1
|
Hsu CY, Ahmad I, Maya RW, Abass MA, Gupta J, Singh A, Joshi KK, Premkumar J, Sahoo S, Khosravi M. The potential therapeutic approaches targeting gut health in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a narrative review. J Transl Med 2025; 23:530. [PMID: 40350437 PMCID: PMC12066075 DOI: 10.1186/s12967-025-06527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex disorder characterized by persistent fatigue and cognitive impairments, with emerging evidence highlighting the role of gut health in its pathophysiology. The main objective of this review was to synthesize qualitative and quantitative data from research examining the gut microbiota composition, inflammatory markers, and therapeutic outcomes of interventions targeting the microbiome in the context of ME/CFS. METHODS The data collection involved a detailed search of peer-reviewed English literature from January 1995 to January 2025, focusing on studies related to the microbiome and ME/CFS. This comprehensive search utilized databases such as PubMed, Scopus, and Web of Science, with keywords including "ME/CFS," "Gut-Brain Axis," "Gut Health," "Intestinal Dysbiosis," "Microbiome Dysbiosis," "Pathophysiology," and "Therapeutic Approaches." Where possible, insights from clinical trials and observational studies were included to enrich the findings. A narrative synthesis method was also employed to effectively organize and present these findings. RESULTS The study found notable changes in the gut microbiota diversity and composition in ME/CFS patients, contributing to systemic inflammation and worsening cognitive and physical impairments. As a result, various microbiome interventions like probiotics, prebiotics, specific diets, supplements, fecal microbiota transplantation, pharmacological interventions, improved sleep, and moderate exercise training are potential therapeutic strategies that merit further exploration. CONCLUSIONS Interventions focusing on the gut-brain axis may help reduce neuropsychiatric symptoms in ME/CFS by utilizing the benefits of the microbiome. Therefore, identifying beneficial microbiome elements and incorporating their assessments into clinical practice can enhance patient care through personalized treatments. Due to the complexity of ME/CFS, which involves genetic, environmental, and microbial factors, a multidisciplinary approach is also necessary. Since current research lacks comprehensive insights into how gut health might aid ME/CFS treatment, standardized diagnostics and longitudinal studies could foster innovative therapies, potentially improving quality of life and symptom management for those affected.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University, Tempe Campus, Phoenix, AZ, USA
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, India
- Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, India
| | - J Premkumar
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Samir Sahoo
- Department of General Medicine, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, India
| | - Mohsen Khosravi
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
- Community Nursing Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
2
|
El-Sehrawy AAMA, Ayoub II, Uthirapathy S, Ballal S, Gabble BC, Singh A, V K, Panigrahi R, Kamali M, Khosravi M. The microbiota-gut-brain axis in myalgic encephalomyelitis/chronic fatigue syndrome: a narrative review of an emerging field. Eur J Transl Myol 2025; 35:13690. [PMID: 39937103 PMCID: PMC12038572 DOI: 10.4081/ejtm.2025.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
The intricate relationship between gut microbiota and the brain has emerged as a pivotal area of research, particularly in understanding Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). This complex condition is characterized by debilitating fatigue, cognitive dysfunction, and a wide array of systemic manifestations, posing significant challenges for diagnosis and treatment. Recent studies highlight the microbiota-gut-brain axis as a crucial pathway in ME/CFS pathophysiology, suggesting that alterations in gut microbial composition may impact immune responses, neurochemical signaling, and neuronal health. This narrative review systematically explores English-language scholarly articles from January 1995 to January 2025, utilizing databases such as PubMed, Scopus, and Web of Science. The findings underscore the potential for targeted therapeutic interventions aimed at correcting gut dysbiosis. As research progresses, a deeper understanding of the microbiota-gut-brain connection could lead to innovative approaches for managing ME/CFS, ultimately enhancing the quality of life for affected individuals.
Collapse
Affiliation(s)
| | | | - Subasini Uthirapathy
- Faculty of Pharmacy, Department of Pharmacology, Tishk International University, Erbil, Kurdistan Region.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka.
| | - Baneen C Gabble
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon.
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab.
| | - Kavitha V
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu.
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar.
| | - Mostafa Kamali
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan.
| | - Mohsen Khosravi
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Community Nursing Research Center, Zahedan University of Medical Sciences, Zahedan.
| |
Collapse
|
3
|
Clarke KSP, Kingdon CC, Hughes MP, Lacerda EM, Lewis R, Kruchek EJ, Dorey RA, Labeed FH. The search for a blood-based biomarker for Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS): from biochemistry to electrophysiology. J Transl Med 2025; 23:149. [PMID: 39905423 PMCID: PMC11792299 DOI: 10.1186/s12967-025-06146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease of unknown aetiology characterised by symptoms of post-exertional malaise (PEM) and fatigue leading to substantial impairment in functioning. Other key symptoms include cognitive impairment and unrefreshing sleep, with many experiencing pain. To date there is no complete understanding of the triggering pathomechanisms of disease, and no quantitative biomarker available with sufficient sensitivity, specificity, and adoptability to provide conclusive diagnosis. Clinicians thus eliminate differential diagnoses, and rely on subjective, unspecific, and disputed clinical diagnostic criteria-a process that often takes years with patients being misdiagnosed and receiving inappropriate and sometimes detrimental care. Without a quantitative biomarker, trivialisation, scepticism, marginalisation, and misunderstanding of ME/CFS continues despite the significant disability for many. One in four individuals are bed-bound for long periods of time, others have difficulties maintaining a job/attending school, incurring individual income losses of thousands, while few participate in social activities. MAIN BODY Recent studies have reported promising quantifiable differences in the biochemical and electrophysiological properties of blood cells, which separate ME/CFS and non-ME/CFS participants with high sensitivities and specificities-demonstrating potential development of an accessible and relatively non-invasive diagnostic biomarker. This includes profiling immune cells using Raman spectroscopy, measuring the electrical impedance of blood samples during hyperosmotic challenge using a nano-electronic assay, use of metabolomic assays, and certain techniques which assess mitochondrial dysfunction. However, for clinical application, the specificity of these biomarkers to ME/CFS needs to be explored in more disease controls, and their practicality/logistics considered. Differences in cytokine profiles in ME/CFS are also well documented, but finding a consistent, stable, and replicable cytokine profile may not be possible. Increasing evidence demonstrates acetylcholine receptor and transient receptor potential ion channel dysfunction in ME/CFS, though how these findings could translate to a diagnostic biomarker are yet to be explored. CONCLUSION Different biochemical and electrophysiological properties which differentiate ME/CFS have been identified across studies, holding promise as potential blood-based quantitative diagnostic biomarkers for ME/CFS. However, further research is required to determine their specificity to ME/CFS and adoptability for clinical use.
Collapse
Affiliation(s)
- Krista S P Clarke
- Centre for Biomedical Engineering, School of Engineering, University of Surrey, Guildford, UK
| | - Caroline C Kingdon
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael Pycraft Hughes
- Department of Biomedical Engineering and Biotechnology/Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, UAE
| | - Eliana Mattos Lacerda
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Rebecca Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Emily J Kruchek
- Centre for Biomedical Engineering, School of Engineering, University of Surrey, Guildford, UK
| | - Robert A Dorey
- Centre for Biomedical Engineering, School of Engineering, University of Surrey, Guildford, UK
| | - Fatima H Labeed
- Department of Biology, United Arab Emirates University, Al Ain, UAE.
- Centre for Biomedical Engineering, School of Engineering, University of Surrey, Guildford, UK.
| |
Collapse
|
4
|
Edgar CD, Blair A, Tate WP. Measurement of Genetic Variations in ME/CFS Patients in the IDO2 Gene Encoding an Enzyme Metabolizing Tryptophan. Methods Mol Biol 2025; 2920:247-256. [PMID: 40372687 DOI: 10.1007/978-1-0716-4498-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Genetic variations in the indoleamine 2,3-dioxygenase (IDO2) gene that are commonly found in the general population have been assessed for their frequency in myalgic encephalomyelitis/chronic fatigue (ME/CFS) patients compared with healthy controls. They have potential for being genetic variations that lead to susceptibility to developing ME/CFS following exposure to a triggering stressor like a viral infection or other major stress events. The IDO2 gene encodes an enzyme that is involved in the tryptophan-kynurenine pathway (TKP), and is activated if there are excessive amounts of tryptophan to prevent excessive serotonin production. The TKP pathway through production of NADH is involved in regulating the immune system and likely plays an important role in ME/CFS. A simple method was developed to evaluate the 5 commonly occurring mutations in this gene in ME/CFS patients and to determine if one or more were present at higher frequency than in healthy controls. This might indicate a susceptibility factor for developing ME/CFS. In this chapter we describe the techniques used to isolate peripheral blood mononuclear cells (PBMCs), extract the DNA, and then do touchdown PCR and DNA sequencing for the analysis.
Collapse
Affiliation(s)
- Christina D Edgar
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anna Blair
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Warren P Tate
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
5
|
Kavyani B, Ahn SB, Missailidis D, Annesley SJ, Fisher PR, Schloeffel R, Guillemin GJ, Lovejoy DB, Heng B. Dysregulation of the Kynurenine Pathway, Cytokine Expression Pattern, and Proteomics Profile Link to Symptomology in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Mol Neurobiol 2024; 61:3771-3787. [PMID: 38015302 DOI: 10.1007/s12035-023-03784-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Dysregulation of the kynurenine pathway (KP) is believed to play a significant role in neurodegenerative and cognitive disorders. While some evidence links the KP to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), further studies are needed to clarify the overall picture of how inflammation-driven KP disturbances may contribute to symptomology in ME/CFS. Here, we report that plasma levels of most bioactive KP metabolites differed significantly between ME/CFS patients and healthy controls in a manner consistent with their known contribution to symptomology in other neurological disorders. Importantly, we found that enhanced production of the first KP metabolite, kynurenine (KYN), correlated with symptom severity, highlighting the relationship between inflammation, KP dysregulation, and ME/CFS symptomology. Other significant changes in the KP included lower levels of the downstream KP metabolites 3-HK, 3-HAA, QUIN, and PIC that could negatively impact cellular energetics. We also rationalized KP dysregulation to changes in the expression of inflammatory cytokines and, for the first time, assessed levels of the iron (Fe)-regulating hormone hepcidin that is also inflammation-responsive. Levels of hepcidin in ME/CFS decreased nearly by half, which might reflect systemic low Fe levels or possibly ongoing hypoxia. We next performed a proteomics screen to survey for other significant differences in protein expression in ME/CFS. Interestingly, out of the seven most significantly modulated proteins in ME/CFS patient plasma, 5 proteins have roles in maintaining gut health, which considering the new appreciation of how gut microbiome and health modulates systemic KP could highlight a new explanation of symptomology in ME/CFS patients and potential new prognostic biomarker/s and/or treatment avenues.
Collapse
Affiliation(s)
- Bahar Kavyani
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Seong Beom Ahn
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Daniel Missailidis
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Sarah J Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Paul R Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | | | - Gilles J Guillemin
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - David B Lovejoy
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Arron HE, Marsh BD, Kell DB, Khan MA, Jaeger BR, Pretorius E. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: the biology of a neglected disease. Front Immunol 2024; 15:1386607. [PMID: 38887284 PMCID: PMC11180809 DOI: 10.3389/fimmu.2024.1386607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic, debilitating disease characterised by a wide range of symptoms that severely impact all aspects of life. Despite its significant prevalence, ME/CFS remains one of the most understudied and misunderstood conditions in modern medicine. ME/CFS lacks standardised diagnostic criteria owing to variations in both inclusion and exclusion criteria across different diagnostic guidelines, and furthermore, there are currently no effective treatments available. Moving beyond the traditional fragmented perspectives that have limited our understanding and management of the disease, our analysis of current information on ME/CFS represents a significant paradigm shift by synthesising the disease's multifactorial origins into a cohesive model. We discuss how ME/CFS emerges from an intricate web of genetic vulnerabilities and environmental triggers, notably viral infections, leading to a complex series of pathological responses including immune dysregulation, chronic inflammation, gut dysbiosis, and metabolic disturbances. This comprehensive model not only advances our understanding of ME/CFS's pathophysiology but also opens new avenues for research and potential therapeutic strategies. By integrating these disparate elements, our work emphasises the necessity of a holistic approach to diagnosing, researching, and treating ME/CFS, urging the scientific community to reconsider the disease's complexity and the multifaceted approach required for its study and management.
Collapse
Affiliation(s)
- Hayley E. Arron
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Benjamin D. Marsh
- MRCPCH Consultant Paediatric Neurodisability, Exeter, Devon, United Kingdom
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - M. Asad Khan
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester, United Kingdom
| | - Beate R. Jaeger
- Long COVID department, Clinic St Georg, Bad Aibling, Germany
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
7
|
Berkis U, Svirskis S, Krumina A, Gravelsina S, Vilmane A, Araja D, Nora-Krukle Z, Murovska M. Exploring the joint potential of inflammation, immunity, and receptor-based biomarkers for evaluating ME/CFS progression. Front Immunol 2023; 14:1294758. [PMID: 38187396 PMCID: PMC10771384 DOI: 10.3389/fimmu.2023.1294758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic condition with no identified diagnostic biomarkers to date. Its prevalence is as high as 0.89% according to metastudies, with a quarter of patients bed- or home-bound, which presents a serious public health challenge. Investigations into the inflammation-immunity axis is encouraged by links to outbreaks and disease waves. Recently, the research of our group revealed that antibodies to beta2-adrenergic (anti-β2AdR) and muscarinic acetylcholine (anti-M4) receptors demonstrate sensitivity to the progression of ME/CFS. The purpose of this study is to investigate the joint potential of inflammatome-characterized by interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-2, IL-21, Il-23, IL-6, IL-17A, Activin-B, immunome (IgG1, IgG2, IgG3, IgG4, IgM, and IgA), and receptor-based biomarkers (anti-M3, anti-M4, and anti-β2AdR)-for evaluating ME/CFS progression, and to identify an optimal selection for future validation in prospective clinical studies. Methods A dataset was used originating from 188 individuals, namely, 54 healthy controls, 30 patients with a "mild" condition, 73 patients with a "moderate" condition, and 31 patients with a "severe" condition, clinically assessed by Fukuda/CDC 1994 and international consensus criteria. Inflammatome, immunome, and receptor-based biomarkers were determined in blood plasma via ELISA and multiplex methods. Statistical analysis was done via correlation analysis, principal component analysis, linear discriminant analysis, and random forest classification; inter-group differences were tested via nonparametric Kruskal-Wallis H test followed by the two-stage linear step-up procedure of Benjamini, Krieger, and Yekutieli, and via Mann-Whitney U test. Results The association between inflammatome and immunome markers is broader and stronger (coupling) in the severe group. Principal component factoring separates components associated with inflammatome, immunome, and receptor biomarkers. Random forest modeling demonstrates an excellent accuracy of over 90% for splitting healthy/with condition groups, and 45% for splitting healthy/severity groups. Classifiers with the highest potential are anti-β2AdR, anti-M4, IgG4, IL-2, and IL-6. Discussion The association between inflammatome and immunome markers is a candidate for controlled clinical study of ME/CFS progression markers that could be used for treatment individualization. Thus, the coupling effects between inflammation and immunity are potentially beneficial for the identification of prognostic factors in the context of ME/CFS progression mechanism studies.
Collapse
Affiliation(s)
- Uldis Berkis
- Development and Project Department, Riga Stradins University, Riga, Latvia
| | - Simons Svirskis
- Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia
| | - Angelika Krumina
- Department of Infectology, Riga Stradins University, Riga, Latvia
| | - Sabine Gravelsina
- Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia
| | - Anda Vilmane
- Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia
| | - Diana Araja
- Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia
| | - Zaiga Nora-Krukle
- Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia
| | - Modra Murovska
- Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia
| |
Collapse
|
8
|
Xu J, Lodge T, Kingdon C, Strong JWL, Maclennan J, Lacerda E, Kujawski S, Zalewski P, Huang WE, Morten KJ. Developing a Blood Cell-Based Diagnostic Test for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Using Peripheral Blood Mononuclear Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302146. [PMID: 37653608 PMCID: PMC10602530 DOI: 10.1002/advs.202302146] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/12/2023] [Indexed: 09/02/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by debilitating fatigue that profoundly impacts patients' lives. Diagnosis of ME/CFS remains challenging, with most patients relying on self-report, questionnaires, and subjective measures to receive a diagnosis, and many never receiving a clear diagnosis at all. In this study, a single-cell Raman platform and artificial intelligence are utilized to analyze blood cells from 98 human subjects, including 61 ME/CFS patients of varying disease severity and 37 healthy and disease controls. These results demonstrate that Raman profiles of blood cells can distinguish between healthy individuals, disease controls, and ME/CFS patients with high accuracy (91%), and can further differentiate between mild, moderate, and severe ME/CFS patients (84%). Additionally, specific Raman peaks that correlate with ME/CFS phenotypes and have the potential to provide insights into biological changes and support the development of new therapeutics are identified. This study presents a promising approach for aiding in the diagnosis and management of ME/CFS and can be extended to other unexplained chronic diseases such as long COVID and post-treatment Lyme disease syndrome, which share many of the same symptoms as ME/CFS.
Collapse
Affiliation(s)
- Jiabao Xu
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
- Division of Biomedical Engineering, James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8LTUK
| | - Tiffany Lodge
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordThe Women CentreJohn Radcliffe HospitalHeadley Way, HeadingtonOxfordOX3 9DUUK
| | - Caroline Kingdon
- Faculty of Infectious DiseasesLondon School of Hygiene and Tropical MedicineKeppel StLondonWC1E 7HTUK
| | - James W. L. Strong
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordThe Women CentreJohn Radcliffe HospitalHeadley Way, HeadingtonOxfordOX3 9DUUK
| | - John Maclennan
- Soft Cell Biological ResearchAttwood Innovation Center453 S 600 ESt. GeorgeUT84770USA
| | - Eliana Lacerda
- Faculty of Infectious DiseasesLondon School of Hygiene and Tropical MedicineKeppel StLondonWC1E 7HTUK
| | - Slawomir Kujawski
- Department of Exercise Physiology and Functional AnatomyCollegium Medicum in BydgoszczNicolaus Copernicus University in TorunSwietojanska 20Bydgoszcz85‐077Poland
| | - Pawel Zalewski
- Department of Exercise Physiology and Functional AnatomyCollegium Medicum in BydgoszczNicolaus Copernicus University in TorunSwietojanska 20Bydgoszcz85‐077Poland
- Department of Experimental and Clinical PhysiologyWarsaw Medical UniversityStefana Banacha 2aWarszawa02‐097Poland
| | - Wei E. Huang
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Karl J. Morten
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordThe Women CentreJohn Radcliffe HospitalHeadley Way, HeadingtonOxfordOX3 9DUUK
| |
Collapse
|
9
|
Guo L, Appelman B, Mooij-Kalverda K, Houtkooper RH, van Weeghel M, Vaz FM, Dijkhuis A, Dekker T, Smids BS, Duitman JW, Bugiani M, Brinkman P, Sikkens JJ, Lavell HAA, Wüst RCI, van Vugt M, Lutter R. Prolonged indoleamine 2,3-dioxygenase-2 activity and associated cellular stress in post-acute sequelae of SARS-CoV-2 infection. EBioMedicine 2023; 94:104729. [PMID: 37506544 PMCID: PMC10406961 DOI: 10.1016/j.ebiom.2023.104729] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Post-acute sequela of SARS-CoV-2 infection (PASC) encompass fatigue, post-exertional malaise and cognitive problems. The abundant expression of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase-2 (IDO2) in fatal/severe COVID-19, led us to determine, in an exploratory observational study, whether IDO2 is expressed and active in PASC, and may correlate with pathophysiology. METHODS Plasma or serum, and peripheral blood mononuclear cells (PBMC) were obtained from well-characterized PASC patients and SARS-CoV-2-infected individuals without PASC. We assessed tryptophan and its degradation products by UPLC-MS/MS. IDO2 activity, its potential consequences, and the involvement of the aryl hydrocarbon receptor (AHR) in IDO2 expression were determined in PBMC from another PASC cohort by immunohistochemistry (IHC) for IDO2, IDO1, AHR, kynurenine metabolites, autophagy, and apoptosis. These PBMC were also analyzed by metabolomics and for mitochondrial functioning by respirometry. IHC was also performed on autopsy brain material from two PASC patients. FINDINGS IDO2 is expressed and active in PBMC from PASC patients, as well as in brain tissue, long after SARS-CoV-2 infection. This is paralleled by autophagy, and in blood cells by reduced mitochondrial functioning, reduced intracellular levels of amino acids and Krebs cycle-related compounds. IDO2 expression and activity is triggered by SARS-CoV-2-infection, but the severity of SARS-CoV-2-induced pathology appears related to the generated specific kynurenine metabolites. Ex vivo, IDO2 expression and autophagy can be halted by an AHR antagonist. INTERPRETATION SARS-CoV-2 infection triggers long-lasting IDO2 expression, which can be halted by an AHR antagonist. The specific kynurenine catabolites may relate to SARS-CoV-2-induced symptoms and pathology. FUNDING None.
Collapse
Affiliation(s)
- Lihui Guo
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Brent Appelman
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Kirsten Mooij-Kalverda
- Department Pulmonary Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Frédéric M Vaz
- Core Facility Metabolomics, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands
| | - Annemiek Dijkhuis
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Tamara Dekker
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Barbara S Smids
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Jan Willem Duitman
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department Pulmonary Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Paul Brinkman
- Department Pulmonary Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Jonne J Sikkens
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - H A Ayesha Lavell
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Rob C I Wüst
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Michèle van Vugt
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - René Lutter
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department Pulmonary Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
10
|
He G, Cao Y, Ma H, Guo S, Xu W, Wang D, Chen Y, Wang H. Causal Effects between Gut Microbiome and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Two-Sample Mendelian Randomization Study. Front Microbiol 2023; 14:1190894. [PMID: 37485509 PMCID: PMC10359717 DOI: 10.3389/fmicb.2023.1190894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background Evidence from previous studies have implicated an important association between gut microbiota (GM) and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), but whether there is a definite causal relationship between GM and ME/CFS has not been elucidated. Method This study obtained instrumental variables of 211 GM taxa from the Genome Wide Association Study (GWAS), and mendelian randomization (MR) study was carried out to assess the effect of gut microbiota on ME/CFS risk from UK Biobank GWAS (2076 ME/CFS cases and 460,857 controls). Inverse variance weighted (IVW) was the primary method to analyze causality in this study, and a series of sensitivity analyses was performed to validate the robustness of the results. Results The inverse variance weighted (IVW) method indicated that genus Paraprevotella (OR:1.001, 95%CI:1.000-1.003, value of p < 0.05) and Ruminococca- ceae_UCG_014 (OR 1.003, 95% CI 1.000 to 1.005, value of p < 0.05) were positively associated with ME/CFS risk. Results from the weighted median method supported genus Paraprevotella (OR 1.003, 95% CI 1.000 to 1.005, value of p < 0.05) as a risk factor for ME/CFS. Conclusion This study reveals a causal relationship between genus paraprevotella, genus Ruminococcaceae_UCG_014 and ME/CFS, and our findings provide novel insights for further elucidating the developmental mechanisms mediated by the gut microbiota of ME/CFS.
Collapse
Affiliation(s)
- Gang He
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
| | - Yu Cao
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
| | - Honghao Ma
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
| | - Siran Guo
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Wangzi Xu
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
| | - Dai Wang
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
| | - Yongquan Chen
- Department of Clinical Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Houzhao Wang
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
- Department of Clinical Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
11
|
Nunes JM, Kell DB, Pretorius E. Cardiovascular and haematological pathology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A role for viruses. Blood Rev 2023; 60:101075. [PMID: 36963989 PMCID: PMC10027292 DOI: 10.1016/j.blre.2023.101075] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
ME/CFS is a debilitating chronic condition that often develops after viral or bacterial infection. Insight from the study of Long COVID/Post Acute Sequelae of COVID-19 (PASC), the post-viral syndrome associated with SARS-CoV-2 infection, might prove to be useful for understanding pathophysiological mechanisms of ME/CFS. Disease presentation is similar between the two conditions, and a subset of Long COVID patients meet the diagnostic criteria for ME/CFS. Since Long COVID is characterized by significant vascular pathology - including endothelial dysfunction, coagulopathy, and vascular dysregulation - the question of whether or not the same biological abnormalities are of significance in ME/CFS arises. Cardiac abnormalities have for a while now been documented in ME/CFS cohorts, with recent studies demonstrating major deficits in cerebral blood flow, and hence vascular dysregulation. A growing body of research is demonstrating that ME/CFS is accompanied by platelet hyperactivation, anomalous clotting, a procoagulant phenotype, and endothelial dysfunction. Endothelial damage and dysregulated clotting can impair substance exchange between blood and tissues, and result in hypoperfusion, which may contribute to the manifestation of certain ME/CFS symptoms. Here we review the ME/CFS literature to summarize cardiovascular and haematological findings documented in patients with the condition, and, in this context, briefly discuss the potential role of previously-implicated pathogens. Overall, cardiac and haematological abnormalities are present within ME/CFS cohorts. While atherosclerotic heart disease is not significantly associated with ME/CFS, suboptimal cardiovascular function defined by reduced cardiac output, impaired cerebral blood flow, and vascular dysregulation are, and these abnormalities do not appear to be influenced by deconditioning. Rather, these cardiac abnormalities may result from dysfunction in the (autonomic) nervous system. Plenty of recently published studies are demonstrating significant platelet hyperactivity and endothelial dysfunction in ME/CFS, as well as anomalous clotting processes. It is of particular importance to determine to what extent these cardiovascular and haematological abnormalities contribute to symptom severity, and if these two systems can be targeted for therapeutic purposes. Viral reservoirs of herpesviruses exist in ME/CFS, and most likely contribute to cardiovascular and haematological dysfunction directly or indirectly. This review highlights the potential of studying cardiac functioning, the vasculature, and coagulation system in ME/CFS.
Collapse
Affiliation(s)
- Jean M Nunes
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK; The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK.
| |
Collapse
|
12
|
Naviaux RK. Mitochondrial and metabolic features of salugenesis and the healing cycle. Mitochondrion 2023; 70:131-163. [PMID: 37120082 DOI: 10.1016/j.mito.2023.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Pathogenesis and salugenesis are the first and second stages of the two-stage problem of disease production and health recovery. Salugenesis is the automatic, evolutionarily conserved, ontogenetic sequence of molecular, cellular, organ system, and behavioral changes that is used by living systems to heal. It is a whole-body process that begins with mitochondria and the cell. The stages of salugenesis define a circle that is energy- and resource-consuming, genetically programmed, and environmentally responsive. Energy and metabolic resources are provided by mitochondrial and metabolic transformations that drive the cell danger response (CDR) and create the three phases of the healing cycle: Phase 1-Inflammation, Phase 2-Proliferation, and Phase 3-Differentiation. Each phase requires a different mitochondrial phenotype. Without different mitochondria there can be no healing. The rise and fall of extracellular ATP (eATP) signaling is a key driver of the mitochondrial and metabolic reprogramming required to progress through the healing cycle. Sphingolipid and cholesterol-enriched membrane lipid rafts act as rheostats for tuning cellular sensitivity to purinergic signaling. Abnormal persistence of any phase of the CDR inhibits the healing cycle, creates dysfunctional cellular mosaics, causes the symptoms of chronic disease, and accelerates the process of aging. New research reframes the rising tide of chronic disease around the world as a systems problem caused by the combined action of pathogenic triggers and anthropogenic factors that interfere with the mitochondrial functions needed for healing. Once chronic pain, disability, or disease is established, salugenesis-based therapies will start where pathogenesis-based therapies end.
Collapse
Affiliation(s)
- Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, Departments of Medicine, and Pediatrics, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, MC#8467, San Diego, CA 92103.
| |
Collapse
|
13
|
Rodriguez L, Pou C, Lakshmikanth T, Zhang J, Mugabo CH, Wang J, Mikes J, Olin A, Chen Y, Rorbach J, Juto JE, Li TQ, Julin P, Brodin P. Achieving symptom relief in patients with myalgic encephalomyelitis by targeting the neuro-immune interface and optimizing disease tolerance. OXFORD OPEN IMMUNOLOGY 2023; 4:iqad003. [PMID: 37255930 PMCID: PMC10148714 DOI: 10.1093/oxfimm/iqad003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 06/01/2023] Open
Abstract
Myalgic encephalomyelitis (ME) previously also known as chronic fatigue syndrome is a heterogeneous, debilitating syndrome of unknown etiology responsible for long-lasting disability in millions of patients worldwide. The most well-known symptom of ME is post-exertional malaise, but many patients also experience autonomic dysregulation, cranial nerve dysfunction and signs of immune system activation. Many patients also report a sudden onset of disease following an infection. The brainstem is a suspected focal point in ME pathogenesis and patients with structural impairment to the brainstem often show ME-like symptoms. The brainstem is also where the vagus nerve originates, a critical neuro-immune interface and mediator of the inflammatory reflex which regulate systemic inflammation. Here, we report the results of a randomized, placebo-controlled trial using intranasal mechanical stimulation targeting nerve endings in the nasal cavity, likely from the trigeminal nerve, possibly activating additional centers in the brainstem of ME patients and correlating with a ∼30% reduction in overall symptom scores after 8 weeks of treatment. By performing longitudinal, systems-level monitoring of the blood immune system in these patients, we uncover signs of chronic immune activation in ME, as well as immunological correlates of improvement that center around gut-homing immune cells and reduced inflammation. The mechanisms of symptom relief remain to be determined, but transcriptional analyses suggest an upregulation of disease tolerance mechanisms. We believe that these results are suggestive of ME as a condition explained by a maladaptive disease tolerance response following infection.
Collapse
Affiliation(s)
- Lucie Rodriguez
- Department of Women’s and Children’s Health, Karolinska Institutet, Solna 17121, Sweden
| | | | | | - Jingdian Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna 17176, Sweden
- Max Planck Institute Biology of Ageing—Karolinska Institutet Laboratory, Karolinska Institutet, Solna 17176, Sweden
| | | | - Jun Wang
- Department of Women’s and Children’s Health, Karolinska Institutet, Solna 17121, Sweden
| | - Jaromir Mikes
- Department of Women’s and Children’s Health, Karolinska Institutet, Solna 17121, Sweden
| | - Axel Olin
- Department of Women’s and Children’s Health, Karolinska Institutet, Solna 17121, Sweden
| | - Yang Chen
- Department of Women’s and Children’s Health, Karolinska Institutet, Solna 17121, Sweden
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna 17176, Sweden
- Max Planck Institute Biology of Ageing—Karolinska Institutet Laboratory, Karolinska Institutet, Solna 17176, Sweden
| | - Jan-Erik Juto
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Solna 17177, Sweden
| | - Tie Qiang Li
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Solna 17177, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna 17176, Sweden
| | - Per Julin
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna 17176, Sweden
- Neurological Rehabilitation Clinic, Stora Sköndal, Sköndal 12864, Sweden
| | | |
Collapse
|
14
|
Tate WP, Walker MOM, Peppercorn K, Blair ALH, Edgar CD. Towards a Better Understanding of the Complexities of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Long COVID. Int J Mol Sci 2023; 24:ijms24065124. [PMID: 36982194 PMCID: PMC10048882 DOI: 10.3390/ijms24065124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex condition arising in susceptible people, predominantly following viral infection, but also other stressful events. The susceptibility factors discussed here are both genetic and environmental although not well understood. While the dysfunctional physiology in ME/CFS is becoming clearer, understanding has been hampered by different combinations of symptoms in each affected person. A common core set of mainly neurological symptoms forms the modern clinical case definition, in the absence of an accessible molecular diagnostic test. This landscape has prompted interest in whether ME/CFS patients can be classified into a particular phenotype/subtype that might assist better management of their illness and suggest preferred therapeutic options. Currently, the same promising drugs, nutraceuticals, or behavioral therapies available can be beneficial, have no effect, or be detrimental to each individual patient. We have shown that individuals with the same disease profile exhibit unique molecular changes and physiological responses to stress, exercise and even vaccination. Key features of ME/CFS discussed here are the possible mechanisms determining the shift of an immune/inflammatory response from transient to chronic in ME/CFS, and how the brain and CNS manifests the neurological symptoms, likely with activation of its specific immune system and resulting neuroinflammation. The many cases of the post viral ME/CFS-like condition, Long COVID, following SARS-CoV-2 infection, and the intense research interest and investment in understanding this condition, provide exciting opportunities for the development of new therapeutics that will benefit ME/CFS patients.
Collapse
Affiliation(s)
- Warren P Tate
- Department of Biochemistry, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Max O M Walker
- Department of Biochemistry, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Katie Peppercorn
- Department of Biochemistry, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Anna L H Blair
- Department of Biochemistry, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Christina D Edgar
- Department of Biochemistry, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
15
|
Ciapała K, Pawlik K, Ciechanowska A, Mika J, Rojewska E. Effect of pharmacological modulation of the kynurenine pathway on pain-related behavior and opioid analgesia in a mouse model of neuropathic pain. Toxicol Appl Pharmacol 2023; 461:116382. [PMID: 36681127 DOI: 10.1016/j.taap.2023.116382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/26/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Dysfunction of the central nervous system are accompanied by changes in tryptophan metabolism, with the kynurenine pathway (KP) being the main route of its catabolism. Recently, KP metabolites, which are collectively called kynurenines, have become an area of intense research due to their ability to directly and indirectly affect a variety of classic neurotransmitter systems. However, the significance of KP in neuropathic pain is still poorly understood. Therefore, we designed several experiments to verify changes in the mRNA levels of KP enzymes in parallel with other factors related to this metabolic route after chronic constriction injury of the sciatic nerve (CCI model) in mice. The analysis revealed an increase in, Kmo, Kynu and Haoo mRNA levels in the spinal cord on the 7th day after CCI, while Kat1, Kat2, Tdo2, Ido2 and Qprt mRNA levels remain unchanged. Subsequent pharmacological studies provided evidence that modulation of KP by single intrathecal administration of 1-D-MT, UPF468 or L-kynurenine attenuates mechanical and thermal hypersensitivity and increases the effectiveness of selected opioids in mice as measured on day 7 after CCI. Moreover, our results provide the first evidence that the injection of L-kynurenine preceded by UPF468 (KMO inhibitor) is more effective at reducing hypersensitivity in animals with neuropathic pain. Importantly, L-kynurenine also exerts an analgesic effect after intravenous injections, which is enhanced by the administration of minocycline, an inhibitor of microglial activation. Additionally, L-kynurenine administered intrathecally and intravenously enhances analgesia evoked by all tested opioids (morphine, buprenorphine and oxycodone). Overall, our results indicate that the modulation of KP at different levels might be a new pharmacological tool in neuropathy management.
Collapse
Affiliation(s)
- Katarzyna Ciapała
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Katarzyna Pawlik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Agata Ciechanowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Ewelina Rojewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland.
| |
Collapse
|
16
|
Kavyani B, Lidbury BA, Schloeffel R, Fisher PR, Missailidis D, Annesley SJ, Dehhaghi M, Heng B, Guillemin GJ. Could the kynurenine pathway be the key missing piece of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) complex puzzle? Cell Mol Life Sci 2022; 79:412. [PMID: 35821534 PMCID: PMC9276562 DOI: 10.1007/s00018-022-04380-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/14/2022] [Indexed: 11/03/2022]
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex and debilitating disease with a substantial social and economic impact on individuals and their community. Despite its importance and deteriorating impact, progresses in diagnosis and treatment of ME/CFS is limited. This is due to the unclear pathophysiology of the disease and consequently lack of prognostic biomarkers. To investigate pathophysiology of ME/CFS, several potential pathologic hallmarks have been investigated; however, these studies have failed to report a consistent result. These failures in introducing the underlying reason for ME/CFS have stimulated considering other possible contributing mechanisms such as tryptophan (TRP) metabolism and in particular kynurenine pathway (KP). KP plays a central role in cellular energy production through the production of nicotinamide adenine dinucleotide (NADH). In addition, this pathway has been shown to mediate immune response and neuroinflammation through its metabolites. This review, we will discuss the pathology and management of ME/CFS and provide evidence pertaining KP abnormalities and symptoms that are classic characteristics of ME/CFS. Targeting the KP regulation may provide innovative approaches to the management of ME/CFS.
Collapse
Affiliation(s)
- Bahar Kavyani
- Neuroinflammation Group, Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Brett A Lidbury
- The National Centre for Epidemiology and Population Health, RSPH, College of Health and Medicine, The Australian National University, Canberra, ACT, 2601, Australia
| | - Richard Schloeffel
- Neuroinflammation Group, Department of Biomedical Sciences, Macquarie University, Sydney, Australia
- The Grove Health Pymble, Sydney, NSW, Australia
| | - Paul R Fisher
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| | - Daniel Missailidis
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| | - Sarah J Annesley
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| | - Mona Dehhaghi
- Neuroinflammation Group, Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Department of Biomedical Sciences, Macquarie University, Sydney, Australia.
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia.
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Macquarie University, Sydney, Australia.
- Pandis.org, Melbourne, Australia.
| |
Collapse
|
17
|
Tate W, Walker M, Sweetman E, Helliwell A, Peppercorn K, Edgar C, Blair A, Chatterjee A. Molecular Mechanisms of Neuroinflammation in ME/CFS and Long COVID to Sustain Disease and Promote Relapses. Front Neurol 2022; 13:877772. [PMID: 35693009 PMCID: PMC9174654 DOI: 10.3389/fneur.2022.877772] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a disease now well-documented as having arisen commonly from a viral infection, but also from other external stressors, like exposure to agricultural chemicals, other types of infection, surgery, or other severe stress events. Research has shown these events produce a systemic molecular inflammatory response and chronic immune activation and dysregulation. What has been more difficult to establish is the hierarchy of the physiological responses that give rise to the myriad of symptoms that ME/CFS patients experience, and why they do not resolve and are generally life-long. The severity of the symptoms frequently fluctuates through relapse recovery periods, with brain-centered symptoms of neuroinflammation, loss of homeostatic control, "brain fog" affecting cognitive ability, lack of refreshing sleep, and poor response to even small stresses. How these brain effects develop with ME/CFS from the initiating external effector, whether virus or other cause, is poorly understood and that is what our paper aims to address. We propose the hypothesis that following the initial stressor event, the subsequent systemic pathology moves to the brain via neurovascular pathways or through a dysfunctional blood-brain barrier (BBB), resulting in chronic neuroinflammation and leading to a sustained illness with chronic relapse recovery cycles. Signaling through recognized pathways from the brain back to body physiology is likely part of the process by which the illness cycle in the peripheral system is sustained and why healing does not occur. By contrast, Long COVID (Post-COVID-19 condition) is a very recent ME/CFS-like illness arising from the single pandemic virus, SARS-CoV-2. We believe the ME/CFS-like ongoing effects of Long COVID are arising by very similar mechanisms involving neuroinflammation, but likely with some unique signaling, resulting from the pathology of the initial SARS-CoV-2 infection. The fact that there are very similar symptoms in both ongoing diseases, despite the diversity in the nature of the initial stressors, supports the concept of a similar dysfunctional CNS component common to both.
Collapse
Affiliation(s)
- Warren Tate
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Max Walker
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Eiren Sweetman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Amber Helliwell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Katie Peppercorn
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Christina Edgar
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Anna Blair
- Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
18
|
Renz-Polster H, Tremblay ME, Bienzle D, Fischer JE. The Pathobiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The Case for Neuroglial Failure. Front Cell Neurosci 2022; 16:888232. [PMID: 35614970 PMCID: PMC9124899 DOI: 10.3389/fncel.2022.888232] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
Although myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) has a specific and distinctive profile of clinical features, the disease remains an enigma because causal explanation of the pathobiological matrix is lacking. Several potential disease mechanisms have been identified, including immune abnormalities, inflammatory activation, mitochondrial alterations, endothelial and muscular disturbances, cardiovascular anomalies, and dysfunction of the peripheral and central nervous systems. Yet, it remains unclear whether and how these pathways may be related and orchestrated. Here we explore the hypothesis that a common denominator of the pathobiological processes in ME/CFS may be central nervous system dysfunction due to impaired or pathologically reactive neuroglia (astrocytes, microglia and oligodendrocytes). We will test this hypothesis by reviewing, in reference to the current literature, the two most salient and widely accepted features of ME/CFS, and by investigating how these might be linked to dysfunctional neuroglia. From this review we conclude that the multifaceted pathobiology of ME/CFS may be attributable in a unifying manner to neuroglial dysfunction. Because the two key features - post exertional malaise and decreased cerebral blood flow - are also recognized in a subset of patients with post-acute sequelae COVID, we suggest that our findings may also be pertinent to this entity.
Collapse
Affiliation(s)
- Herbert Renz-Polster
- Division of General Medicine, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPD-BW), University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec, Université Laval, Quebec, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Quebec, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Dorothee Bienzle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Joachim E. Fischer
- Division of General Medicine, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPD-BW), University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
19
|
König RS, Albrich WC, Kahlert CR, Bahr LS, Löber U, Vernazza P, Scheibenbogen C, Forslund SK. The Gut Microbiome in Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS). Front Immunol 2022; 12:628741. [PMID: 35046929 PMCID: PMC8761622 DOI: 10.3389/fimmu.2021.628741] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Myalgic encephalomyelitis (ME) or Chronic Fatigue Syndrome (CFS) is a neglected, debilitating multi-systemic disease without diagnostic marker or therapy. Despite evidence for neurological, immunological, infectious, muscular and endocrine pathophysiological abnormalities, the etiology and a clear pathophysiology remains unclear. The gut microbiome gained much attention in the last decade with manifold implications in health and disease. Here we review the current state of knowledge on the interplay between ME/CFS and the microbiome, to identify potential diagnostic or interventional approaches, and propose areas where further research is needed. We iteratively selected and elaborated on key theories about a correlation between microbiome state and ME/CFS pathology, developing further hypotheses. Based on the literature we hypothesize that antibiotic use throughout life favours an intestinal microbiota composition which might be a risk factor for ME/CFS. Main proposed pathomechanisms include gut dysbiosis, altered gut-brain axis activity, increased gut permeability with concomitant bacterial translocation and reduced levels of short-chain-fatty acids, D-lactic acidosis, an abnormal tryptophan metabolism and low activity of the kynurenine pathway. We review options for microbiome manipulation in ME/CFS patients including probiotic and dietary interventions as well as fecal microbiota transplantations. Beyond increasing gut permeability and bacterial translocation, specific dysbiosis may modify fermentation products, affecting peripheral mitochondria. Considering the gut-brain axis we strongly suspect that the microbiome may contribute to neurocognitive impairments of ME/CFS patients. Further larger studies are needed, above all to clarify whether D-lactic acidosis and early-life antibiotic use may be part of ME/CFS etiology and what role changes in the tryptophan metabolism might play. An association between the gut microbiome and the disease ME/CFS is plausible. As causality remains unclear, we recommend longitudinal studies. Activity levels, bedridden hours and disease progression should be compared to antibiotic exposure, drug intakes and alterations in the composition of the microbiota. The therapeutic potential of fecal microbiota transfer and of targeted dietary interventions should be systematically evaluated.
Collapse
Affiliation(s)
- Rahel S König
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Werner C Albrich
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Christian R Kahlert
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Lina Samira Bahr
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Löber
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany.,Host-Microbiome Factors in Cardiovascular Disease, Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Pietro Vernazza
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sofia K Forslund
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany.,Host-Microbiome Factors in Cardiovascular Disease, Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| |
Collapse
|
20
|
Stanculescu D, Sepúlveda N, Lim CL, Bergquist J. Lessons From Heat Stroke for Understanding Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Neurol 2021; 12:789784. [PMID: 34966354 PMCID: PMC8710546 DOI: 10.3389/fneur.2021.789784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/11/2021] [Indexed: 01/01/2023] Open
Abstract
We here provide an overview of the pathophysiological mechanisms during heat stroke and describe similar mechanisms found in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Both conditions are characterized by disturbed homeostasis in which inflammatory pathways play a central role. Splanchnic vasoconstriction, increased gut permeability, gut-related endotoxemia, systemic inflammatory response, central nervous system dysfunction, blood coagulation disorder, endothelial-cell injury, and mitochondrial dysfunction underlie heat stroke. These mechanisms have also been documented in ME/CFS. Moreover, initial transcriptomic studies suggest that similar gene expressions are altered in both heat stroke and ME/CFS. Finally, some predisposing factors for heat stroke, such as pre-existing inflammation or infection, overlap with those for ME/CFS. Notwithstanding important differences - and despite heat stroke being an acute condition - the overlaps between heat stroke and ME/CFS suggest common pathways in the physiological responses to very different forms of stressors, which are manifested in different clinical outcomes. The human studies and animal models of heat stroke provide an explanation for the self-perpetuation of homeostatic imbalance centered around intestinal wall injury, which could also inform the understanding of ME/CFS. Moreover, the studies of novel therapeutics for heat stroke might provide new avenues for the treatment of ME/CFS. Future research should be conducted to investigate the similarities between heat stroke and ME/CFS to help identify the potential treatments for ME/CFS.
Collapse
Affiliation(s)
| | - Nuno Sepúlveda
- CEAUL—Centro de Estatística e Aplicações da Universidade de Lisboa, Lisbon, Portugal
- Department of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Chin Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry—BMC, Uppsala University, Uppsala, Sweden
- The ME/CFS Collaborative Research Center at Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Mangge H, Herrmann M, Meinitzer A, Pailer S, Curcic P, Sloup Z, Holter M, Prüller F. Increased Kynurenine Indicates a Fatal Course of COVID-19. Antioxidants (Basel) 2021; 10:1960. [PMID: 34943063 PMCID: PMC8750518 DOI: 10.3390/antiox10121960] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
(1) Background: An inefficient immune response accompanied by an overwhelming inflammatory reaction is involved in severe courses of COVID-19. Kynurenine (KYN) has important immune-modulatory functions and may contribute to a failure in controlling SARS-CoV-2. The present study aims to explore biomarkers that hint at a fatal outcome of COVID-19 early on. (2) Methods: We established a cohort of 148 hospitalized COVID-19 patients for this study. Thirty-one patients died due to a severe COVID-19 course, and 117 recovered within 90 days. We built a biobank by collecting left-over material from these patients whenever blood arrived at the central laboratory of our University hospital for analysis of routine markers. The scientific laboratory analysis comprised KYN, Tryptophan (TRP), KYN/TRP ratio, ferritin, interleukin-6 (IL-6), C-reactive protein (CRP), creatinine, N-terminal pro-natriuretic peptide (NTproBNP), troponin T (TnT), fibrinogen, D-Dimer, prothrombin time (PT), activated partial thromboplastin time (aPTT), antithrombin (AT), protein C, protein S, factor XIII, lupus aPTT, angiotensin-2, vitamin D metabolites, and telomeres in all COVID-19 patients. Basic clinical characteristics and anteceding diseases including cardiovascular, oncologic, renal, hypertension, pulmonary, metabolic (diabetes, obesity) were recorded in a database together with the laboratory data. (3) Results: At the time of diagnosis of SARS-CoV-2 infection those patients who deceased within 90 days afterwards due to COVID-19, had a significantly higher age, higher KYN, KYN/TRP ratio, ferritin, creatinine, and NTproBNP values than SARS-CoV-2 patients who survived COVID-19 along the same time span. In a Kaplan-Meier analysis the variables age, KYN, ferritin, D-Dimer, TnT, NTproBNP, and creatinine showed a significant influence on survival time. Gender, however, showed no influence. In a combined Cox regression analysis KYN had the highest hazard ratio (1.188, 95% CI: 1.071-1.319) followed by age (1.041, 95% CI: 1.011-1.073). In a ROC analysis, KYN values above the cut off limit of 4.82 nmol/l (as specified by Youden index) had a sensitivity of 82% (95% CI: 66-95%) and a specificity of 72% (95% CI: 65-82%) to predict COVID-19 related death within 90 days observation time. (4) Conclusions: Kynurenine is a promising blood biomarker to predict an increased risk of mortality in SARS-CoV-2 infected people already at the time of the first positive SARS-CoV-2 verification detected in these persons.
Collapse
Affiliation(s)
- Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (M.H.); (A.M.); (S.P.); (P.C.); (Z.S.); (F.P.)
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (M.H.); (A.M.); (S.P.); (P.C.); (Z.S.); (F.P.)
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (M.H.); (A.M.); (S.P.); (P.C.); (Z.S.); (F.P.)
| | - Sabine Pailer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (M.H.); (A.M.); (S.P.); (P.C.); (Z.S.); (F.P.)
| | - Pero Curcic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (M.H.); (A.M.); (S.P.); (P.C.); (Z.S.); (F.P.)
| | - Zdenka Sloup
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (M.H.); (A.M.); (S.P.); (P.C.); (Z.S.); (F.P.)
| | - Magdalena Holter
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria;
| | - Florian Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (M.H.); (A.M.); (S.P.); (P.C.); (Z.S.); (F.P.)
| |
Collapse
|
22
|
The Kynurenine Pathway as a Potential Target for Neuropathic Pain Therapy Design: From Basic Research to Clinical Perspectives. Int J Mol Sci 2021; 22:ijms222011055. [PMID: 34681715 PMCID: PMC8537209 DOI: 10.3390/ijms222011055] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence suggests the key role of the kynurenine pathway (KP) of the tryptophan metabolism in the pathogenesis of several diseases. Despite extensive research aimed at clarifying the mechanisms underlying the development and maintenance of neuropathic pain, the roles of KP metabolites in this process are still not fully known. Although the function of the peripheral KP has been known for several years, it has only recently been acknowledged that its metabolites within the central nervous system have remarkable consequences related to physiology and behavior. Both the products and metabolites of the KP are involved in the pathogenesis of pain conditions. Apart from the neuroactive properties of kynurenines, the KP regulates several neurotransmitter systems in direct or indirect ways. Some neuroactive metabolites are known to have neuroprotective properties (kynurenic acid, nicotinamide adenine dinucleotide cofactor), while others are toxic (3-hydroxykynurenine, quinolinic acid). Numerous animal models show that modulation of the KP may turn out to be a viable target for the treatment of diseases. Importantly, some compounds that affect KP enzymes are currently described to possess analgesic properties. Additionally, kynurenine metabolites may be useful for assessing response to therapy or as biomarkers in therapeutic monitoring. The following review describes the molecular site of action and changes in the levels of metabolites of the kynurenine pathway in the pathogenesis of various conditions, with a particular emphasis on their involvement in neuropathy. Moreover, the potential clinical implications of KP modulation in chronic pain therapy as well as the directions of new research initiatives are discussed.
Collapse
|
23
|
Kang JY, Kim DY, Lee JS, Hwang SJ, Kim GH, Hyun SH, Son CG. Korean Red Ginseng Ameliorates Fatigue via Modulation of 5-HT and Corticosterone in a Sleep-Deprived Mouse Model. Nutrients 2021; 13:3121. [PMID: 34578998 PMCID: PMC8469198 DOI: 10.3390/nu13093121] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 01/01/2023] Open
Abstract
Central fatigue, which is neuromuscular dysfunction associated with neurochemical alterations, is an important clinical issue related to pathologic fatigue. This study aimed to investigate the anti-central fatigue effect of Korean red ginseng (KRG) and its underlying mechanism. Male BALB/c mice (8 weeks old) were subjected to periodic sleep deprivation (SD) for 6 cycles (forced wakefulness for 2 days + 1 normal day per cycle). Simultaneously, the mice were administered KRG (0, 100, 200, or 400 mg/kg) or ascorbic acid (100 mg/kg). After all cycles, the rotarod and grip strength tests were performed, and then the changes regarding stress- and neurotransmitter-related parameters in serum and brain tissue were evaluated. Six cycles of SD notably deteriorated exercise performance in both the rotarod and grip strength tests, while KRG administration significantly ameliorated these alterations. KRG also significantly attenuated the SD-induced depletion of serum corticosterone. The levels of main neurotransmitters related to the sleep/wake cycle were markedly altered (serotonin was overproduced while dopamine levels were decreased) by SD, and KRG significantly attenuated these alterations through relevant molecules including brain-derived neurotropic factor and serotonin transporter. This study demonstrated the anti-fatigue effects of KRG in an SD mouse model, indicating the clinical relevance of KRG.
Collapse
Affiliation(s)
- Ji-Yun Kang
- Institute of Bioscience & Integrative Medicine, Daejeon Oriental Hospital of Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea; (J.-Y.K.); (J.-S.L.); (S.-J.H.)
| | - Do-Young Kim
- Department of Korean Medicine, Korean Medical College of Daejeon University, 62, Daehak-ro, Dong-gu, Daejeon 34520, Korea; (D.-Y.K.); (G.-H.K.)
| | - Jin-Seok Lee
- Institute of Bioscience & Integrative Medicine, Daejeon Oriental Hospital of Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea; (J.-Y.K.); (J.-S.L.); (S.-J.H.)
| | - Seung-Ju Hwang
- Institute of Bioscience & Integrative Medicine, Daejeon Oriental Hospital of Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea; (J.-Y.K.); (J.-S.L.); (S.-J.H.)
| | - Geon-Ho Kim
- Department of Korean Medicine, Korean Medical College of Daejeon University, 62, Daehak-ro, Dong-gu, Daejeon 34520, Korea; (D.-Y.K.); (G.-H.K.)
| | - Sun-Hee Hyun
- R&D Headquarters, Korean Ginseng cooperation, Daejeon 34337, Korea;
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon Oriental Hospital of Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea; (J.-Y.K.); (J.-S.L.); (S.-J.H.)
| |
Collapse
|
24
|
Stanculescu D, Larsson L, Bergquist J. Theory: Treatments for Prolonged ICU Patients May Provide New Therapeutic Avenues for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Front Med (Lausanne) 2021; 8:672370. [PMID: 34026797 PMCID: PMC8137963 DOI: 10.3389/fmed.2021.672370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
We here provide an overview of treatment trials for prolonged intensive care unit (ICU) patients and theorize about their relevance for potential treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Specifically, these treatment trials generally target: (a) the correction of suppressed endocrine axes, notably through a "reactivation" of the pituitary gland's pulsatile secretion of tropic hormones, or (b) the interruption of the "vicious circle" between inflammation, oxidative and nitrosative stress (O&NS), and low thyroid hormone function. There are significant parallels in the treatment trials for prolonged critical illness and ME/CFS; this is consistent with the hypothesis of an overlap in the mechanisms that prevent recovery in both conditions. Early successes in the simultaneous reactivation of pulsatile pituitary secretions in ICU patients-and the resulting positive metabolic effects-could indicate an avenue for treating ME/CFS. The therapeutic effects of thyroid hormones-including in mitigating O&NS and inflammation and in stimulating the adreno-cortical axis-also merit further studies. Collaborative research projects should further investigate the lessons from treatment trials for prolonged critical illness for solving ME/CFS.
Collapse
Affiliation(s)
| | - Lars Larsson
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry–Biomedical Center, Uppsala University, Uppsala, Sweden
- The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Extremely Severe ME/CFS-A Personal Account. Healthcare (Basel) 2021; 9:healthcare9050504. [PMID: 33925566 PMCID: PMC8145314 DOI: 10.3390/healthcare9050504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/28/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
A personal account from an Extremely Severe Bedridden ME/CFS patient about the experience of living with extremely severe ME/CFS. Illness progression, medical history, description of various aspects of extremely severe ME/CFS and various essays on specific experiences are included.
Collapse
|
26
|
Stanculescu D, Larsson L, Bergquist J. Hypothesis: Mechanisms That Prevent Recovery in Prolonged ICU Patients Also Underlie Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Front Med (Lausanne) 2021; 8:628029. [PMID: 33585528 PMCID: PMC7876311 DOI: 10.3389/fmed.2021.628029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Here the hypothesis is advanced that maladaptive mechanisms that prevent recovery in some intensive care unit (ICU) patients may also underlie Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Specifically, these mechanisms are: (a) suppression of the pituitary gland's pulsatile secretion of tropic hormones, and (b) a "vicious circle" between inflammation, oxidative and nitrosative stress (O&NS), and low thyroid hormone function. This hypothesis should be investigated through collaborative research projects.
Collapse
Affiliation(s)
| | - Lars Larsson
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry – Biomedical Center, Uppsala University, Uppsala, Sweden
- The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Lidbury BA, Fisher PR. Biomedical Insights that Inform the Diagnosis of ME/CFS. Diagnostics (Basel) 2020; 10:diagnostics10020092. [PMID: 32046358 PMCID: PMC7168303 DOI: 10.3390/diagnostics10020092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
It is well known that myalgic encephalomyelitis (ME) and chronic fatigue syndrome (CFS) [...].
Collapse
Affiliation(s)
- Brett A. Lidbury
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, ACT 2601, Australia
- Correspondence:
| | - Paul R. Fisher
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia;
| |
Collapse
|
28
|
Kim DY, Lee JS, Son CG. Systematic review of randomized controlled trials for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). J Clin Med 2020; 18:7. [PMID: 31906979 PMCID: PMC7692998 DOI: 10.3390/jcm9113463] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 10/24/2020] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Although medical requirements are urgent, no effective intervention has been proven for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). To facilitate the development of new therapeutics, we systematically reviewed the randomized controlled trials (RCTs) for CFS/ME to date. METHODS RCTs targeting CFS/ME were surveyed using two electronic databases, PubMed and the Cochrane library, through April 2019. We included only RCTs that targeted fatigue-related symptoms, and we analyzed the data in terms of the characteristics of the participants, case definitions, primary measurements, and interventions with overall outcomes. RESULTS Among 513 potentially relevant articles, 55 RCTs met our inclusion criteria; these included 25 RCTs of 22 different pharmacological interventions, 28 RCTs of 18 non-pharmacological interventions and 2 RCTs of combined interventions. These studies accounted for a total of 6316 participants (1568 males and 4748 females, 5859 adults and 457 adolescents). CDC 1994 (Fukuda) criteria were mostly used for case definitions (42 RCTs, 76.4%), and the primary measurement tools included the Checklist Individual Strength (CIS, 36.4%) and the 36-item Short Form health survey (SF-36, 30.9%). Eight interventions showed statistical significance: 3 pharmacological (Staphypan Berna, Poly(I):poly(C12U) and CoQ10 + NADH) and 5 non-pharmacological therapies (cognitive-behavior-therapy-related treatments, graded-exercise-related therapies, rehabilitation, acupuncture and abdominal tuina). However, there was no definitely effective intervention with coherence and reproducibility. CONCLUSIONS This systematic review integrates the comprehensive features of previous RCTs for CFS/ME and reflects on their limitations and perspectives in the process of developing new interventions.
Collapse
Affiliation(s)
- Do-Young Kim
- Department of Korean Medicine, Korean Medical College of Daejeon University, 62, Daehak-ro, Dong-gu, Daejeon 34520, Korea;
| | - Jin-Seok Lee
- Institute of Bioscience & Integrative Medicine, Dunsan Oriental Hospital of Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea;
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Dunsan Oriental Hospital of Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea;
| |
Collapse
|