1
|
Bhatia SK, Gurav R, Yang YH. A review on waste activated sludge pretreatment for improved volatile fatty acids production and their upcycling into polyhydroxyalkanoates. Int J Biol Macromol 2025; 308:142562. [PMID: 40154714 DOI: 10.1016/j.ijbiomac.2025.142562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Waste activated sludge (WAS), a byproduct of wastewater treatment (WWTPs) facilities is challenging to manage because of its high organic content. Most of WAS is managed via anaerobic digestion (AD) to produce biogas, which is not deemed economically viable. The AD of WAS into volatile fatty acids (VFA) and their subsequent upcycling into polyhydroxyalkanoates (PHA) is gaining popularity due to their high value and uses. However, the fundamental issue with WAS is its low solubility, and pretreatment is required to increase it. Pretreatment disintegrates sludge floc and enhances its solubility, supports acetogens, and inhibits methanogens, leading to increased VFA synthesis in the AD process. The key factors influencing VFA yield include the size of the sludge granules, the mixing rate, and the presence of resistant organic components. Fermented broth containing VFA from AD can be utilized directly as a feedstock for microbial fermentation to produce PHA using both pure as well as mixed cultures. Utilisation of mixed cultures is useful since they are robust, able to consume a wide range of substrates, and do not require sterility. In addition, the VFA, which is made up of various organic acids, impacts the structure, productivity, characteristics, and type of PHA produced by microbial communities. Considering the importance of WAS management through VFA production and its integration with PHA production process this review article discusses the WAS pretreatment strategies, various factors that influence the AD process, trends in VFA to PHA production technologies with challenges, and possible solutions for integrated process development.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea
| | - Ranjit Gurav
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Yung-Hun Yang
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| |
Collapse
|
2
|
Jolaosho TL, Rasaq MF, Omotoye EV, Araomo OV, Adekoya OS, Abolaji OY, Hungbo JJ. Microplastics in freshwater and marine ecosystems: Occurrence, characterization, sources, distribution dynamics, fate, transport processes, potential mitigation strategies, and policy interventions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118036. [PMID: 40107217 DOI: 10.1016/j.ecoenv.2025.118036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/08/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Most of the literature on microplastics (MPs) focuses on freshwater or terrestrial ecosystems, frequently overlooking their interconnections with the marine environments. This oversight is worrying given that both ecosystems serve as primary pathways for the introduction of MPs into marine environments. This review synthesizes existing literature on MPs in both freshwater and marine ecosystems across all six continents. The most commonly produced plastic polymers in industry are polyethylene (36 %) and polypropylene (21 %), and studies revealed that these two materials are the most abundant in aquatic ecosystems. Primary and secondary MPs originate from a range of sources including land-based disposal, the ocean, airborne deposition, wastewater treatment facilities, automobiles, pharmaceuticals and personal care products, synthetic textiles, and insect repellents. Notably, secondary MPs, which are formed from the breakdown of larger plastic items comprise approximately 69-81% of marine debris, especially in urbanized, densely populated areas. The inconsistencies of the methodologies (sampling, extraction, and quantification) and the units employed for result presentations are part of the major limitations in MPs research. Environmental phenomena such as heteroaggregation, weathering, adsorption, leaching, and fragmentation are the major factors influencing the behavior, fate, and degradation process of plastic particles. The physicochemical properties of plastic polymers, such as density, crystallinity, as well as bioturbation, meteorological forces, and wind actions, including currents, waves, and tides, are responsible for biofouling, aggregation, sinking into the bottom sediment, resuspension, and the vertical, horizontal, and spatiotemporal distributions and transport of MPs. The potential solutions to mitigate plastic pollution are grounded in the 3Rs framework, which includes reducing production and consumption, advancing the biotechnological, chemical and microbial development of degradable polymers, promoting reusable plastic products with lower environmental impacts over their lifetimes, and recycling waste into new products. The regulatory policies on single-use plastics commonly involve permanent bans and financial penalties for violators. In addition, nations such as the United States, the Netherlands, and northern Europe have introduced economic incentives to encourage the return of reusable materials to reduce plastic waste and the resulting envrionmental pollution.
Collapse
Affiliation(s)
- Toheeb Lekan Jolaosho
- Faculty of Spatial Science, University of Groningen, Netherlands; Department of Fisheries, Faculty of Science, Lagos State University, Ojo, Lagos State, Nigeria; Faculty of Marine Science, University of Las Palmas de Gran Canaria, Spain; Aquaculture and Fisheries Management, Lagos State University of Science and Technology, Nigeria.
| | | | | | | | | | | | | |
Collapse
|
3
|
Alimohammadi M, Demirer GN. Microplastics in anaerobic digestion: occurrence, impact, and mitigation strategies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:397-411. [PMID: 39464825 PMCID: PMC11499492 DOI: 10.1007/s40201-024-00910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/08/2024] [Indexed: 10/29/2024]
Abstract
Microplastic pollution has emerged as a global environmental concern, with pervasive contamination in terrestrial and aquatic ecosystems. This review paper delves into the intricate dynamics of microplastics within anaerobic digestion systems, addressing their occurrence, impact, and potential mitigation strategies. The occurrence of microplastics in anaerobic digesters is widespread, entering these systems through diverse inputs, such as sewage sludge, organic waste, and etc. Microplastics in anaerobic digestion have been associated with potential adverse impacts on biogas production, process performance, microbial communities, and degradation processes, though the relationship is complex and context dependent. This review highlights the urgent need for comprehensive research into the fate of microplastics within anaerobic digesters. Mitigation strategies offer promise in alleviating microplastic contamination, with advanced separation methods, innovative techniques such as magnetic micro-submarines, photocatalytic micro-motors, membrane bioreactors combined with activated carbon filters, rapid sand filtration, or conventional activated sludge, and disintegration-oriented techniques such as electrocatalysis, biodegradation, and thermal decomposition. Nonetheless, there is a significant knowledge gap that necessitates further research into the fate and long-term effects of microplastics in digestate. Collaborative efforts are crucial to addressing this emerging concern and ensuring the sustainability of anaerobic digestion systems in the face of microplastic challenges.
Collapse
Affiliation(s)
- Mahsa Alimohammadi
- School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48859 USA
| | - Goksel N. Demirer
- School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Institute for Great Lakes Research, Central Michigan University, Mt. Pleasant, MI 48859 USA
| |
Collapse
|
4
|
Fini EH, Kazemi M, Poulikakos L, Lazorenko G, Akbarzade V, Lamanna A, Lammers P. Perspectives on innovative non-fertilizer applications of sewage sludge for mitigating environmental and health hazards. COMMUNICATIONS ENGINEERING 2024; 3:178. [PMID: 39604550 PMCID: PMC11603199 DOI: 10.1038/s44172-024-00298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
As waste production increases and resources become limited, sewage sludge presents a valuable resource with potential beyond traditional land use and incineration. This review emphasizes exploring innovative non-fertilizer applications of sewage sludges and advocates for viewing wastewater treatment plants as sources of valuable feedstock and carbon sequestration. Innovative uses include integrating sewage sludge into construction materials such as asphalt pavements, geopolymer, cementitious composites, and masonry blocks. These methods not only immobilize heavy metals and mitigate environmental hazards but also support carbon sequestration, contrasting with incineration and land application methods that release carbon into the atmosphere. The review also addresses emerging technologies like bio-adhesives, bio-binders for asphalt, hydrogels, bioplastics, and corrosion inhibitors. It highlights the recovery of valuable materials from sewage sludge, including phosphorus, oils, metals, cellulose, and polyhydroxyalkanoates as well as enzyme production. By focusing on these non-fertilizer applications, this review presents a compelling case for re-envisioning wastewater treatment plants as sources of valuable feedstock and carbon sequestration, supporting global efforts to manage waste effectively and enhance sustainability.
Collapse
Affiliation(s)
- Elham H Fini
- Arizona State University, 660 S. College Avenue, Tempe, AZ, 85287, USA.
| | | | - Lily Poulikakos
- EMPA Materials Science and Technology, Ueberlandstrasse, 1298600, Dübendorf, Switzerland
| | - Georgy Lazorenko
- Novosibirsk State University, Pirogov Street, 2, Novosibirsk, 630090, Russia
| | - Vajiheh Akbarzade
- University of Doha for Science and Technology, 24449 Arab League St, Doha, Qatar
| | - Anthony Lamanna
- Arizona State University, 660 S. College Avenue, Tempe, AZ, 85287, USA
| | - Peter Lammers
- Arizona State University, 660 S. College Avenue, Tempe, AZ, 85287, USA
| |
Collapse
|
5
|
Kim M, Ahn YR, Yoon S, Choi J, Kim H, Lim KS, Ha SJ, Park JA, Kim HO. Application of metal-organic frameworks for photocatalytic degradation of microplastics: Design, challenges, and scope. CHEMOSPHERE 2024; 366:143518. [PMID: 39419337 DOI: 10.1016/j.chemosphere.2024.143518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Microplastics (MPs), plastic particles smaller than 5 mm, are pervasive pollutants challenging wastewater treatment due to their size and hydrophobicity. They infiltrate freshwater, marine, and soil environments, posing ecological threats. In marine settings, MPs ingested by organisms cause cytokine release, cellular and DNA damage, and inflammation. As MPs enter the food chain and disrupt biological processes, their degradation is crucial. While biodegradation, pyrolysis, and chemical methods have been extensively studied, the use of metal-organic frameworks (MOFs) for MP pollution mitigation is underexplored. In this study, we explored the photocatalytic degradation mechanisms of MPs by MOFs in aquatic environments. We analyzed the hydrolysis, oxidation, and adsorption processes, while focusing on the environmentally friendly and cost-effective photocatalytic approach. Additionally, we analyzed the literature on MP decomposition for various types of MOFs, providing a detailed understanding of the degradation mechanisms specific to each MOF. Furthermore, we evaluated the degradation efficiencies of different MOFs and discussed the challenges and limitations in their application. Our study highlights the need for an integrated approach that involves the application of MOFs while considering environmental factors and safety concerns to develop effective MP degradation models. This review provides a framework for developing reliable photocatalytic materials with high MP removal and degradation efficiencies, thereby promoting the use of MOFs for marine plastic pollution mitigation.
Collapse
Affiliation(s)
- Minse Kim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yu-Rim Ahn
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Soyeong Yoon
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jaewon Choi
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hongbin Kim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Kwang Suk Lim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Suk-Jin Ha
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Hyun-Ouk Kim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
6
|
Sakali A, Egea-Corbacho A, Coello D, Albendín G, Arellano J, Rodríguez-Barroso R. Analysis of microplastics in the reuse of compost in three agricultural sites (Cádiz, Spain) as a circular economy strategy: detection of micropollutants and incidence of plastic ingestion levels by annelids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51747-51759. [PMID: 39126584 PMCID: PMC11374815 DOI: 10.1007/s11356-024-34615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
The system of fertilizing agricultural soils with sludge or compost from wastewater treatment processes, as one of the principles of the circular economy, can lead to microplastic (MP) contamination. The existing technical standards for fertilization are very recent and do not consider this problem, although there is scientific evidence of their existence. Therefore, this study, on the one hand, evaluates the presence of MPs in agricultural soils, previously treated with sludge or compost from wastewater treatment plants for fertilization, and on the second hand, it studies the effect of these MPs on earthworms in three different locations in the south of Spain. For the study, selected composts deriving from the different stages of the composting process and three fertilized soils with increasing MP doses were followed. Samples were taken from different sections in depth (0-5, 5-10, and 10-20 cm) to study the shape, size, type, and abundance of MPs using infrared spectroscopy (FTIR). The results showed that the most abundant shape was fiber, followed by fragment and finally bulk, for both composts and soils. Regarding size distribution, 100 µm was the predominant size in composts (64.3% ± 9.8), while in the case of soils, the predominant range was from 100 to 500 µm. The prevalent polymers in both, composts and soils, were PTFE, TPE, PP, and PET, with four times higher amounts in composts than in soils. Ingestion of common MPs were also verified in two earthworm species, which ingested concentrations higher than 2.1% w/w. PP was the most ingested MP and Eisenia fetida was more voracious compared with Lumbricus terrestris. Therefore, it can be considered a suitable bioindicator for monitoring microplastic contamination in agricultural soil.
Collapse
Affiliation(s)
- Ayda Sakali
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR International Campus of Excellence of the Sea, University of Cadiz, Campus Universitario de Puerto Real, 11510, Cadiz, Spain
| | - Agata Egea-Corbacho
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR International Campus of Excellence of the Sea, University of Cadiz, Campus Universitario de Puerto Real, 11510, Cadiz, Spain
| | - Dolores Coello
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR International Campus of Excellence of the Sea, University of Cadiz, Campus Universitario de Puerto Real, 11510, Cadiz, Spain
| | - Gemma Albendín
- Toxicology Department, International Campus of Excellence of the Sea (CEIMAR), Faculty of Marine and Environmental Sciences, University Institute of Marine Research (INMAR), University of Cádiz, 11510, Puerto Real, Spain.
| | - Juana Arellano
- Toxicology Department, International Campus of Excellence of the Sea (CEIMAR), Faculty of Marine and Environmental Sciences, University Institute of Marine Research (INMAR), University of Cádiz, 11510, Puerto Real, Spain
| | - Rocío Rodríguez-Barroso
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR International Campus of Excellence of the Sea, University of Cadiz, Campus Universitario de Puerto Real, 11510, Cadiz, Spain
| |
Collapse
|
7
|
Sharma S, Bhardwaj A, Thakur M, Saini A. Understanding microplastic pollution of marine ecosystem: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41402-41445. [PMID: 37442935 DOI: 10.1007/s11356-023-28314-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Microplastics are emerging as prominent pollutants across the globe. Oceans are becoming major sinks for these pollutants, and their presence is widespread in coastal regions, oceanic surface waters, water column, and sediments. Studies have revealed that microplastics cause serious threats to the marine ecosystem as well as human beings. In the past few years, many research efforts have focused on studying different aspects relating to microplastic pollution of the oceans. This review summarizes sources, migration routes, and ill effects of marine microplastic pollution along with various conventional as well as advanced methods for microplastics analysis and control. However, various knowledge gaps in detection and analysis require attention in order to understand the sources and transport of microplastics, which is critical to deploying mitigation strategies at appropriate locations. Advanced removal methods and an integrated approach are necessary, including government policies and stringent regulations to control the release of plastics.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Biotechnology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Aprajita Bhardwaj
- Department of Biotechnology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Monika Thakur
- Department of Microbiology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Anita Saini
- Department of Microbiology, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi, Himachal Pradesh, India.
| |
Collapse
|
8
|
Li X, Liu L, Zhang X, Yang X, Niu S, Zheng Z, Dong B, Hur J, Dai X. Aging and mitigation of microplastics during sewage sludge treatments: An overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171338. [PMID: 38428608 DOI: 10.1016/j.scitotenv.2024.171338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Wastewater treatment plants (WWTPs) receive large quantities of microplastics (MPs) from raw wastewater, but many MPs are trapped in the sludge. Land application of sludge is a significant source of MP pollution. Existing reviews have summarized the analysis methods of MPs in sludge and the effect of MPs on sludge treatments. However, MP aging and mitigation during sludge treatment processes are not fully reviewed. Treatment processes used to remove water, pathogenic microorganisms, and other pollutants in sewage sludge also cause surface changes and degradation in the sludge MPs, affecting the potential risk of MPs. This study integrates MP abundance and distribution in sludge and their aging and mitigation characteristics during sludge treatment processes. The abundance, composition, and distribution of sludge MPs vary significantly with WWTPs. Furthermore, MPs exhibit variable degrees of aging, including rough surfaces, enhanced adsorption potentials for pollutants, and increased leaching behavior. Various sludge treatment processes further intensify these aging characteristics. Some sludge treatments, such as hydrothermal treatment, have efficiently removed MPs from sewage sludge. It is crucial to understand the potential risk of MP aging in sludge and the degradation properties of the MP-derived products from MP degradation in-depth and develop novel MP mitigation strategies in sludge, such as combining hydrothermal treatment and biological processes.
Collapse
Affiliation(s)
- Xiaowei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Lulu Liu
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Xiaolei Zhang
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - XingFeng Yang
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Shiyu Niu
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Zhiyong Zheng
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
9
|
Cydzik-Kwiatkowska A, Bernat K, Zielińska M, Gusiatin MZ, Wojnowska-Baryła I, Kulikowska D. Valorization of full-scale waste aerobic granular sludge for biogas production and the characteristics of the digestate. CHEMOSPHERE 2022; 303:135167. [PMID: 35653865 DOI: 10.1016/j.chemosphere.2022.135167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Despite the dynamic development of aerobic granular sludge (AGS) technology in wastewater treatment, there is limited data on how the different properties of AGS and activated sludge (AS) translate into differences in waste sludge management. Waste sludge generated in both AGS and AS technology is the biggest waste stream generated in wastewater treatment plants (WWTPs). This study aimed to assess biogas production from waste AGS from a full-scale system. Additionally, the properties of the digestate were investigated in terms of its management in line with the assumptions of a circular economy. Both aspects are important because the characteristics of AGS differ from those of AS. Its dense, extracellular-polymer-rich granule structure makes the susceptibility of AGS to anaerobic stabilization lower than that of AS. Given the advantages of AGS for sustainable wastewater treatment and its increasing popularity, waste AGS management will pose a serious challenge for WWTP operators. Therefore, AGS from a full-scale municipal WWTP was valorized for biogas production by increasing the accessibility of the organics in the sludge by homogenization or ultrasound pretreatment. Ultrasound pretreatment released about an order of magnitude more organics from the biomass than homogenization and significantly improved the production of methane-rich biogas (455 L/kg VS, about 66% of CH4). The digestion time of pretreated AGS was reduced by 25% in comparison with that of untreated AGS making anaerobic digestion of AGS a feasible solution for sludge management. The AGS digestate was rich in Ca (77.0 g/kg TS), Mg (10.9 g/kg TS), N (35.1 g/kg TS) and P (32.4 g/kg TS), whereas its heavy metal levels and biochemical methane potential were low. AGS digestate is not only environmentally safe, but it can serve as a rich source of organics and elements essential for soil fertility and stability.
Collapse
Affiliation(s)
- Agnieszka Cydzik-Kwiatkowska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Sloneczna 45G, 10-709, Olsztyn, Poland
| | - Katarzyna Bernat
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Sloneczna 45G, 10-709, Olsztyn, Poland.
| | - Magdalena Zielińska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Sloneczna 45G, 10-709, Olsztyn, Poland
| | - Mariusz Zygmunt Gusiatin
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Sloneczna 45G, 10-709, Olsztyn, Poland
| | - Irena Wojnowska-Baryła
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Sloneczna 45G, 10-709, Olsztyn, Poland
| | - Dorota Kulikowska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Sloneczna 45G, 10-709, Olsztyn, Poland
| |
Collapse
|
10
|
Usman S, Abdull Razis AF, Shaari K, Azmai MNA, Saad MZ, Mat Isa N, Nazarudin MF. The Burden of Microplastics Pollution and Contending Policies and Regulations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6773. [PMID: 35682361 PMCID: PMC9180440 DOI: 10.3390/ijerph19116773] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/15/2022]
Abstract
The relationship between humans and plastics has become intricate due to their versatile nature and low production cost. Plastics generation has surpassed that of other manufactured products, which, coupled with the prevailing poor waste management systems, makes it a serious problem for the terrestrial and aquatic environments as its final destination. Their extensive presence has continued to pose a significant threat, not only to the aquatic ecosystem but also to the approximately 3 billion people relying on it for their livelihood. Even more disturbing were the recent findings of these plastics in food and drinking water and the evidence of human exposure, the long-term health effects of which are largely unknown. This ubiquitous phenomenon has over time put plastics under critical observation, leading to the development of many local and international policies, resolutions, and directives aimed at addressing and reversing the menace. This review provided the first snapshot of the global and local governance strategies currently aimed at mitigating plastic pollution, their limitations, and future directions. The findings of the review revealed several aspects of microplastics (MPs) pollution to be overlooked in policy formulation, a laxity in policy implementation, and an apparent lack of indices to ascertain the impact of the regulations. Furthermore, there is currently no regulation on MPs contamination of food and drinking water and an apparent lack of funding for research into the health effects of plastics and their alternatives. This, therefore, necessitates the need for a well-coordinated approach at international and national levels to scale up these policies in all countries and translate them from paper to measurable, holistic, and realizable actions that will address all forms of plastic pollution.
Collapse
Affiliation(s)
- Sunusi Usman
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.U.); (K.S.)
| | - Ahmad Faizal Abdull Razis
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.U.); (K.S.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Khozirah Shaari
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.U.); (K.S.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohammad Noor Amal Azmai
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Aquatic Animal Health and Therapeutics Laboratory (Aqua Health), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.Z.S.); (M.F.N.)
| | - Mohd Zamri Saad
- Aquatic Animal Health and Therapeutics Laboratory (Aqua Health), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.Z.S.); (M.F.N.)
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Bimolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Laboratory of Vaccines and Biomolecules (VacBio), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Muhammad Farhan Nazarudin
- Aquatic Animal Health and Therapeutics Laboratory (Aqua Health), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.Z.S.); (M.F.N.)
| |
Collapse
|
11
|
Microplastics in Freshwater Environment in Asia: A Systematic Scientific Review. WATER 2022. [DOI: 10.3390/w14111737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microplastics (MPs) are an emerging pollutant in the aquatic environment, and this has gradually been recognized in the Asian region. This systematic review study, using the Scopus database, provides an insightful understanding of the spatial distribution of scientific studies on MPs in freshwater conducted across the Asian region, utilized sampling methods, and a detailed assessment of the effects of MPs on different biotic components in freshwater ecosystems, with special focus on its potential risks on human health. The results of this review indicate that research on microplastics in Asia has gained attention since 2014, with a significant increase in the number of studies in 2018, and the number of scientific studies quadrupled in 2021 compared to 2018. Results indicated that despite a significant amount of research has been conducted in many Asian countries, they were not distributed evenly, as multiple studies selected specific rivers and lakes. Additionally, around two-thirds of all the papers focused their studies in China, followed by India and South Korea. It was also found that most of the studies focused primarily on reporting the occurrence levels of MPs in freshwater systems, such as water and sediments, and aquatic organisms, with a lack of studies investigating the human intake of MPs and their potential risks to human health. Notably, comparing the results is a challenge because diverse sampling, separation, and identification methods were applied to estimate MPs. This review study suggests that further research on the dynamics and transport of microplastics in biota and humans is needed, as Asia is a major consumer of seafood products and contributes significantly to the generation of plastic litter in the marine environment. Moreover, this review study revealed that only a few studies extended their discussions to policies and governance aspects of MPs. This implies the need for further research on policy and governance frameworks to address this emerging water pollutant more holistically.
Collapse
|
12
|
Reuse of Water Contaminated by Microplastics, the Effectiveness of Filtration Processes: A Review. ENERGIES 2022. [DOI: 10.3390/en15072432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Water treatment generally does not specifically address the removal of microplastics (MPs). Nevertheless, treatment plants process water effectively, and the number of synthetic microparticles in effluents is usually very low. Still, discharge volumes from water-treatment plants are often elevated (reaching around 108 L/day), leading to the daily discharge of a substantial number of MPs and microfibers. Furthermore, MPs accumulate in the primary and secondary sludge, which in the end results in another environmental problem as they are currently used to amend soils, both for cultivation and forestry, leading to their dispersion. Something similar occurs with the treatment of water intended for human consumption, which has a much lower but still significant number of MPs. The amount of these pollutants being released into the environment depends on the processes that the water undergoes. One of the most-used treatment processes is rapid sand filtration, which is reviewed in this article. During the filtration process, MPs can break into smaller pieces, resulting in a greater number of plastic particles which mainly accumulate in sewage sludge. Thermal processes, such as incineration, carried out in facilities with the best available techniques in practice, could guarantee the safe disposal of highly MP-contaminated sewage sludges.
Collapse
|
13
|
Entrained Flow Plasma Gasification of Sewage Sludge–Proof-of-Concept and Fate of Inorganics. ENERGIES 2022. [DOI: 10.3390/en15051948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sewage sludge is a residue of wastewater processing that is biologically active and consists of water, organic matter, including dead and living pathogens, polycyclic aromatic hydrocarbons, and heavy metals, as well as organic and inorganic pollutants. Landfilling is on the decline, giving way to more environmentally friendly utilisation routes. This paper presents the results of a two-stage gasification–vitrification system, using a prototype-entrained flow plasma-assisted gasification reactor along with ex situ plasma vitrification. The results show that the use of plasma has a considerable influence on the quality of gas, with a higher heating value of dry gas exceeding 7.5 MJ/mN3, excluding nitrogen dilution. However, dilution from plasma gases becomes the main problem, giving a lower heating value of dry gas with the highest value being 5.36 MJ/mN3 when dilution by nitrogen from plasma torches is taken into account. An analysis of the residues showed a very low leaching inclination of ex-situ vitrified residues. This suggests that such a system could be used to avoid the problem of landfilling significant amounts of ash from sewage sludge incineration by turning inorganic residues into a by-product that has potential use as a construction aggregate.
Collapse
|