1
|
Walker DM, Smith WA, Gale L, Wolff JT, Healy CP, Van Hollebeke HF, Stephenson A, Kim M. CoMIT: a bioinformatic pipeline for risk-based prediction of COVID-19 test inclusivity. BMC Bioinformatics 2025; 26:51. [PMID: 39939958 PMCID: PMC11817761 DOI: 10.1186/s12859-025-06046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND The global Coronavirus Disease 2019 (COVID-19) pandemic highlighted the need to quickly diagnose infections to identify and prevent viral spread in the population. In response to the pandemic, BioFire Defense leveraged its PCR-based "lab-in-a-pouch" technology for expedited development of the BioFire® COVID-19 Test, a novel in vitro diagnostic detecting SARS-CoV-2 nucleic acid in human samples. Following clearance of an in vitro diagnostic device, regulatory bodies such as the U.S. Food and Drug Administration (FDA) require regular post market surveillance to monitor test performance against viral lineages circulating in the field, using predictive in silico inclusivity evaluations. Exponential increases in the number of sequences deposited in bioinformatic repositories such as GISAID, during the pandemic, impeded progress in meeting these post market requirements. In response, BioFire Defense developed a new bioinformatic tool to overcome scalability problems and the loss of accuracy encountered with the standard inclusivity method. RESULTS The Coronavirus Monitoring for Inclusivity Tool (CoMIT) uses the Variant Sorter Algorithm to sidestep multiple sequence alignments, a significant barrier inherent in the standard inclusivity method. The implementation of CoMIT and its Variant Sorter Algorithm are described. Automated summary tables and visualizations from a typical inclusivity evaluation are presented. We report our approach to filter and display relevant information in the pipeline outputs using risk factors tied to test performance. CONCLUSIONS BioFire Defense has developed CoMIT, an automated bioinformatic pipeline for efficient processing and reporting of variant inclusivity from the GISAID EpiCoV™ repository. This tool ensures continuous and comprehensive post market evaluations of BioFire COVID-19 Test performance even from datasets large enough to impede standard inclusivity analyses. CoMIT's low computational space complexity and modular code allow this tool to be generalized for inclusivity monitoring of multianalyte or single analyte tests with complex assay designs and/or highly variable targets. CoMIT's databasing capabilities and metadata handling hold the potential for new investigations to improve readiness for future outbreaks.
Collapse
Affiliation(s)
- Diane M Walker
- BioFire Defense, LLC, 79 West 4500 South, Suite 14, Salt Lake City, Utah, 84107, USA
| | - Wendy A Smith
- BioFire Defense, LLC, 79 West 4500 South, Suite 14, Salt Lake City, Utah, 84107, USA
| | - Lia Gale
- BioFire Defense, LLC, 79 West 4500 South, Suite 14, Salt Lake City, Utah, 84107, USA
| | - Jacob T Wolff
- BioFire Defense, LLC, 79 West 4500 South, Suite 14, Salt Lake City, Utah, 84107, USA
| | - Connor P Healy
- BioFire Defense, LLC, 79 West 4500 South, Suite 14, Salt Lake City, Utah, 84107, USA
| | | | - Ashlie Stephenson
- BioFire Defense, LLC, 79 West 4500 South, Suite 14, Salt Lake City, Utah, 84107, USA
| | - Marianne Kim
- BioFire Defense, LLC, 79 West 4500 South, Suite 14, Salt Lake City, Utah, 84107, USA.
| |
Collapse
|
2
|
Cavalcanti-Dantas VDM, da Silva AF, Mendes AF, de Araújo Júnior WO, Bernardo-Menezes LC, Bresani-Salvi CC, Castellano LRC, Fernandes AIV, Lemos SG, de Magalhães JJF, Oliveira RADS, de Assis PAC, de Souza JR, de Morais CNL. Performance assessment of a new serological diagnostic test for COVID-19 with candidate peptides from spike and nucleocapsid viral proteins. Braz J Microbiol 2024; 55:2797-2803. [PMID: 39042245 PMCID: PMC11405565 DOI: 10.1007/s42770-024-01446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024] Open
Abstract
Numerous commercial tests for the serological diagnosis of COVID-19 have been produced in recent years. However, it is important to note that these tests exhibit significant variability in their sensitivity, specificity, and accuracy of results. Therefore, the objective of this study was to utilize bioinformatics tools to map SARS-CoV-2 peptides, with the goal of developing a new serological diagnostic test for COVID-19. Two peptides from the S protein and one from the N protein were selected and characterized in silico, chemically synthesized, and used as a serological diagnostic tool to detect IgM, IgG, and IgA anti-SARS-CoV-2 antibodies through the ELISA technique, confirmed as positive and negative samples by RT-qPCR or serology by ELISA. The results showed a sensitivity, specificity, Positive Predictive Value and Negative Predictive Value of 100% (p < 00001, 95% CI) for the proposed test. Although preliminary, this study brings proof-of-concept results that are consistent with the high-performance rates of the ELISA test when compared to other well-established methods for diagnosing COVID-19.
Collapse
Affiliation(s)
- Vanessa de Melo Cavalcanti-Dantas
- Laboratory of Virology and Experimental Therapy, Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Alan Frazão da Silva
- Laboratory of Experimental Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andrei Félix Mendes
- Laboratory of Microbiology, Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Waldecir Oliveira de Araújo Júnior
- Laboratory of Immunology and Hematology, Department of Physiology and Pathology, Multidisciplinary Research Group in Biotechnology and Health (GePeMBiS), Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Lucas Coêlho Bernardo-Menezes
- Laboratory of Virology and Experimental Therapy, Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Cristiane Campello Bresani-Salvi
- Laboratory of Virology and Experimental Therapy, Department of Virology, Group of Integrated Studies in Nutrition and Health, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Instituto de Medicina Integral Prof Fernando Figueira, Recife, Pernambuco, Brazil
| | - Lúcio Roberto Cançado Castellano
- Professional and Technological Center of the Technical School of Health, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Ana Isabel Vieira Fernandes
- Health Promotion Department of the Medical Sciences Center and Division for Infectious and Parasitic Diseases, Lauro Wanderley University Hospital, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Sherlan Guimarães Lemos
- Advanced Study Group in Analytical Chemistry, Department of Chemistry, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Jurandy Júnior Ferraz de Magalhães
- Laboratory of Virology and Experimental Therapy, Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Renato Antônio Dos Santos Oliveira
- Laboratory of Immunology and Hematology, Department of Physiology and Pathology, Multidisciplinary Research Group in Biotechnology and Health (GePeMBiS), Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Priscilla Anne Castro de Assis
- Laboratory of Immunology and Hematology, Department of Physiology and Pathology, Multidisciplinary Research Group in Biotechnology and Health (GePeMBiS), Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Joelma Rodrigues de Souza
- Laboratory of Immunology and Hematology, Department of Physiology and Pathology, Multidisciplinary Research Group in Biotechnology and Health (GePeMBiS), Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Clarice Neuenschwander Lins de Morais
- Laboratory of Virology and Experimental Therapy, Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil.
| |
Collapse
|
3
|
Juniastuti, Furqoni AH, Amin M, Restifan YD, Putri SMD, Ferandra VA, Lusida MI. The evaluation results of proposed antigen rapid diagnostic tests for COVID-19: some possible factors might influence. Infection 2023; 51:1285-1291. [PMID: 36592297 PMCID: PMC9806449 DOI: 10.1007/s15010-022-01975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023]
Abstract
PURPOSE In addition to existing gold standard qRT-PCR methods, there is a need to develop reliable rapid tests for infection control with early notification of COVID-19 cases to enable effective outbreak management. We evaluated the validity of the three Ag-RDT kits proposed by some companies in different countries by using qRT-PCR and analyzed its results. METHODS Each of the three Ag-RDT kits (namely A, B, and C) was tested with 90 samples, consisting of samples with Ct ≤ 25, samples with Ct > 25, and negative SARS-CoV-2 PCR samples. RESULTS This study showed that for samples with Ct > 25, all the three kits could not detect SARS-CoV-2 Ag (0% sensitivity) but showed 100% specificity. Meanwhile, for samples with Ct ≤ 25, kit C was the best (76.7% sensitivity and 100% specificity). The PPV of the three kits was 100%, but their NPV ranged 63-84.8%. Kit C showed the best accuracy (89.9%). Some factors might influence the results of evaluation, such as variation of virus proteins and transportation-storage of the kits. CONCLUSION The overall specificity of the three kits for all samples was high; however, all of them have not met the minimum performance requirements of ≥ 80% sensitivity for samples with Ct ≤ 25. The validation test is much necessary to be carried out by the authority in national health care to ensure the feasibility of the kit for point-of-care testing (POCT) of COVID-19. Some factors that might influence should be anticipated to increase their sensitivities and specificities.
Collapse
Affiliation(s)
- Juniastuti
- Department of Medical Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
- Clinical Microbiology Residency Program, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Hospital, Surabaya, Indonesia
- Institute of Tropical Disease, Universitas Airlangga, Campus C Jalan Mulyorejo, Surabaya, East Java, Indonesia
| | - Abdul Hadi Furqoni
- Institute of Tropical Disease, Universitas Airlangga, Campus C Jalan Mulyorejo, Surabaya, East Java, Indonesia
| | - Mochamad Amin
- Institute of Tropical Disease, Universitas Airlangga, Campus C Jalan Mulyorejo, Surabaya, East Java, Indonesia
| | - Yanna Debby Restifan
- Institute of Tropical Disease, Universitas Airlangga, Campus C Jalan Mulyorejo, Surabaya, East Java, Indonesia
| | - Serius Miliyani Dwi Putri
- Institute of Tropical Disease, Universitas Airlangga, Campus C Jalan Mulyorejo, Surabaya, East Java, Indonesia
| | - Virginia Ayu Ferandra
- Institute of Tropical Disease, Universitas Airlangga, Campus C Jalan Mulyorejo, Surabaya, East Java, Indonesia
| | - Maria Inge Lusida
- Department of Medical Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia.
- Clinical Microbiology Residency Program, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Hospital, Surabaya, Indonesia.
- Institute of Tropical Disease, Universitas Airlangga, Campus C Jalan Mulyorejo, Surabaya, East Java, Indonesia.
| |
Collapse
|
4
|
Norvihoho LK, Yin J, Zhou ZF, Han J, Chen B, Fan LH, Lichtfouse E. Mechanisms controlling the transport and evaporation of human exhaled respiratory droplets containing the severe acute respiratory syndrome coronavirus: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1701-1727. [PMID: 36846189 PMCID: PMC9944801 DOI: 10.1007/s10311-023-01579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/13/2023] [Indexed: 05/24/2023]
Abstract
Transmission of the coronavirus disease 2019 is still ongoing despite mass vaccination, lockdowns, and other drastic measures to control the pandemic. This is due partly to our lack of understanding on the multiphase flow mechanics that control droplet transport and viral transmission dynamics. Various models of droplet evaporation have been reported, yet there is still limited knowledge about the influence of physicochemical parameters on the transport of respiratory droplets carrying the severe acute respiratory syndrome coronavirus 2. Here we review the effects of initial droplet size, environmental conditions, virus mutation, and non-volatile components on droplet evaporation and dispersion, and on virus stability. We present experimental and computational methods to analyze droplet transport, and factors controlling transport and evaporation. Methods include thermal manikins, flow techniques, aerosol-generating techniques, nucleic acid-based assays, antibody-based assays, polymerase chain reaction, loop-mediated isothermal amplification, field-effect transistor-based assay, and discrete and gas-phase modeling. Controlling factors include environmental conditions, turbulence, ventilation, ambient temperature, relative humidity, droplet size distribution, non-volatile components, evaporation and mutation. Current results show that medium-sized droplets, e.g., 50 µm, are sensitive to relative humidity. Medium-sized droplets experience delayed evaporation at high relative humidity, and increase airborne lifetime and travel distance. By contrast, at low relative humidity, medium-sized droplets quickly shrink to droplet nuclei and follow the cough jet. Virus inactivation within a few hours generally occurs at temperatures above 40 °C, and the presence of viral particles in aerosols impedes droplet evaporation.
Collapse
Affiliation(s)
- Leslie Kojo Norvihoho
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| | - Jing Yin
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| | - Zhi-Fu Zhou
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| | - Bin Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| | - Li-Hong Fan
- The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| |
Collapse
|
5
|
Alamri AM, Alkhilaiwi FA, Ullah Khan N. Era of Molecular Diagnostics Techniques before and after the COVID-19 Pandemic. Curr Issues Mol Biol 2022; 44:4769-4789. [PMID: 36286040 PMCID: PMC9601158 DOI: 10.3390/cimb44100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the growth of molecular diagnosis from the era of Hippocrates, the emergence of COVID-19 is still remarkable. The previously used molecular techniques were not rapid enough to screen a vast population at home, in offices, and in hospitals. Additionally, these techniques were only available in advanced clinical laboratories.The pandemic outbreak enhanced the urgency of researchers and research and development companies to invent more rapid, robust, and portable devices and instruments to screen a vast community in a cost-effective and short time. There has been noteworthy progress in molecular diagnosing tools before and after the pandemic. This review focuses on the advancements in molecular diagnostic techniques before and after the emergence of COVID-19 and how the pandemic accelerated the implantation of molecular diagnostic techniques in most clinical laboratories towardbecoming routine tests.
Collapse
Affiliation(s)
- Ahmad M. Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61413, Saudi Arabia
- Cancer Research Unit, King Khalid University, Abha 61413, Saudi Arabia
| | - Faris A. Alkhilaiwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture, Peshawar 25130, Pakistan
| |
Collapse
|
6
|
Antiochia R. Electrochemical biosensors for SARS-CoV-2 detection: Voltametric or impedimetric transduction? Bioelectrochemistry 2022; 147:108190. [PMID: 35738049 PMCID: PMC9188450 DOI: 10.1016/j.bioelechem.2022.108190] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/06/2022]
Abstract
During the COVID-19 pandemic, electrochemical biosensors have shown several advantages including accuracy, low cost, possibility of miniaturization and portability, which make them an interesting testing method for rapid point-of-care (POC) detection of SARS-CoV-2 infection, allowing the detection of both viral RNA and viral antigens. Herein, we reviewed advancements in electrochemical biosensing platforms towards the detection of SARS-CoV-2 based on voltametric and impedimetric transduction modes, highlighting the advantages and drawbacks of the two methods.
Collapse
Affiliation(s)
- Riccarda Antiochia
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
7
|
Maia R, Carvalho V, Faria B, Miranda I, Catarino S, Teixeira S, Lima R, Minas G, Ribeiro J. Diagnosis Methods for COVID-19: A Systematic Review. MICROMACHINES 2022; 13:1349. [PMID: 36014271 PMCID: PMC9415914 DOI: 10.3390/mi13081349] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 05/15/2023]
Abstract
At the end of 2019, the coronavirus appeared and spread extremely rapidly, causing millions of infections and deaths worldwide, and becoming a global pandemic. For this reason, it became urgent and essential to find adequate tests for an accurate and fast diagnosis of this disease. In the present study, a systematic review was performed in order to provide an overview of the COVID-19 diagnosis methods and tests already available, as well as their evolution in recent months. For this purpose, the Science Direct, PubMed, and Scopus databases were used to collect the data and three authors independently screened the references, extracted the main information, and assessed the quality of the included studies. After the analysis of the collected data, 34 studies reporting new methods to diagnose COVID-19 were selected. Although RT-PCR is the gold-standard method for COVID-19 diagnosis, it cannot fulfill all the requirements of this pandemic, being limited by the need for highly specialized equipment and personnel to perform the assays, as well as the long time to get the test results. To fulfill the limitations of this method, other alternatives, including biological and imaging analysis methods, also became commonly reported. The comparison of the different diagnosis tests allowed to understand the importance and potential of combining different techniques, not only to improve diagnosis but also for a further understanding of the virus, the disease, and their implications in humans.
Collapse
Affiliation(s)
- Renata Maia
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | - Violeta Carvalho
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
- MEtRICs, Mechanical Engineering Department, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal
- ALGORITMI, Production and Systems Department, School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Bernardo Faria
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Miranda
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | - Susana Catarino
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | - Senhorinha Teixeira
- ALGORITMI, Production and Systems Department, School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Rui Lima
- MEtRICs, Mechanical Engineering Department, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal
- CEFT, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Graça Minas
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | - João Ribeiro
- ALiCE, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| |
Collapse
|
8
|
Wang G, Wang L, Meng Z, Su X, Jia C, Qiao X, Pan S, Chen Y, Cheng Y, Zhu M. Visual Detection of COVID-19 from Materials Aspect. ADVANCED FIBER MATERIALS 2022; 4:1304-1333. [PMID: 35966612 PMCID: PMC9358106 DOI: 10.1007/s42765-022-00179-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 05/25/2023]
Abstract
Abstract In the recent COVID-19 pandemic, World Health Organization emphasized that early detection is an effective strategy to reduce the spread of SARS-CoV-2 viruses. Several diagnostic methods, such as reverse transcription-polymerase chain reaction (RT-PCR) and lateral flow immunoassay (LFIA), have been applied based on the mechanism of specific recognition and binding of the probes to viruses or viral antigens. Although the remarkable progress, these methods still suffer from inadequate cellular materials or errors in the detection and sampling procedure of nasopharyngeal/oropharyngeal swab collection. Therefore, developing accurate, ultrafast, and visualized detection calls for more advanced materials and technology urgently to fight against the epidemic. In this review, we first summarize the current methodologies for SARS-CoV-2 diagnosis. Then, recent representative examples are introduced based on various output signals (e.g., colorimetric, fluorometric, electronic, acoustic). Finally, we discuss the limitations of the methods and provide our perspectives on priorities for future test development. Graphical Abstract
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Le Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Zheyi Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Xiaolong Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Xiaolan Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Shaowu Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Yinjun Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| |
Collapse
|
9
|
Salmerón S, López-Escribano A, García-Nogueras I, Lorenzo J, Romero JM, Hernández-Martínez A, García-Alcaraz F. Efficiency of Diagnostic Test for SARS-CoV-2 in a Nursing Home. Geriatrics (Basel) 2022; 7:geriatrics7040078. [PMID: 35893325 PMCID: PMC9330623 DOI: 10.3390/geriatrics7040078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background: there is no consensus on how to optimally use diagnostic tests in each stage of COVID-19 pandemic. The objective of this research is to determine the efficiency of sorting positive antibody test quarterly. Methods: this research uses a retrospective, observational study. COVID-19 diagnostic tests performed and avoided refer to a Spanish nursing home. Population: 261 employees and 107 residents. A quarterly antibody test was performed on subjects who had tested positive during the first wave of coronavirus, and a antibody rapid test on the remaining subjects. Results: during the first wave, 24.0% of the employees and 51.4% of the residents had a positive antibody test. Seronegativization was observed in 7.6% of employees and 1.6% of residents. An employee was infected with COVID-19 in September 2020, followed by a nursing home outbreak in October: 118 Polymerase Chain Reactions tests were avoided in residents and 18 in employees, which in turn prevented 15 workers from going on sick leave and the quarantine of 59 residents. This represents savings of about $15,000. Conclusions: our study supports the need to know and apply the strategies for early detection, surveillance and control of COVID-19 for future outbreaks. We conclude that surveillance for positive COVID-19 serology among long-term care staff and residents may be a cost-effective strategy during a pandemic.
Collapse
Affiliation(s)
- Sergio Salmerón
- San Vicente de Paúl Nursing Home, Diputación de Albacete, 02001 Albacete, Spain; (I.G.-N.); (J.L.); (J.M.R.)
- Correspondence: ; Tel.: +34-638-567-200
| | - Alonso López-Escribano
- Centro de Salud Bonete, Gerencia de Atención Integrada de Almansa, Servicio de Salud de Castilla-La Mancha, 02691 Albacete, Spain;
| | - Inmaculada García-Nogueras
- San Vicente de Paúl Nursing Home, Diputación de Albacete, 02001 Albacete, Spain; (I.G.-N.); (J.L.); (J.M.R.)
| | - Joaquina Lorenzo
- San Vicente de Paúl Nursing Home, Diputación de Albacete, 02001 Albacete, Spain; (I.G.-N.); (J.L.); (J.M.R.)
| | - Juan Manuel Romero
- San Vicente de Paúl Nursing Home, Diputación de Albacete, 02001 Albacete, Spain; (I.G.-N.); (J.L.); (J.M.R.)
| | | | | |
Collapse
|
10
|
Wu X, Chen Q, Li J, Liu Z. Diagnostic techniques for COVID-19: A mini-review. J Virol Methods 2022; 301:114437. [PMID: 34933045 PMCID: PMC8684097 DOI: 10.1016/j.jviromet.2021.114437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023]
Abstract
COVID-19, a new respiratory infectious disease, was first reported at the end of 2019, in Wuhan, China. Now, COVID-19 is still causing major loss of human life and economic productivity in almost all countries around the world. Early detection, early isolation, and early diagnosis of COVID-19 patients and asymptomatic carriers are essential to blocking the spread of the pandemic. This paper briefly reviewed COVID-19 diagnostic assays for clinical application, including nucleic acid tests, immunological methods, and Computed Tomography (CT) imaging. Nucleic acid tests (NAT) target the virus genome and indicates the existence of the SARS-CoV-2 virus. Currently, real-time quantitative PCR (qPCR) is the most widely used NAT and, basically, is the most used diagnostic assay for COVID-19. Besides qPCR, many novel rapid and sensitive NAT assays were also developed. Serological testing (detection of serum antibodies specific to SARS-CoV-2), which belongs to the immunological methods, is also used in the diagnosis of COVID-19. The positive results of serological testing indicate the presence of antibodies specific to SARS-CoV-2 resulting from being infected with the virus. Viral antigen detection assays are also important immunological methods used mainly for rapid virus detection. However, only a few of these assays had been reported. CT imaging is still an important auxiliary diagnosis tool for COVID-19 patients, especially for symptomatic patients in the early stage, whose viral load is low and different to be identified by NAT. These diagnostic techniques are all good in some way and applying a combination of them will greatly improve the accuracy of COVID-19 diagnostics.
Collapse
Affiliation(s)
- Xianyong Wu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Qiming Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Junhai Li
- Department of Oncology, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang City, Shaanxi Province, 712000, China.
| | - Zhanmin Liu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
11
|
Tonelotto V, Davini A, Cardarelli L, Calderone M, Marin P. Efficacy of Fluorecare SARS-CoV-2 Spike Protein Test Kit for SARS-CoV-2 detection in nasopharyngeal samples of 121 individuals working in a manufacturing company. PLoS One 2022; 17:e0262174. [PMID: 35025944 PMCID: PMC8757945 DOI: 10.1371/journal.pone.0262174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the clinical performance of the Fluorecare SARS-CoV-2 Spike Protein Test Kit, a rapid immunochromatographic assay for SARS-CoV-2 detection. Moreover, we sought to point out the strategy adopted by a local company to lift the lockdown without leading to an increase in the number of COVID-19 cases, by performing a precise and timely health surveillance. METHODS The rapid Fluorecare SARS-CoV-2 Spike Protein Test was performed immediately after sampling following the manufacturer's instructions. RT-PCRs were performed within 24 hours of specimen collection. A total amount of 253 nasopharyngeal samples from 121 individuals were collected between March 16 and April 2, 2021 and tested. RESULTS Of 253 nasopharyngeal samples, 11 (9.1%) were positive and 242 (90.9%) were negative for SARS-CoV-2 RNA by RT-PCR assays. The rapid SARS-CoV-2 antigen detection test's mean sensitivity and specificity were 84,6% (95% CI, 54.6-98.1%) and 100% (95% CI, 98.6-100%), respectively. Two false negative test results were obtained from samples with high RT-PCR cycle threshold (Ct). CONCLUSION Our study suggested that Fluorecare SARS-CoV-2 Spike Protein Test can be introduced into daily diagnostic practice, as its mean sensitivity and specificity follow the standards recommended by WHO and IFCC Task Force. In addition, we underlined how the strategy adopted by a local company to risk assessment and health surveillance was appropriate for infection containment. This real-life scenario gave us the possibility to experience potential approaches aimed to preserve public health and work activities.
Collapse
Affiliation(s)
| | - Annamaria Davini
- C.M.S.R. Veneto Medica S.r.l., Altavilla Vicentina, Vicenza, Italy
| | - Laura Cardarelli
- Lifebrain S.r.l–Gruppo Cerba HealthCare c/o RDI—Rete Diagnostica Italiana S.r.l, Limena, Padova, Italy
| | - Milena Calderone
- C.M.S.R. Veneto Medica S.r.l., Altavilla Vicentina, Vicenza, Italy
| | - Paola Marin
- C.M.S.R. Veneto Medica S.r.l., Altavilla Vicentina, Vicenza, Italy
| |
Collapse
|
12
|
Advances in Targeting ACE2 for Developing COVID-19 Therapeutics. Ann Biomed Eng 2022; 50:1734-1749. [PMID: 36261668 PMCID: PMC9581451 DOI: 10.1007/s10439-022-03094-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 01/01/2023]
Abstract
Since the onset of the coronavirus pandemic in December 2019, the SARS-CoV-2 virus has accounted for over 6.3 million lives resulting in the demand to develop novel therapeutic approaches to target and treat SARS-CoV-2. Improved understanding of viral entry and infection mechanisms has led to identifying different target receptors to mitigate infection in the host. Researchers have been working on identifying and targeting potential therapeutic target receptors utilizing different candidate drugs. Angiotensin-converting enzyme-2 (ACE2) has been known to perform critical functions in maintaining healthy cardiorespiratory function. However, ACE2 also functions as the binding site for the spike protein of SARS-CoV-2, allowing the virus to enter the cells and ensue infection. Therefore, drugs targeting ACE2 receptors can be considered as therapeutic candidates. Strategies targeting the level of ACE2 expression have been investigated and compared to other potential therapeutic targets, such as TMPRSS2, RdRp, and DPP4. This mini review discusses the key therapeutic approaches that target the ACE2 receptor, which is critical to the cellular entry and propagation of the novel SARS-CoV-2. In addition, we summarize the main advantages of ACE2 targeting against alternative approaches for the treatment of COVID-19.
Collapse
|
13
|
Tiwari V, Kumar M, Tiwari A, Sahoo BM, Singh S, Kumar S, Saharan R. Current trends in diagnosis and treatment strategies of COVID-19 infection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64987-65013. [PMID: 34601675 PMCID: PMC8487330 DOI: 10.1007/s11356-021-16715-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/21/2021] [Indexed: 04/15/2023]
Abstract
Coronaviruses are terrifically precise and adapted towards specialized respiratory epithelial cells, observed in organ culture and human volunteers both. This virus is found to possess an unpredictable anti-viral T-cell response which in turn results in T-cell activation and finally apoptosis, leading to cytokine storm and collapse of the whole immune system. The present review provides comprehensive information regarding SARS-CoV-2 infection, mutant strains, and the impact of SARS-COV-2 on vital organs, the pathophysiology of the disease, diagnostic tests available, and possible treatments. It also includes all the vaccines developed so far throughout the world to control this pandemic. Until now, 18 vaccines have been approved by the WHO and further 22 vaccines are in the third trial. This study also provides up-to-date information regarding the drugs repurposed in clinical trials and the recent status of allopathic drugs along with its result. Although vaccines are available, specific treatment is not available for the disease. Furthermore, the effect of vaccines on new variants is a new area of research at this time. Therefore, a preventive attitude is the best approach to fight against this virus.
Collapse
Affiliation(s)
- Varsha Tiwari
- Department of Pharmacy, Devsthali Vidyapeeth College of Pharmacy, Lalpur (U.S. Nagar), Uttrakhand, Rudrapur, 236148, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, 133207, India
| | - Abhishek Tiwari
- Department of Pharmacy, Devsthali Vidyapeeth College of Pharmacy, Lalpur (U.S. Nagar), Uttrakhand, Rudrapur, 236148, India.
| | - Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences, Odisha, ha-760010, Berhampur, India
| | - Sunil Singh
- Department of Pharmaceutical Chemistry, Shri Sai College of Pharmacy, Handia, Prayagraj, Uttar Pradesh, 221503, India
| | - Suresh Kumar
- Bharat Institute of Pharmacy, Pehladpur, Babain, Kurukshetra, Haryana, 136156, India
| | - Renu Saharan
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, 133207, India
| |
Collapse
|
14
|
Lantigua D, Trimper J, Unal B, Camci-Unal G. A new paper-based biosensor for therapeutic drug monitoring. LAB ON A CHIP 2021; 21:3289-3297. [PMID: 34612459 DOI: 10.1039/d1lc00473e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tacrolimus is one of the most effective and prevalent drugs used to combat vascularized composite allotransplantation rejection. We have fabricated a rapid and easy-to-use six-layer paper based microfluidic device using the principles of competitive immunoassays and vertical flow microfluidics for colorimetric detection of tacrolimus in a small volume of blood.
Collapse
Affiliation(s)
- Darlin Lantigua
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | | | | | | |
Collapse
|
15
|
Hsiao WWW, Le TN, Pham DM, Ko HH, Chang HC, Lee CC, Sharma N, Lee CK, Chiang WH. Recent Advances in Novel Lateral Flow Technologies for Detection of COVID-19. BIOSENSORS 2021; 11:295. [PMID: 34562885 PMCID: PMC8466143 DOI: 10.3390/bios11090295] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
The development of reliable and robust diagnostic tests is one of the most efficient methods to limit the spread of coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, most laboratory diagnostics for COVID-19, such as enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase-polymerase chain reaction (RT-PCR), are expensive, time-consuming, and require highly trained professional operators. On the other hand, the lateral flow immunoassay (LFIA) is a simpler, cheaper device that can be operated by unskilled personnel easily. Unfortunately, the current technique has some limitations, mainly inaccuracy in detection. This review article aims to highlight recent advances in novel lateral flow technologies for detecting SARS-CoV-2 as well as innovative approaches to achieve highly sensitive and specific point-of-care testing. Lastly, we discuss future perspectives on how smartphones and Artificial Intelligence (AI) can be integrated to revolutionize disease detection as well as disease control and surveillance.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| | - Trong-Nghia Le
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| | - Dinh Minh Pham
- GENTIS JSC, 249A, Thuy Khue, Tay Ho, Hanoi 100000, Vietnam;
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Hui-Hsin Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; (H.-H.K.); (C.-C.L.)
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; (H.-H.K.); (C.-C.L.)
| | - Neha Sharma
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| | - Cheng-Kang Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| |
Collapse
|
16
|
Safarchi A, Fatima S, Ayati Z, Vafaee F. An update on novel approaches for diagnosis and treatment of SARS-CoV-2 infection. Cell Biosci 2021; 11:164. [PMID: 34420513 PMCID: PMC8380468 DOI: 10.1186/s13578-021-00674-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) has made a serious public health and economic crisis worldwide which united global efforts to develop rapid, precise, and cost-efficient diagnostics, vaccines, and therapeutics. Numerous multi-disciplinary studies and techniques have been designed to investigate and develop various approaches to help frontline health workers, policymakers, and populations to overcome the disease. While these techniques have been reviewed within individual disciplines, it is now timely to provide a cross-disciplinary overview of novel diagnostic and therapeutic approaches summarizing complementary efforts across multiple fields of research and technology. Accordingly, we reviewed and summarized various advanced novel approaches used for diagnosis and treatment of COVID-19 to help researchers across diverse disciplines on their prioritization of resources for research and development and to give them better a picture of the latest techniques. These include artificial intelligence, nano-based, CRISPR-based, and mass spectrometry technologies as well as neutralizing factors and traditional medicines. We also reviewed new approaches for vaccine development and developed a dashboard to provide frequent updates on the current and future approved vaccines.
Collapse
Affiliation(s)
- Azadeh Safarchi
- School of Biotechnology and Biomolecular Science, University of New South Wales, NSW Sydney, Australia
| | - Shadma Fatima
- School of Biotechnology and Biomolecular Science, University of New South Wales, NSW Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, Australia
| | - Zahra Ayati
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Science, University of New South Wales, NSW Sydney, Australia
- UNSW Data Science Hub University of New South Wales, NSW Sydney, Australia
| |
Collapse
|
17
|
Dolscheid-Pommerich R, Bartok E, Renn M, Kümmerer BM, Schulte B, Schmithausen RM, Stoffel-Wagner B, Streeck H, Saschenbrecker S, Steinhagen K, Hartmann G. Correlation between a quantitative anti-SARS-CoV-2 IgG ELISA and neutralization activity. J Med Virol 2021; 94:388-392. [PMID: 34415572 PMCID: PMC8426838 DOI: 10.1002/jmv.27287] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022]
Abstract
In the current COVID-19 pandemic, a better understanding of the relationship between merely binding and functionally neutralizing antibodies is necessary to characterize protective antiviral immunity following infection or vaccination. This study analyzes the level of correlation between the novel quantitative EUROIMMUN Anti-SARS-CoV-2 QuantiVac ELISA (IgG) and a microneutralization assay. A panel of 123 plasma samples from a COVID-19 outbreak study population, preselected by semiquantitative anti-SARS-CoV-2 IgG testing, was used to assess the relationship between the novel quantitative ELISA (IgG) and a microneutralization assay. Binding IgG targeting the S1 antigen was detected in 106 (86.2%) samples using the QuantiVac ELISA, while 89 (72.4%) samples showed neutralizing antibody activity. Spearman's correlation analysis demonstrated a strong positive relationship between anti-S1 IgG levels and neutralizing antibody titers (rs = 0.819, p < 0.0001). High and low anti-S1 IgG levels were associated with a positive predictive value of 72.0% for high-titer neutralizing antibodies and a negative predictive value of 90.8% for low-titer neutralizing antibodies, respectively. These results substantiate the implementation of the QuantiVac ELISA to assess protective immunity following infection or vaccination.
Collapse
Affiliation(s)
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Marcel Renn
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,Mildred Scheel School of Oncology, Bonn, Germany.,University Hospital Bonn, Medical Faculty, Bonn, Germany
| | | | - Bianca Schulte
- Institute of Virology, University Hospital Bonn, Bonn, Germany
| | | | - Birgit Stoffel-Wagner
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Hendrik Streeck
- Institute of Virology, University Hospital Bonn, Bonn, Germany
| | - Sandra Saschenbrecker
- Institute for Experimental Immunology, Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Katja Steinhagen
- Institute for Experimental Immunology, Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
18
|
Gong F, Wei HX, Li Q, Liu L, Li B. Evaluation and Comparison of Serological Methods for COVID-19 Diagnosis. Front Mol Biosci 2021; 8:682405. [PMID: 34368226 PMCID: PMC8343015 DOI: 10.3389/fmolb.2021.682405] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022] Open
Abstract
The worldwide pandemic of COVID-19 has become a global public health crisis. Various clinical diagnosis methods have been developed to distinguish COVID-19-infected patients from healthy people. The nucleic acid test is the golden standard for virus detection as it is suitable for early diagnosis. However, due to the low amount of viral nucleic acid in the respiratory tract, the sensitivity of nucleic acid detection is unsatisfactory. As a result, serological screening began to be widely used with the merits of simple procedures, lower cost, and shorter detection time. Serological tests currently include the enzyme-linked immunosorbent assay (ELISA), lateral flow immunoassay (LFIA), and chemiluminescence immunoassay (CLIA). This review describes various serological methods, discusses the performance and diagnostic effects of different methods, and points out the problems and the direction of optimization, to improve the efficiency of clinical diagnosis. These increasingly sophisticated and diverse serological diagnostic technologies will help human beings to control the spread of COVID-19.
Collapse
Affiliation(s)
- Fanwu Gong
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hua-Xing Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiangsheng Li
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Liu Liu
- Department of General Surgery, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Bofeng Li
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
19
|
Somborac Bačura A, Dorotić M, Grošić L, Džimbeg M, Dodig S. Current status of the lateral flow immunoassay for the detection of SARS-CoV-2 in nasopharyngeal swabs. Biochem Med (Zagreb) 2021; 31:020601. [PMID: 34140830 PMCID: PMC8183114 DOI: 10.11613/bm.2021.020601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022] Open
Abstract
Early detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and diagnosis of coronavirus disease 2019 (COVID-19) are priorities during the pandemic. Symptomatic and suspected asymptomatic individuals should be tested for COVID-19 to confirm infection and to be excluded from social interactions. As molecular testing capacity is overloaded during the pandemic, rapid antigen tests, such as lateral flow immunoassays (LFIAs), can be a useful tool as they allow greater test availability and obtain results in a very short time. This short review aims to present the analytical properties of LFIAs in the detection of SARS-CoV-2 in nasopharyngeal swabs. Lateral flow immunoassay is a method that combines thin-layer chromatography and indirect immunochemical sandwich method and allows the detection of a specific SARS-CoV-2 antigen in nasopharyngeal swabs. Swab specimens should be adequately collected and tested as soon as possible. Users should pay attention to quality control and possible interferences. Antigen tests for SARS-CoV-2 show high sensitivity and specificity in cases with high viral loads, and should be used up to five days after the onset of the first symptoms of COVID-19. False positive results may be obtained when screening large populations with a low prevalence of COVID-19 infection, while false negative results may happen due to improper specimen collection or insufficient amount of antigen in the specimen. So as to achieve reliable results, a diagnostic accuracy study of a specific rapid antigen test should be performed.
Collapse
Affiliation(s)
- Anita Somborac Bačura
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Marija Dorotić
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Leonarda Grošić
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Monika Džimbeg
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Slavica Dodig
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
20
|
Funabashi R, Miyakawa K, Yamaoka Y, Yoshimura S, Yamane S, Jeremiah SS, Shimizu K, Ozawa H, Kawakami C, Usuku S, Tanaka N, Yamazaki E, Kimura H, Hasegawa H, Ryo A. Development of highly sensitive and rapid antigen detection assay for diagnosis of COVID-19 utilizing optical waveguide immunosensor. J Mol Cell Biol 2021; 13:763-766. [PMID: 34165565 PMCID: PMC8344664 DOI: 10.1093/jmcb/mjab037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 01/16/2023] Open
Affiliation(s)
- Rikako Funabashi
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Kei Miyakawa
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Yutaro Yamaoka
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan.,Life Science Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Kanagawa, Japan
| | - Seiko Yoshimura
- Primary Care Testing Solution Development Department, Canon Medical Systems Corporation, Tochigi, Japan
| | - Satoshi Yamane
- Primary Care Testing Solution Development Department, Canon Medical Systems Corporation, Tochigi, Japan
| | | | - Kohei Shimizu
- Yokohama City Institute of Public Health, Kanagawa, Japan
| | - Hiroki Ozawa
- Yokohama City Institute of Public Health, Kanagawa, Japan
| | | | - Shuzo Usuku
- Yokohama City Institute of Public Health, Kanagawa, Japan
| | - Nobuko Tanaka
- Yokohama City Institute of Public Health, Kanagawa, Japan
| | - Etsuko Yamazaki
- Clinical Laboratory Department, Yokohama City University Hospital, Kanagawa, Japan
| | - Hirokazu Kimura
- Department of Health Science, Gunma Paz University Graduate School, Gunma, Japan
| | - Hideki Hasegawa
- Influenza Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| |
Collapse
|
21
|
Rabaan AA, Tirupathi R, Sule AA, Aldali J, Mutair AA, Alhumaid S, Muzaheed, Gupta N, Koritala T, Adhikari R, Bilal M, Dhawan M, Tiwari R, Mitra S, Emran TB, Dhama K. Viral Dynamics and Real-Time RT-PCR Ct Values Correlation with Disease Severity in COVID-19. Diagnostics (Basel) 2021; 11:1091. [PMID: 34203738 PMCID: PMC8232180 DOI: 10.3390/diagnostics11061091] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 01/08/2023] Open
Abstract
Real-time RT-PCR is considered the gold standard confirmatory test for coronavirus disease 2019 (COVID-19). However, many scientists disagree, and it is essential to understand that several factors and variables can cause a false-negative test. In this context, cycle threshold (Ct) values are being utilized to diagnose or predict SARS-CoV-2 infection. This practice has a significant clinical utility as Ct values can be correlated with the viral load. In addition, Ct values have a strong correlation with multiple haematological and biochemical markers. However, it is essential to consider that Ct values might be affected by pre-analytic, analytic, and post-analytical variables such as collection technique, specimen type, sampling time, viral kinetics, transport and storage conditions, nucleic acid extraction, viral RNA load, primer designing, real-time PCR efficiency, and Ct value determination method. Therefore, understanding the interpretation of Ct values and other influential factors could play a crucial role in interpreting viral load and disease severity. In several clinical studies consisting of small or large sample sizes, several discrepancies exist regarding a significant positive correlation between the Ct value and disease severity in COVID-19. In this context, a revised review of the literature has been conducted to fill the knowledge gaps regarding the correlations between Ct values and severity/fatality rates of patients with COVID-19. Various databases such as PubMed, Science Direct, Medline, Scopus, and Google Scholar were searched up to April 2021 by using keywords including "RT-PCR or viral load", "SARS-CoV-2 and RT-PCR", "Ct value and viral load", "Ct value or COVID-19". Research articles were extracted and selected independently by the authors and included in the present review based on their relevance to the study. The current narrative review explores the correlation of Ct values with mortality, disease progression, severity, and infectivity. We also discuss the factors that can affect these values, such as collection technique, type of swab, sampling method, etc.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia;
| | - Raghavendra Tirupathi
- Department of Medicine Keystone Health, Penn State University School of Medicine, Hershey, PA 16801, USA;
- Department of Medicine, Wellspan Chambersburg and Waynesboro Hospitals, Chambersburg, PA 17201, USA
| | - Anupam A Sule
- Department of Informatics and Outcomes, St Joseph Mercy Oakland, Pontiac, MI 48341, USA;
| | - Jehad Aldali
- Pathology Organization, Imam Mohammed Ibn Saud Islamic University, Riyadh 13317, Saudi Arabia;
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia;
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia;
| | - Muzaheed
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Nitin Gupta
- Department of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Thoyaja Koritala
- Department of Internal Medicine, Mayo Clinic Health System Mankato, Mayo Clinic College of Medicine and Science, Mankato, MN 56001, USA;
| | - Ramesh Adhikari
- Department of Hospital Medicine, Franciscan Health Lafayette, Lafayette, IN 47905, USA;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India;
- The Trafford Group of Colleges, Manchester WA14 5PQ, UK
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Prade Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandha Sansthan (DUVASU), Mathura 281001, India;
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
| |
Collapse
|
22
|
EVALUATION OF COMPUTED TOMOGRAPHY (CT) CHEST AS A SCREENING TOOL FOR COVID-19 IN SURGICAL PATIENTS PRESENTING TO THE ROYAL VICTORIA HOSPITAL EMERGENCY DEPARTMENT-A NORTHERN IRISH STUDY. THE ULSTER MEDICAL JOURNAL 2021; 90:120-121. [PMID: 34276094 PMCID: PMC8278945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Antiochia R. Paper-Based Biosensors: Frontiers in Point-of-Care Detection of COVID-19 Disease. BIOSENSORS 2021; 11:110. [PMID: 33917183 PMCID: PMC8067807 DOI: 10.3390/bios11040110] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
This review summarizes the state of the art of paper-based biosensors (PBBs) for coronavirus disease 2019 (COVID-19) detection. Three categories of PBB are currently being been used for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics, namely for viral gene, viral antigen and antibody detection. The characteristics, the analytical performance, the advantages and drawbacks of each type of biosensor are highlighted and compared with traditional methods. It is hoped that this review will be useful for scientists for the development of novel PBB platforms with enhanced performance for helping to contain the COVID-19 outbreak, by allowing early diagnosis at the point of care (POC).
Collapse
Affiliation(s)
- Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
24
|
RT-PCR Screening Tests for SARS-CoV-2 with Saliva Samples in Asymptomatic People: Strategy to Maintain Social and Economic Activities while Reducing the Risk of Spreading the Virus. Keio J Med 2021; 70:35-43. [PMID: 33746151 DOI: 10.2302/kjm.2021-0003-oa] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The year 2020 will be remembered for the coronavirus disease 2019 (COVID-19) pandemic, which continues to affect the whole world. Early and accurate identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is fundamental to combat the disease. Among the current diagnostic tests, real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) is the most reliable and frequently used method. Herein, we discuss the interpretation of RT-qPCR results relative to viral infectivity. Although nasopharyngeal swab samples are often used for RT-qPCR testing, they require collection by trained medical staff. Saliva samples are emerging as an inexpensive and efficient alternative for large-scale screening. Pooled-sample testing of saliva has been applied for mass screening of SARS-CoV-2 infection. Current policies recommend isolating people with borderline cycle threshold (Ct) values (35<Ct <40), despite these Ct values indicating minimal infection risk. We propose the new concept of a "social cut-off" Ct value and risk stratification based on the correlation of Ct with infectivity. We also describe the experience of RT-qPCR screening of saliva samples at our institution. It is important to implement a scientific approach to minimize viral transmission while allowing economic and social activities to continue.
Collapse
|
25
|
Zollo M, Ferrucci V, Izzo B, Quarantelli F, Domenico CD, Comegna M, Paolillo C, Amato F, Siciliano R, Castaldo G, Capoluongo E. SARS-CoV-2 Subgenomic N ( sgN) Transcripts in Oro-Nasopharyngeal Swabs Correlate with the Highest Viral Load, as Evaluated by Five Different Molecular Methods. Diagnostics (Basel) 2021; 11:288. [PMID: 33673182 PMCID: PMC7923082 DOI: 10.3390/diagnostics11020288] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 01/23/2023] Open
Abstract
The COVID-19 pandemic has forced diagnostic laboratories to focus on the early diagnostics of SARS-CoV-2. The positivity of a molecular test cannot respond to the question regarding the viral capability to replicate, spread, and give different clinical effects. Despite the fact that some targets are covered by commercially-available assays, the identification of new biomarkers is desired in order to improve the quality of the information given by these assays. Therefore, since the subgenomic transcripts (sgN and sgE) are considered markers of viral activity, we evaluated these subgenomic transcripts in relation to the genomic amplification obtained using five different commercial CE-IVD tools. Methods: Five CE-IVD kits were compared in terms of their capability to detect both synthetic SARS-CoV-2 viral constructs (spiked in TMB or PBS medium) and targets (N, E, RdRp and Orf1ab genes) in twenty COVID-19-positive patients' swabs. The sgN and sgE were assayed by real-time RT-qPCR and digital PCR. Results: None of the diagnostic kits missed the viral target genes when they were applied to targets spiked in TMB or PBS (at dilutions ranging from 100 pg to 0.1 pg). Nevertheless, once they were applied to RNA extracted from the patients' swabs, the superimposability ranged from 50% to 100%, regardless of the extraction procedure. The sgN RNA transcript was detected only in samples with a higher viral load (Ct ≤ 22.5), while sgE was within all of the Ct ranges. Conclusions: The five kits show variable performances depending on the assay layout. It is worthy of note that the detection of the sgN transcript is associated with a higher viral load, thus representing a new marker of early and more severe infection.
Collapse
Affiliation(s)
- Massimo Zollo
- CEINGE, Biotecnologie Avanzate, 80131 Naples, Italy; (M.Z.); (V.F.); (B.I.); (F.Q.); (C.D.D.); (M.C.); (F.A.); (R.S.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80138 Naples, Italy
- Department of Medicina di Laboratorio e Trasfusionale, AOU Federico II, 80138 Naples, Italy
| | - Veronica Ferrucci
- CEINGE, Biotecnologie Avanzate, 80131 Naples, Italy; (M.Z.); (V.F.); (B.I.); (F.Q.); (C.D.D.); (M.C.); (F.A.); (R.S.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80138 Naples, Italy
| | - Barbara Izzo
- CEINGE, Biotecnologie Avanzate, 80131 Naples, Italy; (M.Z.); (V.F.); (B.I.); (F.Q.); (C.D.D.); (M.C.); (F.A.); (R.S.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80138 Naples, Italy
| | - Fabrizio Quarantelli
- CEINGE, Biotecnologie Avanzate, 80131 Naples, Italy; (M.Z.); (V.F.); (B.I.); (F.Q.); (C.D.D.); (M.C.); (F.A.); (R.S.); (G.C.)
| | - Carmela Di Domenico
- CEINGE, Biotecnologie Avanzate, 80131 Naples, Italy; (M.Z.); (V.F.); (B.I.); (F.Q.); (C.D.D.); (M.C.); (F.A.); (R.S.); (G.C.)
| | - Marika Comegna
- CEINGE, Biotecnologie Avanzate, 80131 Naples, Italy; (M.Z.); (V.F.); (B.I.); (F.Q.); (C.D.D.); (M.C.); (F.A.); (R.S.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80138 Naples, Italy
| | - Carmela Paolillo
- Dipartimento di Clinica e Medicina Sperimentale, Università degli Studi di Foggia “Emanuele Altomare” Via Napoli, 121, 71122 Foggia FG, Italy;
| | - Felice Amato
- CEINGE, Biotecnologie Avanzate, 80131 Naples, Italy; (M.Z.); (V.F.); (B.I.); (F.Q.); (C.D.D.); (M.C.); (F.A.); (R.S.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80138 Naples, Italy
| | - Roberto Siciliano
- CEINGE, Biotecnologie Avanzate, 80131 Naples, Italy; (M.Z.); (V.F.); (B.I.); (F.Q.); (C.D.D.); (M.C.); (F.A.); (R.S.); (G.C.)
| | - Giuseppe Castaldo
- CEINGE, Biotecnologie Avanzate, 80131 Naples, Italy; (M.Z.); (V.F.); (B.I.); (F.Q.); (C.D.D.); (M.C.); (F.A.); (R.S.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80138 Naples, Italy
- Department of Medicina di Laboratorio e Trasfusionale, AOU Federico II, 80138 Naples, Italy
| | - Ettore Capoluongo
- CEINGE, Biotecnologie Avanzate, 80131 Naples, Italy; (M.Z.); (V.F.); (B.I.); (F.Q.); (C.D.D.); (M.C.); (F.A.); (R.S.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80138 Naples, Italy
- Department of Medicina di Laboratorio e Trasfusionale, AOU Federico II, 80138 Naples, Italy
| |
Collapse
|
26
|
Afzal N, Tariq N, Raza S, Shakeel D. Diagnostic Accuracy of Electro-Chemiluminescence Immunoassay Anti-SARS-CoV-2 Serological Test. Cureus 2021; 13:e12588. [PMID: 33575149 PMCID: PMC7870122 DOI: 10.7759/cureus.12588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective: To determine the diagnostic accuracy of fully automated electro-chemiluminescence immunoassay (ECLIA) anti-SARS-CoV-2 serological test for detection of past SARS-CoV-2 infection and to be used in seroprevalence surveys. Method: A total of 426 patients who had tested for anti-SARS-CoV-2 from August 1 to 31, 2020 were selected for the study. Informed consent was obtained and a questionnaire including the patient’s age, gender, symptoms, and past polymerase chain reaction (PCR) status was filled by the patient. Samples were analyzed for anti-SARS-CoV-2 antibodies on Roche Cobas e601. Results: The mean age of the patients was 42.43±16.67 years. One hundred and five (24.6%) were PCR positive, while 321 (75.4%) were PCR negative. Most patients were males 241 (56.6%) while 185(43.3%) were females. Over 185(43.3%) patients presented with symptoms, and the rest of the patients 241 (56.6%) were asymptomatic. Anti-SARS-CoV-2 had sensitivity 89.5%, specificity 99.06%, positive predictive value (PPV) 96.90%, negative predictive value (NPV) 96.6%, and positive likelihood ratio 4.26, while negative likelihood ratio 0.1. Diagnostic accuracy of anti-SARS-CoV-2 was 96.7% based on receiver-operating characteristic (ROC) curve analysis. Conclusion: Anti-SARS-CoV-2 is very useful for the detection of past COVID-19 infection; it can be proved helpful in the identification of post-COVID complications and actual disease burden in a population.
Collapse
Affiliation(s)
- Nayab Afzal
- Clinical Chemistry, National Medical Center, Karachi, PAK
| | - Naila Tariq
- Chemical Pathology, National Medical Center, Karachi, PAK
| | - Saba Raza
- Clinical Chemistry, Ziauddin University, Karachi, PAK
| | | |
Collapse
|