1
|
Shah KD, Zhou J, Roper J, Dhabaan A, Al-Hallaq H, Pourmorteza A, Yang X. Photon-counting CT in cancer radiotherapy: technological advances and clinical benefits. Phys Med Biol 2025; 70:10TR01. [PMID: 40328288 PMCID: PMC12086776 DOI: 10.1088/1361-6560/add4ba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/22/2025] [Accepted: 05/06/2025] [Indexed: 05/08/2025]
Abstract
Photon-counting computed tomography (PCCT) marks a significant advancement over conventional Energy-integrating detector CT systems. This review highlights PCCT's superior spatial and contrast resolution, reduced radiation dose, and multi-energy imaging capabilities, which address key challenges in radiotherapy, such as accurate tumor delineation, precise dose calculation, and treatment response monitoring. PCCT's improved anatomical clarity enhances tumor targeting while minimizing damage to surrounding healthy tissues. Additionally, Metal artifact reduction and quantitative imaging capabilities optimize workflows, enabling ART and radiomics-driven personalized treatment. Emerging clinical applications in brachytherapy and radiopharmaceutical therapy show promising outcomes, although challenges like high costs and limited software integration remain. With advancements in artificial intelligence and dedicated radiotherapy packages, PCCT is poised to transform precision, safety, and efficacy in cancer radiotherapy, marking it as a pivotal technology for future clinical practice.
Collapse
Affiliation(s)
- Keyur D Shah
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Anees Dhabaan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Hania Al-Hallaq
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Amir Pourmorteza
- Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| |
Collapse
|
2
|
Rolf-Pissarczyk M, Schussnig R, Fries TP, Fleischmann D, Elefteriades JA, Humphrey JD, Holzapfel GA. Mechanisms of aortic dissection: From pathological changes to experimental and in silico models. PROGRESS IN MATERIALS SCIENCE 2025; 150:101363. [PMID: 39830801 PMCID: PMC11737592 DOI: 10.1016/j.pmatsci.2024.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aortic dissection continues to be responsible for significant morbidity and mortality, although recent advances in medical data assimilation and in experimental and in silico models have improved our understanding of the initiation and progression of the accumulation of blood within the aortic wall. Hence, there remains a pressing necessity for innovative and enhanced models to more accurately characterize the associated pathological changes. Early on, experimental models were employed to uncover mechanisms in aortic dissection, such as hemodynamic changes and alterations in wall microstructure, and to assess the efficacy of medical implants. While experimental models were once the only option available, more recently they are also being used to validate in silico models. Based on an improved understanding of the deteriorated microstructure of the aortic wall, numerous multiscale material models have been proposed in recent decades to study the state of stress in dissected aortas, including the changes associated with damage and failure. Furthermore, when integrated with accessible patient-derived medical data, in silico models prove to be an invaluable tool for identifying correlations between hemodynamics, wall stresses, or thrombus formation in the deteriorated aortic wall. They are also advantageous for model-guided design of medical implants with the aim of evaluating the deployment and migration of implants in patients. Nonetheless, the utility of in silico models depends largely on patient-derived medical data, such as chosen boundary conditions or tissue properties. In this review article, our objective is to provide a thorough summary of medical data elucidating the pathological alterations associated with this disease. Concurrently, we aim to assess experimental models, as well as multiscale material and patient data-informed in silico models, that investigate various aspects of aortic dissection. In conclusion, we present a discourse on future perspectives, encompassing aspects of disease modeling, numerical challenges, and clinical applications, with a particular focus on aortic dissection. The aspiration is to inspire future studies, deepen our comprehension of the disease, and ultimately shape clinical care and treatment decisions.
Collapse
Affiliation(s)
| | - Richard Schussnig
- High-Performance Scientific Computing, University of Augsburg, Germany
- Institute of Structural Analysis, Graz University of Technology, Austria
| | - Thomas-Peter Fries
- Institute of Structural Analysis, Graz University of Technology, Austria
| | - Dominik Fleischmann
- 3D and Quantitative Imaging Laboratory, Department of Radiology, Stanford University, USA
| | | | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, USA
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
3
|
Sharifi A, O'Donnell T, Dane B. Optimizing photon counting CT enterography: determining the optimal virtual monoenergy for bowel imaging. Abdom Radiol (NY) 2025:10.1007/s00261-025-04832-z. [PMID: 39934396 DOI: 10.1007/s00261-025-04832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/13/2025]
Abstract
OBJECTIVE To determine the optimal virtual monoenergy for viewing the bowel at photon-counting CT enterography using quantitative assessment of mural attenuation, contrast-to-noise ratio, signal-to-noise ratio and noise. METHODS This study was institutional review board approved and Health Insurance Portability and Accountability Act compliant. Consecutive adults (≥ 18 years) who underwent photon-counting CT enterography from 5/1/2022-5/31/2022 with available Spectral Postprocessing (SPP) images for retrospective virtual monoenergy creation were identified. Nine virtual monoenergetic series (40-120 keV, 10 keV increments) were created. Two region-of-interest measurements were placed in the stomach wall, jejunum wall, ileum wall, and each psoas muscle by two radiologists on 0.6 mm images in PACS. Region-of-interests were copied to other virtual monoenergies to ensure identical placement and size. Attenuation (HU) and noise (HU standard deviation) were recorded from each region-of-interest. Signal-to-noise ratio and contrast-to-noise ratio were computed for stomach, jejunum, ileum, and all bowel combined. Pairwise comparisons for attenuation, noise, signal-to-noise ratio and contrast-to-noise ratio for each virtual monoenergy were performed with ANOVA. A p <.05 indicated statistical significance. RESULTS 50 patients (32 female; mean[SD] age: 57 years) were included. Attenuation and noise for all bowel regions were highest at 40 keV with statistically significant pairwise comparisons from 40 to 70 keV (all p <.05), but similar for 70-120 keV (all p >.05). Signal-to-noise ratio was similar from 40 to 70 keV (all p >.05) for all bowel regions. Contrast-to-noise ratio decreased with increasing keV. Contrast-to-noise ratio was similar for all bowel at 40 keV and 50 keV (p =.06), for stomach from 40 to 70 keV (all p >.05), for jejunum from 40 to 50 keV (p =.21), and for ileum from 40 to 60 keV (all p >.05). CONCLUSION 50 keV virtual monoenergetic images from photon-counting CT enterography optimizes contrast-to-noise ratio while mitigating noise and should routinely be utilized for bowel assessment at photon-counting CT enterography. As most photon-counting CT users primarily interpret virtual monoenergetic images in clinical practice, knowledge of the optimal virtual monoenergy can inform protocol development.
Collapse
Affiliation(s)
| | | | - Bari Dane
- New York University Langone Medical Center, New York, US.
| |
Collapse
|
4
|
Smulders M, Wu D, Gupta R. Exploring bias in spectral CT material decomposition: a simulation-based approach. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2025; 13405:134054J. [PMID: 40343264 PMCID: PMC12060251 DOI: 10.1117/12.3047261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Introduction - Computed tomography (CT) imaging has seen significant advancements with the introduction of spectral CT, which improves material differentiation by acquiring images at multiple energy levels. Photon-counting CT (PCCT) is an emerging technique to implement spectral CT with photon counting detectors that may discriminate detected photon energies to different energy bins. Material differentiation is achieved by decomposing the acquired data into two-material models such as brain/bone or brain/iodine. However, such decomposition is susceptible to bias due to inaccurate physical modeling. In this study, we aim to study the relationship between the material decomposition bias and the energy thresholds used in PCCT, under ideal, noiseless models. Methods - A projection-based material decomposition model was used to directly decompose projection data. Bias simulation was performed using a Shepp-Logan phantom with brain/bone and brain/iodine as basis materials. X-ray spectra were generated using a fixed 10 keV threshold and a varying threshold sampled from 20 to 90 keV, with extra sampling points around iodine's k-edge. Virtual monoenergetic images (VMIs) at 60 keV and 140 keV were analyzed to evaluate bias for each material and material pair. Results - Lower energy thresholds (<40 keV) introduced a larger bias in material decomposition, with peaks observed between 30 and 40 keV, particularly around the k-edge of iodine. The bias generally decreased with increasing thresholds above 50 keV, especially for non-basis materials. This trend was consistent across brain/bone and brain/iodine bases and for both 60 and 140 keV VMIs. Conclusion - Energy thresholds significantly affect the accuracy of projection-based material decomposition in PCCT. Greater differences between thresholds lead to reduced decomposition bias. Future research should incorporate non-ideal detector responses and noise, as well as explore image-domain decomposition and real phantom studies with possible translation to improve patient care.
Collapse
Affiliation(s)
| | - Dufan Wu
- Massachusetts General Hospital (United States)
- Harvard Medical School (United States)
| | - Rajiv Gupta
- Massachusetts General Hospital (United States)
- Harvard Medical School (United States)
| |
Collapse
|
5
|
Rybertt MV, Liu LP, Mathew M, Sahbaee P, Litt HI, Noël PB. Evaluation of Photon-Counting CT for Spectral Imaging in Cardiovascular Applications: Impact of Lumen Size, Dose, and Patient Habitus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.07.25320150. [PMID: 39830267 PMCID: PMC11741500 DOI: 10.1101/2025.01.07.25320150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Objectives This study evaluates the performance of a clinical dual-source photon-counting computed tomography (PCCT) system in quantifying iodine within calcified vessels, using 3D- printed phantoms with vascular-like structures lined with calcium. Methods Parameters assessed include lumen diameters (4, 6, 8, 10, and 12 mm), phantom sizes (S: 20×20 cm, M: 25×25 cm, L: 30×40 cm, XL: 40×50 cm, representing the 99th percentile of US patient sizes), and iodine concentrations (2, 5, and 10 mg/mL). Scans were performed at radiation dose levels of 5, 10, 15, and 20 mGy to systematically evaluate iodine quantification accuracy and spectral imaging performance. Results The results indicate that for lumen diameters ≥6 mm, iodine quantification remains stable across all dose levels and phantom sizes, with deviations consistently below 0.6 mg/mL. Whereas, for 4 mm lumens, stability is observed primarily in smaller to medium phantoms, highlighting the influence of patient size and radiation dose on quantification accuracy. Virtual Monoenergetic Imaging (VMI) at 70 keV showed stable performance for larger lumens (≥6 mm) with variations of 13 ± 2 HU across all conditions, while smaller lumens remained stable in medium to small phantoms. Conclusions These findings highlight the influence of lumen diameter, patient size, and radiation dose in optimizing PCCT protocols for spectral imaging. Importantly, the study demonstrates that PCCT delivers stable and highly accurate imaging across nearly the entire range of patient sizes in the U.S.. Advances in knowledge This study demonstrates PCCT's potential to enhance spectral imaging in vascular applications, surpassing conventional or Dual Energy CT.
Collapse
|
6
|
Masturzo L, Barca P, De Masi L, Marfisi D, Traino A, Cademartiri F, Giannelli M. Voxelwise characterization of noise for a clinical photon-counting CT scanner with a model-based iterative reconstruction algorithm. Eur Radiol Exp 2025; 9:2. [PMID: 39747757 PMCID: PMC11695565 DOI: 10.1186/s41747-024-00541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Photon-counting detector (PCD) technology has the potential to reduce noise in computed tomography (CT). This study aimed to carry out a voxelwise noise characterization for a clinical PCD-CT scanner with a model-based iterative reconstruction algorithm (QIR). METHODS Forty repeated axial acquisitions (tube voltage 120 kV, tube load 200 mAs, slice thickness 0.4 mm) of a homogeneous water phantom and CTP404 module (Catphan-504) were performed. Water phantom acquisitions were also performed on a conventional energy-integrating detector (EID) scanner with a sinogram/image-based iterative reconstruction algorithm, using similar acquisition/reconstruction parameters. For smooth/sharp kernels, filtered back projection (FBP)- and iterative-reconstructed images were obtained. Noise maps, non-uniformity index (NUI) of noise maps, image noise histograms, and noise power spectrum (NPS) curves were computed. RESULTS For FBP-reconstructed images of water phantom, mean noise was (smooth/sharp kernel) 11.7 HU/51.1 HU and 18.3 HU/80.1 HU for PCD-scanner and EID-scanner, respectively, with NUI values for PCD-scanner less than half those for EID-scanner. Percentage noise reduction increased with increasing iterative power, up to (smooth/sharp kernel) 57.7%/72.5% and 56.3%/70.1% for PCD-scanner and EID-scanner, respectively. For PCD-scanner, FBP- and QIR-reconstructed images featured an almost Gaussian distribution of noise values, whose shape did not appreciably vary with iterative power. Noise maps of CTP404 module showed increased NUI values with increasing iterative power, up to (smooth/sharp kernel) 15.7%/9.2%. QIR-reconstructed images showed limited low-frequency shift of NPS peak frequency. CONCLUSION PCD-CT allowed appreciably reducing image noise while improving its spatial uniformity. QIR algorithm decreases image noise without modifying its histogram distribution shape, and partly preserving noise texture. RELEVANCE STATEMENT This phantom study corroborates the capability of photon-counting detector technology in appreciably reducing CT imaging noise and improving spatial uniformity of noise values, yielding a potential reduction of radiation exposure, though this needs to be assessed in more detail. KEY POINTS First voxelwise characterization of noise for a clinical CT scanner with photon-counting detector technology. Photon-counting detector technology has the capability to appreciably reduce CT imaging noise and improve spatial uniformity of noise values. In photon-counting CT, a model-based iterative reconstruction algorithm (QIR) allows decreasing effectively image noise. This is done without modifying noise histogram distribution shape, while limiting the low-frequency shift of noise power spectrum peak frequency.
Collapse
Affiliation(s)
- Luigi Masturzo
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Patrizio Barca
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | | | - Daniela Marfisi
- Medical Physics Department, Udine University Hospital "Azienda Sanitaria Universitaria Friuli Centrale", Udine, Italy
| | - Antonio Traino
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | | | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy.
| |
Collapse
|
7
|
Giardino F, Douschan P, Paolillo S, Basile C, Cademartiri F, Musella F, Cittadini A, Marra AM. The Non-invasive Assessment of the Pulmonary Circulation-Right Ventricular Functional Unit: Diagnostic and Prognostic Implications. Heart Fail Clin 2025; 21:63-78. [PMID: 39550081 DOI: 10.1016/j.hfc.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
The pulmonary circulation and the right ventricle play a pivotal role in the global hemodynamics of human beings, so much so that their close interaction is encapsulated in the concept of a "morpho-functional unit". In this review we aim to pinpoint the strengths and weaknesses of various noninvasive established techniques. The goal is to detect early morphologic and/or functional changes in the pulmonary circulation and right ventricular unit, which is crucial for tailoring treatments and prognostic assessments. The scope of this review includes resting and stress echocardiography, cardiopulmonary exercise testing, computed tomography, and cardiac magnetic resonance in characterizing the pulmonary circulation-right ventricular unit both morphologically and functionally.
Collapse
Affiliation(s)
- Federica Giardino
- Cardiovascular Pathophysiology and Therapeutics (CardioPath) Program, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy; Division of Internal Medicine and Metabolism and Rehabilitation, Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Bld.18, 1st Floor, Naples 80131, Italy
| | - Philipp Douschan
- Division of Pulmonology, Medical University of Graz, Auenbruggerplatz 15, Graz A-8036, Austria; Division of Pulmonology and Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, Graz, Austria; Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Giessen, Germany
| | - Stefania Paolillo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini 5, Building. 2, Naples 80131, Italy
| | - Christian Basile
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini 5, Building. 2, Naples 80131, Italy; Division of Cardiology, Department of Medicine, Karolinska Institutet, K2 Medicin, Solna, K2 Kardio Lund L Savarese G, Solnavägen 1, Solna, Stockholm 171 77, Sweden
| | - Filippo Cademartiri
- Department of Imaging, Fondazione Monasterio/CNR, Via Giuseppe Moruzzi 1, Pisa 56124, Italy
| | - Francesca Musella
- Division of Cardiology, Department of Medicine, Karolinska Institutet, K2 Medicin, Solna, K2 Kardio Lund L Savarese G, Solnavägen 1, Solna, Stockholm 171 77, Sweden; Cardiology Department, Santa Maria delle Grazie Hospital, Via Domitiana, Pozzuoli, Naples 80078, Italy
| | - Antonio Cittadini
- Division of Internal Medicine and Metabolism and Rehabilitation, Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Bld.18, 1st Floor, Naples 80131, Italy; Department of Internal Medicine and Clinical Complexity, University of Naples Federico II, Via S. Pansini 5, Building.18, 1st Floor, Naples 80131, Italy
| | - Alberto Maria Marra
- Division of Internal Medicine and Metabolism and Rehabilitation, Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Bld.18, 1st Floor, Naples 80131, Italy.
| |
Collapse
|
8
|
Shah KD, Zhou J, Roper J, Dhabaan A, Al-Hallaq H, Pourmorteza A, Yang X. Photon-Counting CT in Cancer Radiotherapy: Technological Advances and Clinical Benefits. ARXIV 2024:arXiv:2410.20236v3. [PMID: 39575116 PMCID: PMC11581100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Photon-counting computed tomography (PCCT) marks a significant advancement over conventional energy-integrating detector (EID) CT systems. This review highlights PCCT's superior spatial and contrast resolution, reduced radiation dose, and multi-energy imaging capabilities, which address key challenges in radiotherapy, such as accurate tumor delineation, precise dose calculation, and treatment response monitoring. PCCT's improved anatomical clarity enhances tumor targeting while minimizing damage to surrounding healthy tissues. Additionally, metal artifact reduction (MAR) and quantitative imaging capabilities optimize workflows, enabling adaptive radiotherapy and radiomics-driven personalized treatment. Emerging clinical applications in brachytherapy and radiopharmaceutical therapy (RPT) show promising outcomes, although challenges like high costs and limited software integration remain. With advancements in artificial intelligence (AI) and dedicated radiotherapy packages, PCCT is poised to transform precision, safety, and efficacy in cancer radiotherapy, marking it as a pivotal technology for future clinical practice.
Collapse
Affiliation(s)
- Keyur D. Shah
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
- Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
- Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
- Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Anees Dhabaan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
- Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Hania Al-Hallaq
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
- Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Amir Pourmorteza
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
- Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | | |
Collapse
|
9
|
Savastano L, Brinjikji W, Lutsep H, Chen H, Chaturvedi S. Symptomatic Nonstenotic Carotids: A Topical Review. Stroke 2024; 55:2921-2931. [PMID: 39391978 DOI: 10.1161/strokeaha.123.035675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Historically, the management of carotid artery disease has primarily focused on the degree of stenosis as the main indicator for assessing stroke etiology, risk, and need for intervention. However, accumulating evidence suggests that structural and biological features within the arterial wall, such as intraplaque hemorrhage, may have superior diagnostic, prognostic, and therapeutic values. Under current guidelines, unless an atheroma results in ≥50% stenosis, it is not considered the cause of a cerebrovascular event. This results in extensive and often unproductive diagnostic workup, prescription of ineffective medical therapy, and preclusion of patients from receiving revascularization procedures that have been shown to prevent recurrent cerebrovascular events in cases of ≥50% stenosis. A subset of embolic strokes of undetermined source, which account for up to 25% of all ischemic cerebrovascular events, are thought to be due to thromboembolic phenomena from undiagnosed plaque disruptions in nonstenotic arteries (<50% stenosis). Recently, it has been proposed to reclassify this subgroup of patients as symptomatic nonstenotic carotid if the carotid plaque ipsilateral to the cerebrovascular event presents with high-risk features including intraplaque hemorrhage, lipid-rich necrotic core, thinning/rupture of the fibrous cap, and ulceration. In this review, we first provide a historical overview of the chain of events and circumstances that resulted in the present management of carotid artery disease. Second, we embed the contemporary biomarkers of plaque vulnerability in a modern mechanistic paradigm of carotid plaque disruption and thromboembolization. Third, we review the clinically available imaging tools to detect these biomarkers, and how their use has started to shed light on the prevalence and natural history of this underdiagnosed condition. Fourth, we review recent clinical studies employing a contemporary definition of symptomatic nonstenotic carotid and discuss targeted treatments for this condition. Finally, we make a case to generate the much-needed high-level evidence to align the clinical management of patients with symptomatic nonstenotic carotid with a contemporary understanding of plaque disruption and thromboembolization.
Collapse
Affiliation(s)
- Luis Savastano
- Department of Neurosurgery, University of California San Francisco (L.S.)
| | | | - Helmi Lutsep
- Department of Neurology and Stroke Program; Oregon Health Sciences Center, Portland (H.L.)
| | - Huanwen Chen
- Department of Neurology, Georgetown University, Washington, DC (H.C.)
| | - Seemant Chaturvedi
- Department of Neurology and Stroke Program, University of Maryland, Baltimore (S.C.)
| |
Collapse
|
10
|
Krompaß K, Goldbrunner FA, Hartung V, Ergün S, Peter D, Hendel R, Huflage H, Patzer TS, Hennes JL, Bley TA, Grunz JP, Gruschwitz P. Combined influence of quantum iterative reconstruction level and kernel sharpness on image quality in photon counting CT angiography of the upper leg. Sci Rep 2024; 14:27774. [PMID: 39537869 PMCID: PMC11561153 DOI: 10.1038/s41598-024-79188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Aim was to evaluate the influence of different quantum iterative reconstruction (QIR) levels on the image quality of femoral photon-counting CT angiographies (PCD-CTA).Ultra-high resolution PCD-CTA were obtained from both extremities of five extracorporeally-perfused cadavers using constant tube voltage and maximum radiation dose (71.2 ± 11.0 mGy). Images were reconstructed with three kernels (Bv48, Bv60, Bv76) and the four available levels of QIR. Signal attenuation in the arterial lumen, muscle, and fat were measured. Contrast-to-noise ratios (CNR) and blurring scores were calculated for objective assessment. Six radiologists evaluated the subjective image quality using a pairwise comparison tool.Higher QIR level resulted in a decisive image noise reduction, especially with sharper convolution kernels (Bv60: Q1 11.5 ± 6.3 HU vs. Q4 8.4 ± 2.6 HU; p < 0.001). Largest improvement of CNR was recorded with ultra-sharp reconstructions (Bv76: Q1 20.2 ± 4.4 vs. Q4 28.0 ± 3.5; p < 0.001). Blurring decreased with higher QIR levels for soft Bv48, remained constant for medium Bv60, and increased for sharp Bv76 reconstructions. Subjective QIR level preference varied kernel depending, preferred combinations were: Bv48/Q4, Bv60/Q2, Bv76/Q3. Interrater agreement was excellent.Sharp kernels benefited most from noise reduction of higher QIR levels in lower extremity PCD-CTA. In sum, QIR level 3 provided the best objective and subjective image quality results.
Collapse
Affiliation(s)
- Kristina Krompaß
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Florian Andreas Goldbrunner
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Viktor Hartung
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Dominik Peter
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Robin Hendel
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Theresa Sophie Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Jan-Lucca Hennes
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
- Department of Radiology, University of Wisconsin - Madison, Madison, WI, 53792, USA
| | - Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| |
Collapse
|
11
|
Sharma A, Cerdas MG, Reza-Soltani S, Rustagi V, Guntipalli M, Rojas Torres DS, Bhandari M, Kandel S, Teja Rayaprolu D, Hussain M. A Review of Photon-Counting Computed Tomography (PCCT) in the Diagnosis of Cardiovascular Diseases. Cureus 2024; 16:e73119. [PMID: 39650912 PMCID: PMC11622532 DOI: 10.7759/cureus.73119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Photon-counting computed tomography (PCCT) is an innovative mechanism used for imaging and provides higher spatial resolution and contrast sensitivity in comparison with the orthodox energy-integrating detectors (EIDs). Unlike EID-based CT systems, which indirectly convert X-ray photons to electrical signals, PCCT directly counts and quantifies each photon's energy, enhancing image quality and material separation. With all of these features, PCCT is especially useful for cardiovascular imaging, where it is essential to precisely observe cardiac tissues, vascular structures, and coronary arteries. Around the globe, cardiovascular diseases (CVDs) continue to be the primary cause of morbidity and death, and early, precise diagnosis is essential for effective management. This review examines the role of PCCT in diagnosing CVDs, highlighting its enhanced capabilities in improving the precision in diagnosis as well as patient outcomes compared to conventional CT methods. While current evidence supports PCCT's advantages, further research is necessary to validate these findings and facilitate its broader clinical adoption.
Collapse
Affiliation(s)
- Astha Sharma
- Medicine, University Hospital Birmingham NHS Foundation Trust, Birmingham, GBR
| | | | - Setareh Reza-Soltani
- Radiology, Advanced Diagnostic & Interventional Radiology Center (ADIR) Tehran University of Medical Sciences, Tehran, IRN
| | - Vikash Rustagi
- Radiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Galeazzi, Milano, ITA
| | - Manojna Guntipalli
- Medicine, Gandhi Institute of Technology and Management (GITAM) Institute of Medical Sciences and Research, Visakhapatnam, IND
| | | | - Mrinal Bhandari
- Cardiology, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, USA
| | - Shreya Kandel
- Medicine, University Hospital Southampton NHS Foundation Trust, Southhampton, GBR
| | | | - Mohammed Hussain
- Respiratory Medicine, Royal Stoke University Hospital, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, GBR
| |
Collapse
|
12
|
Fan Y, Qin T, Sun Q, Wang M, Liang B. A Review of Factors Affecting Radiation Dose and Image Quality in Coronary CTA Performed with Wide-Detector CT. Tomography 2024; 10:1730-1743. [PMID: 39590936 PMCID: PMC11598146 DOI: 10.3390/tomography10110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Compared with traditional invasive coronary angiography (ICA), coronary CT angiography (CCTA) has the advantages of being rapid, economical, and minimally invasive. The wide-detector CT, with its superior temporal resolution and robust three-dimensional reconstruction technology, thus enables CCTA in patients with high heart rates and arrhythmias, leading to a high potential for clinical application. This paper systematically summarizes wide-detector CT hardware configurations of various vendors routinely used for CCTA examinations and reviews the effects of patient heart rate and heart rate variability, scanning modality, reconstruction algorithms, tube voltage, and scanning field of view on image quality and radiation dose. In addition, novel technologies in the field of CT applied to CCTA examinations are also presented. Since this examination has a diagnostic accuracy that is highly consistent with ICA, it can be further used as a routine examination tool for coronary artery disease in clinical practice.
Collapse
Affiliation(s)
- Yihan Fan
- School of Medical Imaging, Bengbu Medical University, Bengbu 233000, China; (Y.F.); (T.Q.); (Q.S.)
| | - Tian Qin
- School of Medical Imaging, Bengbu Medical University, Bengbu 233000, China; (Y.F.); (T.Q.); (Q.S.)
| | - Qingting Sun
- School of Medical Imaging, Bengbu Medical University, Bengbu 233000, China; (Y.F.); (T.Q.); (Q.S.)
| | - Mengting Wang
- The Second Hospital of Anhui Medical University, Hefei 230000, China;
| | - Baohui Liang
- School of Medical Imaging, Bengbu Medical University, Bengbu 233000, China; (Y.F.); (T.Q.); (Q.S.)
| |
Collapse
|
13
|
Villanueva Campos A, Canales Lachén E, Suevos Ballesteros C, Alarcón Rodríguez J. Multi-energy CT and iodinated contrast. RADIOLOGIA 2024; 66 Suppl 2:S29-S35. [PMID: 39603738 DOI: 10.1016/j.rxeng.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/13/2024] [Indexed: 11/29/2024]
Abstract
Spectral CT acquires images with the emission or detection of two separate energy spectra. This enables material decomposition due to the photoelectric effect (prevalent in low-energy photons) and Compton scattering (prevalent in high-energy photons). Iodine and other materials with high atomic numbers appear more hyperdense on low-energy monoenergetic images because of the direct relation between the photoelectric effect and the Z value. Given the way iodine behaves on spectral maps, radiologists can optimise the use of contrast media in these CTs, thus allowing lower doses of radiation and lower volumes of contrast media while achieving the same CT values and even enabling lower contrast flow rates, which is especially helpful in patients with poor vascular access. Moreover, in suboptimal diagnostic cases caused by poor contrast opacification, the resolution can be improved, thus avoiding the need to repeat the study.
Collapse
Affiliation(s)
- A Villanueva Campos
- Departamento de Radiología, Hospital Universitario Ramón y Cajal, Madrid, Spain.
| | - E Canales Lachén
- Departamento de Radiología, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - J Alarcón Rodríguez
- Departamento de Radiología, Hospital Universitario Ramón y Cajal, Madrid, Spain
| |
Collapse
|
14
|
Gentier A, Aizaz M, Halder M, Florea A, Dijkgraaf I, Mottaghy FM, Hackeng T, Kooi ME. Why Current Detection of Vascular Calcification Falls Short and How to Improve on It. TH OPEN 2024; 8:e340-e349. [PMID: 39734622 PMCID: PMC11679638 DOI: 10.1055/a-2495-1444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Vascular calcification is a common phenomenon in various vascular diseases, where its presence heralds increased occurrence of adverse disease events, which invariably lead to increased morbidity and mortality in patients. Although the impact of calcification has become apparent, adequate and early detection of the most damaging form of early microcalcification is still in its infancy, preventing reliable identification of locations that would benefit from intervention. In this review, we will provide an overview of the current state-of-the-art noninvasive calcification imaging and its persisting limitations. We discuss promising approaches that may address these limitations in the future. In this context particular attention will be paid to imaging modalities such as CT, PET, and ultrasonography and molecular and cellular mechanisms and agents involved in physiological bone formation.
Collapse
Affiliation(s)
- Anouk Gentier
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University Maastricht, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Mueez Aizaz
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maurice Halder
- Department for Renal and Hypertensive, Rheumatological and Immunological Diseases (Department of Medicine II), RWTH Aachen, Medical Faculty, Aachen, Germany
| | - Alexandru Florea
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University Maastricht, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Felix M. Mottaghy
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Tilman Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University Maastricht, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M Eline Kooi
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
15
|
Algin O, Tokgoz N, Cademartiri F. Photon-counting computed tomography in radiology. Pol J Radiol 2024; 89:e433-e442. [PMID: 39444656 PMCID: PMC11497591 DOI: 10.5114/pjr/191743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/28/2024] [Indexed: 10/25/2024] Open
Abstract
Photon-counting detector computed tomography (PCD-CT) devices have recently been introduced into practice, despite photon-counting detector technology having been studied for many years. PCD-CT devices are expected to provide advantages in dose reduction, tissue specificity, artifact-free imaging, and multi-contrast demonstration capacity. Noise reduction and increased spatial resolution are expected using PCD-CT, even under challenging scanning conditions. Some experimental or preliminary studies support this hypothesis. This pictorial review illustrates the features of PCD-CT systems, particularly in the interventional field. PCD-CT offers superior image quality and better lesion discrimination than conventional CT techniques for various conditions. PCD-CT shows significant improvements in many aspects of vascular imaging. It is still in its early stages, and several challenges have been identified. Also, PCD-CT devices have some important caveats. The average cost of these devices is 3 to 4 times higher than conventional CT units. This additional cost must be justified by improved clinical benefits or reduced clinical harms. Further investigations will be needed to resolve these issues.
Collapse
Affiliation(s)
- Oktay Algin
- Interventional MR Clinical R&D Institute, Ankara University, Ankara, Türkiye
- Department of Radiology, Medical Faculty, Ankara University, Ankara, Türkiye
- National MR Research Center (UMRAM), Bilkent University, Ankara, Türkiye
| | | | - Filippo Cademartiri
- Fondazione Toscana Gabriele Monasterio per la Ricerca Medica e di Sanità Pubblica, Pisa, Toscana, Italy
| |
Collapse
|
16
|
Ota T, Onishi H, Itoh T, Fukui H, Tsuboyama T, Nakamoto A, Enchi Y, Tatsumi M, Tomiyama N. Investigation of abdominal artery delineation by photon-counting detector CT. LA RADIOLOGIA MEDICA 2024; 129:1265-1274. [PMID: 39043979 PMCID: PMC11379784 DOI: 10.1007/s11547-024-01858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVES To evaluate the ability of 50-keV virtual monoenergetic images (VMI) to depict abdominal arteries in abdominal CT angiography (CTA) compared with 70-keV VMI with photon-counting detector CT (PCD-CT). METHODS Fifty consecutive patients who underwent multiphase abdominal scans between March and April 2023 were included. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were quantitatively assessed for the abdominal aorta (AA), celiac artery (CeA), superior mesenteric artery (SMA), renal artery (RA), and right hepatic artery (RHA) at both 50- and 70-keV VMI. In addition, 3D images from CTA were analyzed to measure arterial lengths and evaluate the visualization of distal branches. RESULTS Significantly higher SNR and CNR were observed at 50-keV compared to 70-keV VMI for all arteries: AA (36.54 and 48.28 vs. 25.70 and 28.46), CeA (22.39 and 48.38 vs. 19.09 and 29.15), SMA (23.34 and 49.34 vs. 19.67 and 29.71), RA (22.88 and 48.84 vs. 20.15 and 29.41), and RHA (14.38 and 44.41 vs. 13.45 and 27.18), all p < 0.05. Arterial lengths were also significantly longer at 50-keV: RHA (192.6 vs. 180.3 mm), SMA (230.9 vs. 216.5 mm), and RA (95.9 vs. 92.0 mm), all p < 0.001. CONCLUSION In abdominal CTA with PCD-CT, 50-keV VMI demonstrated superior quantitative image quality compared to 70-keV VMI. In addition, 50-keV VMI 3D CTA allowed better visualization of abdominal artery branches, highlighting its potential clinical advantage for improved imaging and detailed assessment of abdominal arteries.
Collapse
Affiliation(s)
- Takashi Ota
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, D1, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hiromitsu Onishi
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, D1, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihide Itoh
- Department of CT Research and Collaboration, Siemens Healthineers, Tokyo, Japan
| | - Hideyuki Fukui
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, D1, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takahiro Tsuboyama
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, D1, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Nakamoto
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, D1, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yukihiro Enchi
- Department of Medical Technology, Osaka University Hospital, Suita, Japan
| | - Mitsuaki Tatsumi
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, D1, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Noriyuki Tomiyama
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, D1, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
17
|
Black D, Singh T, Molloi S. Coronary artery calcium quantification technique using dual energy material decomposition: a simulation study. Int J Cardiovasc Imaging 2024; 40:1465-1474. [PMID: 38904849 PMCID: PMC11258084 DOI: 10.1007/s10554-024-03124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/28/2024] [Indexed: 06/22/2024]
Abstract
Coronary artery calcification is a significant predictor of cardiovascular disease, with current detection methods like Agatston scoring having limitations in sensitivity. This study aimed to evaluate the effectiveness of a novel CAC quantification method using dual-energy material decomposition, particularly its ability to detect low-density calcium and microcalcifications. A simulation study was conducted comparing the dual-energy material decomposition technique against the established Agatston scoring method and the newer volume fraction calcium mass technique. Detection accuracy and calcium mass measurement were the primary evaluation metrics. The dual-energy material decomposition technique demonstrated fewer false negatives than both Agatston scoring and volume fraction calcium mass, indicating higher sensitivity. In low-density phantom measurements, material decomposition resulted in only 7.41% false-negative (CAC = 0) measurements compared to 83.95% for Agatston scoring. For high-density phantoms, false negatives were removed (0.0%) compared to 20.99% in Agatston scoring. The dual-energy material decomposition technique presents a more sensitive and reliable method for CAC quantification.
Collapse
Affiliation(s)
- Dale Black
- Department of Radiological Sciences, University of California, Medical Sciences I, B-140, Irvine, CA, 92697, USA
| | - Tejus Singh
- Department of Radiological Sciences, University of California, Medical Sciences I, B-140, Irvine, CA, 92697, USA
| | - Sabee Molloi
- Department of Radiological Sciences, University of California, Medical Sciences I, B-140, Irvine, CA, 92697, USA.
| |
Collapse
|
18
|
Stański M, Michałowska I, Lemanowicz A, Karmelita-Katulska K, Ratajczak P, Sławińska A, Serafin Z. Dual-Energy and Photon-Counting Computed Tomography in Vascular Applications-Technical Background and Post-Processing Techniques. Diagnostics (Basel) 2024; 14:1223. [PMID: 38928639 PMCID: PMC11202784 DOI: 10.3390/diagnostics14121223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The field of computed tomography (CT), which is a basic diagnostic tool in clinical practice, has recently undergone rapid technological advances. These include the evolution of dual-energy CT (DECT) and development of photon-counting computed tomography (PCCT). DECT enables the acquisition of CT images at two different energy spectra, which allows for the differentiation of certain materials, mainly calcium and iodine. PCCT is a recent technology that enables a scanner to quantify the energy of each photon gathered by the detector. This method gives the possibility to decrease the radiation dose and increase the spatial and temporal resolutions of scans. Both of these techniques have found a wide range of applications in radiology, including vascular studies. In this narrative review, the authors present the principles of DECT and PCCT, outline their advantages and drawbacks, and briefly discuss the application of these methods in vascular radiology.
Collapse
Affiliation(s)
- Marcin Stański
- Department of General Radiology and Neuroradiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Ilona Michałowska
- Department of Radiology, National Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Adam Lemanowicz
- Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, 85-067 Bydgoszcz, Poland; (A.L.); (P.R.); (A.S.); (Z.S.)
| | - Katarzyna Karmelita-Katulska
- Department of General Radiology and Neuroradiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Przemysław Ratajczak
- Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, 85-067 Bydgoszcz, Poland; (A.L.); (P.R.); (A.S.); (Z.S.)
| | - Agata Sławińska
- Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, 85-067 Bydgoszcz, Poland; (A.L.); (P.R.); (A.S.); (Z.S.)
| | - Zbigniew Serafin
- Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, 85-067 Bydgoszcz, Poland; (A.L.); (P.R.); (A.S.); (Z.S.)
| |
Collapse
|
19
|
Liu Y, Jiang Z, Yang X, Wang Y, Yang B, Fu Q. Engineering Nanoplatforms for Theranostics of Atherosclerotic Plaques. Adv Healthc Mater 2024; 13:e2303612. [PMID: 38564883 DOI: 10.1002/adhm.202303612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Atherosclerotic plaque formation is considered the primary pathological mechanism underlying atherosclerotic cardiovascular diseases, leading to severe cardiovascular events such as stroke, acute coronary syndromes, and even sudden cardiac death. Early detection and timely intervention of plaques are challenging due to the lack of typical symptoms in the initial stages. Therefore, precise early detection and intervention play a crucial role in risk stratification of atherosclerotic plaques and achieving favorable post-interventional outcomes. The continuously advancing nanoplatforms have demonstrated numerous advantages including high signal-to-noise ratio, enhanced bioavailability, and specific targeting capabilities for imaging agents and therapeutic drugs, enabling effective visualization and management of atherosclerotic plaques. Motivated by these superior properties, various noninvasive imaging modalities for early recognition of plaques in the preliminary stage of atherosclerosis are comprehensively summarized. Additionally, several therapeutic strategies are proposed to enhance the efficacy of treating atherosclerotic plaques. Finally, existing challenges and promising prospects for accelerating clinical translation of nanoplatform-based molecular imaging and therapy for atherosclerotic plaques are discussed. In conclusion, this review provides an insightful perspective on the diagnosis and therapy of atherosclerotic plaques.
Collapse
Affiliation(s)
- Yuying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zeyu Jiang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Bin Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
20
|
Dragon JM, Guha S, Salvatore MM. Hounsfield units: Future applications in clinical practice, radiomics, and Artificial Intelligence. Clin Imaging 2024; 110:110141. [PMID: 38608412 DOI: 10.1016/j.clinimag.2024.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/21/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Affiliation(s)
- Jacqueline M Dragon
- Department of Radiology, Columbia University Vagelos College of Physicians and Surgeons, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, NY, United States of America
| | - Siddharth Guha
- Department of Radiology, Columbia University Vagelos College of Physicians and Surgeons, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, NY, United States of America
| | - Mary M Salvatore
- Department of Radiology, Columbia University Vagelos College of Physicians and Surgeons, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, NY, United States of America.
| |
Collapse
|
21
|
SUN ZH. Cardiovascular computed tomography in cardiovascular disease: An overview of its applications from diagnosis to prediction. J Geriatr Cardiol 2024; 21:550-576. [PMID: 38948894 PMCID: PMC11211902 DOI: 10.26599/1671-5411.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Cardiovascular computed tomography angiography (CTA) is a widely used imaging modality in the diagnosis of cardiovascular disease. Advancements in CT imaging technology have further advanced its applications from high diagnostic value to minimising radiation exposure to patients. In addition to the standard application of assessing vascular lumen changes, CTA-derived applications including 3D printed personalised models, 3D visualisations such as virtual endoscopy, virtual reality, augmented reality and mixed reality, as well as CT-derived hemodynamic flow analysis and fractional flow reserve (FFRCT) greatly enhance the diagnostic performance of CTA in cardiovascular disease. The widespread application of artificial intelligence in medicine also significantly contributes to the clinical value of CTA in cardiovascular disease. Clinical value of CTA has extended from the initial diagnosis to identification of vulnerable lesions, and prediction of disease extent, hence improving patient care and management. In this review article, as an active researcher in cardiovascular imaging for more than 20 years, I will provide an overview of cardiovascular CTA in cardiovascular disease. It is expected that this review will provide readers with an update of CTA applications, from the initial lumen assessment to recent developments utilising latest novel imaging and visualisation technologies. It will serve as a useful resource for researchers and clinicians to judiciously use the cardiovascular CT in clinical practice.
Collapse
Affiliation(s)
- Zhong-Hua SUN
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth 6012, Australia
| |
Collapse
|
22
|
Zanon C, Pepe A, Cademartiri F, Bini C, Maffei E, Quaia E, Stellini E, Di Fiore A. Potential Benefits of Photon-Counting CT in Dental Imaging: A Narrative Review. J Clin Med 2024; 13:2436. [PMID: 38673712 PMCID: PMC11051238 DOI: 10.3390/jcm13082436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/01/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Background/Objectives: Advancements in oral imaging technology are continually shaping the landscape of dental diagnosis and treatment planning. Among these, photon-counting computed tomography (PCCT), introduced in 2021, has emerged as a promising, high-quality oral technology. Dental imaging typically requires a resolution beyond the standard CT systems achievable with the specialized cone-beam CT. PCCT can offer up to 100 µm resolution, improve soft-tissue contrast, and provide faster scanning times, which are crucial for detailed dental diagnosis and treatment planning. Using semiconductor detectors, PCCT produces sharper images and can potentially reduce the number of scans required, thereby decreasing patient radiation exposure. This review aimed to explore the potential benefits of PCCT in dental imaging. Methods: This review analyzed the literature on PCCT in dental imaging from January 2010 to February 2024, sourced from PubMed, Scopus, and Web of Science databases, focusing on high-resolution, patient safety, and diagnostic efficiency in dental structure assessment. We included English-language articles, case studies, letters, observational studies, and randomized controlled trials while excluding duplicates and studies unrelated to PCCT's application in dental imaging. Results: Studies have highlighted the superiority of PCCT in reducing artifacts, which are often problematic, compared to conventional CBCT and traditional CT scans, due to metallic dental implants, particularly when used with virtual monoenergetic imaging and iterative metal artifact reduction, thereby improving implant imaging. This review acknowledges limitations, such as the potential for overlooking other advanced imaging technologies, a narrow study timeframe, the lack of real-world clinical application data in this field, and costs. Conclusions: PCCT represents a promising advancement in dental imaging, offering high-resolution visuals, enhanced contrast, and rapid scanning with reduced radiation exposure.
Collapse
Affiliation(s)
- Chiara Zanon
- Department of Radiology, University of Padua, 35128 Padova, Italy
| | - Alessia Pepe
- Department of Radiology, University of Padua, 35128 Padova, Italy
| | - Filippo Cademartiri
- Department of Radiology, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Costanza Bini
- Department of Radiology, University of Padua, 35128 Padova, Italy
| | | | - Emilio Quaia
- Department of Radiology, University of Padua, 35128 Padova, Italy
| | - Edoardo Stellini
- Department of Neuroscience, School of Dentistry, Division of Prosthodontics and Digital Dentistry, University of Padova, 35122 Padova, Italy
| | - Adolfo Di Fiore
- Department of Neuroscience, School of Dentistry, Division of Prosthodontics and Digital Dentistry, University of Padova, 35122 Padova, Italy
| |
Collapse
|
23
|
Fukuda T, Yonenaga T, Akao R, Hashimoto T, Maeda K, Shoji T, Shioda S, Ishizaka Y, Ojiri H. Comparison of Bone Evaluation and Metal Artifact between Photon-Counting CT and Five Energy-Integrating-Detector CT under Standardized Conditions Using Cadaveric Forearms. Diagnostics (Basel) 2024; 14:350. [PMID: 38396389 PMCID: PMC10888094 DOI: 10.3390/diagnostics14040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND To compare the potential of various bone evaluations by considering photon-counting CT (PCCT) and multiple energy-integrating-detector CT (EIDCT), including three dual-energy CT (DECT) scanners with standardized various parameters in both standard resolution (STD) and ultra-high-resolution (UHR) modes. METHODS Four cadaveric forearms were scanned using PCCT and five EIDCTs, by applying STD and UHR modes. Visibility of bone architecture, image quality, and a non-displaced fracture were subjectively scored against a reference EIDCT image by using a five-point scale. Image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were also compared. To assess metal artifacts, a forearm with radial plate fixation was scanned by with and without Tin filter (Sn+ and Sn-), and virtual monoenergetic image (VMI) at 120 keV was created. Regarding Sn+ and VMI, images were only obtained from the technically available scanners. Subjective scores and the areas of streak artifacts were compared. RESULTS PCCT demonstrated significantly lower noise (p < 0.001) and higher bone SNR and CNR (p < 0.001) than all EIDCTs in both resolution modes. However, there was no significant difference between PCCT and EIDCTs in almost all subjective scores, regardless of scan modes, except for image quality where a significant difference was observed, compared to several EIDCTs. Metal artifact analysis revealed PCCT had larger artifact in Sn- and Sn+ (p < 0.001), but fewer in VMIs than three DECTs (p < 0.001 or 0.001). CONCLUSIONS Under standardized conditions, while PCCT had almost no subjective superiority in visualizing bone structures and fracture line when compared to EIDCTs, it outperformed in quantitative analysis related to image quality, especially in lower noise and higher tissue contrast. When using PCCT to assess cases with metal implants, it may be recommended to use VMIs to minimize the possible tendency for artifact to be pronounced.
Collapse
Affiliation(s)
- Takeshi Fukuda
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Takenori Yonenaga
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Ryo Akao
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Tohru Hashimoto
- Department of Anatomy, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kazuhiro Maeda
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Tomokazu Shoji
- Department of Radiology, Tha Jikei University Katsushika Medical Center, 6-41-2 Aoto, Katsushika-ku, Tokyo 125-8506, Japan
| | - Shoichi Shioda
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yu Ishizaka
- Medicalscanning Tokyo, 3-1-17 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Hiroya Ojiri
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
24
|
Mese I, Altintas Taslicay C, Sivrioglu AK. Synergizing photon-counting CT with deep learning: potential enhancements in medical imaging. Acta Radiol 2024; 65:159-166. [PMID: 38146126 DOI: 10.1177/02841851231217995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
This review article highlights the potential of integrating photon-counting computed tomography (CT) and deep learning algorithms in medical imaging to enhance diagnostic accuracy, improve image quality, and reduce radiation exposure. The use of photon-counting CT provides superior image quality, reduced radiation dose, and material decomposition capabilities, while deep learning algorithms excel in automating image analysis and improving diagnostic accuracy. The integration of these technologies can lead to enhanced material decomposition and classification, spectral image analysis, predictive modeling for individualized medicine, workflow optimization, and radiation dose management. However, data requirements, computational resources, and regulatory and ethical concerns remain challenges that need to be addressed to fully realize the potential of this technology. The fusion of photon-counting CT and deep learning algorithms is poised to revolutionize medical imaging and transform patient care.
Collapse
Affiliation(s)
- Ismail Mese
- Department of Radiology, Health Sciences University, Erenkoy Mental Health and Neurology Training and Research Hospital, Istanbul, Turkey
| | | | | |
Collapse
|
25
|
Shami A, Sun J, Gialeli C, Markstad H, Edsfeldt A, Aurumskjöld ML, Gonçalves I. Atherosclerotic plaque features relevant to rupture-risk detected by clinical photon-counting CT ex vivo: a proof-of-concept study. Eur Radiol Exp 2024; 8:14. [PMID: 38286959 PMCID: PMC10825079 DOI: 10.1186/s41747-023-00410-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/12/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND To identify subjects with rupture-prone atherosclerotic plaques before thrombotic events occur is an unmet clinical need. Thus, this proof-of-concept study aims to determine which rupture-prone plaque features can be detected using clinically available photon-counting computed tomography (PCCT). METHODS In this retrospective study, advanced atherosclerotic plaques (ex vivo, paraffin-embedded) from the Carotid Plaque Imaging Project were scanned by PCCT with reconstructed energy levels (45, 70, 120, 190 keV). Density in HU was measured in 97 regions of interest (ROIs) representing rupture-prone plaque features as demonstrated by histopathology (thrombus, lipid core, necrosis, fibrosis, intraplaque haemorrhage, calcium). The relationship between HU and energy was then assessed using a mixed-effects model for each plaque feature. RESULTS Plaques from five men (age 79 ± 8 [mean ± standard deviation]) were included in the study. Comparing differences in coefficients (b1diff) of matched ROIs on plaque images obtained by PCCT and histology confirmed that calcium was distinguishable from all other analysed features. Of greater novelty, additional rupture-prone plaque features proved discernible from each other, particularly when comparing haemorrhage with fibrous cap (p = 0.017), lipids (p = 0.003) and necrosis (p = 0.004) and thrombus compared to fibrosis (p = 0.048), fibrous cap (p = 0.028), lipids (p = 0.015) and necrosis (p = 0.017). CONCLUSIONS Clinically available PCCT detects not only calcification, but also other rupture-prone features of human carotid plaques ex vivo. RELEVANCE STATEMENT Improved atherosclerotic plaque characterisation by photon-counting CT provides the ability to distinguish not only calcium, but also rupture-prone plaque features such as haemorrhage and thrombus. This may potentially improve monitoring and risk stratification of atherosclerotic patients in order to prevent strokes. KEY POINTS • CT of atherosclerotic plaques mainly detects calcium. • Many components, such as intra-plaque haemorrhage and lipids, determine increased plaque rupture risk. • Ex vivo carotid plaque photon-counting CT distinguishes haemorrhage and thrombus. • Improved plaque photon-counting CT evaluation may refine risk stratification accuracy to prevent strokes.
Collapse
Affiliation(s)
- Annelie Shami
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Jan Waldenströms Gata 35, CRC 91:12, 214 28, Malmö, Sweden.
| | - Jiangming Sun
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Jan Waldenströms Gata 35, CRC 91:12, 214 28, Malmö, Sweden
| | - Chrysostomi Gialeli
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Jan Waldenströms Gata 35, CRC 91:12, 214 28, Malmö, Sweden
| | - Hanna Markstad
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Jan Waldenströms Gata 35, CRC 91:12, 214 28, Malmö, Sweden
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund/Malmö, Sweden
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Jan Waldenströms Gata 35, CRC 91:12, 214 28, Malmö, Sweden
- Department of Cardiology, Malmö, Skåne University Hospital, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Marie-Louise Aurumskjöld
- Department of Clinical Sciences Malmö, Medical Radiation Physics, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden
- Department of Hematology, Oncology and Radiation Physics, Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Jan Waldenströms Gata 35, CRC 91:12, 214 28, Malmö, Sweden
- Department of Cardiology, Malmö, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Sun Z, Silberstein J, Vaccarezza M. Cardiovascular Computed Tomography in the Diagnosis of Cardiovascular Disease: Beyond Lumen Assessment. J Cardiovasc Dev Dis 2024; 11:22. [PMID: 38248892 PMCID: PMC10816599 DOI: 10.3390/jcdd11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Cardiovascular CT is being widely used in the diagnosis of cardiovascular disease due to the rapid technological advancements in CT scanning techniques. These advancements include the development of multi-slice CT, from early generation to the latest models, which has the capability of acquiring images with high spatial and temporal resolution. The recent emergence of photon-counting CT has further enhanced CT performance in clinical applications, providing improved spatial and contrast resolution. CT-derived fractional flow reserve is superior to standard CT-based anatomical assessment for the detection of lesion-specific myocardial ischemia. CT-derived 3D-printed patient-specific models are also superior to standard CT, offering advantages in terms of educational value, surgical planning, and the simulation of cardiovascular disease treatment, as well as enhancing doctor-patient communication. Three-dimensional visualization tools including virtual reality, augmented reality, and mixed reality are further advancing the clinical value of cardiovascular CT in cardiovascular disease. With the widespread use of artificial intelligence, machine learning, and deep learning in cardiovascular disease, the diagnostic performance of cardiovascular CT has significantly improved, with promising results being presented in terms of both disease diagnosis and prediction. This review article provides an overview of the applications of cardiovascular CT, covering its performance from the perspective of its diagnostic value based on traditional lumen assessment to the identification of vulnerable lesions for the prediction of disease outcomes with the use of these advanced technologies. The limitations and future prospects of these technologies are also discussed.
Collapse
Affiliation(s)
- Zhonghua Sun
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| | - Jenna Silberstein
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
| | - Mauro Vaccarezza
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
27
|
Zanon C, Cademartiri F, Toniolo A, Bini C, Clemente A, Colacchio EC, Cabrelle G, Mastro F, Antonello M, Quaia E, Pepe A. Advantages of Photon-Counting Detector CT in Aortic Imaging. Tomography 2023; 10:1-13. [PMID: 38276249 PMCID: PMC10821336 DOI: 10.3390/tomography10010001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Photon-counting Computed Tomography (PCCT) is a promising imaging technique. Using detectors that count the number and energy of photons in multiple bins, PCCT offers several advantages over conventional CT, including a higher image quality, reduced contrast agent volume, radiation doses, and artifacts. Although PCCT is well established for cardiac imaging in assessing coronary artery disease, its application in aortic imaging remains limited. This review summarizes the available literature and provides an overview of the current use of PCCT for the diagnosis of aortic imaging, focusing mainly on endoleaks detection and characterization after endovascular aneurysm repair (EVAR), contrast dose volume, and radiation exposure reduction, particularly in patients with chronic kidney disease and in those requiring follow-up CT.
Collapse
Affiliation(s)
- Chiara Zanon
- Department of Radiology, University of Padua, 35128 Padua, Italy
| | - Filippo Cademartiri
- Department of Radiology, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | | | - Costanza Bini
- Department of Radiology, University of Padua, 35128 Padua, Italy
| | - Alberto Clemente
- Department of Radiology, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Elda Chiara Colacchio
- Vascular and Endovascular Surgery Section, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy
| | - Giulio Cabrelle
- Department of Radiology, University of Padua, 35128 Padua, Italy
| | - Florinda Mastro
- Division of Cardiac Surgery, University of Padua, 35128 Padua, Italy
| | - Michele Antonello
- Vascular and Endovascular Surgery Section, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy
| | - Emilio Quaia
- Department of Radiology, University of Padua, 35128 Padua, Italy
| | - Alessia Pepe
- Department of Radiology, University of Padua, 35128 Padua, Italy
| |
Collapse
|
28
|
Gruschwitz P, Hartung V, Ergün S, Peter D, Lichthardt S, Huflage H, Hendel R, Pannenbecker P, Augustin AM, Kunz AS, Feldle P, Bley TA, Grunz JP. Comparison of ultrahigh and standard resolution photon-counting CT angiography of the femoral arteries in a continuously perfused in vitro model. Eur Radiol Exp 2023; 7:83. [PMID: 38110729 PMCID: PMC10728414 DOI: 10.1186/s41747-023-00398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/17/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND With the emergence of photon-counting CT, ultrahigh-resolution (UHR) imaging can be performed without dose penalty. This study aims to directly compare the image quality of UHR and standard resolution (SR) scan mode in femoral artery angiographies. METHODS After establishing continuous extracorporeal perfusion in four fresh-frozen cadaveric specimens, photon-counting CT angiographies were performed with a radiation dose of 5 mGy and tube voltage of 120 kV in both SR and UHR mode. Images were reconstructed with dedicated convolution kernels (soft: Body-vascular (Bv)48; sharp: Bv60; ultrasharp: Bv76). Six radiologists evaluated the image quality by means of a pairwise forced-choice comparison tool. Kendall's concordance coefficient (W) was calculated to quantify interrater agreement. Image quality was further assessed by measuring intraluminal attenuation and image noise as well as by calculating signal-to-noise ratio (SNR) and contrast-to-noise ratios (CNR). RESULTS UHR yielded lower noise than SR for identical reconstructions with kernels ≥ Bv60 (p < 0.001). UHR scans exhibited lower intraluminal attenuation compared to SR (Bv60: 406.4 ± 25.1 versus 418.1 ± 30.1 HU; p < 0.001). Irrespective of scan mode, SNR and CNR decreased while noise increased with sharper kernels but UHR scans were objectively superior to SR nonetheless (Bv60: SNR 25.9 ± 6.4 versus 20.9 ± 5.3; CNR 22.7 ± 5.8 versus 18.4 ± 4.8; p < 0.001). Notably, UHR scans were preferred in subjective assessment when images were reconstructed with the ultrasharp Bv76 kernel, whereas SR was rated superior for Bv60. Interrater agreement was high (W = 0.935). CONCLUSIONS Combinations of UHR scan mode and ultrasharp convolution kernel are able to exploit the full image quality potential in photon-counting CT angiography of the femoral arteries. RELEVANCE STATEMENT The UHR scan mode offers improved image quality and may increase diagnostic accuracy in CT angiography of the peripheral arterial runoff when optimized reconstruction parameters are chosen. KEY POINTS • UHR photon-counting CT improves image quality in combination with ultrasharp convolution kernels. • UHR datasets display lower image noise compared with identically reconstructed standard resolution scans. • Scans in UHR mode show decreased intraluminal attenuation compared with standard resolution imaging.
Collapse
Affiliation(s)
- Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany.
| | - Viktor Hartung
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Dominik Peter
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Sven Lichthardt
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Robin Hendel
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Pauline Pannenbecker
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Anne Marie Augustin
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Philipp Feldle
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
29
|
Flohr T, Schmidt B, Ulzheimer S, Alkadhi H. Cardiac imaging with photon counting CT. Br J Radiol 2023; 96:20230407. [PMID: 37750856 PMCID: PMC10646663 DOI: 10.1259/bjr.20230407] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/27/2023] Open
Abstract
CT of the heart, in particular ECG-controlled coronary CT angiography (cCTA), has become clinical routine due to rapid technical progress with ever new generations of CT equipment. Recently, CT scanners with photon-counting detectors (PCD) have been introduced which have the potential to address some of the remaining challenges for cardiac CT, such as limited spatial resolution and lack of high-quality spectral data. In this review article, we briefly discuss the technical principles of photon-counting detector CT, and we give an overview on how the improved spatial resolution of photon-counting detector CT and the routine availability of spectral data can benefit cardiac applications. We focus on coronary artery calcium scoring, cCTA, and on the evaluation of the myocardium.
Collapse
Affiliation(s)
- Thomas Flohr
- Siemens Healthcare GmbH, Computed Tomography, Forchheim, Germany
| | - Bernhard Schmidt
- Siemens Healthcare GmbH, Computed Tomography, Forchheim, Germany
| | - Stefan Ulzheimer
- Siemens Healthcare GmbH, Computed Tomography, Forchheim, Germany
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Meloni A, Cademartiri F, Positano V, Celi S, Berti S, Clemente A, La Grutta L, Saba L, Bossone E, Cavaliere C, Punzo B, Maffei E. Cardiovascular Applications of Photon-Counting CT Technology: A Revolutionary New Diagnostic Step. J Cardiovasc Dev Dis 2023; 10:363. [PMID: 37754792 PMCID: PMC10531582 DOI: 10.3390/jcdd10090363] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Photon-counting computed tomography (PCCT) is an emerging technology that can potentially transform clinical CT imaging. After a brief description of the PCCT technology, this review summarizes its main advantages over conventional CT: improved spatial resolution, improved signal and contrast behavior, reduced electronic noise and artifacts, decreased radiation dose, and multi-energy capability with improved material discrimination. Moreover, by providing an overview of the existing literature, this review highlights how the PCCT benefits have been harnessed to enhance and broaden the diagnostic capabilities of CT for cardiovascular applications, including the detection of coronary artery calcifications, evaluation of coronary plaque extent and composition, evaluation of coronary stents, and assessment of myocardial tissue characteristics and perfusion.
Collapse
Affiliation(s)
- Antonella Meloni
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.); (A.C.); (E.M.)
- Unità Operativa Complessa di Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.); (A.C.); (E.M.)
| | - Vicenzo Positano
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.); (A.C.); (E.M.)
- Unità Operativa Complessa di Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy
| | - Simona Celi
- BioCardioLab, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Sergio Berti
- Diagnostic and Interventional Cardiology Department, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Alberto Clemente
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.); (A.C.); (E.M.)
| | - Ludovico La Grutta
- Department of Radiology, University Hospital “P. Giaccone”, 90127 Palermo, Italy;
| | - Luca Saba
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato, CA, Italy;
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, 80131 Naples, Italy;
| | - Carlo Cavaliere
- Department of Radiology, Istituto di Ricerca e Cura a Carattere Scientifico SynLab-SDN, 80131 Naples, Italy; (C.C.); (B.P.)
| | - Bruna Punzo
- Department of Radiology, Istituto di Ricerca e Cura a Carattere Scientifico SynLab-SDN, 80131 Naples, Italy; (C.C.); (B.P.)
| | - Erica Maffei
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.); (A.C.); (E.M.)
| |
Collapse
|
31
|
Gruschwitz P, Hartung V, Kleefeldt F, Ergün S, Lichthardt S, Huflage H, Hendel R, Kunz AS, Pannenbecker P, Kuhl PJ, Augustin AM, Bley TA, Petritsch B, Grunz JP. Standardized assessment of vascular reconstruction kernels in photon-counting CT angiographies of the leg using a continuous extracorporeal perfusion model. Sci Rep 2023; 13:12109. [PMID: 37495759 PMCID: PMC10372012 DOI: 10.1038/s41598-023-39063-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
This study evaluated the influence of different vascular reconstruction kernels on the image quality of CT angiographies of the lower extremity runoff using a 1st-generation photon-counting-detector CT (PCD-CT) compared with dose-matched examinations on a 3rd-generation energy-integrating-detector CT (EID-CT). Inducing continuous extracorporeal perfusion in a human cadaveric model, we performed CT angiographies of eight upper leg arterial runoffs with radiation dose-equivalent 120 kVp acquisition protocols (CTDIvol 5 mGy). Reconstructions were executed with different vascular kernels, matching the individual modulation transfer functions between scanners. Signal-to-noise-ratios (SNR) and contrast-to-noise-ratios (CNR) were computed to assess objective image quality. Six radiologists evaluated image quality subjectively using a forced-choice pairwise comparison tool. Interrater agreement was determined by calculating Kendall's concordance coefficient (W). The intraluminal attenuation of PCD-CT images was significantly higher than of EID-CT (414.7 ± 27.3 HU vs. 329.3 ± 24.5 HU; p < 0.001). Using comparable kernels, image noise with PCD-CT was significantly lower than with EID-CT (p ≤ 0.044). Correspondingly, SNR and CNR were approximately twofold higher for PCD-CT (p < 0.001). Increasing the spatial frequency for PCD-CT reconstructions by one level resulted in similar metrics compared to EID-CT (CNRfat; EID-CT Bv49: 21.7 ± 3.7 versus PCD-CT Bv60: 21.4 ± 3.5). Overall image quality of PCD-CTA achieved ratings superior to EID-CTA irrespective of the used reconstruction kernels (best: PCD-CT Bv60; worst: EID-CT Bv40; p < 0.001). Interrater agreement was good (W = 0.78). Concluding, PCD-CT offers superior intraluminal attenuation, SNR, and CNR compared to EID-CT in angiographies of the upper leg arterial runoff. Combined with improved subjective image quality, PCD-CT facilitates the use of sharper convolution kernels and ultimately bears the potential of improved vascular structure assessability.
Collapse
Affiliation(s)
- Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| | - Viktor Hartung
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Sven Lichthardt
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Robin Hendel
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Pauline Pannenbecker
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Philipp Josef Kuhl
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Anne Marie Augustin
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Bernhard Petritsch
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| |
Collapse
|
32
|
Pepe A, Crimì F, Vernuccio F, Cabrelle G, Lupi A, Zanon C, Gambato S, Perazzolo A, Quaia E. Medical Radiology: Current Progress. Diagnostics (Basel) 2023; 13:2439. [PMID: 37510183 PMCID: PMC10378672 DOI: 10.3390/diagnostics13142439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, medical radiology has undergone significant improvements in patient management due to advancements in image acquisition by the last generation of machines, data processing, and the integration of artificial intelligence. In this way, cardiovascular imaging is one of the fastest-growing radiological subspecialties. In this study, a compressive review was focused on addressing how and why CT and MR have gained a I class indication in most cardiovascular diseases, and the potential impact of tissue and functional characterization by CT photon counting, quantitative MR mapping, and 4-D flow. Regarding rectal imaging, advances in cancer imaging using diffusion-weighted MRI sequences for identifying residual disease after neoadjuvant chemoradiotherapy and [18F] FDG PET/MRI were provided for high-resolution anatomical and functional data in oncological patients. The results present a large overview of the approach to the imaging of diffuse and focal liver diseases by US elastography, contrast-enhanced US, quantitative MRI, and CT for patient risk stratification. Italy is currently riding the wave of these improvements. The development of large networks will be crucial to create high-quality databases for patient-centered precision medicine using artificial intelligence. Dedicated radiologists with specific training and a close relationship with the referring clinicians will be essential human factors.
Collapse
Affiliation(s)
- Alessia Pepe
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| | - Filippo Crimì
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| | - Federica Vernuccio
- Department of Radiology, University Hospital of Padua, 35128 Padua, Italy
| | - Giulio Cabrelle
- Department of Radiology, University Hospital of Padua, 35128 Padua, Italy
| | - Amalia Lupi
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| | - Chiara Zanon
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| | - Sebastiano Gambato
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| | - Anna Perazzolo
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
- Institute of Radiology, Department of Medicine, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, University of Udine, 33100 Udine, Italy
| | - Emilio Quaia
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| |
Collapse
|
33
|
Cademartiri F, Meloni A, Pistoia L, Degiorgi G, Clemente A, Gori CD, Positano V, Celi S, Berti S, Emdin M, Panetta D, Menichetti L, Punzo B, Cavaliere C, Bossone E, Saba L, Cau R, Grutta LL, Maffei E. Dual-Source Photon-Counting Computed Tomography-Part I: Clinical Overview of Cardiac CT and Coronary CT Angiography Applications. J Clin Med 2023; 12:jcm12113627. [PMID: 37297822 DOI: 10.3390/jcm12113627] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
The photon-counting detector (PCD) is a new computed tomography detector technology (photon-counting computed tomography, PCCT) that provides substantial benefits for cardiac and coronary artery imaging. Compared with conventional CT, PCCT has multi-energy capability, increased spatial resolution and soft tissue contrast with near-null electronic noise, reduced radiation exposure, and optimization of the use of contrast agents. This new technology promises to overcome several limitations of traditional cardiac and coronary CT angiography (CCT/CCTA) including reduction in blooming artifacts in heavy calcified coronary plaques or beam-hardening artifacts in patients with coronary stents, and a more precise assessment of the degree of stenosis and plaque characteristic thanks to its better spatial resolution. Another potential application of PCCT is the use of a double-contrast agent to characterize myocardial tissue. In this current overview of the existing PCCT literature, we describe the strengths, limitations, recent applications, and promising developments of employing PCCT technology in CCT.
Collapse
Affiliation(s)
| | - Antonella Meloni
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
- Department of Bioengineering, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Laura Pistoia
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Giulia Degiorgi
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Alberto Clemente
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Carmelo De Gori
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Vincenzo Positano
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
- Department of Bioengineering, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Simona Celi
- BioCardioLab, Department of Bioengineering, Fondazione Monasterio/CNR, 54100 Massa, Italy
| | - Sergio Berti
- Cardiology Unit, Ospedale del Cuore, Fondazione Monasterio/CNR, 54100 Massa, Italy
| | - Michele Emdin
- Department of Cardiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Daniele Panetta
- Institute of Clinical Physiology, National Council of Research, 56124 Pisa, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, National Council of Research, 56124 Pisa, Italy
| | - Bruna Punzo
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy
| | - Carlo Cavaliere
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, 80131 Naples, Italy
| | - Luca Saba
- Department of Radiology, University Hospital, 09042 Monserrato, Italy
| | - Riccardo Cau
- Department of Radiology, University Hospital, 09042 Monserrato, Italy
| | - Ludovico La Grutta
- Department of Radiology, University Hospital "P. Giaccone", 90127 Palermo, Italy
| | - Erica Maffei
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| |
Collapse
|