles via motoneurons and the neuromuscular junctions (NMJs). NMJs undergo severe functional, morphological, and molecular alterations during aging and ultimately degenerate. The effect of this decline is an inexorable decrease in skeletal muscle mass and strength, a condition generally known as sarcopenia. Moreover, several studies have highlighted how the age-related alteration of reactive oxygen species (ROS) homeostasis can contribute to changes in the neuromuscular junction morphology and stability, leading to the reduction in fiber number and innervation. Increasing evidence supports the involvement of epigenetic modifications in age-dependent alterations of the NMJ. In particular, DNA methylation, histone modifications, and miRNA-dependent gene expression represent the major epigenetic mechanisms that play a crucial role in NMJ remodeling. It is established that environmental and lifestyle factors, such as physical exercise and nutrition that are susceptible to change during aging, can modulate epigenetic phenomena and attenuate the age-related NMJs changes. This review aims to highlight the recent epigenetic findings related to the NMJ dysregulation during aging and the role of physical activity and nutrition as possible interventions to attenuate or delay the age-related decline in the neuromuscular system.
Collapse
Affiliation(s)
- Gabriella Dobrowolny
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics (DAHFMO)-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy;
| | - Alessandra Barbiera
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| | - Gigliola Sica
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| | - Bianca Maria Scicchitano
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| |
Collapse
|
20
|
Bukharaeva E, Khuzakhmetova V, Dmitrieva S, Tsentsevitsky A. Adrenoceptors Modulate Cholinergic Synaptic Transmission at the Neuromuscular Junction. Int J Mol Sci 2021; 22:ijms22094611. [PMID: 33924758 PMCID: PMC8124642 DOI: 10.3390/ijms22094611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Adrenoceptor activators and blockers are widely used clinically for the treatment of cardiovascular and pulmonary disorders. More recently, adrenergic agents have also been used to treat neurodegenerative diseases. Recent studies indicate a location of sympathetic varicosities in close proximity to neuromuscular junctions. The pressing question is whether there could be any effects of endo- or exogenous catecholamines on cholinergic neuromuscular transmission. It was shown that the pharmacological stimulation of adrenoceptors, as well as sympathectomy, can affect both acetylcholine release from motor nerve terminals and the functioning of postsynaptic acetylcholine receptors. In this review, we discuss the recent data regarding the effects of adrenergic drugs on neurotransmission at the neuromuscular junction. The elucidation of the molecular mechanisms by which the clinically relevant adrenomimetics and adrenoblockers regulate quantal acetylcholine release from the presynaptic nerve terminals and postsynaptic sensitivity may help in the design of highly effective and well-tolerated sympathomimetics for treating a number of neurodegenerative diseases accompanied by synaptic defects.
Collapse
|
21
|
de Jongh R, Spijkers XM, Pasteuning-Vuhman S, Vulto P, Pasterkamp RJ. Neuromuscular junction-on-a-chip: ALS disease modeling and read-out development in microfluidic devices. J Neurochem 2021; 157:393-412. [PMID: 33382092 DOI: 10.1111/jnc.15289] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and progressive neurodegenerative disease affecting upper and lower motor neurons with no cure available. Clinical and animal studies reveal that the neuromuscular junction (NMJ), a synaptic connection between motor neurons and skeletal muscle fibers, is highly vulnerable in ALS and suggest that NMJ defects may occur at the early stages of the disease. However, mechanistic insight into how NMJ dysfunction relates to the onset and progression of ALS is incomplete, which hampers therapy development. This is, in part, caused by a lack of robust in vitro models. The ability to combine microfluidic and induced pluripotent stem cell (iPSC) technologies has opened up new avenues for studying molecular and cellular ALS phenotypes in vitro. Microfluidic devices offer several advantages over traditional culture approaches when modeling the NMJ, such as the spatial separation of different cell types and increased control over the cellular microenvironment. Moreover, they are compatible with 3D cell culture, which enhances NMJ functionality and maturity. Here, we review how microfluidic technology is currently being employed to develop more reliable in vitro NMJ models. To validate and phenotype such models, various morphological and functional read-outs have been developed. We describe and discuss the relevance of these read-outs and specifically illustrate how these read-outs have enhanced our understanding of NMJ pathology in ALS. Finally, we share our view on potential future directions and challenges.
Collapse
Affiliation(s)
- Rianne de Jongh
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Xandor M Spijkers
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.,Mimetas B.V., Organ-on-a-chip Company, Leiden, The Netherlands
| | - Svetlana Pasteuning-Vuhman
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Paul Vulto
- Mimetas B.V., Organ-on-a-chip Company, Leiden, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
22
|
The Impact of Mitochondrial Deficiencies in Neuromuscular Diseases. Antioxidants (Basel) 2020; 9:antiox9100964. [PMID: 33050147 PMCID: PMC7600520 DOI: 10.3390/antiox9100964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Neuromuscular diseases (NMDs) are a heterogeneous group of acquired or inherited rare disorders caused by injury or dysfunction of the anterior horn cells of the spinal cord (lower motor neurons), peripheral nerves, neuromuscular junctions, or skeletal muscles leading to muscle weakness and waste. Unfortunately, most of them entail serious or even fatal consequences. The prevalence rates among NMDs range between 1 and 10 per 100,000 population, but their rarity and diversity pose difficulties for healthcare and research. Some molecular hallmarks are being explored to elucidate the mechanisms triggering disease, to set the path for further advances. In fact, in the present review we outline the metabolic alterations of NMDs, mainly focusing on the role of mitochondria. The aim of the review is to discuss the mechanisms underlying energy production, oxidative stress generation, cell signaling, autophagy, and inflammation triggered or conditioned by the mitochondria. Briefly, increased levels of inflammation have been linked to reactive oxygen species (ROS) accumulation, which is key in mitochondrial genomic instability and mitochondrial respiratory chain (MRC) dysfunction. ROS burst, impaired autophagy, and increased inflammation are observed in many NMDs. Increasing knowledge of the etiology of NMDs will help to develop better diagnosis and treatments, eventually reducing the health and economic burden of NMDs for patients and healthcare systems.
Collapse
|
23
|
Ng SY, Ljubicic V. Recent insights into neuromuscular junction biology in Duchenne muscular dystrophy: Impacts, challenges, and opportunities. EBioMedicine 2020; 61:103032. [PMID: 33039707 PMCID: PMC7648118 DOI: 10.1016/j.ebiom.2020.103032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/28/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common and relentless form of muscular dystrophy. The pleiotropic effects of dystrophin deficiency include remarkable impacts on neuromuscular junction (NMJ) structure and function. Some of these alterations contribute to the severe muscle wasting and weakness that distinguish DMD, while others attempt to compensate for them. Experimental approaches that correct NMJ biology in pre-clinical models of DMD attenuate disease progression and improve functional outcomes, which suggests that targeting the NMJ may be an effective therapeutic strategy for DMD patients. The objectives of this review are to 1) survey the distinctions in NMJ structure, function, and gene expression in the dystrophic context as compared to the healthy condition, and 2) summarize the efforts, opportunities and challenges to correct NMJ biology in DMD. This information will expand our basic understanding of neuromuscular biology and may be useful for designing novel NMJ-targeted drug or behavioural strategies to mitigate the dystrophic pathology and other disorders of the neuromuscular system.
Collapse
Affiliation(s)
- Sean Y Ng
- Department of Kinesiology, McMaster University, Hamilton L8S 4L8, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton L8S 4L8, Ontario, Canada.
| |
Collapse
|
24
|
Di Bona A, Vita V, Costantini I, Zaglia T. Towards a clearer view of sympathetic innervation of cardiac and skeletal muscles. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 154:80-93. [DOI: 10.1016/j.pbiomolbio.2019.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
|
25
|
Deschenes MR, Tufts HL, Oh J, Li S, Noronha AL, Adan MA. Effects of exercise training on neuromuscular junctions and their active zones in young and aged muscles. Neurobiol Aging 2020; 95:1-8. [PMID: 32739557 DOI: 10.1016/j.neurobiolaging.2020.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
Abstract
The neuromuscular junction (NMJ) connects the motor neuron with myofibers allowing muscle contraction. Both aging and increased activity result in NMJ remodeling. Here, the effects of exercise were examined in young and aged soleus muscles. Using immunofluorescent staining procedures, cellular and active zone components of the NMJ were quantified following a treadmill running program. Immunofluorescence was employed to determine myofiber profiles (size and type). Two-way analysis of variance procedures with main effects of age and treatment showed that when analyzing NMJs at the cellular level, significant (p ≤ 0.05) effects were identified for age, but not treatment. However, when examining subcellular active zones, effects for exercise, but not for age, were detected. Myofiber cross-sectional area showed that aging elicited atrophy and that among younger muscles endurance exercise training yielded decrements in myofiber size. Conversely, among aged muscles training elicited whole muscle and myofiber trends (p < 0.10) toward hypertrophy. Thus, different components of the neuromuscular system harbor unique sensitivities to various stimuli enabling proper adaptations to attain optimal function under differing conditions.
Collapse
Affiliation(s)
- Michael R Deschenes
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA; Program in Neuroscience, College of William & Mary, Williamsburg, VA, USA.
| | - Hannah L Tufts
- Program in Neuroscience, College of William & Mary, Williamsburg, VA, USA
| | - Jeongeun Oh
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA
| | - Shuhan Li
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA
| | - Alexa L Noronha
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA
| | - Matthew A Adan
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA
| |
Collapse
|
26
|
Boehm I, Alhindi A, Leite AS, Logie C, Gibbs A, Murray O, Farrukh R, Pirie R, Proudfoot C, Clutton R, Wishart TM, Jones RA, Gillingwater TH. Comparative anatomy of the mammalian neuromuscular junction. J Anat 2020; 237:827-836. [PMID: 32573802 PMCID: PMC7542190 DOI: 10.1111/joa.13260] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
The neuromuscular junction (NMJ)—a synapse formed between lower motor neuron and skeletal muscle fibre—represents a major focus of both basic neuroscience research and clinical neuroscience research. Although the NMJ is known to play an important role in many neurodegenerative conditions affecting humans, the vast majority of anatomical and physiological data concerning the NMJ come from lower mammalian (e.g. rodent) animal models. However, recent findings have demonstrated major differences between the cellular anatomy and molecular anatomy of human and rodent NMJs. Therefore, we undertook a comparative morphometric analysis of the NMJ across several larger mammalian species in order to generate baseline inter‐species anatomical reference data for the NMJ and to identify animal models that better represent the morphology of the human NMJ in vivo. Using a standardized morphometric platform (‘NMJ‐morph’), we analysed 5,385 individual NMJs from lower/pelvic limb muscles (EDL, soleus and peronei) of 6 mammalian species (mouse, cat, dog, sheep, pig and human). There was marked heterogeneity of NMJ morphology both within and between species, with no overall relationship found between NMJ morphology and muscle fibre diameter or body size. Mice had the largest NMJs on the smallest muscle fibres; cats had the smallest NMJs on the largest muscle fibres. Of all the species examined, the sheep NMJ had the most closely matched morphology to that found in humans. Taken together, we present a series of comprehensive baseline morphometric data for the mammalian NMJ and suggest that ovine models are likely to best represent the human NMJ in health and disease.
Collapse
Affiliation(s)
- Ines Boehm
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Abrar Alhindi
- School of Medicine, UNESP-São Paulo State University, Botucatu, Sao Paulo, Brazil.,Faculty of Medicine, Department of Anatomy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ana S Leite
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,School of Medicine, UNESP-São Paulo State University, Botucatu, Sao Paulo, Brazil
| | - Chandra Logie
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - Alyssa Gibbs
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Olivia Murray
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Rizwan Farrukh
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Robert Pirie
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| | | | - Richard Clutton
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - Thomas M Wishart
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - Ross A Jones
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
27
|
Belotti E, Schaeffer L. Regulation of Gene expression at the neuromuscular Junction. Neurosci Lett 2020; 735:135163. [PMID: 32553805 DOI: 10.1016/j.neulet.2020.135163] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 01/08/2023]
Abstract
Gene expression in skeletal muscle is profoundly changed upon innervation. 50 years of research on the neuromuscular system have greatly increased our understanding of the mechanisms underlying these changes. By controlling the expression and the activity of key transcription factors, nerve-evoked electrical activity in the muscle fiber positively and negatively regulates the expression of hundreds of genes. Innervation also compartmentalizes gene expression into synaptic and extra-synaptic regions of muscle fibers. In addition, electrically-evoked, release of several factors (e.g. Agrin, Neuregulin, Wnt ligands) induce the clustering of synaptic proteins and of a few muscle nuclei. The sub-synaptic nuclei acquire a particular chromatin organization and develop a specific gene expression program dedicated to building and maintaining a functional neuromuscular synapse. Deciphering synapse-specific, transcriptional regulation started with the identification of the N-box, a six base pair element present in the promoters of the acetylcholine δ and ε subunits. Most genes with synapse-specific expression turned out to contain at least one N-box in their promoters. The N-box is a response element for the synaptic signals Agrin and Neuregulins as well as a binding site for transcription factors of the Ets family. The Ets transcription factors GABP and Erm are implicated in the activation of post-synaptic genes via the N-box. In muscle fibers, Erm expression is restricted to the NMJ whereas GABP is expressed in all muscle nuclei but phosphorylated and activated by the JNK and ERK signaling pathways in response to Agrin and Neuregulins. Post-synaptic gene expression also correlates with chromatin modifications at the genomic level as evidenced by the strong enrichment of decondensed chromatin and acetylated histones in sub-synaptic nuclei. Here we discuss these transcriptional pathways for synaptic specialization at NMJs.
Collapse
Affiliation(s)
- Edwige Belotti
- INMG, Inserm U1217, CNRS UMR5310, Université Lyon 1, Université De Lyon, Lyon, France
| | - Laurent Schaeffer
- INMG, Inserm U1217, CNRS UMR5310, Université Lyon 1, Université De Lyon, Lyon, France; Centre De Biotechnologie Cellulaire, Hospices Civils De Lyon, Lyon, France.
| |
Collapse
|
28
|
Collagens at the vertebrate neuromuscular junction, from structure to pathologies. Neurosci Lett 2020; 735:135155. [PMID: 32534096 DOI: 10.1016/j.neulet.2020.135155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022]
Abstract
The extracellular matrix at the neuromuscular junction is built upon components secreted by the motoneuron, the muscle cell and terminal Schwann cells, the cells constituting this specific synapse. This compartment contains glycoproteins, proteoglycans and collagens that form a dense and specialized layer, the synaptic basal lamina. A number of these molecules are known to play a crucial role in anterograde and retrograde signalings that are active in neuromuscular junction formation, maintenance and function. Here, we focus on the isoforms of collagens which are enriched at the synapse. We summarize what we know of their structure, their function and their interactions with transmembrane receptors and other components of the synaptic basal lamina. A number of neuromuscular diseases, congenital myastenic syndromes and myasthenia gravis are caused by human mutations and autoantibodies against these proteins. Analysis of these diseases and of the specific collagen knock-out mice highlights the roles of some of these collagens in promoting a functional synapse.
Collapse
|
29
|
Kravtsova VV, Bouzinova EV, Chibalin AV, Matchkov VV, Krivoi II. Isoform-specific Na,K-ATPase and membrane cholesterol remodeling in motor endplates in distinct mouse models of myodystrophy. Am J Physiol Cell Physiol 2020; 318:C1030-C1041. [PMID: 32293933 DOI: 10.1152/ajpcell.00453.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Na,K-ATPase is a membrane transporter that is critically important for skeletal muscle function. Mdx and Bla/J mice are the experimental models of Duchenne muscular dystrophy and dysferlinopathy that are known to differ in the molecular mechanism of the pathology. This study examines the function of α1- and α2-Na,K-ATPase isozymes in respiratory diaphragm and postural soleus muscles from mdx and Bla/J mice compared with control С57Bl/6 mice. In diaphragm muscles, the motor endplate structure was severely disturbed (manifested by defragmentation) in mdx mice only. The endplate membrane of both Bla/J and mdx mice was depolarized due to specific loss of the α2-Na,K-ATPase electrogenic activity and its decreased membrane abundance. Total FXYD1 subunit (modulates Na,K-ATPase activity) abundance was decreased in both mouse models. However, the α2-Na,K-ATPase protein content as well as mRNA expression were specifically and significantly reduced only in mdx mice. The endplate membrane cholesterol redistribution was most pronounced in mdx mice. Soleus muscles from Bla/J and mdx mice demonstrated reduction of the α2-Na,K-ATPase membrane abundance and mRNA expression similar to the diaphragm muscles. In contrast to diaphragm, the α2-Na,K-ATPase protein content was altered in both Bla/J and mdx mice; membrane cholesterol re-distribution was not observed. Thus, the α2-Na,K-ATPase is altered in both Bla/J and mdx mouse models of chronic muscle pathology. However, despite some similarities, the α2-Na,K-ATPase and cholesterol abnormalities are more pronounced in mdx mice.
Collapse
Affiliation(s)
- Violetta V Kravtsova
- Department of General Physiology, St. Petersburg State University, St. Petersburg, Russia
| | | | | | | | - Igor I Krivoi
- Department of General Physiology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
30
|
Neuromuscular Junction as an Entity of Nerve-Muscle Communication. Cells 2019; 8:cells8080906. [PMID: 31426366 PMCID: PMC6721719 DOI: 10.3390/cells8080906] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
One of the crucial systems severely affected in several neuromuscular diseases is the loss of effective connection between muscle and nerve, leading to a pathological non-communication between the two tissues. The neuromuscular junction (NMJ) represents the critical region at the level of which muscle and nerve communicate. Defects in signal transmission between terminal nerve endings and muscle membrane is a common feature of several physio-pathologic conditions including aging and Amyotrophic Lateral Sclerosis (ALS). Nevertheless, controversy exists on whether pathological events beginning at the NMJ precede or follow loss of motor units. In this review, the role of NMJ in the physio-pathologic interplay between muscle and nerve is discussed.
Collapse
|