1
|
Park J, Lee Y, Lee JY, Kang HY, Kim S, Kim S, Kim BS, Kim DH. Overfeeding in rainbow trout (Oncorhynchus mykiss): Metabolic disruptions, impaired immunity, and increased infection risk. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110224. [PMID: 39988219 DOI: 10.1016/j.fsi.2025.110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
Excess adiposity impairs immune function and host defense in obese individuals, but studies on this concept in fish remain limited. In aquaculture, rapid growth is often encouraged through intensive farming practices, leading to overfeeding and negatively impacting production. This study aimed to induce obesity in rainbow trout through overfeeding, exploring metabolic abnormalities, immune response alterations, and infection susceptibility via transcriptomic and metabolomic analyses. In the overfed group, fish were fed until they refused to eat, while the control group was fed according to recommended feeding rates for four weeks. Sampling was conducted at weeks 1, 2, and 4 for serological, histopathological, metabolomic, and transcriptomic analyses. After four weeks, mortality rates were compared following Aeromonas salmonicida challenge, and immunological changes assessed one day post-infection. Overfed fish exhibited significant increases in weight gain (WG), body mass index (BMI), elevated AST/ALT levels, hepatocyte hypertrophy, lipid droplet formation, and triglyceride accumulation. At 1, 2, and 4 wpf, the overfed group exhibited distinct metabolic changes, with key alterations in glycolysis/gluconeogenesis, lipid metabolism and amino acid metabolism. KEGG analysis of transcriptomic data revealed a significant decrease in complement and coagulation cascades, including C3, FB, FH, an FI, accompanied by heightened TNF and IL-17 signaling pathways, involving the upregulation of genes such as TNF-α, IL-1β, and IL-6, indicating an enhanced inflammatory response. The overfed group experienced higher mortality post-infection. Excess energy from overfeeding led to hepatic fat accumulation, liver damage, and reduced innate immune responses, particularly in complement activation. These physiological disruptions compromised immune function, highlighting the detrimental effects of overfeeding-induced obesity on fish health. This study offers critical insights into the immunological mechanisms linking obesity to increased disease susceptibility.
Collapse
Affiliation(s)
- Jiyeon Park
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Yoonhang Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Ju-Yeop Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Hyo-Young Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Seonghye Kim
- Department of Chemistry, Center for Proteome Biophysics, Chemistry Institute for Functional Materials, Pusan National University, Busan, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, Center for Proteome Biophysics, Chemistry Institute for Functional Materials, Pusan National University, Busan, Republic of Korea
| | - Bo Seong Kim
- Department of Aquatic Life Medicine, College of Ocean & Bioscience, Kunsan National University, Gunsan, 54150, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
2
|
Erb C, Erb C, Kazakov A, Kapanova G, Weisser B. Lifestyle Changes in Aging and their Potential Impact on POAG. Klin Monbl Augenheilkd 2024. [PMID: 39191386 DOI: 10.1055/a-2372-3505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Primary open angle glaucoma is a primary mitochondrial disease with oxidative stress triggering neuroinflammation, eventually resulting in neurodegeneration. This affects many other areas of the brain in addition to the visual system. Aging also leads to inflammaging - a low-grade chronic inflammatory reaction in mitochondrial dysfunction, so these inflammatory processes overlap in the aging process and intensify pathophysiological processes associated with glaucoma. Actively counteracting these inflammatory events involves optimising treatment for any manifest systemic diseases while maintaining chronobiology and improving the microbiome. Physical and mental activity also provides support. This requires a holistic approach towards optimising neurodegeneration treatment in primary open angle glaucoma in addition to reducing intraocular pressure according personalised patient targets.
Collapse
Affiliation(s)
- Carl Erb
- Augenklinik am Wittenbergplatz, Berlin, Deutschland
| | | | - Avaz Kazakov
- External Relations and Development, Salymbekov University, Bishkek, Kyrgyzstan
| | - Gulnara Kapanova
- Medical Faculty of Medicine, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | |
Collapse
|
3
|
Trujillo-Rangel WÁ, Acuña-Vaca S, Padilla-Ponce DJ, García-Mercado FG, Torres-Mendoza BM, Pacheco-Moises FP, Escoto-Delgadillo M, García-Benavides L, Delgado-Lara DLC. Modulation of the Circadian Rhythm and Oxidative Stress as Molecular Targets to Improve Vascular Dementia: A Pharmacological Perspective. Int J Mol Sci 2024; 25:4401. [PMID: 38673986 PMCID: PMC11050388 DOI: 10.3390/ijms25084401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The circadian rhythms generated by the master biological clock located in the brain's hypothalamus influence central physiological processes. At the molecular level, a core set of clock genes interact to form transcription-translation feedback loops that provide the molecular basis of the circadian rhythm. In animal models of disease, a desynchronization of clock genes in peripheral tissues with the central master clock has been detected. Interestingly, patients with vascular dementia have sleep disorders and irregular sleep patterns. These alterations in circadian rhythms impact hormonal levels, cardiovascular health (including blood pressure regulation and blood vessel function), and the pattern of expression and activity of antioxidant enzymes. Additionally, oxidative stress in vascular dementia can arise from ischemia-reperfusion injury, amyloid-beta production, the abnormal phosphorylation of tau protein, and alterations in neurotransmitters, among others. Several signaling pathways are involved in the pathogenesis of vascular dementia. While the precise mechanisms linking circadian rhythms and vascular dementia are still being studied, there is evidence to suggest that maintaining healthy sleep patterns and supporting proper circadian rhythm function may be important for reducing the risk of vascular dementia. Here, we reviewed the main mechanisms of action of molecular targets related to the circadian cycle and oxidative stress in vascular dementia.
Collapse
Affiliation(s)
- Walter Ángel Trujillo-Rangel
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico No. 555, Ejido San José Tateposco, Tonalá 45425, Jalisco, Mexico; (W.Á.T.-R.); (D.J.P.-P.); (F.G.G.-M.); (L.G.-B.)
- Departamento de Formación Universitaria Ciencias de la Salud, Universidad Autónoma de Guadalajara, Av. Patria 1201, Lomas del Valle, Zapopan 45129, Jalisco, Mexico;
| | - Sofía Acuña-Vaca
- Departamento de Formación Universitaria Ciencias de la Salud, Universidad Autónoma de Guadalajara, Av. Patria 1201, Lomas del Valle, Zapopan 45129, Jalisco, Mexico;
| | - Danna Jocelyn Padilla-Ponce
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico No. 555, Ejido San José Tateposco, Tonalá 45425, Jalisco, Mexico; (W.Á.T.-R.); (D.J.P.-P.); (F.G.G.-M.); (L.G.-B.)
| | - Florencia Guillermina García-Mercado
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico No. 555, Ejido San José Tateposco, Tonalá 45425, Jalisco, Mexico; (W.Á.T.-R.); (D.J.P.-P.); (F.G.G.-M.); (L.G.-B.)
| | - Blanca Miriam Torres-Mendoza
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Colonia Independencia, Guadalajara 44340, Jalisco, Mexico; (B.M.T.-M.); (M.E.-D.)
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Colonia Independencia, Guadalajara 44340, Jalisco, Mexico
| | - Fermín P. Pacheco-Moises
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán No. 1421, Guadalajara 44430, Jalisco, Mexico;
| | - Martha Escoto-Delgadillo
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Colonia Independencia, Guadalajara 44340, Jalisco, Mexico; (B.M.T.-M.); (M.E.-D.)
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez No. 2100, Zapopan 45200, Jalisco, Mexico
| | - Leonel García-Benavides
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico No. 555, Ejido San José Tateposco, Tonalá 45425, Jalisco, Mexico; (W.Á.T.-R.); (D.J.P.-P.); (F.G.G.-M.); (L.G.-B.)
| | - Daniela L. C. Delgado-Lara
- Departamento de Formación Universitaria Ciencias de la Salud, Universidad Autónoma de Guadalajara, Av. Patria 1201, Lomas del Valle, Zapopan 45129, Jalisco, Mexico;
| |
Collapse
|
4
|
Lempesis IG, Georgakopoulou VE, Reiter RJ, Spandidos DA. A mid‑pandemic night's dream: Melatonin, from harbinger of anti‑inflammation to mitochondrial savior in acute and long COVID‑19 (Review). Int J Mol Med 2024; 53:28. [PMID: 38299237 PMCID: PMC10852014 DOI: 10.3892/ijmm.2024.5352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
Coronavirus disease 2019 (COVID‑19), a systemic illness caused by severe acute respiratory distress syndrome 2 (SARS‑CoV‑2), has triggered a worldwide pandemic with symptoms ranging from asymptomatic to chronic, affecting practically every organ. Melatonin, an ancient antioxidant found in all living organisms, has been suggested as a safe and effective therapeutic option for the treatment of SARS‑CoV‑2 infection due to its good safety characteristics and broad‑spectrum antiviral medication properties. Melatonin is essential in various metabolic pathways and governs physiological processes, such as the sleep‑wake cycle and circadian rhythms. It exhibits oncostatic, anti‑inflammatory, antioxidant and anti‑aging properties, exhibiting promise for use in the treatment of numerous disorders, including COVID‑19. The preventive and therapeutic effects of melatonin have been widely explored in a number of conditions and have been well‑established in experimental ischemia/reperfusion investigations, particularly in coronary heart disease and stroke. Clinical research evaluating the use of melatonin in COVID‑19 has shown various improved outcomes, including reduced hospitalization durations; however, the trials are small. Melatonin can alleviate mitochondrial dysfunction in COVID‑19, improve immune cell function and provide antioxidant properties. However, its therapeutic potential remains underexplored due to funding limitations and thus further investigations are required.
Collapse
Affiliation(s)
- Ioannis G. Lempesis
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
5
|
Chang YY, Wei AC. Transcriptome and machine learning analysis of the impact of COVID-19 on mitochondria and multiorgan damage. PLoS One 2024; 19:e0297664. [PMID: 38295140 PMCID: PMC10830027 DOI: 10.1371/journal.pone.0297664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
The effects of coronavirus disease 2019 (COVID-19) primarily concern the respiratory tract and lungs; however, studies have shown that all organs are susceptible to infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 may involve multiorgan damage from direct viral invasion through angiotensin-converting enzyme 2 (ACE2), through inflammatory cytokine storms, or through other secondary pathways. This study involved the analysis of publicly accessible transcriptome data from the Gene Expression Omnibus (GEO) database for identifying significant differentially expressed genes related to COVID-19 and an investigation relating to the pathways associated with mitochondrial, cardiac, hepatic, and renal toxicity in COVID-19. Significant differentially expressed genes were identified and ranked by statistical approaches, and the genes derived by biological meaning were ranked by feature importance; both were utilized as machine learning features for verification. Sample set selection for machine learning was based on the performance, sample size, imbalanced data state, and overfitting assessment. Machine learning served as a verification tool by facilitating the testing of biological hypotheses by incorporating gene list adjustment. A subsequent in-depth study for gene and pathway network analysis was conducted to explore whether COVID-19 is associated with cardiac, hepatic, and renal impairments via mitochondrial infection. The analysis showed that potential cardiac, hepatic, and renal impairments in COVID-19 are associated with ACE2, inflammatory cytokine storms, and mitochondrial pathways, suggesting potential medical interventions for COVID-19-induced multiorgan damage.
Collapse
Affiliation(s)
- Yu-Yu Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Miao Y, Xie L, Song J, Cai X, Yang J, Ma X, Chen S, Xie P. Unraveling the causes of sarcopenia: Roles of neuromuscular junction impairment and mitochondrial dysfunction. Physiol Rep 2024; 12:e15917. [PMID: 38225199 PMCID: PMC10789655 DOI: 10.14814/phy2.15917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024] Open
Abstract
Sarcopenia is a systemic skeletal muscle disease characterized by a decline in skeletal muscle mass and function. Originally defined as an age-associated condition, sarcopenia presently also encompasses muscular atrophy due to various pathological factors, such as intensive care unit-acquired weakness, inactivity, and malnutrition. The exact pathogenesis of sarcopenia is still unknown; herein, we review the pathological roles of the neuromuscular junction and mitochondria in this condition. Sarcopenia is caused by complex and interdependent pathophysiological mechanisms, including aging, neuromuscular junction impairment, mitochondrial dysfunction, insulin resistance, lipotoxicity, endocrine factors, oxidative stress, and inflammation. Among these, neuromuscular junction instability and mitochondrial dysfunction are particularly significant. Dysfunction in neuromuscular junction can lead to muscle weakness or paralysis. Mitochondria, which are plentiful in neurons and muscle fibers, play an important role in neuromuscular junction transmission. Therefore, impairments in both mitochondria and neuromuscular junction may be one of the key pathophysiological mechanisms leading to sarcopenia. Moreover, this article explores the structural and functional alterations in the neuromuscular junction and mitochondria in sarcopenia, suggesting that a deeper understanding of these changes could provide valuable insights for the prevention or treatment of sarcopenia.
Collapse
Affiliation(s)
- Yanmei Miao
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi)Zunyi Medical UniversityZunyiChina
| | - Leiyu Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi)Zunyi Medical UniversityZunyiChina
| | - Jiamei Song
- Department of Nursing of Affiliated HospitalZunyi Medical UniversityZunyiChina
| | - Xing Cai
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi)Zunyi Medical UniversityZunyiChina
| | - Jinghe Yang
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi)Zunyi Medical UniversityZunyiChina
- Department of The First Clinical CollegeZunyi Medical UniversityZunyiChina
| | - Xinglong Ma
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi)Zunyi Medical UniversityZunyiChina
| | - Shaolin Chen
- Department of Nursing of Affiliated HospitalZunyi Medical UniversityZunyiChina
| | - Peng Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi)Zunyi Medical UniversityZunyiChina
| |
Collapse
|
7
|
Martín Giménez VM, Reiter RJ, Manucha W. Multidrug nanoformulations of vitamin D, anandamide and melatonin as a synergistic treatment for vascular inflammation. Drug Discov Today 2023; 28:103539. [PMID: 36828191 DOI: 10.1016/j.drudis.2023.103539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina.
| |
Collapse
|
8
|
Yarmohammadi F, Barangi S, Aghaee-Bakhtiari SH, Hosseinzadeh H, Moosavi Z, Reiter RJ, Hayes AW, Mehri S, Karimi G. Melatonin ameliorates arsenic-induced cardiotoxicity through the regulation of the Sirt1/Nrf2 pathway in rats. Biofactors 2023. [PMID: 36609811 DOI: 10.1002/biof.1934] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023]
Abstract
Chronic arsenic (As) exposure, mainly as a result of drinking contaminated water, is associated with cardiovascular diseases. Mitochondrial dysfunction, oxidative stress, inflammation, apoptosis, and autophagy have been suggested as the molecular etiology of As cardiotoxicity. Melatonin (Mel) is a powerful antioxidant. Mel improves diabetic cardiomyopathy, cardiac remodeling, and heart failure. Following pre-treatment with Mel (10, 20, or 30 mg/kg/day i.p.), rats were orally gavaged with As (15 mg/kg/day) for 28 days. Electrocardiographic findings showed that Mel decreased the As-mediated QT interval prolongation. The effects of As on cardiac levels of glutathione (GSH) and malondialdehyde (MDA) were reversed by Mel pretreatment. Mel also modulated the Sirt1 and Nrf2 expressions promoted by As. Mel down-regulated autophagy markers such as Beclin-1 expression and the LC3-II/I ratio. Moreover, the cardiac expression of cleaved-caspase-3 and Bax/Bcl-2 ratio was decreased by Mel pretreatment. Reduced expression of miR-34a and miR-144 by As were reversed by Mel. The histopathological changes of cardiac injury associated with As exposure was moderated by Mel. Mel may improve As-induced cardiac dysfunction through anti-oxidative, anti-apoptotic, and anti-autophagic mechanisms.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Barangi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Moosavi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, Texas, USA
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, Florida, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Park J, Jang KM, Park KK. Effects of Apamin on MPP +-Induced Calcium Overload and Neurotoxicity by Targeting CaMKII/ERK/p65/STAT3 Signaling Pathways in Dopaminergic Neuronal Cells. Int J Mol Sci 2022; 23:ijms232315255. [PMID: 36499581 PMCID: PMC9736188 DOI: 10.3390/ijms232315255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is characterized by the loss of dopaminergic (DA) neurons. The pathogenesis of PD is associated with several factors including oxidative stress, inflammation, and mitochondrial dysfunction. Ca2+ signaling plays a vital role in neuronal signaling and altered Ca2+ homeostasis has been implicated in many neuronal diseases including PD. Recently, we reported that apamin (APM), a selective antagonist of the small-conductivity Ca2+-activated K+ (SK) channel, suppresses neuroinflammatory response. However, the mechanism(s) underlying the vulnerability of DA neurons were not fully understood. In this study, we investigated whether APM affected 1-methyl-4-phenyl pyridinium (MPP+)-mediated neurotoxicity in SH-SY5Y cells and rat embryo primary mesencephalic neurons. We found that APM decreased Ca2+ overload arising from MPP+-induced neurotoxicity response through downregulating the level of CaMKII, phosphorylation of ERK, and translocation of nuclear factor NFκB/signal transducer and activator of transcription (STAT)3. Furthermore, we showed that the correlation of MPP+-mediated Ca2+ overload and ERK/NFκB/STAT3 in the neurotoxicity responses, and dopaminergic neuronal cells loss, was verified through inhibitors. Our findings showed that APM might prevent loss of DA neurons via inhibition of Ca2+-overload-mediated signaling pathway and provide insights regarding the potential use of APM in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Jihyun Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Kyung Mi Jang
- Department of Pediatrics, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
- Correspondence: ; Tel.: +82-53-650-4149
| |
Collapse
|
10
|
Goldstein Ferber S, Shoval G, Zalsman G, Weller A. Does COVID-19 related symptomatology indicate a transdiagnostic neuropsychiatric disorder? - Multidisciplinary implications. World J Psychiatry 2022; 12:1004-1015. [PMID: 36158308 PMCID: PMC9476837 DOI: 10.5498/wjp.v12.i8.1004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/28/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
The clinical presentation that emerges from the extensive coronavirus disease 2019 (COVID-19) mental health literature suggests high correlations among many conventional psychiatric diagnoses. Arguments against the use of multiple comorbidities for a single patient have been published long before the pandemic. Concurrently, diagnostic recommendations for use of transdiagnostic considerations for improved treatment have been also published in recent years. In this review, we pose the question of whether a transdiagnostic mental health disease, including psychiatric and neuropsychiatric symptomology, has emerged since the onset of the pandemic. There are many attempts to identify a syndrome related to the pandemic, but none of the validated scales is able to capture the entire psychiatric and neuropsychiatric clinical presentation in infected and non-infected individuals. These scales also only marginally touch the issue of etiology and prevalence. We suggest a working hypothesis termed Complex Stress Reaction Syndrome (CSRS) representing a global psychiatric reaction to the pandemic situation in the general population (Type A) and a neuropsychiatric reaction in infected individuals (Type B) which relates to neurocognitive and psychiatric features which are part (excluding systemic and metabolic dysfunctions) of the syndrome termed in the literature as long COVID. We base our propositions on multidisciplinary scientific data regarding mental health during the global pandemic situation and the effects of viral infection reviewed from Google Scholar and PubMed between February 1, 2022 and March 10, 2022. Search in-clusion criteria were "mental health", "COVID-19" and "Long COVID", English language and human studies only. We suggest that this more comprehensive way of understanding COVID-19 complex mental health reactions may promote better prevention and treatment and serve to guide implementation of recommended administrative regulations that were recently published by the World Psychiatric Association. This review may serve as a call for an international investigation of our working hypothesis.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Department of Psychology and Gonda Brain Research Center, Bar Ilan University, Ramat Gan 5317000, Israel
| | - Gal Shoval
- Department of Psychiatry, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Neuroscience, Princeton University, Princeton, NJ 08544, United States
| | - Gil Zalsman
- Department of Psychiatry, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Psychiatry, Columbia University, New York, NY 10032, United States
| | - Aron Weller
- Department of Psychology and Gonda Brain Research Center, Bar Ilan University, Ramat Gan 5317000, Israel
| |
Collapse
|
11
|
Torres Palazzolo C, Martín Giménez VM, Mazzei L, De Paola M, Quesada I, Cuello Carrión FD, Fornés MW, Camargo AB, Castro C, Manucha W. Consumption of oil macerated with garlic produces renovascular protective effects in adult apolipoprotein E-deficient mice. Food Funct 2022; 13:8131-8142. [PMID: 35797719 DOI: 10.1039/d2fo01509a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative stress and chronic inflammatory conditions contribute as key determinants in the development of vascular and renal diseases. Organosulfur compounds (OSCs) of oil macerated with garlic (OMG) are promising phytochemicals which could protect us from hyper-inflammation and oxidative stress-induced organ damage. The present work evaluated the effect of OMG intake in apolipoprotein E-knockout (ApoE-KO) mice. Adult female ApoE-KO mice were randomly divided into three groups and fed with control chow, oil-supplemented diet and OMG-supplemented diet. After 8 weeks, the animals were euthanized and blood, aorta, kidneys, liver and abdominal adipose tissues were obtained for further analysis. Biochemical parameters were measured in plasma, lipid peroxidation as malondialdehyde (MDA) levels was determined in the adipose tissue, oil red O was used to stain atherosclerotic lesions, and histological and ultrastructural analyses of the kidneys were performed. Renal expression levels of Tumor Necrosis Factor α (TNF-α), Interleukin-6 (IL-6) and Wilms' Tumor Protein (WT-1) were determined by western blotting and the co-immunoprecipitation assay (p53/WT-1). Also, transmission electron microscopy for studying the expression of mitofusin 2 (Mfn-2) was used to assess mitochondrial damage. The results showed that long-term moderate intake of OMG improved serum triglyceride levels, diminished the atheroma plaque area, and reduced lipid peroxidation. Furthermore, we found a decrease in oxidative and inflammatory markers, less apoptosis and reduced WT-1 expression in the kidneys. Also, OMG increased p53/WT-1 protein interactions and reduced mitochondrial damage. Our findings suggest that OMG intake would produce anti-atherosclerotic, antifibrotic, anti-inflammatory and antiapoptotic effects in adult ApoE-KO mice, conferring significant renovascular protective actions in a mechanism mediated, at least in part, by WT-1.
Collapse
Affiliation(s)
- Carolina Torres Palazzolo
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, IBAM, Facultad de Ciencias Agrarias, Mendoza, Argentina
| | - Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Cs. Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - Luciana Mazzei
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Mendoza, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina
| | - Matilde De Paola
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Mendoza, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina
| | - Isabel Quesada
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Mendoza, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina
| | - Fernando Darío Cuello Carrión
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Mendoza, Argentina.
| | - Miguel Walter Fornés
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), Mendoza, Argentina
| | - Alejandra Beatríz Camargo
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, IBAM, Facultad de Ciencias Agrarias, Mendoza, Argentina
| | - Claudia Castro
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Mendoza, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina
| | - Walter Manucha
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Mendoza, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina
| |
Collapse
|
12
|
Melatonin: highlighting its use as a potential treatment for SARS-CoV-2 infection. Cell Mol Life Sci 2022; 79:143. [PMID: 35187603 PMCID: PMC8858600 DOI: 10.1007/s00018-021-04102-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Numerous pharmaceutical drugs have been repurposed for use as treatments for COVID-19 disease. These drugs have not consistently demonstrated high efficacy in preventing or treating this serious condition and all have side effects to differing degrees. We encourage the continued consideration of the use of the antioxidant and anti-inflammatory agent, melatonin, as a countermeasure to a SARS-CoV-2 infection. More than 140 scientific publications have identified melatonin as a likely useful agent to treat this disease. Moreover, the publications cited provide the rationale for the use of melatonin as a prophylactic agent against this condition. Melatonin has pan-antiviral effects and it diminishes the severity of viral infections and reduces the death of animals infected with numerous different viruses, including three different coronaviruses. Network analyses, which compared drugs used to treat SARS-CoV-2 in humans, also predicted that melatonin would be the most effective agent for preventing/treating COVID-19. Finally, when seriously infected COVID-19 patients were treated with melatonin, either alone or in combination with other medications, these treatments reduced the severity of infection, lowered the death rate, and shortened the duration of hospitalization. Melatonin’s ability to arrest SARS-CoV-2 infections may reduce health care exhaustion by limiting the need for hospitalization. Importantly, melatonin has a high safety profile over a wide range of doses and lacks significant toxicity. Some molecular processes by which melatonin resists a SARS-CoV-2 infection are summarized. The authors believe that all available, potentially beneficial drugs, including melatonin, that lack toxicity should be used in pandemics such as that caused by SARS-CoV-2.
Collapse
|
13
|
Oxidant/Antioxidant Status Is Impaired in Sepsis and Is Related to Anti-Apoptotic, Inflammatory, and Innate Immunity Alterations. Antioxidants (Basel) 2022; 11:antiox11020231. [PMID: 35204114 PMCID: PMC8868413 DOI: 10.3390/antiox11020231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress is considered pivotal in the pathophysiology of sepsis. Oxidants modulate heat shock proteins (Hsp), interleukins (IL), and cell death pathways, including apoptosis. This multicenter prospective observational study was designed to ascertain whether an oxidant/antioxidant imbalance is an independent sepsis discriminator and mortality predictor in intensive care unit (ICU) patients with sepsis (n = 145), compared to non-infectious critically ill patients (n = 112) and healthy individuals (n = 89). Serum total oxidative status (TOS) and total antioxidant capacity (TAC) were measured by photometric testing. IL-6, -8, -10, -27, Hsp72/90 (ELISA), and selected antioxidant biomolecules (Ζn, glutathione) were correlated with apoptotic mediators (caspase-3, capsase-9) and the central anti-apoptotic survivin protein (ELISA, real-time PCR). A wide scattering of TOS, TAC, and TOS/TAC in all three groups was demonstrated. Septic patients had an elevated TOS/TAC, compared to non-infectious critically ill patients and healthy individuals (p = 0.001). TOS/TAC was associated with severity scores, procalcitonin, IL-6, -10, -27, IFN-γ, Hsp72, Hsp90, survivin protein, and survivin isoforms -2B, -ΔΕx3, -WT (p < 0.001). In a propensity probability (age-sex-adjusted) logistic regression model, only sepsis was independently associated with TOS/TAC (Exp(B) 25.4, p < 0.001). The AUCTOS/TAC (0.96 (95% CI = 0.93–0.99)) was higher than AUCTAC (z = 20, p < 0.001) or AUCTOS (z = 3.1, p = 0.002) in distinguishing sepsis. TOS/TAC, TOS, survivin isoforms -WT and -2B, Hsp90, IL-6, survivin protein, and repressed TAC were strong predictors of mortality (p < 0.01). Oxidant/antioxidant status is impaired in septic compared to critically ill patients with trauma or surgery and is related to anti-apoptotic, inflammatory, and innate immunity alterations. The unpredicted TOS/TAC imbalance might be related to undefined phenotypes in patients and healthy individuals.
Collapse
|
14
|
Martín Giménez VM, Chuffa LGA, Simão VA, Reiter RJ, Manucha W. Protective actions of vitamin D, anandamide and melatonin during vascular inflammation: Epigenetic mechanisms involved. Life Sci 2022; 288:120191. [PMID: 34856208 DOI: 10.1016/j.lfs.2021.120191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/13/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
Vascular inflammation is one of the main activating stimuli of cardiovascular disease and its uncontrolled development may worsen the progression and prognosis of these pathologies. Therefore, the search for new therapeutic options to treat this condition is undoubtedly needed. In this regard, it may be better to repurpose endogenous anti-inflammatory compounds already known, in addition to synthesizing new compounds for therapeutic purposes. It is well known that vitamin D, anandamide, and melatonin are promising endogenous substances with powerful and wide-spread anti-inflammatory properties. Currently, the epigenetic mechanisms underlying these effects are often unknown. This review summarizes the potential epigenetic mechanisms by which vitamin D, anandamide, and melatonin attenuate vascular inflammation. This information could contribute to the improvement in the therapeutic management of multiple pathologies associated with blood vessel inflammation, through the pharmacological manipulation of new target sites that until now have not been addressed.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Luiz Gustavo A Chuffa
- Department of Structural and Functional Biology, UNESP-São Paulo State University, Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Vinícius Augusto Simão
- Department of Structural and Functional Biology, UNESP-São Paulo State University, Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina.
| |
Collapse
|
15
|
Boguszewska K, Kaźmierczak-Barańska J, Karwowski BT. The Influence of 5',8-Cyclo-2'-deoxypurines on the Mitochondrial Repair of Clustered DNA Damage in Xrs5 Cells: The Preliminary Study. Molecules 2021; 26:molecules26227042. [PMID: 34834133 PMCID: PMC8623968 DOI: 10.3390/molecules26227042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
The 5′,8-cyclo-2′-deoxypurines (cdPus) affect the DNA structure. When these bulky structures are a part of clustered DNA lesions (CDL), they affect the repair of the other lesions within the cluster. Mitochondria are crucial for cell survival and have their own genome, hence, are highly interesting in the context of CDL repair. However, no studies are exploring this topic. Here, the initial stages of mitochondrial base excision repair (mtBER) were considered—the strand incision and elongation. The repair of a single lesion (apurinic site (AP site)) accompanying the cdPu within the double-stranded CDL has been investigated for the first time. The type of cdPu, its diastereomeric form, and the interlesion distance were taken into consideration. For these studies, the established experimental model of short oligonucleotides (containing AP sites located ≤7 base pairs to the cdPu in both directions) and mitochondrial extracts of the xrs5 cells were used. The obtained results have shown that the presence of cdPus influenced the processing of an AP site within the CDL. Levels of strand incision and elongation were higher for oligos containing RcdA and ScdG than for those with ScdA and RcdG. Investigated stages of mtBER were more efficient for DNA containing AP sites located on 5′-end side of cdPu than on its 3′-end side. In conclusion, the presence of cdPus in mtDNA structure may affect mtBER (processing the second mutagenic lesion within the CDL). As impaired repair processes may lead to serious biological consequences, further studies concerning the mitochondrial repair of CDL are highly demanded.
Collapse
|
16
|
Melatonin and Pathological Cell Interactions: Mitochondrial Glucose Processing in Cancer Cells. Int J Mol Sci 2021; 22:ijms222212494. [PMID: 34830375 PMCID: PMC8621753 DOI: 10.3390/ijms222212494] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/06/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
Melatonin is synthesized in the pineal gland at night. Since melatonin is produced in the mitochondria of all other cells in a non-circadian manner, the amount synthesized by the pineal gland is less than 5% of the total. Melatonin produced in mitochondria influences glucose metabolism in all cells. Many pathological cells adopt aerobic glycolysis (Warburg effect) in which pyruvate is excluded from the mitochondria and remains in the cytosol where it is metabolized to lactate. The entrance of pyruvate into the mitochondria of healthy cells allows it to be irreversibly decarboxylated by pyruvate dehydrogenase (PDH) to acetyl coenzyme A (acetyl-CoA). The exclusion of pyruvate from the mitochondria in pathological cells prevents the generation of acetyl-CoA from pyruvate. This is relevant to mitochondrial melatonin production, as acetyl-CoA is a required co-substrate/co-factor for melatonin synthesis. When PDH is inhibited during aerobic glycolysis or during intracellular hypoxia, the deficiency of acetyl-CoA likely prevents mitochondrial melatonin synthesis. When cells experiencing aerobic glycolysis or hypoxia with a diminished level of acetyl-CoA are supplemented with melatonin or receive it from another endogenous source (pineal-derived), pathological cells convert to a more normal phenotype and support the transport of pyruvate into the mitochondria, thereby re-establishing a healthier mitochondrial metabolic physiology.
Collapse
|
17
|
Ma W, Zhang X, Liu Y. miR-124 promotes apoptosis and inhibits the proliferation of vessel endothelial cells through P38/MAPK and PI3K/AKT pathways, making it a potential mechanism of vessel endothelial injury in acute myocardial infarction. Exp Ther Med 2021; 22:1383. [PMID: 34650631 PMCID: PMC8506947 DOI: 10.3892/etm.2021.10819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/11/2021] [Indexed: 11/26/2022] Open
Abstract
Due to its rapid onset and high rates of fatality, acute myocardial infarction (AMI) has long been one of the most fatal diseases among all types of heart diseases. Therefore, intensive research efforts have been focused on understanding AMI's potential pathogenesis to seek effective treatment options. In the present study, 20 peripheral blood samples were collected from patients with AMI, after which reverse transcription-quantitative PCR analysis revealed that microRNA (miR)-124 levels in the peripheral blood of patients with AMI was significantly elevated compared with that in the control group. In vitro, a model using pcDNA3.1-miR-124 transfected human umbilical vein endothelial cells (HUVECs) indicated that overexpression of miR-124 could significantly promote the apoptosis and suppress the proliferation of HUVECs using flow cytometry, TUNEL assay and Cell Counting Kit-8 assays. Based on the present findings, RNA samples of HUVECs overexpressing miR-124 was extracted and sequenced to explore the gene expression profile after miR-124 overexpression. Gene Set Enrichment Analysis (GSEA) analysis revealed that the downregulated genes were mainly enriched in signaling pathways, such as PI3K-AKT, whilst the upregulated genes were mainly enriched in metabolism-related signaling pathways, such as the metabolism of xenobiotics by cytochrome P450 pathway. Additionally, Rideogram software was used to determine the chromosomal localization of the differentially expressed genes. The results demonstrated that they were distributed on all chromosomes except for chromosome Y. In addition, characteristic profiles of the differentially expressed genes caused by miR-124 overexpression were analyzed using Connectivity Map. In total, two medicines, anisomycin and sanguinarine, which function as p38/MAPK signaling agonists that can inhibit angiogenesis, presented with the highest enrichment scores. Together with the GSEA results, which indicated that the differentially expressed genes were mainly enriched in the angiogenesis-inhibiting PI3K/AKT signaling pathway, the present study reported that high expression of miR-124 was negatively associated with patients with AMI, promoting the apoptosis and suppressing the proliferation of vessel endothelial cells.
Collapse
Affiliation(s)
- Weimin Ma
- Department of Critical Care Medicine, Weihai Central Hospital, Weihai, Shandong 264200, P.R. China
| | - Xin Zhang
- Department of Pediatrics, Weihai Central Hospital, Weihai, Shandong 264200, P.R. China
| | - Yang Liu
- Department of Critical Care Medicine, Weihai Central Hospital, Weihai, Shandong 264200, P.R. China
| |
Collapse
|
18
|
Jaworek AK, Szepietowski JC, Hałubiec P, Wojas-Pelc A, Jaworek J. Melatonin as an Antioxidant and Immunomodulator in Atopic Dermatitis-A New Look on an Old Story: A Review. Antioxidants (Basel) 2021; 10:antiox10081179. [PMID: 34439427 PMCID: PMC8388892 DOI: 10.3390/antiox10081179] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Atopic dermatitis (AD) is common inflammatory dermatosis, typically with chronic and recurrent course, which significantly reduces the quality of life. Sleep disturbances are considered to be remarkably burdensome ailments in patients with AD, and are routinely included during assessment of disease severity. Therefore, endogenous substances engaged in the control of circadian rhythms might be important in pathogenesis of AD and, possibly, be used as biomarkers of disease severity or even in development of novel therapies. Melatonin (MT), the indoleamine produced by pineal gland (but also by multiple other tissues, including skin), plays a pivotal role in maintaining the sleep/wake homeostasis. Additionally, it possesses strong antioxidant and anti-inflammatory properties, which might directly link chronic skin inflammation and sleep abnormalities characteristic of AD. The objective of this work is to systematically present and summarize the results of studies (both experimental and clinical) that investigated the role of MT in the AD, with a focus on the antioxidant and immunomodulatory effects of MT.
Collapse
Affiliation(s)
- Andrzej Kazimierz Jaworek
- Department of Dermatology, Jagiellonian University Medical College, 31-501 Cracow, Poland;
- Correspondence:
| | - Jacek Cezary Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Przemysław Hałubiec
- Student Scientific Group, Department of Dermatology, Jagiellonian University Medical College, 31-501 Cracow, Poland;
| | - Anna Wojas-Pelc
- Department of Dermatology, Jagiellonian University Medical College, 31-501 Cracow, Poland;
| | - Jolanta Jaworek
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Cracow, Poland;
| |
Collapse
|
19
|
Melatonin, Its Metabolites and Their Interference with Reactive Nitrogen Compounds. Molecules 2021; 26:molecules26134105. [PMID: 34279445 PMCID: PMC8271479 DOI: 10.3390/molecules26134105] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Melatonin and several of its metabolites are interfering with reactive nitrogen. With the notion of prevailing melatonin formation in tissues that exceeds by far the quantities in blood, metabolites come into focus that are poorly found in the circulation. Apart from their antioxidant actions, both melatonin and N1-acetyl-5-methoxykynuramine (AMK) downregulate inducible and inhibit neuronal NO synthases, and additionally scavenge NO. However, the NO adduct of melatonin redonates NO, whereas AMK forms with NO a stable product. Many other melatonin metabolites formed in oxidative processes also contain nitrosylatable sites. Moreover, AMK readily scavenges products of the CO2-adduct of peroxynitrite such as carbonate radicals and NO2. Protein AMKylation seems to be involved in protective actions.
Collapse
|
20
|
Martín Giménez VM, Bergam I, Reiter RJ, Manucha W. Metal ion homeostasis with emphasis on zinc and copper: Potential crucial link to explain the non-classical antioxidative properties of vitamin D and melatonin. Life Sci 2021; 281:119770. [PMID: 34197883 DOI: 10.1016/j.lfs.2021.119770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022]
Abstract
Metal ion homeostasis is an essential physiological mechanism necessary for achieving an adequate balance of these ions' concentrations in the different cellular compartments. This fact is of great importance because both an excess and a deficiency of cellular metal ion levels are usually equally harmful due to the exacerbated increase in oxidative stress that may occur in both cases. Metal ion homeostasis ensures an equilibrium among multiple functions associated with the body's antioxidative defense network controlled by metallic micronutrients such as zinc and copper, some of the central regulators of redox processes. These micronutrients significantly modulate the activity of some isoforms of superoxide dismutase (SOD) and other enzymes such as metallothioneins (MTs) and ceruloplasmin (CP), which are directly or indirectly involved in the regulation of redox homeostasis. Although it is well known that both melatonin (MEL) and vitamin D have important roles as natural antioxidants, often some of these effects are related to their actions on antioxidative processes dependent on metal ions. Thus, in addition to their classical antioxidative properties usually associated with mitochondrial effects, it is known that MEL and vitamin D modulate the expression and activity of Cu/Zn-dependent SOD isoforms, MTs and CP; function as copper chelators and regulate genomic and non-genomic mechanisms related to the zinc transport. This review summarizes the main findings related to the crucial participation of zinc and copper in physiological antioxidative status and their relationship with the non-classical antioxidant effects of MEL and vitamin D, suggesting a potential synergism among these four micronutrients.
Collapse
Affiliation(s)
- Virna M Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Ivana Bergam
- CROATIA Osiguranje Pension Company for Voluntary Pension Fund Management D.O.O., Zagreb, Croatia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina.
| |
Collapse
|