1
|
Deshmukh RK, Tripathi S, Bisht S, Kumar P, Patil TD, Gaikwad KK. Mucilage-based composites films and coatings for food packaging application: A review. Int J Biol Macromol 2025; 300:140276. [PMID: 39863234 DOI: 10.1016/j.ijbiomac.2025.140276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/03/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Developing sustainable and eco-friendly packaging solutions has garnered significant interest in recent years. Mucilage-based coatings and composites offer a promising approach due to their biodegradability, renewable nature, and ability to enhance food quality protection. This review paper discusses the impact of mucilage-based composites and coatings on various packaging applications, focusing on their physical, mechanical, morphological, barrier, and functional properties. These materials' adaptability, flexibility, transparency, and compatibility with various food products make them highly suitable for food packaging. The morphological structure of mucilage-based films contributes to improved adhesion, surface roughness, and homogeneity. Enhanced barriers against moisture, oxygen, and other gases extend the shelf life of packaged food while maintaining its quality. Mucilage from different plant sources exhibits functional properties such as antioxidant and antimicrobial activities, which enhance food preservation. These attributes and mucilage's biocompatibility and biodegradability align with the growing demand for environmentally friendly packaging options. The review also addresses cost-effectiveness, regulatory compliance, consumer acceptance, recycling infrastructure compatibility, supply chain considerations, and the need for ongoing innovation. Future advancements in mucilage-based packaging will depend on optimizing performance, scalability, and sustainability. By understanding the effects on physio-mechanical, morphological, barrier, and functional attributes, mucilage-based composites and coatings hold great potential for advancing sustainable food packaging solutions.
Collapse
Affiliation(s)
- Ram Kumar Deshmukh
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Shefali Tripathi
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Samiksha Bisht
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Pradeep Kumar
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Tejaswini Dhanaji Patil
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kirtiraj K Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
2
|
Souza JDN, Andrada LVD, Martins LDCDS, Brito AMS, Silva LJ, Silva IDDL, Vinhas GM, Silva TGD, Simões ADN. Storage Potential of Cactus Mucilage Powder for Incorporation into Foods and Production of Biopolymeric Films. ACS OMEGA 2024; 9:43624-43634. [PMID: 39494034 PMCID: PMC11525515 DOI: 10.1021/acsomega.4c05691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 11/05/2024]
Abstract
The objective was to investigate the physicochemical stability of stored cactus pear mucilage and assess the technological feasibility to produce polymeric films. Mucilage of cactus pear species Nopalea cochenillifera (L.) Salm-Dyck MIU and Opuntia stricta (Haw.) Haw-OEM was extracted and stored for 2, 4, 6, 8, and 10 months in the absence of light at a temperature of 26.5 °C and relative humidity of 41.3%. At each storage time, polymeric films were produced using hydrated mucilage (4%, weight-w/volume-(v)), glycerol (60%, v/v), and calcium lactate (2%, w/v). Among the species, MIU stood out due to its higher water and oil retention, but it also presented higher levels of phenolic compounds, and more intense peaks in Fourier transform infrared spectrophotometry (FTIR) analysis. On the other hand, OEM is richer in carbohydrates, denser, and electrically conductive. The characteristics highlighted for each species are also observed in the principal component analysis (PCA). Both species are equally soluble in water, and more than 60% of their granules have a diameter of 250 mm. The resulting films of MIU exhibited increased resistance and permeability but were less soluble and transparent. Microscopically, greater homogeneity was observed, and the films were thicker, whitish, and thermally stable. Both species have the potential for producing polymeric films with various applications in the food industry, particularly as edible coatings.
Collapse
Affiliation(s)
- Jheizon
Feitoza do Nascimento Souza
- Academic
Unit of Serra Talhada, Rural Federal University
of Pernambuco, Serra Talhada, Pernambuco 56903465, Brazil
- Biosciences
Institute, Botucatu Campus, São Paulo
State University “Julio de Mesquita Filho”, Botucatu, São Paulo 18618689, Brazil
| | | | | | | | | | - Ivo Diego de Lima Silva
- Department
of Chemical and Engineering, Federal University
of Pernambuco, Recife, Pernambuco 50711340, Brazil
| | - Glória Maria Vinhas
- Department
of Chemical and Engineering, Federal University
of Pernambuco, Recife, Pernambuco 50711340, Brazil
| | | | - Adriano do Nascimento Simões
- Academic
Unit of Serra Talhada, Rural Federal University
of Pernambuco, Serra Talhada, Pernambuco 56903465, Brazil
| |
Collapse
|
3
|
Emanuele L, Kodrič Kesovia MM, Dujaković T, Campanelli S. The Use of a Natural Polysaccharide Extracted from the Prickly Pear Cactus ( Opuntia ficus indica) as an Additive for Textile Dyeing. Polymers (Basel) 2024; 16:2086. [PMID: 39065403 PMCID: PMC11281134 DOI: 10.3390/polym16142086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The art of dyeing fabrics is one of the oldest human activities. In order to improve the fastness properties of dyeing products, various additives are added to optimize the uniformity of fibers and surfaces and improve dye distribution. Unfortunately, these additives can be harmful and very often are not biodegradable. This article reports on the possibility of using a natural additive for dyeing textiles: a polysaccharide extracted from the prickly pear cactus (Opuntia ficus indica). One type of fabric was tested, silk, with different colors. Several samples were prepared and dyed for each color, adding the same additives but also a commercial chemical aid for one of them and the mucilage of Opuntia for another. The fastness of the applied dyes was evaluated by washing at different temperatures with a common liquid detergent. All samples were analyzed before and after washing with a colorimeter to evaluate the color changes. The results of the analyses reported and compared indicate the potential of prickly pear mucilage as an additive for dyeing silk, which is easily accessible, safe, and sustainable compared to other commonly used additives.
Collapse
Affiliation(s)
- Lucia Emanuele
- Department of Art and Restoration, University of Dubrovnik, 20000 Dubrovnik, Croatia; (L.E.); (T.D.)
| | | | - Tanja Dujaković
- Department of Art and Restoration, University of Dubrovnik, 20000 Dubrovnik, Croatia; (L.E.); (T.D.)
| | - Simone Campanelli
- School of Science Technology, Section of Chemistry, University of Camerino, 62032 Camerino, Italy;
| |
Collapse
|
4
|
Van Rooyen B, De Wit M, Osthoff G, Van Niekerk J. Cactus Pear Mucilage ( Opuntia spp.) as a Novel Functional Biopolymer: Mucilage Extraction, Rheology and Biofilm Development. Polymers (Basel) 2024; 16:1993. [PMID: 39065310 PMCID: PMC11281074 DOI: 10.3390/polym16141993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The investigation of novel, natural polymers has gained considerably more exposure for their desirable, often specific, functional properties. Multiple researchers have explored these biopolymers to determine their potential to address many food processing, packaging and environmental concerns. Mucilage from the cactus pear (Opuntia ficus-indica) is one such biopolymer that has been identified as possessing a functional potential that can be used in an attempt to enhance food properties and reduce the usage of non-biodegradable, petroleum-based packaging in the food industry. However, variations in the structural composition of mucilage and the different extraction methods that have been reported by researchers have considerably impacted mucilage's functional potential. Although not comparable, these factors have been investigated, with a specific focus on mucilage applications. The natural ability of mucilage to bind water, alter the rheology of a food system and develop biofilms are considered the major applications of mucilage's functional properties. Due to the variations that have been reported in mucilage's chemical composition, specifically concerning the proportions of uronic acids, mucilage's rheological and biofilm properties are influenced differently by changes in pH and a cross-linker. Exploring the factors influencing mucilage's chemical composition, while co-currently discussing mucilage functional applications, will prove valuable when evaluating mucilage's potential to be considered for future commercial applications. This review article, therefore, discusses and highlights the key factors responsible for mucilage's specific functional potential, while exploring important potential food processing and packaging applications.
Collapse
Affiliation(s)
- Brandon Van Rooyen
- Department of Sustainable Food Systems and Development, University of the Free State, Bloemfontein 9301, South Africa
| | - Maryna De Wit
- Department of Sustainable Food Systems and Development, University of the Free State, Bloemfontein 9301, South Africa
| | - Gernot Osthoff
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein 9301, South Africa
| | - Johan Van Niekerk
- Department of Sustainable Food Systems and Development, University of the Free State, Bloemfontein 9301, South Africa
| |
Collapse
|
5
|
Teshager AA, Atlabachew M, Alene AN. Development of biodegradable film from cactus ( Opuntia Ficus Indica) mucilage loaded with acid-leached kaolin as filler. Heliyon 2024; 10:e31267. [PMID: 38845886 PMCID: PMC11153097 DOI: 10.1016/j.heliyon.2024.e31267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Nowadays, substituting petroleum-based plastics with biodegradable polymers made from polysaccharides loaded with various reinforcing materials has recently gained attention due to the impact of conventional plastics wastes. In this study, polysaccharidic mucilage from Ethiopian cactus (Opuntia Ficus Indica) was derived using microwave-assisted extraction technique to develop biodegradable polymers that were inexpensive, readily available, simple to make, and ecofriendly. The effect of microwave power 300-800 W, solid-liquid (cactus-sodium hydroxide solution) ratio 1:5-1:25, sodium hydroxide concentration 0.1-0.8 mol/L, and extraction time 2-10 min on mucilage extraction were studied and the maximum yield of mucilage was attained at optimized parameters of 506 W, 1:20, 0.606 mol/L, and 9.5 min, respectively. Biodegradable polymers made with mucilage alone have poor mechanical characteristics and are thermally unstable. Thus, to overcome the stated problems, glycerol as a plasticizer and acid-leached kaolin crosslinked with urea as a reinforcing material were used. Moreover, the effect of acid-leached kaolin and glycerol on the physico-chemical properties of the films was studied, and a maximum tensile strength of 6.74 MPa with 18.45 % elongation at break, thermally improved biodegradability of 26 %, were attained at 10 % acid-leached kaolin and 20 % glycerol crosslinking with 2 % urea. But the maximum degradability of 53.5 % was attained at 30 % glycerol content. The control and reinforced biodegradable films were characterized using TGA, FTIR, SEM, and XRD to determine the thermal, functional group, morphology, and crystallinity of the bioplastics, respectively. These biodegradable plastics may be used for packaging application.
Collapse
Affiliation(s)
- Alebel Abebaw Teshager
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia
| | - Minaleshewa Atlabachew
- Department of Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Adugna Nigatu Alene
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia
| |
Collapse
|
6
|
Pinheiro JC, Silva LJV, Lopes BKA, Ferreira NL, Fonseca KS, de Brito FAL, da Silva TGF, Brito AMSS, de Lima Silva ID, Vinhas GM, do Nascimento Simões A. Effects of cactus pear clone harvest seasons and times on the physicochemical and technological properties of resulting mucilage and biopolymeric films. Int J Biol Macromol 2024; 257:128374. [PMID: 38052289 DOI: 10.1016/j.ijbiomac.2023.128374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/04/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
Cactus pear cladodes, clones 'Miúda' (MIU) and 'Orelha de Elefante Mexicana' (OEM) were harvested at 6 am and 8 pm during the rainy-dry, dry and rainy seasons to evaluate the effect of type of clone and harvest seasons on the physicochemical and technological properties of mucilage as well as the optical, physicochemical, mechanical, thermal and microstructural characteristics of the films obtained. The mucilage of the OEM clone presented a higher content of phenolic compounds, compared to the Nopalea genus, regardless of the season and time of harvest. Furthermore, the dry period resulted in higher carbohydrate levels, regardless of the harvest time. The biopolymeric films produced from the OEM clone harvested in the rainy season and rainy-dry transition showed darker color, better mechanical properties, water barrier, compact microstructure and thermal stability when compared to the MIU clone. Furthermore, harvesting at 6 am provided improvements in the mechanical conditions, permeability and thermal stability of the films of both types of clones studied. These results showed strong environmental modulation, naturally incorporating important macromolecules such as carbohydrates and phenolic compounds, used in the industry in the production of nutraceutical foods, into the mucilage. Furthermore, harvesting cladodes at 6 am in the rainy and transitional (rainy-dry) periods provided better quality biopolymeric films and/or coatings.
Collapse
Affiliation(s)
| | | | | | - Natanael Lucena Ferreira
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Serra Talhada, Pernambuco, Brazil
| | - Kelem Silva Fonseca
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Serra Talhada, Pernambuco, Brazil
| | - Fred Augusto Lourêdo de Brito
- Federal Rural University of the Semi-arid, Mossoró, Rio Grande do Norte, Brazil; Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Serra Talhada, Pernambuco, Brazil
| | | | | | - Ivo Diego de Lima Silva
- Federal University of Pernambuco, Department of Chemical and Engineering, Recife, PE, Brazil
| | - Glória Maria Vinhas
- Federal University of Pernambuco, Department of Chemical and Engineering, Recife, PE, Brazil
| | - Adriano do Nascimento Simões
- Federal Rural University of the Semi-arid, Mossoró, Rio Grande do Norte, Brazil; Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Serra Talhada, Pernambuco, Brazil.
| |
Collapse
|
7
|
Reyes Escogido MDL, Barrón Vilchis D, Zavala Martínez LG, Angulo Romero F. Opuntia robusta mucilage combined with alginate as encapsulation matrix for Lactiplantibacillus plantarum. CYTA - JOURNAL OF FOOD 2023. [DOI: 10.1080/19476337.2023.2168303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Daniela Barrón Vilchis
- Department of Pharmacy, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | | | - Fabiola Angulo Romero
- Department of Medicine and Nutrition, Health Sciences Division, University of Guanajuato, Leon, Mexico
| |
Collapse
|
8
|
Oudir M, Ait Mesbah Z, Lerari D, Issad N, Djenane D. Development of Eco-Friendly Biocomposite Films Based on Opuntia ficus-indica Cladodes Powder Blended with Gum Arabic and Xanthan Envisaging Food Packaging Applications. Foods 2023; 13:78. [PMID: 38201106 PMCID: PMC10778558 DOI: 10.3390/foods13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Currently, food packaging is facing a critical transition period and a major challenge: it must preserve the food products' quality and, at the same time, it must meet the current requirements of the circular economy and the fundamental principles of packaging materials eco-design. Our research presents the development of eco-friendly packaging films based on Opuntia ficus-indica cladodes (OFIC) as renewable resources. OFIC powder (OFICP)-agar, OFICP-agar-gum arabic (GA), and OFICP-agar-xanthan (XG) blend films were eco-friendlily prepared by a solution casting method. The films' properties were investigated by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (X-RD), and differential scanning calorimeter (DSC). Water solubility and moisture content were also determined. Morphology, thickness, molecular interactions, miscibility, crystallinity, and thermal properties, were affected by adjusting the gums (GA and XG) content and glycerol in the blend films. Moisture content increased with increasing glycerol and XG content, and when 1.5 g of GA was added. Water solubility decreased when glycerol was added at 50% and increased with increasing GA and XG content. FTIR and XRD confirmed strong intermolecular interactions between the different blend film compounds, which were reflected in the shifting, appearance, and disappearance of FTIR bands and XRD peaks, indicating excellent miscibility. DSC results revealed a glass transition temperature (Tg) below room temperature for all prepared blend films, indicating that they are flexible and soft at room temperature. The results corroborated that the addition of glycerol at 30% and the GA to the OFICP increased the stability of the film, making it ideal for different food packaging applications.
Collapse
Affiliation(s)
- Malha Oudir
- Higher School of Food Science and Agri-Food Industry, ESSAIA, Avenue Ahmed Hamidouche Route de Beaulieu, El Harrach, Alger 16200, Algeria; (M.O.); (N.I.)
- Fundamental and Applied Physics Laboratory, FUNDAPL, Faculty of Science, University of Blida 1, P.O. Box 270, Route de Soumâa, Blida 09000, Algeria;
| | - Zohra Ait Mesbah
- Fundamental and Applied Physics Laboratory, FUNDAPL, Faculty of Science, University of Blida 1, P.O. Box 270, Route de Soumâa, Blida 09000, Algeria;
| | - Djahida Lerari
- Center for Scientific and Technical Research in Physical and Chemical Analysis, CRAPC, Zone Industrielle Bou-Ismaïl, P.O. Box 384, Tipaza 42004, Algeria;
| | - Nadia Issad
- Higher School of Food Science and Agri-Food Industry, ESSAIA, Avenue Ahmed Hamidouche Route de Beaulieu, El Harrach, Alger 16200, Algeria; (M.O.); (N.I.)
| | - Djamel Djenane
- Laboratory of Food Quality and Food Safety, Mouloud Mammeri University, P.O. Box 17, Tizi Ouzou 15000, Algeria
| |
Collapse
|
9
|
Van Rooyen B, De Wit M, Osthoff G, Van Niekerk J, Hugo A. Effect of pH on the Mechanical Properties of Single-Biopolymer Mucilage ( Opuntia ficus-indica), Pectin and Alginate Films: Development and Mechanical Characterisation. Polymers (Basel) 2023; 15:4640. [PMID: 38139892 PMCID: PMC10747180 DOI: 10.3390/polym15244640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Pectin and alginate are well-established biopolymers used in natural film development. Single-polymer mucilage films were developed from freeze-dried native mucilage powder of two cultivars, 'Algerian' and 'Morado', and the films' mechanical properties were compared to single-polymer pectin and alginate films developed from commercially available pectin and alginate powders. The casting method prepared films forming solutions at 2.5%, 5%, and 7.5% (w/w) for each polymer. Considerable variations were observed in the films' strength and elasticity between the various films at different polymer concentrations. Although mucilage films could be produced at 5% (w/w), both cultivars could not produce films with a tensile strength (TS) greater than 1 MPa. Mucilage films, however, displayed > 20% elongation at break (%E) values, being noticeably more elastic than the pectin and alginate films. The mechanical properties of the various films were further modified by varying the pH of the film-forming solution. The various films showed increased TS and puncture force (PF) values, although these increases were more noticeable for pectin and alginate than mucilage films. Although single-polymer mucilage films exhibit the potential to be used in developing natural packaging, pectin and alginate films possess more suitable mechanical attributes.
Collapse
Affiliation(s)
- Brandon Van Rooyen
- Department of Sustainable Food Systems and Development, University of the Free State, Bloemfontein 9301, South Africa
| | - Maryna De Wit
- Department of Sustainable Food Systems and Development, University of the Free State, Bloemfontein 9301, South Africa
| | - Gernot Osthoff
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein 9301, South Africa
| | - Johan Van Niekerk
- Department of Sustainable Food Systems and Development, University of the Free State, Bloemfontein 9301, South Africa
| | - Arno Hugo
- Department of Animal Science, University of the Free State, Bloemfontein 9301, South Africa
| |
Collapse
|
10
|
Application of fermentation for the valorization of residues from Cactaceae family. Food Chem 2023; 410:135369. [PMID: 36621336 DOI: 10.1016/j.foodchem.2022.135369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/04/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Cactaceae family is well-known for their adaptations to drought and arid environments. This family, formed by four subfamilies (Cactoideae, Opuntioideae, Pereskioideae, and Maihuenioideae) are known for being leafless stem succulent plants with numerous spines, and their commercial fruits, distinguished by their bright colors and their skin covered with bracts. Some of these species have been traditionally used in the food industry (e.g., pitaya, cactus, or prickly pear) or as pharmaceuticals to treat specific diseases due to their active properties. The processing of these fruits leads to different residues, namely pomace, skin, spines, and residues from cladodes; besides from others such as fruits, roots, flowers, mucilage, and seeds. In general, Cactaceae species produce large amounts of mucilage and fiber, although they can be also considered as a source of phenolic compounds (phenolic acids, flavonols and their glycosides), alkaloids (phenethylamines derived betalains), and triterpenoids. Therefore, considering their high content in fiber and fermentable carbohydrates, together with other target bioactive compounds, fermentation is a potential valorization strategy for certain applications such as enzymes and bioactive compounds production or aroma enhancement. This review will comprise the latest information about Cactaceae family, its potential residues, and its potential as a substrate for fermentation to obtain active molecules with application in the food industry.
Collapse
|
11
|
Yang Y, Gupta VK, Du Y, Aghbashlo M, Show PL, Pan J, Tabatabaei M, Rajaei A. Potential application of polysaccharide mucilages as a substitute for emulsifiers: A review. Int J Biol Macromol 2023; 242:124800. [PMID: 37178880 DOI: 10.1016/j.ijbiomac.2023.124800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/08/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Mucilages are natural compounds consisting mainly of polysaccharides with complex chemical structures. Mucilages also contain uronic acids, proteins, lipids, and bioactive compounds. Because of their unique properties, mucilages are used in various industries, including food, cosmetics, and pharmaceuticals. Typically, commercial gums are composed only of polysaccharides, which increase their hydrophilicity and surface tension, reducing their emulsifying ability. As a result of the presence of proteins in combination with polysaccharides, mucilages possess unique emulsifying properties due to their ability to reduce surface tension. In recent years, various studies have been conducted on using mucilages as emulsifiers in classical and Pickering emulsions because of their unique emulsifying feature. Studies have shown that some mucilages, such as yellow mustard, mutamba, and flaxseed mucilages, have a higher emulsifying capacity than commercial gums. A synergistic effect has also been shown in some mucilages, such as Dioscorea opposita mucilage when combined with commercial gums. This review article investigates whether mucilages can be used as emulsifiers and what factors affect their emulsifying properties. A discussion of the challenges and prospects of using mucilages as emulsifiers is also presented in this review.
Collapse
Affiliation(s)
- Yadong Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Yating Du
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
12
|
Rodrigues C, de Paula CD, Lahbouki S, Meddich A, Outzourhit A, Rashad M, Pari L, Coelhoso I, Fernando AL, Souza VGL. Opuntia spp.: An Overview of the Bioactive Profile and Food Applications of This Versatile Crop Adapted to Arid Lands. Foods 2023; 12:foods12071465. [PMID: 37048286 PMCID: PMC10094368 DOI: 10.3390/foods12071465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Opuntia spp. are crops well adapted to adverse environments and have great economic potential. Their constituents, including fruits, cladodes, and flowers, have a high nutritional value and are rich in value-added compounds. Cladodes have an appreciable content in dietary fiber, as well as bioactive compounds such as kaempferol, quercetin, and isorhamnetin. Fruits are a major source of bioactive compounds such as phenolic acids and vitamin C. The seeds are mainly composed of unsaturated fatty acids and vitamin E. The flowers are also rich in phenolic compounds. Therefore, in addition to their traditional uses, the different plant fractions can be processed to meet multiple applications in the food industry. Several bakery products have been developed with the incorporation of cladode flour. Pectin and mucilage obtained from cladodes can act as edible films and coatings. Fruits, fruit extracts, and fruit by-products have been mixed into food products, increasing their antioxidant capacity and extending their shelf life. Betalains, obtained from fruits, can be used as food colorants and demonstrate promising applications as a sensor in food packaging. This work reviews the most valuable components of the different fractions of this plant and emphasizes its most recent food applications, demonstrating its outstanding value.
Collapse
Affiliation(s)
- Carolina Rodrigues
- MEtRICs/CubicB, Departamento de Química, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Camila Damásio de Paula
- MEtRICs/CubicB, Departamento de Química, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Soufiane Lahbouki
- MEtRICs/CubicB, Departamento de Química, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakech 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Nanomaterials for Energy and Environment Physics Department, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Abdelilah Meddich
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakech 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Abdelkader Outzourhit
- Laboratory of Nanomaterials for Energy and Environment Physics Department, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Mohamed Rashad
- Land and Water Technologies Department, Arid Lands Cultivation Research Institute, City of Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Luigi Pari
- CREA Research Centre for Engineering and Agro-Food Processing, Monterotondo, 00015 Rome, Italy
| | - Isabel Coelhoso
- LAQV-REQUIMTE, Departamento de Química, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Ana Luísa Fernando
- MEtRICs/CubicB, Departamento de Química, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Victor G. L. Souza
- MEtRICs/CubicB, Departamento de Química, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
- INL, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- Correspondence:
| |
Collapse
|
13
|
Bioprospecting and potential of cactus mucilages: A bibliometric review. Food Chem 2023; 401:134121. [DOI: 10.1016/j.foodchem.2022.134121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022]
|
14
|
Effectiveness of Opuntia ficus-indica mucilage as a carrier agent in microencapsulation of bioactive compounds of Amaranthus hypochondriacus var. Nutrisol. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Development and Characterization of Biocomposite Films Based on Polysaccharides Derived from Okra Plant Waste for Food Packaging Application. Polymers (Basel) 2022; 14:polym14224884. [PMID: 36433011 PMCID: PMC9692357 DOI: 10.3390/polym14224884] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Polysaccharide-based composite films were developed using mucilage polysaccharides (OLP) and carboxymethyl cellulose (CMC) extracted from okra leafstalk wastes. The rheological properties of biocomposite OLP/CMC film-forming solutions were characterized using the Power-law model, and fabricated films were characterized for their potential food packaging applications. OLP/CMC solutions exhibited pseudo-plastic fluid characteristics and differences in rheological behavior (n, 0.478-0.743), and flow consistency (K, 1.731-9.154) with increasing content of OLP (5 to 30 % w/w of CMC) were associated with variations in the physical, mechanical, and barrier properties of films. Surface hydrophobicity (24%) increased and oxygen (39%) and water vapor (32%) permeability reduced in OLP/CMC films containing up to 10% OLP. Moreover, a higher content of OLP enhanced the antioxidant activity and thermal stability of OLP/CMC films. Subsequently, OLP/CMC was applied as a coating to preserve cherry tomatoes for 14 days at 30 °C. Quality deterioration characterized by high weight loss (22%), firmness loss (74.62%), and discoloration (∆E, 21.26) occurred in uncoated tomatoes and were within unusable/unmarketable limits based on their visual quality score. In contrast, OLP/CMC effectively minimized quality losses, and coated tomatoes exceeded the limit of marketability after 14 days of storage. This study successfully applied value-added polysaccharides derived from okra plant residues for edible food packaging.
Collapse
|
16
|
Cheng D, Ma Q, Zhang J, Jiang K, Cai S, Wang W, Wang J, Sun J. Cactus polysaccharides enhance preservative effects of ultrasound treatment on fresh-cut potatoes. ULTRASONICS SONOCHEMISTRY 2022; 90:106205. [PMID: 36274416 PMCID: PMC9593739 DOI: 10.1016/j.ultsonch.2022.106205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
The shelf life of fresh-cut fruits and vegetables is affected by microbial growth, enzymatic browning, and loss of flavor. Although ultrasound (US) treatment is often used in the preservation of fresh-cut fruits and vegetables, it has limited antibacterial and preservative effects. Here, we used cactus polysaccharides (CP) to enhance the preservative effect of ultrasound treatment and extended the shelf life of fresh-cut potatoes. The results showed that combined treatment (CP + US) exerted better antimicrobial and anti-browning effects than individual treatments (either US or CP alone). In addition, CP + US has no adverse effect on texture and quality properties, as well as reduced the mobility of internal water. Combination treatment not only significantly decreased the activities of polyphenol oxidase and peroxidase (P < 0.05), but also maintained a high level of phenylalanine ammonia lyase activity and total phenol content during storage. It also maintained the integrity of cell membrane and reduced its permeability by inhibiting the peroxidation of membrane lipids. In addition, CP + US treatment significantly inhibited the activity of antioxidant enzymes and maintained a high DPPH scavenging ability. GC-IMS technology was used to evaluate the flavor of fresh-cut potatoes. The results showed that CP + US treatment reduced the production of a peculiar smell during storage and maintained a good flavor by inhibiting the production of aldehydes. Taken together, these results indicate that the effective preservation method of CP + US treatment can be utilized to increase the shelf life of fresh-cut potatoes.
Collapse
Affiliation(s)
- Dewei Cheng
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China.
| | - Jianhui Zhang
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Kaili Jiang
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Shijia Cai
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China; Hebei Potato Processing Technology Innovation Center, Hebei 076576, China; Sino-US and Sino-Japan Joint Center of Food Science and Technology, Baoding, Hebei, China.
| |
Collapse
|
17
|
Acid Hydrolysis of Pectin and Mucilage from Cactus (Opuntia ficus) for Identification and Quantification of Monosaccharides. Molecules 2022; 27:molecules27185830. [PMID: 36144562 PMCID: PMC9503960 DOI: 10.3390/molecules27185830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Pectin and mucilage are polysaccharides from the cactus Opuntia ficus-indica, which are also known as hydrocolloids, with useful properties in industries such as food, pharmaceuticals, and construction, among others. In the present work, cactus hydrocolloids were hydrolyzed characterized using two techniques: first, thin-layer chromatography, to identify the monosaccharides present in the sample, followed by the phenol–sulfuric acid method to determine the monosaccharide content. The hydrolyzing method allowed us to reduce the processing time to 180 min and, considering the identification and quantification procedures, the proposed methodology is much simpler and more cost-effective compared to other methods, such as high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and mass spectrometry. The analysis of the results revealed that the maximum concentration of monosaccharides was obtained after hydrolyzing for 90 min. Under such conditions, with pectin being the main component contained in the cactus hydrocolloids analyzed here, galacturonic acid was found in the largest quantities.
Collapse
|
18
|
Riahi K, Chaabane S, Werhenin Ammeri R, Jaballah A, Dörr M. Assessment of the application of cladode cactus mucilage flocculants for hot chemical degreasing electroplating wastewater treatment and reuse: process efficiency and storage stability. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:938-949. [PMID: 36358038 DOI: 10.2166/wst.2022.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pressures related to urban growth and industrial activities exacerbated by climate change had an impact on water resources in Tunisia. The present study examines the application of cladode cactus mucilage (CCM) flocculants for hot alkaline chemical degreasing Zn-electroplating wastewater treatment and reuse (WWTR). The CCM flocculation process was selected through their environmental benefits, economic facilities, sustainable use of the natural biopolymer product, input biopolymers substitution, and on-site treated wastewater (TWW) reuse and recovery. The alum coagulation and CCM flocculation were performed by the jar test series. The suitability of treated wastewater quality (TWWQ) with alum/CCM was also assessed for reuse purpose in terms of corrosion-scaling indices (RSI, LSI, PSI, AI), oxidation-reduction potential (ORP), and microbiological community growth (Bacillus, Pseudomonas, Mesophilic bacteria and yeasts) for 28 days storage at 25 °C. The total alkalinity removal efficiency reached 95.8% with an optimum dosage of alum + CCM for hot alkaline chemical degreasing wastewater bath rinsing. The results showed that the stability of TWWQ has significantly deteriorated during storage leading to aggressive wastewater, pathogen growth, and biological malodor production which make them unsuitable for reuse. Therefore, there is a need for CCM processing alternatives that preserve the physico-chemical and microbial of TWW properties during storage.
Collapse
Affiliation(s)
- Khalifa Riahi
- Department of Planning and Environment, UR-GDRES, High School of Engineers of Medjez El Bab Km 05 Route du Kef 9070, University of Jendouba, Jendouba,Tunisia
| | - Safa Chaabane
- Department of Planning and Environment, UR-GDRES, High School of Engineers of Medjez El Bab Km 05 Route du Kef 9070, University of Jendouba, Jendouba,Tunisia
| | - Rim Werhenin Ammeri
- Laboratory of Treatment and Water Recycling, Centre of Research and Water Technologies, Technopark of Borj Cedria, BP 273, Soliman 8020, Tunisia E-mail:
| | - Adel Jaballah
- Berufliche Fortbildungszentren der Bayerischen Wirtschaft (bfz) gGmbH, International Division, Schleizer Str. 5-7 95028, Hof, Germany
| | - Michael Dörr
- Stadtentwässerung und Umweltanalytik Nürnberg (SUN), Adolf-Braun-Strasse, 33 90429, Nuremberg, Germany
| |
Collapse
|
19
|
Kumar L, Deshmukh RK, Gaikwad KK. Antimicrobial packaging film from cactus (Cylindropuntia fulgida) mucilage and gelatine. Int J Biol Macromol 2022; 215:596-605. [PMID: 35777505 DOI: 10.1016/j.ijbiomac.2022.06.162] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/14/2022] [Accepted: 06/25/2022] [Indexed: 11/05/2022]
Abstract
Gelatine is an excellent substitute for biodegradable packaging materials; nevertheless, it is necessary to mix it with other polymers due to its poor mechanical and high hydrophilicity. In the present study, we used Cylindropuntia fulgida mucilage (CF) as main constituent and gelatine (GTN). The Euphorbia caducifolia extract (ECE) was incorporated in concentrations of 0, 1, 5, 10, 20 %, and its influence on the film's morphological, thermal, mechanical, and water vapor barrier properties was assessed. The surface of fabricated CF/GTN/ECE biocomposite films was more homogeneous and smoother with the high concentration of in ECE. The elongation at break improved from 2 to 60.59 %, and WVP enhanced from 3.34 to 2.59 10-4 g mm/mm2 day kPa and highest antimicrobial activity of 3.62 ± 0.71 Log CFU g-1 when CF/GTN was incorporated with 20 % ECE. Incorporating CF and ECE 10 to 20 % makes these films a good substitute for the packaging of food products.
Collapse
Affiliation(s)
- Lokesh Kumar
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ram Kumar Deshmukh
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kirtiraj K Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
20
|
Daniloski D, D'Cunha NM, Speer H, McKune AJ, Alexopoulos N, Panagiotakos DB, Petkoska AT, Naumovski N. Recent developments on Opuntia spp., their bioactive composition, nutritional values, and health effects. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
A Concise Review on Taro Mucilage: Extraction Techniques, Chemical Composition, Characterization, Applications, and Health Attributes. Polymers (Basel) 2022; 14:polym14061163. [PMID: 35335495 PMCID: PMC8949670 DOI: 10.3390/polym14061163] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Taro (Colocasia esculenta) is an important source of carbohydrates as an energy source and is used as a staple food throughout the world. It is rich in mucilage and starch granules, making it a highly digestible ingredient. Mucilage can act as a matrix and a thickening, binding, emulsifying, or foaming agent in food, pharmaceutical, and several other fields of research. Moreover, mucilage can be extracted from several living organisms and has excellent functional properties, such as water-holding, oil-holding, and swelling capacities. Therefore, these remarkable functional properties make mucilage a promising ingredient with possible industrial applications. Furthermore, several extraction techniques, including enzyme-assisted, ultrasonication, microwave-assisted, aquatic, and solvent extraction methods, are used to obtain quantitative amounts of taro mucilage. Coldwater extraction with ethanol precipitation can be considered an effective and cost-effective technique to obtain high-quality mucilage with suitable industrial applications, whereas the ultrasonication method is more expensive but results in a higher amount of mucilage than other emerging techniques. Mucilage can also be used as a fat replacer or reducer, dye remover, coating agent, and antioxidating agent. Therefore, in this review, we detail the key properties related to the extraction techniques, chemical composition, and characterization of taro mucilage, along with its suitable applications and health benefits.
Collapse
|
22
|
Effect of Cactus ( Opuntia ficus-indica) and Acacia ( Acacia seyal) Gums on the Pasting, Thermal, Textural, and Rheological Properties of Corn, Sweet Potato, and Turkish Bean Starches. Molecules 2022; 27:molecules27030701. [PMID: 35163967 PMCID: PMC8838407 DOI: 10.3390/molecules27030701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
This study was planned to explore the locally available natural sources of gum hydrocolloids as a natural modifier of different starch properties. Corn (CS), sweet potato (SPS), and Turkish bean (TBS) starches were mixed with locally extracted native or acetylated cactus (CG) and acacia (AG) gums at 2 and 5% replacement levels. The binary mixtures (starch–gums) were prepared in water, freeze dried, ground to powder, and stored airtight. A rapid viscoanalyzer (RVA), differential scanning calorimeter (DSC), texture analyzer, and dynamic rheometer were used to explore their pasting, thermal, textural, and rheological properties. The presence of acetylated AG or CG increased the final viscosity (FV) in all three starches when compared to starch pastes containing native gums. Plain SPS dispersion had a higher pasting temperature (PT) than CS and TBS. The addition of AG or CG increased the PT of CS, SPS, and TBS. The thermograms revealed the overall enthalpy change of the starch and gum blends: TBS > SPS > CS. The peak temperature (Tp) of starches increased with increasing gum concentration from 2 to 5% for both AG and CG native and modified gums. When compared to the control gels, the addition of 2% CG, either native or modified, reduced the syneresis of starch gels. However, further addition (5% CG) increased the gels’ syneresis. Furthermore, the syneresis for the first cycle on the fourth day was higher than the second cycle on the eighth day for all starches. The addition of native and acetylated CG reduced the hardness of starch gels at all concentrations tested. All of the starch dispersions had higher G′ than G″ values, indicating that they were more elastic and less viscous with or without the gums. The apparent viscosity of all starch gels decreased as shear was increased, with profiles indicating time-dependent thixotropic behavior. All of the starch gels, with or without gums, showed a non-Newtonian shear thinning trend in the shear stress vs. shear rate graphs. The addition of acetylated CG gum to CS resulted in a higher activation energy (Ea) than the native counterparts and the control. More specifically, starch gels with a higher gum concentration (5%) provided greater Ea than their native counterparts.
Collapse
|
23
|
Makhloufi N, Chougui N, Rezgui F, Benramdane E, Silvestre AJD, Freire CSR, Vilela C. Polysaccharide-based films of cactus mucilage and agar with antioxidant properties for active food packaging. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Olawuyi IF, Kim SR, Lee WY. Application of plant mucilage polysaccharides and their techno-functional properties' modification for fresh produce preservation. Carbohydr Polym 2021; 272:118371. [PMID: 34420702 DOI: 10.1016/j.carbpol.2021.118371] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 01/06/2023]
Abstract
The use of edible coating/film to improve fresh produce's quality and shelf life is an old but reliable and popular method of preservation. Recently, plant-derived mucilages have been extensively used to prepare edible packages (MEPs). This review focuses on recent studies that characterize mucilages from different plants, and examine their specific applications as edible packages in preserving fruits and vegetables. Structure-function relations and corresponding influence on film-forming properties are discussed. This review also surveys the additive-modifications of MEPs techno-functional properties. MEPs from a range of plant sources are effective in preventing quality loss and improving the storability of various fruits and vegetables. The preservative mechanisms and essential techno-functional properties of MEPs required for fruit and vegetable packaging were summarized. The key findings summarized in this study will help promote the utilization of mucilages and draw attention to other novel applications of this valuable polymer.
Collapse
Affiliation(s)
- Ibukunoluwa Fola Olawuyi
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won Young Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
25
|
Preparation and Chemical and Physical Characteristics of an Edible Film Based on Native Potato Starch and Nopal Mucilage. Polymers (Basel) 2021; 13:polym13213719. [PMID: 34771277 PMCID: PMC8588235 DOI: 10.3390/polym13213719] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Edible films prepared from biological materials are being massively used. This study aimed to prepare edible films from native potato starch of the Allcca sipas variety (Solanum tuberosum subsp. Andigena), nopal mucilage (Opuntia ficus indica), and glycerol. Twelve edible films were prepared with starch, mucilage, and glycerin in different proportions by thermosynthesis. It was observed that mucilage and glycerol have a significant direct effect on film solubility and an inverse effect on aw, while the effect of starch is the opposite. The aw ranged from 0.562 to 0.639. The FTIR analysis showed the interaction of the components in the films being considerably influenced by the addition of mucilage. The TGA/DTA analysis reported low thermal stability in the films, retaining water around 100 °C, and showing a tendency to lose weight when the content of starch is high, while the opposite occurred with the addition of mucilage; it was also observed that around 310 °C, the maximum weight loss was observed between 53.6 and 86.1%. SEM images showed uniform films without cracks. The results are promising and show the possibility of preparing edible films from native potato starch and mucilage.
Collapse
|
26
|
Makhloufi N, Chougui N, Rezgui F, Benramdane E, Freire CSR, Vilela C, Silvestre AJD. Bio‐based sustainable films from the Algerian
Opuntia ficus‐indica
cladodes powder: Effect of plasticizer content. J Appl Polym Sci 2021. [DOI: 10.1002/app.50450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nawal Makhloufi
- Department of Physical Biology and Chemistry, Faculty of Natural and Life Sciences University of Bejaia Bejaia Algeria
| | - Nadia Chougui
- Department of Food Sciences, Faculty of Natural and Life Sciences University of Bejaia Bejaia Algeria
| | - Farouk Rezgui
- Laboratory of Organic Materials, Faculty of Technology University of Bejaia Bejaia Algeria
| | - Elias Benramdane
- Department of Physical Biology and Chemistry, Faculty of Natural and Life Sciences University of Bejaia Bejaia Algeria
| | - Carmen S. R. Freire
- CICECO–Aveiro Institute of Materials, Department of Chemistry University of Aveiro Aveiro Portugal
| | - Carla Vilela
- CICECO–Aveiro Institute of Materials, Department of Chemistry University of Aveiro Aveiro Portugal
| | - Armando J. D. Silvestre
- CICECO–Aveiro Institute of Materials, Department of Chemistry University of Aveiro Aveiro Portugal
| |
Collapse
|
27
|
Bastola AK, Soffiatti P, Behl M, Lendlein A, Rowe NP. Structural performance of a climbing cactus: making the most of softness. J R Soc Interface 2021; 18:20210040. [PMID: 33975461 PMCID: PMC8113904 DOI: 10.1098/rsif.2021.0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Climbing plants must reach supports and navigate gaps to colonize trees. This requires a structural organization ensuring the rigidity of so-called ‘searcher’ stems. Cacti have succulent stems adapted for water storage in dry habitats. We investigate how a climbing cactus Selenicereus setaceus develops its stem structure and succulent tissues for climbing. We applied a ‘wide scale’ approach combining field-based bending, tensile and swellability tests with fine-scale rheological, compression and anatomical analyses in laboratory conditions. Gap-spanning ‘searcher’ stems rely significantly on the soft cortex and outer skin of the stem for rigidity in bending (60–94%). A woody core contributes significantly to axial and radial compressive strength (80%). Rheological tests indicated that storage moduli were consistently higher than loss moduli indicating that the mucilaginous cortical tissue behaved like a viscoelastic solid with properties similar to physical or chemical hydrogels. Rheological and compression properties of the soft tissue changed from young to old stages. The hydrogel–skin composite is a multi-functional structure contributing to rigidity in searcher stems but also imparting compliance and benign failure in environmental situations when stems must fail. Soft tissue composites changing in function via changes in development and turgescence have a great potential for exploring candidate materials for technical applications.
Collapse
Affiliation(s)
- Anil K Bastola
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstrasse 55, 14513 Teltow, Germany
| | - Patricia Soffiatti
- Department of Botany, Federal University of Parana State, Curitiba, Paraná, Brazil
| | - Marc Behl
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstrasse 55, 14513 Teltow, Germany
| | - Andreas Lendlein
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstrasse 55, 14513 Teltow, Germany.,Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Nick P Rowe
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| |
Collapse
|
28
|
Himani, Kumar N, Prabhakar PK, Pant V. Physical, Mechanical, Functional, and Thermal Characterization of Chitosan: Maltodextrin Blends Edible Oral Film Incorporated with Aqueous Clove Extract. STARCH-STARKE 2020. [DOI: 10.1002/star.201900220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Himani
- Department of Food Business Management and Entrepreneurship Development National Institute of Food Technology Entrepreneurship & Management Plot No. 97, Secotor‐56, Kundli Sonipat Haryana 131028 India
| | - Nishant Kumar
- Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship & Management Plot No. 97, Secotor‐56, Kundli Sonipat Haryana 131028 India
| | - Pramod K Prabhakar
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship & Management Plot No. 97, Secotor‐56, Kundli Sonipat Haryana 131028 India
| | - Vimal Pant
- Department of Food Business Management and Entrepreneurship Development National Institute of Food Technology Entrepreneurship & Management Plot No. 97, Secotor‐56, Kundli Sonipat Haryana 131028 India
| |
Collapse
|
29
|
Arabinoxylan and rhamnogalacturonan mucilage: Outgoing and potential trends of pharmaceutical, environmental, and medicinal merits. Int J Biol Macromol 2020; 165:2550-2564. [PMID: 33115647 DOI: 10.1016/j.ijbiomac.2020.10.175] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022]
Abstract
Demand for safe, environmentally friendly and minimally processed food additives with intrinsic technological (stabilizing, texturizing, structuring) and functional potential is already on the rise. There are actually several natural excipients eligible for pharmaceutical formulation. Mucilage, as a class constitutes arabinoxylan and rhamnogalacturonan-based biomolecules used in the pharmaceutical, environmental as well as phytoremediation industries owing to its particular structure and properties. These compounds are widely used in pharmaceutical, food and cosmetics, as well as, in agriculture, paper industries. This review emphasizes mucilage valuable applications in the pharmaceutical and industrial fields. In this context, much focus has recently been given to the valorization of mucilage as an ingredient for food or nutraceutical applications. Furthermore, different optimization and extraction techniques are presented to develop better utilization and/or enhanced yield of mucilage. The highlighted mucilage extraction methods warrant assessing up-scale processes to encourage for its industrial applications. The current article capitalizes on cutting-edge characteristics of mucilage and posing for other possible innovative applications in non-food industries. Here, the first holistic overview of mucilage with regards to its physicochemical properties and potential novel usages is presented.
Collapse
|
30
|
Das G, Lim KJ, Tantengco OAG, Carag HM, Gonçalves S, Romano A, Das SK, Coy-Barrera E, Shin HS, Gutiérrez-Grijalva EP, Heredia JB, Patra JK. Cactus: Chemical, nutraceutical composition and potential bio-pharmacological properties. Phytother Res 2020; 35:1248-1283. [PMID: 33025610 DOI: 10.1002/ptr.6889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 01/14/2023]
Abstract
Cactus species are plants that grow in the arid and semiarid regions of the world. They have long fascinated the attention of the scientific community due to their unusual biology. Cactus species are used for a variety of purposes, such as food, fodder, ornamental, and as medicinal plants. In the last regard, they have been used in traditional medicine for eras by the ancient people to cure several diseases. Recent scientific investigations suggest that cactus materials may be used as a source of naturally-occurring products, such as mucilage, fiber, pigments, and antioxidants. For this reason, numerous species under this family are becoming endangered and extinct. This review provides an overview of the habitat, classification, phytochemistry, chemical constituents, extraction and isolation of bioactive compounds, nutritional and pharmacological potential with pre-clinical and clinical studies of different Cactus species. Furthermore, conservation strategies for the ornamental and endangered species have also been discussed.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Kyung Jik Lim
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | | | - Harold M Carag
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Sandra Gonçalves
- MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Faro, Portugal
| | - Anabela Romano
- MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Faro, Portugal
| | - Swagat Kumar Das
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá, Colombia
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Erick Paul Gutiérrez-Grijalva
- Department of Nutraceuticals and Functional Foods, Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, Culiacán, Mexico
| | - J Basilio Heredia
- Department of Nutraceuticals and Functional Foods, Centro de Investigación en Alimentación y Desarrollo, Culiacán, Mexico
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea
| |
Collapse
|
31
|
Scognamiglio F, Gattia DM, Roselli G, Persia F, De Angelis U, Santulli C. Thermoplastic Starch (TPS) Films Added with Mucilage from Opuntia Ficus Indica: Mechanical, Microstructural and Thermal Characterization. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1000. [PMID: 32102225 PMCID: PMC7078619 DOI: 10.3390/ma13041000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/23/2022]
Abstract
Opuntia cladodes are a typical vegetable waste, from which mucilage in gel form can be extracted. This work proposes blending it with a self-produced thermoplastic starch (TPS), originating from potato starch with a high content in glycerol (ca. 30%). Three methods were compared for extraction, bare maceration (MA), mechanical blending (ME) and mechanical blending following maceration (MPM) to produce films with an approximate thickness of 150 μm. For the comparison, tensile testing, differential scanning calorimetry and scanning electron microscopy were used. The MPM process proved the most effective, not only for extraction yielding, but also to obtain a larger deformation of the samples with respect to the one allowed by the pure TPS films. A considerable plasticization effect was observed. Despite this, the mechanical performance is still not completely satisfactory, and the expected effect of the calcium and magnesium salts contained in the mucilage to improve the rigidity of the TPS film was not really revealed. Prospected improvements would concern the fabrication process and the investigation of other possible loading modes and sample geometries.
Collapse
Affiliation(s)
- Fabrizio Scognamiglio
- Technologies and Diagnostics for Conservation and Restoration Laboratory, School of Science and Technology, University of Camerino, Via Pacifici Mazzoni 2, 63100 Ascoli Piceno, Italy;
| | - Daniele Mirabile Gattia
- Department of Sustainability SSPT-ENEA—Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (D.M.G.); (F.P.); (U.D.A.)
| | - Graziella Roselli
- School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy;
| | - Franca Persia
- Department of Sustainability SSPT-ENEA—Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (D.M.G.); (F.P.); (U.D.A.)
| | - Ugo De Angelis
- Department of Sustainability SSPT-ENEA—Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (D.M.G.); (F.P.); (U.D.A.)
| | - Carlo Santulli
- School of Science and Technology, Geology Division, University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| |
Collapse
|